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EXECUTIVE SUMMARY

The purpose of the research being performed is to provide the benefit of the full
performance-based probabilistic earthquake hazard analysis, without requiring special software,
training, and experience. To do this, simplified models of post-liquefaction settlements and
seismic slope displacements that approximate the results of the full probabilistic analysis were
developed and validated in the Year 2 Quarter 1 update report. These simplified methods are
designed to require only a few calculations programmed into a spreadsheet and a provided
liquefaction parameter map. This report describes how to create these parameter maps,
specifically addressing the Year 2 portion of Tasks 5 and 6 of the TPF-5(296) research contract.

Creating a contour map based on an infinite number of analyzed points is not possible
for the scope of this research project. Therefore, it was necessary to define a finite number of
points to analyze. Interpolation was then used to evaluate the values in between the points
selected for analysis. Using a finite number of points introduces the possibility for error based
on interpolation between these points. Thus it was necessary to define a set of rules for proper
grid spacing which would keep the error due to interpolation within a reasonable amount. As
shown in this report, such a set of rules was derived. Assuming that these rules are followed, the
chosen grid spacing should result in an absolute error of 0.0015 or less for the post liquefaction
volumetric strain or 5% error or less of seismic slope displacement between an interpolated value
and the value that would have been produced if a full analysis were performed at that location.
The set of grid spacing rules were used in creating the grid of points used for map making.

Using the set of rules developed in the grid spacing study, a set of points was determined
for each state to be used in analysis. A full performance-based analysis was performed at each

point for three return periods (475, 1033, and 2475 years) yielding four different values for each

return period: post liquefaction volumetric strain for the Cetin (2009) model (&l ), post

liquefaction volumetric strain for Ishihara and Yoshimine 1992 (& ), seismic slope

IshiharaYoshimine

displacement for the Rathje and Saygili (2009) model (D{Jj{tme&Saygili ), and Bray and Travasarou

(2007) model (DZ ). These values were calculated based on the reference soil profile

Bray&Travasarou
introduced in the Year 2 Quarter 1 update report, not based on site-specific soil characteristics.

The values at each point were used to create a surface raster file in ArcMap using Kriging-style



interpolation. This raster was then used to create contour maps for each parameter in each state.
These contour maps can be re-formatted as desired from the raster file in ArcMap. Sample

contour maps created by the research team can be found in the Appendix of this report.



1.0 INTRODUCTION

1.1 Problem Statement

An important aspect of the simplified performance-based post-liquefaction settlement and
seismic slope displacement models is the use of parameter and hazard maps. These maps are
developed using a reference soil profile and require an analysis of a grid of points covering the
desired area. The results of the analysis are then interpolated into a complete contour map
providing the reference value. This quarterly report provides the methodology and process in

developing these maps.

1.2 Objectives

The objective of this report is develop an optimum grid spacing for the development of
the parameter and hazard maps as well as to explain the creation of these maps and the GIS files
associated with them, addressing Tasks 5 and 6 of the TPF-5(296) research contract.

1.3 Scope

The tasks to be performed in this research will be: perform the grid spacing evaluation,
generate the grid of points needed for the analysis for each state, perform the performance-based

analysis for the grid points, and create the parameter and hazard maps.

1.4 Outline of Report

The research conducted for this report will contain the following:

e Introduction

e Evaluation of Grid Spacing
e Development of Maps

e Conclusions

e Appendices



2.0 EVALUATION OF GRID SPACING

2.1 Overview

Because biases due to spacing of grid points in gridded seismic hazard analyses are
known to exist, the grid spacing study will evaluate the potential for bias to occur due to grid
spacing effects in a gridded probabilistic liquefaction settlement and seismic slope displacement
hazard assessment. Because the states involved in this study comprise areas of varying seismicity
levels, evaluations will be performed in each of the states to assess the optimum grid spacing for
development of liquefaction settlement and seismic slope displacement parameter maps in future

tasks.

The grid spacing assessment was performed by comparing interpolated results from a
simple 4-point grid placed in various parts of the country with site-specific results. The
difference between the interpolated and site-specific results was quantified. By minimizing these
computed differences, the optimum grid spacing for the liquefaction parameter maps in each

state was obtained.

Note that this grid spacing study does not provide estimates of accuracy between the
simplified performance-based method and the full performance-based method. The accuracy
between the two methods is clearly explained in the quarter 1 year 2 report of the study. The
measurements of error calculated in this grid spacing study reflect only the error involved in

interpolation between grid points.

