The Impact of Wide-Base Tires on Pavements - A National Study

Transportation Pooled Fund Study TPF-5(197)

TRB Webinar October 19, 2015

Sponsored by TRB Committees AFD60, AFD80 and AFK50

AGENDA

- TPF-5(197)Introduction and Background: Eric Weaver, FHWA
- Introduction to NG-WBT: Imad Al-Qadi, UIUC
- Impact of NG-WBT on pavement responses: Imad Al-Qadi, UIUC
- Designing pavement structures considering NG-WBT: Imad Al-Qadi,
 Jaime Hernandez
- Environmental impact of NG-WBT Life-cycle assessment: Imad Al-Qadi, UIUC
- Q&A
- Final remarks: Imad Al-Qadi, UIUC and Eric Weaver, FHWA

TPF-5(197) Background

- International Workshop in October 2007
 - Concluded that past research not relevant to current tire designs and not applicable to a range of pavement structures
 - Recommended a National Research Program with International Collaboration
 - EPA promoting use as part of SmartWay Transport Partnership http://www.epa.gov/smartwaytransport/index.htm
 - Minutes available here: http://www.arc.unr.edu/Workshops.html
- Illinois DOT initiated a pooled fund solicitation in 2008;
- Requested FHWA lead in 2009 http://www.pooledfund.org/projectdetails.asp?id=423&status=4

TPF-5(197) Scope and Objectives

- Tires in US market with width > 425mm
- Flexible pavement structures only
- Encourage Industry and International Partnerships
- Couple analytic modeling and experimental testing to quantify damage to pavements
- Deliver a tool and method to assess damage to their networks based on tire configuration
- Provide highway agencies a tool for determining appropriate tire load limits considering the trade-off between potential pavement damage relative to potential environmental and economic benefits

TPF-5(197) Status

- Seven State Participants; IL, MN, MT, NY, OK, TX, VA
- Industry representation and investment by RMA
- In-Kind contribution from OH DOT
- Coordination with ATA, EPA, NHTSA, DOE and RMA
- 3 Face-to-Face TAC meetings; 1 virtual
- 2 TRB Webinars
- Draft final deliverables received

TPF-5(197) Next Steps

- Gather the technical evaluation panel for a final meeting to evaluate products and make final recommendations – November 4-5, 2015
 @TFHRC
- Disseminate products and publications through FHWA
- Publish articles in relevant media to further spread the word....

Effect of Wide-Base Tires on Pavement Damage – A National Study Part II

Imad L. Al-Qadi, PhD, PE, Dist.M.ASCE
Jaime Hernandez, PhD Candidate
Eric Weaver, PE

October 19th, 2015

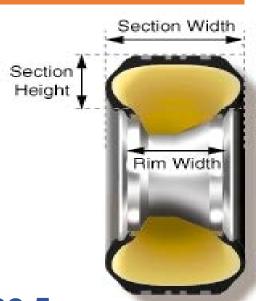
Introduction to NG-WBT

WBT 445/50R22.5

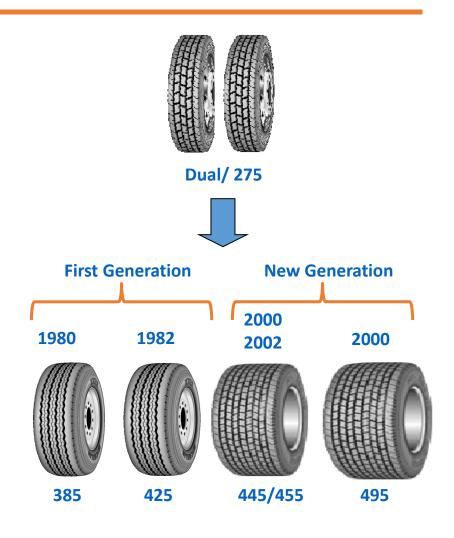
New-Generation Wide-Base Tire

DTA 275/80R22.5

Dual Tire


- Nominal tire width 250~305mm
- High Profile
- **12-22.5**; 12R22.5; 275/80R22.5

