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INSTRUCTIONS: 
Project Managers and/or research project investigators should complete a quarterly progress report for each calendar 
quarter during which the projects are active.  Please provide a project schedule status of the research activities tied to 
each task that is defined in the proposal; a percentage completion of each task; a concise discussion (2 or 3 sentences) of 
the current status, including accomplishments and problems encountered, if any.  List all tasks, even if no work was done 
during this period. 

 
Transportation Pooled Fund Program Project # 
TPF-5(328)  

Transportation Pooled Fund Program - Report Period: 

□Quarter 1 (January 1 – March 31) 

□Quarter 2 (April 1 – June 30) 

☒Quarter 3 (July 1 – September 30) 

□Quarter 4 (October 1 – December 31) 

Project Title:  
Strain-based Fatigue Crack Monitoring of Steel Bridges using Wireless Elastomeric Skin Sensors 
Project Manager:     Susan Barker, P.E.         Phone:   (785) 291-3847         E-mail: SusanB@ksdot.org 
 
Project Investigator:  Li Jian        Phone:    785-864-6850         E-mail: jianli@ku.edu 
 
 
Lead Agency Project ID:            

RE‐0699‐01 

Other Project ID (i.e., contract #):
 
 

Project Start Date: 
 
9/2015 

Original Project End Date: 
Multi-year project  

Current Project End Date: 
8/31/2018 

Number of Extensions: 
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Project schedule status: 

 ☒ On schedule □ On revised schedule  □ Ahead of schedule  □ Behind schedule 

 
Overall Project Statistics: 
                  Total Project Budget     Total Cost to Date for Project     Total Percentage of Work 

                  Completed 
$405,000 $ 242,032 66 %  
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                          This Quarter 

     Total Amount of  Funds  
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Percentage of Work Completed 
              This Quarter 

$ 24,395 $ 24,395 8 % 
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Project Description: 
The main objective of this proposed research is to provide state DOTs a practical and cost-effective long-term fatigue 
crack monitoring methodology using a wireless elastomeric skin sensor network. This research is intended to 
demonstrate the value-added of fatigue crack monitoring of steel bridges using wireless skin sensors over the traditional 
bridge inspection. 
 
 
 
Progress this Quarter (includes meetings, work plan status, contract status, significant progress, etc.): 
 
ISU Progress:  
Under this task, fatigue crack sensors are to be produced with an approximate thickness of 100-200 µm to enhance the 
mechanical robustness under harsh environment. Acceptable range of capacitance is 800-1000 pF.  The anticipated 
number of sensors is 150 to 200 for the duration of the project.  
During this quarter, 30 sensors of dimensions 1’’ x 1’’ have been fabricated. Technical support (Task 3) is being provided 
to KU on a continuous basis, as well as discussion and feedback (Task 4). 
 
KU Progress: 
KU continued to test the bridge girder subassemblage model to evaluate the SEC network for monitoring distortion-
induced fatigue cracks. Two strategies were evaluated, including using the SECs as direct crack sensors and using the 
SEC networks to capture the change of strain field due to crack propagation. In addition, KDOT has located a steel 
highway bridge as the testbed for field deployment.  
 
UA Progress: 
Arizona team has been focused on improving the shunt calibration of the sensor board. All sensor boards need to be 
calibrated to get correct measurements. For resistance-type strain sensors, traditional single shunt calibration method is 
sufficient for precise calibration because of low sensitivity to the parasitic resistance of lead wires. However, capacitive-
type strain sensor (i.e. SEC) calibration is challenging because of high-sensitivity requirement, i.e., even with small 
parasitic resistance or capacitance in the lead wires, the lead wire effects can cause substantial error during the shunt 
calibration process.  
 
To address this issue, a dual capacitor-based shunt calibration method has been developed and validated in combination 
with the SEC. For this shunt calibration, high-precision calibration-purpose ceramic capacitors have been used. Typical 
ceramic capacitors have 5~20% tolerance errors, but calibration capacitors have 1~2% tolerance errors.  5pF and 1pF 
calibration (high-precision) capacitors were used (i.e. 4pF difference), voltage changes corresponding to the capacitance 
variation (i.e. calibration coefficient) were calculated. Validation tests were conducted with stepwise sine excitation. The 
capacitance variation converted from the sensor board voltage measurement showed good agreement with the actual 
SEC capacitance variation. 
 
 
Anticipated work next quarter: 
 
ISU: Sensor production will continue in the next quarter. Technical support is being provided to KU on a continuous basis, 
as well as discussion and feedback. 
 
KU: KU team will continue to finish testing the bridge subassemblage model. Another bridge subassemblage model will 
be tested with an updated sensor network configuration. Preliminary field test will also be conducted with the I-70 bridge. 
 
UA: In the next quarter, Arizona team will continue to provide assistance to the KU team in terms of evaluating the sensor 
board at KU test setup. 
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(a) Case 1 (b) Case 2 

Figure 22. Incremental sine wave excitation test results 
  

Incremental sine wave excitation tests were conducted as shown in Figure 22. Top row signals are capacitance change 
measured by PCAP and red signals are (foil-type) strain gauge measurements, blue signals are measurements from the 
sensor board. Four step sine excitations were applied every 20sec for 80, 150, 300, 550 micro strain.  

Figure 23 shows calculation example that compared capacitance variation versus voltage change measured in the tests.  

 
Figure 23. Capacitance variance versus voltage measurement 
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Figure 24. Reconstructed capacitance from validation tests 

 
 Using the calibration coefficients, the reconstructed capacitance data from voltage in two validation tests shows good 
agreement in Figure 24. The solid red line is from test case 2 and the dashed blue line is from test case 1. The two 
converted measurements match well and show cleaner data than the commercial capacitance measurement kit (PCAP) 
shown as black solid line. 

 

Circumstance affecting project or budget.  (Please describe any challenges encountered or anticipated that might 
the completion of the project within the time, scope and fiscal constraints set forth in the agreement, along with 
recommended solutions to those problems). 
 
None.  
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