2.2 Performance-based Post-Liquefaction Settlement Evaluation

This section will describe the methods used to derive a correlation between optimum grid
spacing and PGA for the simplified performance-based post-liquefaction settlement evaluation.
The purpose of this correlation was to provide a simple, readily-available, well-defined set of
rules for proper grid spacing across the states of interest. This set of rules is necessary because it
is impractical to perform an infinite number of full performance-based analyses to create the
liquefaction hazard contour maps. It was necessary to determine a finite number of points to

analyze. The set of rules created in this grid spacing study was used to define the optimum



number of points which would be feasible to analyze in the amount of time given and would

yield an acceptable amount of error due to interpolation between analyzed points.

2.2.1 Methodology for Grid Spacing Study

Year 1 of this study performed a preliminary study in which it was hypothesized that
expected PGA values have an effect on optimum grid spacing. Specifically, it was hypothesized
that as PGA increases, the optimum grid spacing decreases. Please see the Year 1 report for more
details on the preliminary study. This report builds on the premise introduced in Year 1 that PGA

has an effect on the optimum grid spacing.

To estimate the effect of PGA on optimum grid spacing, a study was conducted focusing

on 35 cities with a wide range of PGA values (Figure 2-1).

1.60

2475 Years)

PGA (2% in 50 Years, TR

Figure 2-1 Cities used in grid spacing study and their respective expected PGA for the 2475

year return period.

For each city, the coordinates for an “anchor point” were selected. Using a square grid

(like the one shown in Figure 2-2), a full performance-based liquefaction analysis was run for the
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anchor point using the reference soil profile to obtain values of ¢, and ¢ at three

different return periods (475, 1033, and 2475 years). The full performance-based method was
also run for four surrounding coordinates at varying grid spacings. The testing process included
grid spacings of 1, 2, 4, 8, 16, 25, 35, and 50 kilometers (0.62, 1.24, 2.49, 4.97, 9.94, 15.5, 21.7,

and 31.1 miles, respectively).

Grid Point O O .

o Grid Spacing

Anchor Point

A
v

Grid Spacing
Figure 2-2 Layout of grid points centered on city’s anchor point.

An estimate of the liquefaction hazard at the center point (i.e. the interpolated value of

ref

either et orell . ) was calculated from the four corner points using a direct average of

the four corner points. This interpolated value was then compared to the actual value of the
center anchor point as calculated using a full performance-based liquefaction analysis. The
absolute difference between the interpolated value and the true value at the center is called the

error term. The error terms were calculated for each city at each grid spacing as follows:

AbsoluteError., , =|InterpolatedValue., , — AnchorValue,, (1)

where CITY indicates the city of interest and x is the grid spacing in question.

The error term calculated in equation (1) is different from the error term introduced in the
Year 1 study which is a percent error. The absolute error was chosen as the error term for post-
liquefaction strains due to the nature of the extremely small strain values. Even with very small
magnitude strain values, slight fluctuations in strain values can lead to a high percent error even

if the change is considered negligible.



The desired outcome of the grid spacing study was to create a correlation between
PGA and optimum grid spacing in km. An equation for the best-fit trend line of PGA vs.
optimum grid spacing alone would not be sufficient, because defining grid points to use in an
analysis does not work well with non-integer values for grid spacing and constantly changing
distances between points. Therefore, it was necessary to divide the different cities into PGA
“bins” or defined ranges of values. These bins were determined using the USGS 2008 PGA
hazard map (T, = 2475 years) as shown in Figure 2-3. The PGA hazard map was chosen because
it was clear and readily available as a well-documented definition of which areas in the country
had significantly different seismicity levels compared to other areas’ seismicity levels.
Therefore, the objective of this study was to determine the optimum grid spacing for each color
bin.

~ USGS Highest hazard
=
= A

Figure 2-3 USGS 2008 PGA hazard map (T, = 2475 years).

The maximum absolute error (i.e. the maximum absolute error between the Cetin (2009)

and Ishihara and Yoshimine (1992) models across all return periods for a given anchor point)

10



became the deciding parameter in selecting optimum grid spacing for a given location. The
relationship between maximum absolute error and grid spacing was analyzed for each city and is

discussed in the following section.

2.2.2 Results of Grid Spacing Study

The relationship between absolute error and grid spacing was analyzed for each city. It
was determined that “optimum grid spacing” would be defined as the smallest grid spacing (i.e
shortest distance between grid points) which yielded a maximum absolute error of 0.0015
(0.15%) across all return periods based on vertical strain. For example, if a full performance
based analysis was run for an anchor point and returned a strain value of 0.02 (2%), an absolute
error of 0.0015 means that the interpolated value from the four corner points would lie within
0.0185 and 0.0215 (1.85%-2.15%). In other words, for the reference soil profile as seen in Figure
2-4 which 12 is meters thick, an absolute error of 0.15% would result in settlement error of +1.8
cm. This seemed to be a reasonable amount of error, considering fluctuations in settlement of 1.8

cm would not necessarily change decision making and mitigation procedures.