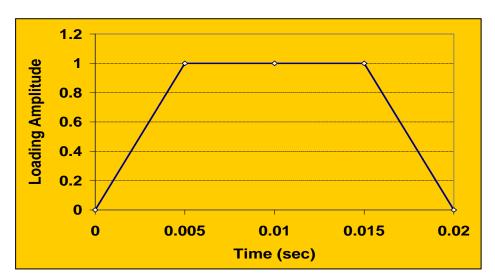
Wide-Base Tire


- Nominal tire width 400~460 mm
- Low Profile
- 385/65R22.5, 425/65R22.5, 445/50R22.5, 455/55R22.5

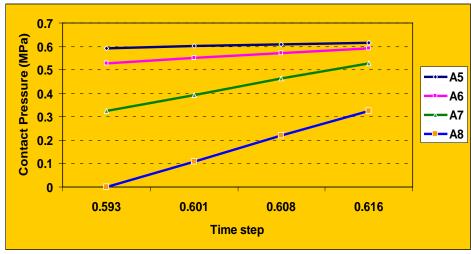
□ Code

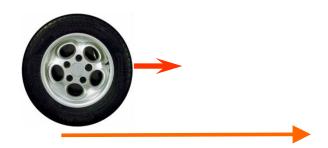
 Tire width (mm); tire aspect ratio (ratio of section height to width in %); radial ply (R); rim diameter code (in)

- □ Introduced to North America in 1982
- Earlier design was for on- and off-road
- Low profile design
- Relatively reduced empty weight
- Efficient fuel consumption/ low emission

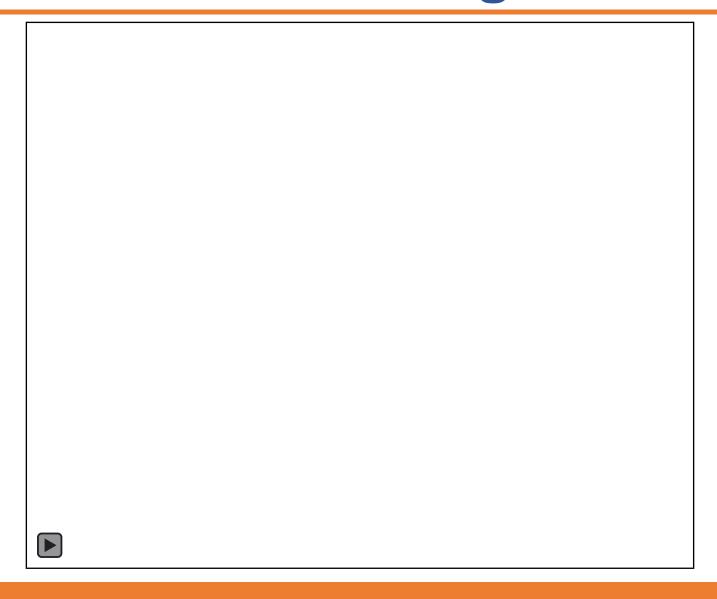

- □ Wide-base tires have been used in Europe since early 1980s
- In some countries more than 80% of trailers use wide-base tires
- FG-WBT was proven more detrimental to flexible pavements than dual tires; NG-WBT is less damaging than FG-WBT

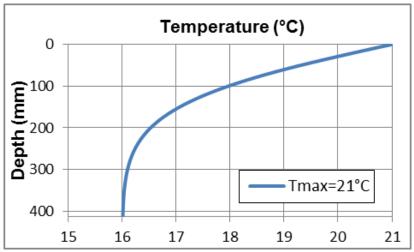
Impact of NG-WBT on Pavement Responses


Finite Element Model


- Three-dimensional dynamic analysis with moving load
- Measured 3D contact stresses
- Viscoelastic asphalt materials (AC)
- Nonlinear granular materials (thin pavement)
- Layer interaction
- AC temperature