6
[:19_?1@ Saturated Sand
v =19.62 kN/m* (124.9 pch)
I:l (N1)so = 18, Fines < 3%

Veo12=175 m/s (574.15 ft/s)

Figure 2-4: Reference soil profile used in the development of liquefaction loading maps

It is again worth noting that this study was performed in an attempt to limit spatial biases
for reference profile. This study does not ensure that the simplified performance-based strains in
the site profile will be within +0.15% of the full performance-based method. For a review on the
accuracy of the simplified versus full performance-based method see the Year 2, Quarter 1 report
of this study.

Optimum grid spacing was determined using a plot of absolute error vs grid spacing in
km. Unique plots were created for each city to determine the optimum grid spacing. Sample
plots are provided in Figure 2-5, Figure 2-6, and Figure 2-7. Some cities’ data followed a linear

trend line while others followed a polynomial, or even logarithmic, trend line. In each case, a

11



reasonable best-fit curve or line was used to determine optimum grid spacing. Some of the cities
selected for this study, particularly those with low PGA values, did not reach a maximum
absolute error of 0.0015 even when the grid spacing was increased to 50 km (31.07 mi) or more.
To avoid extrapolation, a maximum grid spacing threshold of 50 km was set, regardless of how
low the error was. A description of the final correlation between PGA and optimum grid spacing

is included in the following section.
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Figure 2-5 Variation of maximum percent error (based on Ishihara & Yoshimine 1992)

with increasing distance between grid points for Eureka, CA. (Pink zone, PGA = 1.4004)
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Figure 2-6 Variation of maximum percent error (based on Ishihara & Yoshimine 1992)
with increasing distance between grid points for Portland, OR. (Orange zone, PGA =
0.4366)
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Figure 2-7 Variation of maximum percent error (based on Cetin 2009) with increasing
distance between grid points for Butte, MT. (Yellow zone, PGA =0.1785)
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2.2.3 PGA Correlation

As described in the previous section, optimum grid spacing was determined for each city
included in the study that reached at least a maximum absolute error of 0.0015 based on either
reference strain (Cetin 2009 or Ishihara and Yoshimine 1992). Optimum grid spacing was then
plotted against PGA as shown in Figure 2-8. The vertical dashed lines indicate the boundaries
between PGA bins as defined in the USGS 2008 PGA hazard map. The general trend of the
points supports the hypothesis that as PGA increases the optimum grid spacing decreases. A
hand-drawn lower bound was used to determine the optimum grid spacing based on PGA. The

lower bound line was chosen as a conservative estimate of optimum grid spacing.

100 \DEnver :
1

Chicagoy jphifadelphia_— ©klahoria City
\tanta Ne}zv_York CY — Grants Pass
./,’St' Lo ' Murray
q(ng
Bu

b 1
e W'lle\NltestYell(?wsto Marion
1 @ ;|  @—QOlympia
|® Monltpelier
eaver 1 | @ Sanfran
! ! San Jose

Portland e_ -

e I\'(Iemphissanta Monica ® Eureka
o« o
Flathead Lake

— 1

19 Provo
— ® Berkeley

r\ t
Salt Lake City
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’r Seattle
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e ey Y,
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]
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Figure 2-8 Correlation between PGA and optimum grid spacing to achieve 0.0015
maximum absolute error (based on minimum grid spacing between Cetin 2009 and
Ishihara & Yoshimine 1992)
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The hand-drawn lower bound shown in Figure 2-8 was used to determine the set of rules
for selecting grid spacing in the mapping procedure. Within each PGA bin, a lower-bound value
for optimum grid spacing was selected. The set of rules includes one optimum grid spacing

distance for each PGA bin included in the study. Table 2-1 summarizes this set of rules.

Table 2-1 Proposed Set of Rules to Determine Optimum Grid Spacing within a PGA Range

Spacing Spacing

PGA Color (km) (mi)
0-0.04 Gray 50 31.1
0.04-0.08 Blue 50 31.1
0.08 -0.16 Green 40 24.9
0.16-0.32 Yellow 30 18.6
0.32-0.48 Orange 10 6.21

0.48 - 0.64 8 4.97
0.64+ 3 1.86

In summary, the correlation determined in this study provided a set of rules to use when

ref
IshiharaYoshi mine

ref

creating liquefaction parameter maps for ¢, and ¢

2.3 Seismic Slope Displacement Model

This section will describe the methods used to derive the optimum grid spacing to ensure
accuracy of interpolated points determined by the simplified performance-based seismic slope
displacement evaluation. To ensure accuracy of the maps, interpolation between grid points
must result in values reasonably close to the results of an actual analysis at the same location. A
common way to ensure that the mean value will be within a range is that of a 95% confidence
interval, or a corresponding 5% error. For this study, it was determined that if the interpolated
result was within 5% of an actual value computed at that site, then the result was acceptable. A
few cities were analyzed using the absolute difference instead of the 5% error as it will be
discussed in the following section because as a percentage these did not meet the criteria. When
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looking at the absolute difference between the interpolated value and the actual value at the
anchor point corresponding optimum grid spacings to displacements, no greater than 5¢cm were

recommended for the specific cities.

2.3.1 Methodology for Grid Spacing Study

The methodology used to derive the optimum grid spacing for the simplified seismic
slope displacement model was the same as described in the previously addressed lateral spread
displacement model. Using the USGS 1996 and 2008 Deaggregation websites the PGA at each
site was determined for the 2475 year return period. The hazard level at each site as well as the
hazard range for each state was found based on the same representation seen in the USGS 2008

PGA hazard map for the 2475 year return period shown in Figure 2-3

The grid spacing for the corresponding hazard zone was determined by calculating
seismic slope displacements on a grid as seen in Figure 2-2. This process was repeated at 2 km, 4
km, 8 km, 16 km, 25 km, 35 km, and 50 km grid spacing, and the % error was calculated as
shown in Equation (2) . A plot of each city and simplified seismic slope displacement method
was generated and using best fit lines the optimum grid spacing corresponding to 5 % error was

identified as shown in the figures below.

| InterpolatedValue — ActualValue |
ActualValue

PercentError = x100% 2
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Figure 2-9 Variation of maximum percent error (based on Rathje & Saygili 2009) with
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Figure 2-10 Variation of maximum percent error (based on Rathje & Saygili 2009) with

increasing distance between grid points for Portland, OR. (Orange zone, PGA = 0.4366)
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Figure 2-11 Variation of maximum percent error (based on Rathje & Saygili 2009) with
increasing distance between grid points for Butte, MT. (Yellow zone, PGA = 0.1785)

This process was repeated for each city shown in Figure 2-1. The grid spacing, where the
absolute difference was 5 cm or less, was plotted against PGA to get an idea of how the grid

spacing differs from site to site. This plot can be seen in Figure 2-12 below.
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Figure 2-12 Grid spacing based on 5% Error plotted against PGA for all sites.

Figure 2-12 shows significant scatter of the results. The seismic loading at the different
locations seems to be a factor affecting the seismic slope displacement analysis’ results. A way
to address the uncertainty is with the use of a best fit line to identify a trend in the data’s
behavior and then draw a dashed line just below it as the lower bound to identify the
recommended grid spacing for the cities analyzed. The proposed grid spacing for each PGA

interval was hand drawn with the red lines.

Five out of the thirty five cities used in the study did not meet the criteria of 5% error.
These cities were Skagway (AK), Flathead (MT), Salt Lake City (UT), San Jose (CA), and San
Francisco (CA). After this observation, the absolute difference in centimeters was calculated for

these cities. The criteria was to use 5 cm as the maximum allowable difference between the
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actual value and the interpolated value and the proposed spacing the cities not meeting the 5%
error criteria. Once a grid spacing was assigned to the cities not meeting the criteria, an overall

grid spacing was proposed as shown below in Table 2-2.

Table 2-2 Proposed Grid Spacing for Seismic Slope Displacement Analysis

Spacing Spacing

PGA Color (km) (mi)
0-0.04 Gray 50 31.1
0.04 - 0.08 Blue 50 311
0.08 - 0.16 Green 20 12.4
0.16-0.32 Yellow 8 5.0
0.32-0.48 Orange 5 3.1
0.48-0.64 - 3 1.9
0.64+ 2 1.2

2.4 Summary

Based on the analysis outlined here, the grid spacing necessary to maintain accuracy in
the interpolated results was found. For post liquefaction settlement, the grid spacing should result
on an absolute difference of 0.0015 between an interpolated value and the result if an analysis
were performed at the same site. For seismic slope displacement, the grid spacings should result
on average 5% difference between an interpolated value and the result if an analysis were
performed at the same site. These grid spacings will be very important in creating the grid of

points that will be used in the analysis.
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3.0 MAP DEVELOPMENT

3.1 Overview

Now that the optimum grid spacing between points has been determined, the grid points
used in the analysis need to be determined, then those points need to be analyzed and the hazard
parameters calculated. Once the analysis has been conducted for each grid, then those points will
be used to create the post-liquefaction settlement and seismic slope displacement parameter maps

for the target return periods.