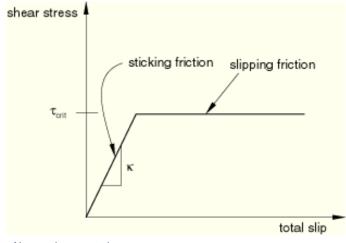
Continuous Moving Loading





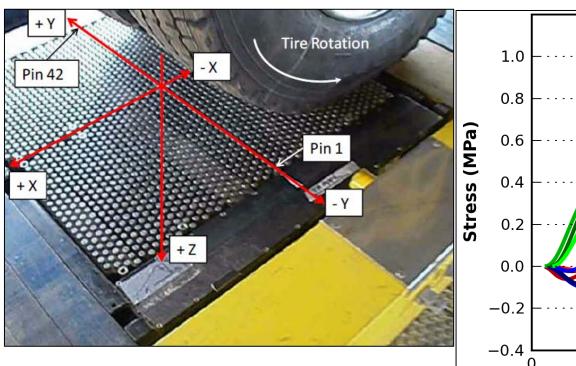
Continuous Moving Loading

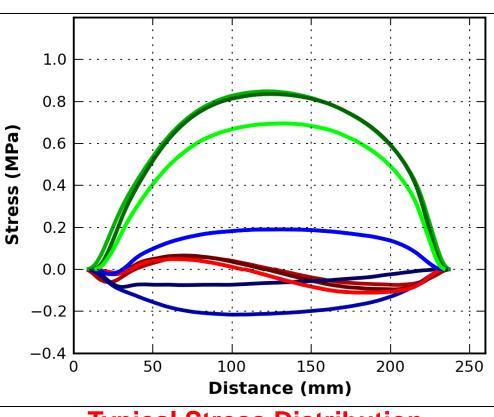
Temperature and Layer Interaction


□ Temperature profile in AC layer

Sample: AC = 412.5mm

Layer Interaction


- Fully bonded AC layers
- Coulomb Friction Model for AC to base and base to subgrade interfaces

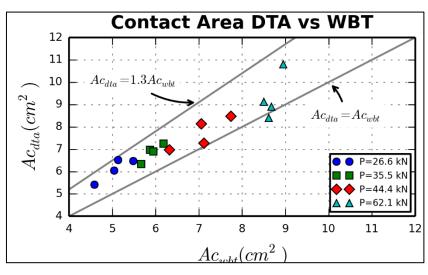


Abaqus documentation

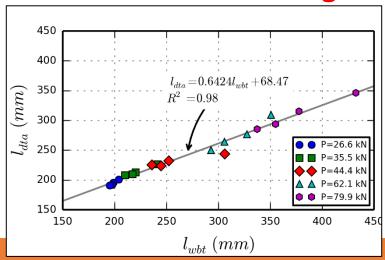
Measured 3D contact stresses

□ Three-dimensional, non-uniform

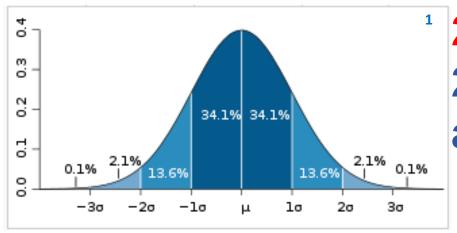



Typical Stress Distribution

Measured 3D Contact Stresses

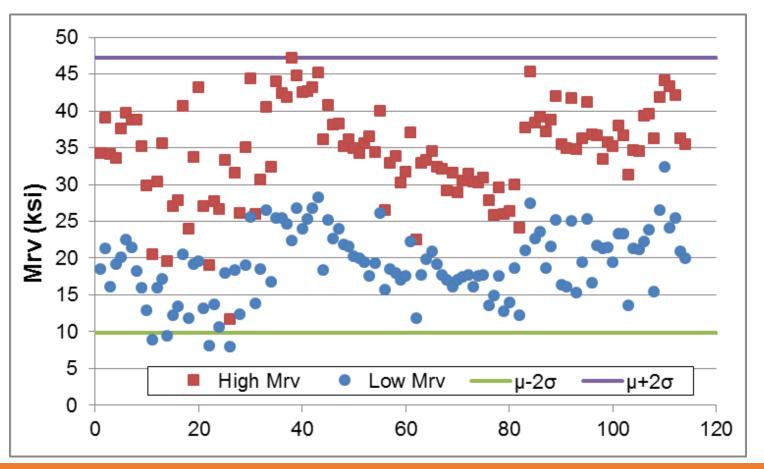

Vertical Contact Stresses

Contact Area



Maximum Contact Length

Viscoelastic AC


- □ Layer Properties: NMAS
 - Wearing Surface (WS) 9.5 or 12.5mm
 - Intermediate Layer (IS) 25 or 19.5mm
 - Base Layer (BS) 25 or 37.5mm
- Based on more than 1000 data sets from LTPP