This process required the use of several specialized software programs. To create the grid
spacing and the maps, the Geographic Information System (GIS) software ArcMap, developed
by ESRI Incorporated, was used extensively. To obtain the full performance-based strain and
seismic slope displacement values, the software PBLiquefY, developed in house at BYU, was
utilized.

3.2 Creating the Grid Points

The process was started by dividing each state into sections based on the USGS 2008
PGA hazard map. This was done creating GIS shapefiles developed from downloaded data from
the USGS website representing the 2008 hazard map. Each PGA hazard zone was assigned a grid
spacing based on the suggested grid spacing from the previous section. Then using ArcMap, a
grid of points with latitude and longitude was generated for each hazard zone at the specified
grid spacing. PBLiquefY (2014) has the capability of calculating liquefaction settlements and
seismic slope displacements simultaneously for a given geographic coordinate; therefore, in
order to limit the number of performance based analysis runs, the governing (finer) grid spacing
was run for both liquefaction settlement and slope displacement. The governing grid spacing in
all PGA zones was seismic slope displacement. All the zones were then combined into one
general grid for the state. An example of the subdivision and the overall grid of points for Utah

can be seen in Figure 3-1.
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Figure 3-1 Grid points for Utah combined with USGS 2008 PGA hazard map.

3.3 Analysis of the Grid Points

Once the grid points were developed for all the states, the location of each of the points
was evaluated for post-liquefaction settlement and seismic slope displacement using the
reference soil profiles discussed in the previous report. Each point was analyzed for the 475,
1033, and 2475 year return periods. Once all of the points for a particular state were successfully
run, the results were compiled and then imported back into ArcMap to begin the process of

making the parameter maps.
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3.3.1 Analysis of the Liguefaction Initiation Model Grid Points

The grid points used in the liquefaction hazard analysis were analyzed using the USGS
2008 deaggregations for Connecticut, ldaho, Montana, South Carolina, and Utah while the
USGS 1996 deaggregations were used for Alaska. The maps for Alaska are not included in this
report because the 1996 deaggregations are not accessible from the USGS website at the
moment. As soon as the data is available an addendum to this report will be made including
those maps. The process utilized the ability of PBLiquefY (2014) to run multiple sites

sequentially.

3.4 Creation of the Maps

Once the analyzed grid points were imported back into ArcMap the points needed to be
turned into a contour map. This was done by converting the individual points into a surface raster
using the Kriging tool. This tool interpolates between each point and makes a surface with a
value at every point. In order to ensure that the contours of each state run all the way to the
border, the state shape is buffered slightly. The Kriging raster is created based on this buffered
shape. Once the Kriging raster is made, the raster surface needs to be converted into a contour.

To make the contour from the Kriging, first the spacing of the contours needs to be
determined. It is important that the contour spacing be fine enough that the detail of the map can
be read, but far enough apart that the contours can be read. The spacing will vary from map to
map based on this process. An example of a Kriging raster and contour for the state of Utah can
be seen in Figure 3-2.
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Figure 3-2 a) Kriging raster and b) contours for Utah (T, = 2475 yrs).

Once the proper contour spacing is determined for each map, the contour is labeled and
clipped to fit the state shapefile. Then a basemap and reference features are added to provide
more detail about the topography to the parameter maps. An example of a completed reference
parameter map can be seen in Figure 3-3.

Each model has different parameters represented by the contours on the map. Post-
liquefaction settlement and seismic slope displacement have two different models used in this

study and therefore two different maps associated with each return period. For post-liquefaction

settlement the first parameter is the reference value of strain, 2., as calculated using the Cetin

Cetin !

(2009) model. Strain is usually given as a decimal but was changed to a percent to make reading

ref
IshiharaYoshimine !

the maps easier. The second parameter is the reference value for strain, e as

calculated using the Ishihara & Yoshimine (1992) model and is also as a percent. The seismic

slope displacement parameter maps seismic slope displacement for the Rathje and Saygili (2009)

ref
Bray&Travasarou

model (D2 .+ ) In centimeters, and Bray and Travasarou (2007) model ( D,

Rathje&Saygili ) also

in centimeters. Careful attention needs to be given to the labeling of each map to ensure that map
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has the correct parameter and that the reference value used in the later steps of the simplified

method are accurately read from the contours.

H ref ref ref ref
For thIS report! mapS Of Ecetin + ishiharaoshimine 1 DRathje&SaygiIi and DBray&Travasarou were made for

each state at the 475, 1033, and 2475 year return periods with the exception of Alaska as
indicated before. These maps can be viewed in the Appendix: post-liquefaction settlement in
Appendix A and seismic slope displacement maps in Appendix B. The contours were adjusted
for each map to make reading it as user friendly as possible.

These maps were provided to show the potential types of parameter maps that can be
created. Using the Kriging rasters that will be provided at the culmination of this research, each

state can create maps of any area in their state and determine the contour spacing and scale.

Reference Seismic Slope Displacement
Bray and Travasarou 2007
2475 Year Return Period
Contour Interval: 1 Contour = 5cm

==

Figure 3-3 D" for Utah (T, = 2475 years).
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3.5 Summary

To create the parameter and hazard maps, the state is subdivided into zones and a grid
spacing for each zone is assigned. A grid of points is generated in ArcMap based on this grid
spacing. Then the points are analyzed using the specified performance-based analytical software
(i.e. PBLiquefY). These points are then imported into ArcMap and converted to a Kriging raster
that is then used to create a contour of the reference parameter. Sample maps for the states

participating in  this research study can be seen in the Appendix.
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4.0 CONCLUSIONS

4.1 Summary

The purpose of the research being performed is to provide the benefit of the full
performance-based probabilistic earthquake hazard analysis, without requiring special software,
training, and experience. To do this, simplified models of post-liquefaction settlement and
seismic slope displacement were developed in the Year 2 Quarter 1 update report that
approximate the results of the full probabilistic analysis. These simplified methods require
liquefaction parameter maps. This quarterly report addresses proper grid spacing of the points

used for analysis and the process of creating parameter maps.

4.2 Findings

4.2.1 Evaluation of Grid Spacing

To create maps appropriate for the simplified performance-based procedures used in this
research, it was necessary to define a set of rules for proper grid spacing which would keep error
due to interpolation within a reasonable amount. As shown in this report, such a set of rules was
derived. Assuming that these rules are followed, the difference between an interpolated value
and the value that would have been produced if a full analysis were performed at that location,
the grid spacings should result in an absolute error no greater than 0.0015 or 5 % error for post-
liquefaction strain or seismic slope displacements, respectively. The appropriate set of grid
spacing rules for each model type (i.e. post-liquefaction strain or seismic slope displacement)
were used in creating the grid of points used for map making.

4.2.2 Map Development

Using the set of rules developed in the grid spacing study, a set of points was determined
for each state to be used in analysis. A full performance-based analysis was performed at each
point for three return periods (475, 1033, and 2475 years) yielding three different values for each
return period: ¢ for the Cetin (2009) model, " for the Ishihara & Yoshimine (1992) model,
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D™ for Rathje & Saygili (2009) model, and D™ for Bray & Travasarou (2007). These values
were calculated based on the reference soil profile introduced in the Year 2 Quarter 1 update
report, not based on site-specific soil characteristics. The values at each point were used to
create a surface raster file in ArcMap using Kriging-style interpolation. This raster was then
used to create contour maps for each parameter in each state. These contour maps can be re-
formatted as desired from the raster file in ArcMap. Sample contour maps created by the

research team can be found in the Appendix of this report.

4.3 Limitations and Challenges

These liquefaction parameter maps do not include site-specific soil information. Instead,
these maps are based on a reference soil profile (introduced in the Year 2 Quarter 1 update
report) and as such provide reference values to be inserted into the simplified performance-based
procedure derived in the Year 2 Quarter 1 update report. These specific maps created for this
report should not be used in any other way. Also, the values on these parameter maps should not
be viewed as the actual hazard at a given site. Again, these are reference values which do not

include site-specific soil characteristics.

As these maps are used, keep in mind the limitations of the liquefaction evaluation
models used to calculate the reference values. Please refer to the proper liquefaction evaluation
models (Cetin, 2009; Ishihara & Yoshimine, 1992; Rathje & Saygili, 2009; and Bray &
Travasarou, 2007) for detailed descriptions of these models’ limitations. While the reference
maps were created using appropriate model inputs, it is possible that site-specific properties will
use values outside of recommended limits stated in the models. These limitations should be

carefully considered before accepting the results of this simplified procedure.