 1 2σ ≈ 95.4%, 2.5σ ≈ 97.5% and 3σ ≈ 99.8%

Nonlinear Granular Materials

Vertical resilient modulus of 114 base materials at two stress levels

FEM Simulation Matrix – Thin

Thin Pavement Structure				
	Materials	Thicknesses (mm)		
AC Layer	W, S* 75 and 125			
Base**	W, S* 150 and 600			
Subgrade	35 and 140 MPa			
Possible	32			
combination	32			
With load cases	201			
(12)	384			

^{*}W = Weak; S = Strong

^{**}Considered with nonlinear mat

FEM Simulation Matrix – Thick

Thick Pavement Structure				
	Materials	Thicknesses (mm)		
Wearing Surface	W1, S1* 25 and 62.5			
Intermediate Layer	W2, S2* 37.5 and 100			
Binder Layer	W3, S3* 62.5 and 250			
Base and Subbase	140 and 415 MPa 150 and 600			
Subgrade	70 MPa			
Possible	46			
Combination	16			
With Load cases	192			
(12)	192			

^{*}W = Weak; S = Strong

Loading Conditions

Load Case	Tire Type	Applied Load (kN)	Tire Inflation Pressure (kPa)
L1	WBT	26.6	552
L2	WBT	26.6	862
L3	WBT	79.9	552
L4	WBT	79.9	862
L5	DTA	26.6	552
L6	DTA	26.6	862
L7	DTA	26.6	552/758
L8	DTA	79.9	552
L9	DTA	79.9	862
L10	DTA	79.9	552/758
L11	WBT	44.4	758
L12	DTA	44.4	758

Model Validation: Database

Impact of Wide-Base Tires on Pavements - Database

Main Menu

Edit Profile

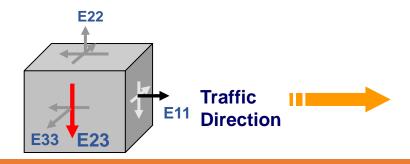
Administration >

Logout

Select a Project

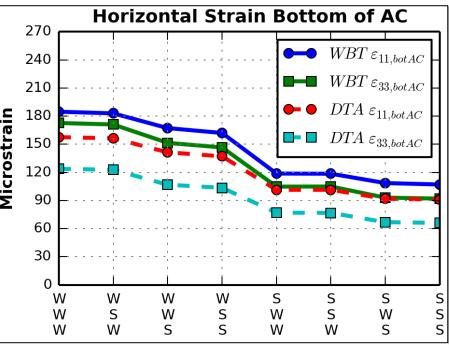
This database provides data and reports for some of the projects that used wide-base tires as part of the research. The database is developed by research group at Illinois Center for Transportation (ICT) of University of Illinois at Urbana-Champaign and mainly includes the data from sections built under FHWA project DTFH61-11-C-00025 to study the effect of wide-base tires on pavement as well as some existing databases from past studies.

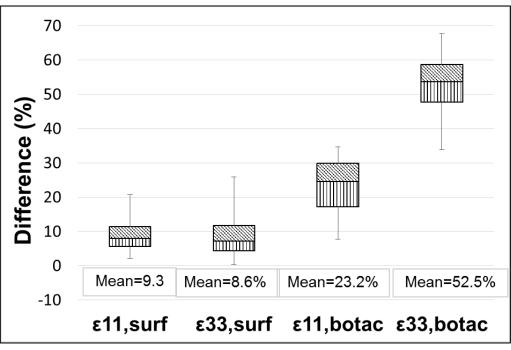
- Ohio Sections
- UC-Davis Sections
- Florida Sections
- UIUC Thin Pavement Sections (2006)
- o Smart Road (2000-2002)

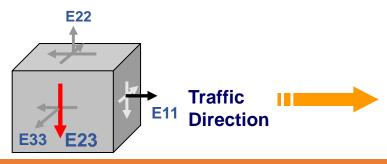


Model Validation

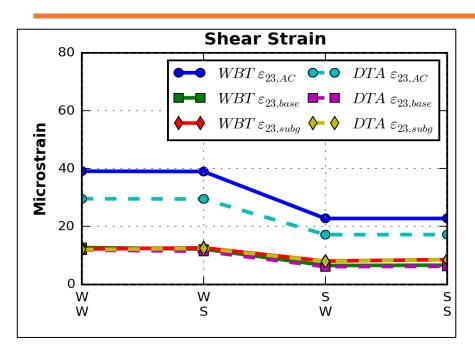
- Measurements from low-volume roads and interstate highways
- □ Difference in vertical pressure on top of subgrade is 2.4% to 17.7%
- □ Difference in horizontal strains at the bottom of AC is 2.1% to 28.7%

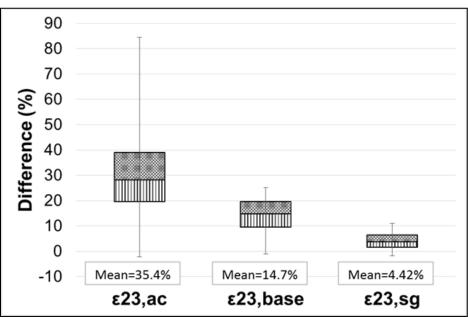

Critical Pavement Responses


Distress	Pavement Response
Bottom-up fatigue cracking	Longitudinal and tensile strains at bottom of AC ($\varepsilon_{11,ac}$ and $\varepsilon_{33,ac}$)
Near-surface cracking	Transverse surface strain ($\varepsilon_{33,sf}$) and shear strain in AC ($\varepsilon_{23,ac}$)
Permanent deformation	Shear strain ($\varepsilon_{23,ac}$, $\varepsilon_{23,bs}$, and $\varepsilon_{23,sg}$) and vertical strain ($\varepsilon_{22,ac}$, $\varepsilon_{22,bs}$, and $\varepsilon_{22,sg}$) in each layer and