The reference values displayed on these parameter maps were calculated based on data
from available seismic models. The 2008 USGS deaggregations were used for Connecticut,
Idaho, Montana, South Carolina, and Utah; the 1996 deaggregations were used for Alaska.
Therefore, the results displayed on these parameter maps are only as accurate as the seismic
models used to create them. Any inaccuracies which may exist in these models may affect the

accuracy of the simplified methods developed as part of this research.
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APPENDIX A: Sample Post-Liquefaction Settlement Maps
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Figure A- 1 Cetin et al. (2009) Post-Liquefaction Settlement (") Map for Connecticut
(Tr=475)
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Reference Vertical Strain (%)
Cetin 2009
1033 Year Return Period
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® OpenSteetMap {and) contributors, CC-BY-SA

Figure A- 2 Cetin et al. (2009) Post-Liquefaction Settlement (¢ ") Map for Connecticut
(Tr=1,033)
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Figure A- 3 Cetin et al. (2009) Post-Liquefaction Settlement (") Map for Connecticut
(Tr=2,475)
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Reference Vertical Strain (%)
Ishihara and Yoshimine 1992
475 Year Return Period
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Figure A- 4 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ") Map for
Connecticut (Tr = 475)
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Ishihara and Yoshimine 1992
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Figure A- 5 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ™"

Connecticut (Tr =1,033)

Map for
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Reference Vertical Strain (%)
Ishihara and Yoshimine 1992
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Figure A- 6 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ") Map for
Connecticut (Tr = 2,475)
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Reference Vertical Strain (%)
Cetin 2009
475 Year Return Period
Contour Interval: 1 Contour = 0.2%

0 25 50 100 Miles

| (] | | B 1 |

e T T | e T T S |

0 50 100 200 Kilometers
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Figure A- 7 Cetin et al. (2009) Post-Liquefaction Settlement (¢ rEf) Map for Idaho (Tr = 475)
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Reference Vertical Strain (%)
Cetin 2009
1033 Year Return Period
Contour Interval: 1 Contour = 0.5%
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® OpenSteethMap (and) contributors, CC-BY-SA

Figure A- 8 Cetin et al. (2009) Post-Liquefaction Settlement (") Map for Idaho
(Tr=1,033)
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Reference Vertical Strain (%)
Cetin 2009
2475 Year Return Period
Contour Interval: 1 Contour = 0.25%
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Figure A- 9 Cetin et al. (2009) Post-Liquefaction Settlement (") Map for Idaho
(Tr=2,475)
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Reference Vertical Strain (%)
Ishihara and Yoshimine 1992
475 Year Return Period
Contour Interval: 1 Contour = 0.1%
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Figure A- 10 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ") Map for
Idaho (Tr = 475)
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Reference Vertical Strain (%)
Ishihara and Yoshimine 1992
1033 Year Return Period
Contour Interval: 1 Contour = 0.2%
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Figure A- 11 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (& "") Map for
Idaho (Tr =1,033)
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Reference Vertical Strain (%)
Ishihara and Yoshimine 1992
2475 Year Return Period
Contour Interval: 1 Contour = 0.25%
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Figure A- 12 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (& ")

Idaho (Tr = 2,475)

Map for
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Figure A- 13 Cetin et al. (2009) Post-Liquefaction Settlement (¢ ™" Map for Montana
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Figure A- 14 Cetin et al. (2009) Post-Liquefaction Settlement (¢ ") Map for Montana
(Tr=1,033)
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Figure A- 15 Cetin et al. (2009) Post-Liquefaction Settlement (¢ ") Map for Montana
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Figure A- 16 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ") Map for

Montana (Tr = 475)
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Figure A- 17 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ "™") Map for

Montana (Tr = 1,033)
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Figure A- 18 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (& "") Map for

Montana (Tr = 2,475)
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Figure A- 19 Cetin et al. (2009) Post-Liquefaction Settlement (¢ "") Map for South Carolina
(Tr =475)
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Figure A- 20 Cetin et al. (2009) Post-Liquefaction Settlement (¢ ") Map for South Carolina
(Tr=1,033)
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Figure A- 21 Cetin et al. (2009) Post-Liquefaction Settlement (¢ "") Map for South Carolina
(Tr =2,475)
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Figure A- 22 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (e Iref)

South Carolina (Tr = 475)
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Figure A- 23 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢
South Carolina (Tr =1,033)

) Map for
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Figure A- 24 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (& ") Map for
South Carolina (Tr = 2,475)
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Figure A- 25 Cetin et al. (2009) Post-Liquefaction Settlement (z"") Map for Utah (Tr = 475)
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Figure A- 26 Cetin et al. (2009) Post-Liquefaction Settlement (z"") Map for Utah

(Tr=1,033)
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Figure A- 27 Cetin et al. (2009) Post-Liquefaction Settlement (¢ ™" Map for Utah

(Tr=2,475)
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Figure A- 28 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ") Map for
Utah (Tr = 475)
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Figure A- 29 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ") Map for
Utah (Tr = 1,033)
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Figure A- 30 Ishihara and Yoshimine (1992) Post-Liquefaction Settlement (¢ ") Map for
Utah (Tr = 2,475)
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APPENDIX B: Sample Seismic Slope Displacement Maps
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Figure B- 1 Rathje and Saygili (2009) Seismic Slope Displacement (D
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) Map for
Connecticut (Tr = 475)
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Reference Seismic Slope Displacement
Rathje and Saygili 2009
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Figure B- 2 Rathje and Saygili (2009) Seismic Slope Displacement (D ™) Map for

Connecticut (Tr =1,033)
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Figure B- 3 Rathje and Saygili (2009) Seismic Slope Displacement (D
Connecticut (Tr = 2,475)

) Map for
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Reference Seismic Slope Displacement
Bray and Travasarou 2007
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Figure B- 4 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for

Connecticut (Tr = 475)
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Reference Seismic Slope Displacement
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Figure B- 5 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for
Connecticut (Tr = 1,033)
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Figure B- 6 Bray and Travasarou (2007) Seismic Slope Displacement (D "

Connecticut (Tr = 2,475)
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Reference Seismic Slope Displacement
Rathje and Saygili 2009
475 Year Return Period
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Figure B- 7 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for Idaho
(Tr=475)
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Reference Seismic Slope Displacement
Rathje and Saygili 2009
1033 Year Return Period
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Figure B- 8 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for Idaho
(Tr=1,033)
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Reference Seismic Slope Displacement
Rathje and Saygili 2009
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Figure B- 9 Rathje and Saygili (2009) Seismic Slope Displacement (D "") Map for I1daho
(Tr=2,475)
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Reference Seismic Slope Displacement
Bray and Travasarou 2007
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Figure B- 10 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for Idaho
(Tr = 475)
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Reference Seismic Slope Displacement
Bray and Travasarou 2007
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Figure B- 11 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for Idaho
(Tr =1,033)
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Reference Seismic Slope Displacement
Bray and Travasarou 2007
2475 Year Return Period
Contour Interval: 1 Contour = 5cm

0 25 50 100 Miles

| 1 1 1 | | 1 1 |

| T T T I T T T ]

0 50 100 200 Kilometers

® CpenSteetMap {and) contributors, CC-BY-SA

Figure B- 12 Bray and Travasarou (2007) Seismic Slope Displacement (D "") Map for
Idaho (Tr = 2,475)
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Figure B- 13 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for Montana

(Tr =475)
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Figure B- 14 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for Montana

(Tr = 1,033)
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Figure B- 15 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for Montana

(Tr =2,475)
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Figure B- 16 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for

Montana (Tr = 475)
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Figure B- 17 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for

Montana (Tr = 1,033)
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Figure B- 18 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for
Montana (Tr = 2,475)
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Figure B- 19 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for South
Carolina (Tr = 475)

81



Reference Seismic Slope Displacement
Rathje & Saygili 2009
1033 Year Return Period
Contour Interval: 1 Contour = 5cm

"

30 60 120 Kilometers

® OpenSteetMap (and) contributors, CC-BY-SA

Figure B- 20 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for South
Carolina (Tr =1,033)
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Figure B- 21 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for South
Carolina (Tr = 2,475)
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Figure B- 22 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for South
Carolina (Tr = 475)
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Figure B- 23 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for South
Carolina (Tr =1,033)
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Figure B- 24 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for South
Carolina (Tr = 2,475)
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Figure B- 25 Rathje and Saygili (2009) Seismic Slope Displacement (D ") Map for Utah
(Tr=475)
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Figure B- 26 Rathje and Saygili (2009) Seismic Slope Displacement (D Iref) Map for Utah
(Tr=1,033)
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Figure B- 27 Rathje and Saygili (2009) Seismic Slope Displacement (D "*)Map for Utah
(Tr= 2,475)
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Figure B- 28 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for Utah
(Tr =475)
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Figure B- 29 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for Utah
(Tr =1,033)
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Figure B- 30 Bray and Travasarou (2007) Seismic Slope Displacement (D ") Map for Utah
(Tr =2,475)
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