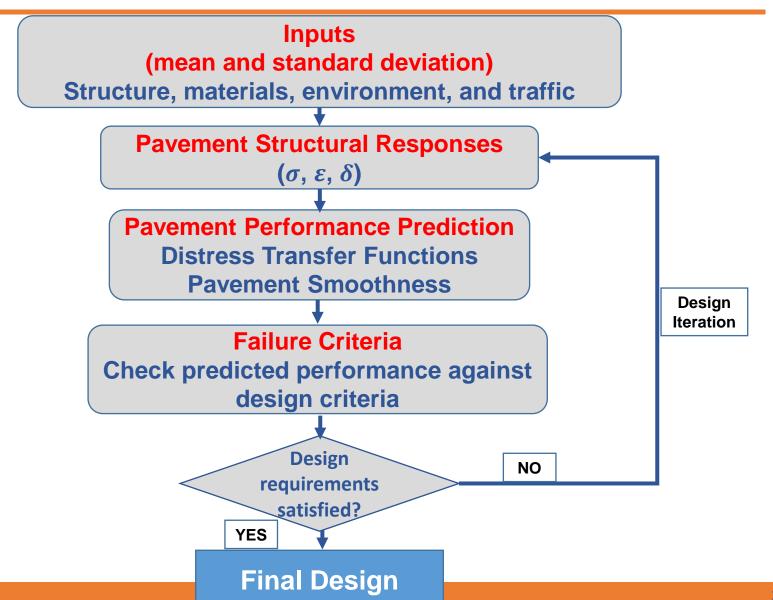


Pavement Responses


□ Tire type effect on critical responses



Thick Pavement Responses

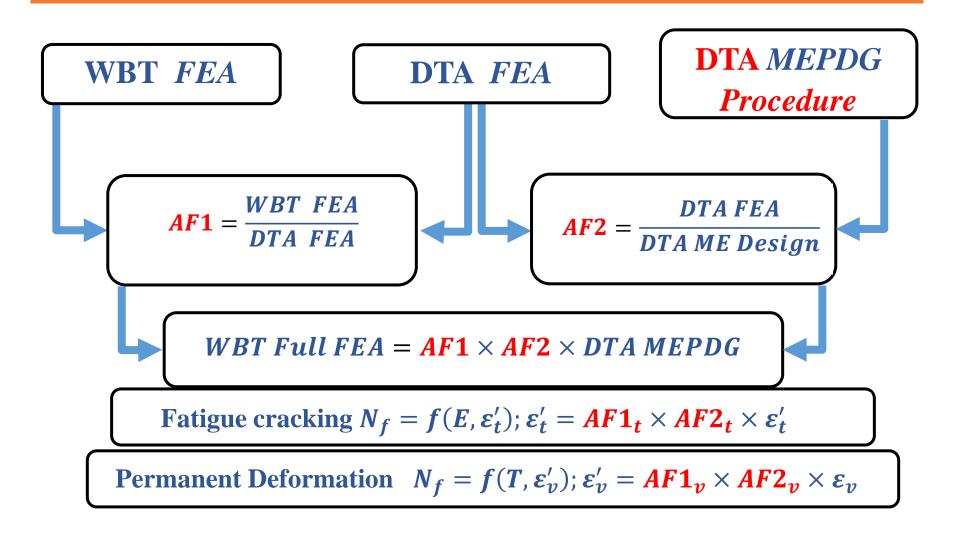

- Altering AC material property has greater influence on responses than altering base material
- Near-surface impact: significantly greater difference for shear strain within AC than granular layers

Pavement Responses

- NG-WBT generated greater pavement responses than DTA
- Response difference between NG-WBT and DTA is reduced with depth
- □ Thin pavement:
 - **Highest difference in** $\varepsilon_{33,ac}$ **: average was 52.5%**
 - Average difference in $\varepsilon_{11,ac}$ was 23.2%
 - $oldsymbol{\epsilon}_{23,sg}$ least difference (in some cases, higher for DTA)
- □ Thick pavement:
 - Greatest difference for thinnest/weakest
 - Near-surface impact is the highest

Designing Pavement Structures Considering NG-WBT

MEPDG

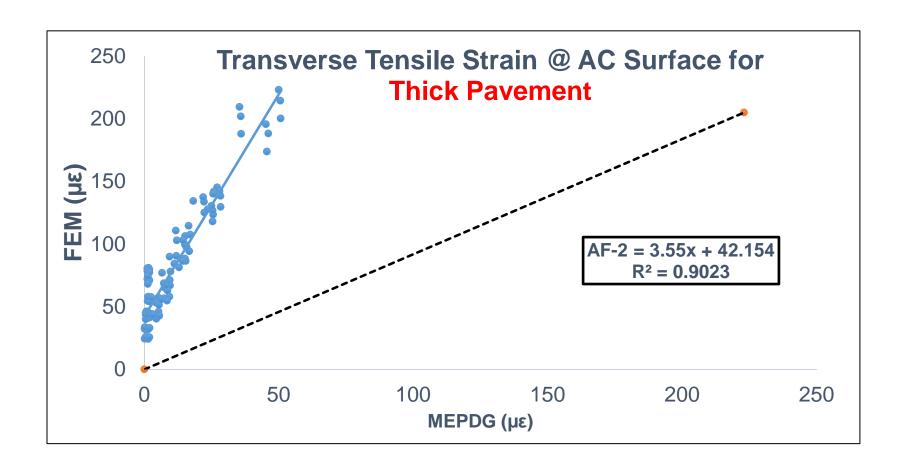

Limitations of MEPDG

	MEPDG	FEA
Analysis Type	Linear elastic analysis	Dynamic analysis considering moving tire and viscoelastic asphalt
Tire Type	Only DTA is considered	Both WBT and DTA can be simulated
Contact Stress	2D uniform vertical pressure	Non-uniform measured 3D contact stresses
Contact Area	Circular	True measured tire contact area
Friction between layers	Distributed spring model (user input)	Elastic stick model, defined by $ au_{ m max}$ and d_{max}
AC Layer	Dynamic modulus	Viscoelastic characterization using prony
Material	obtained from	series
Properties	master curve	

Adjustment Factors

- Main limitations of MEPDG:
 - Material characterization and loading condition
 - Incapability of simulating WBT
- Develop factors to adjust MEPDG pavement responses to that of FEA

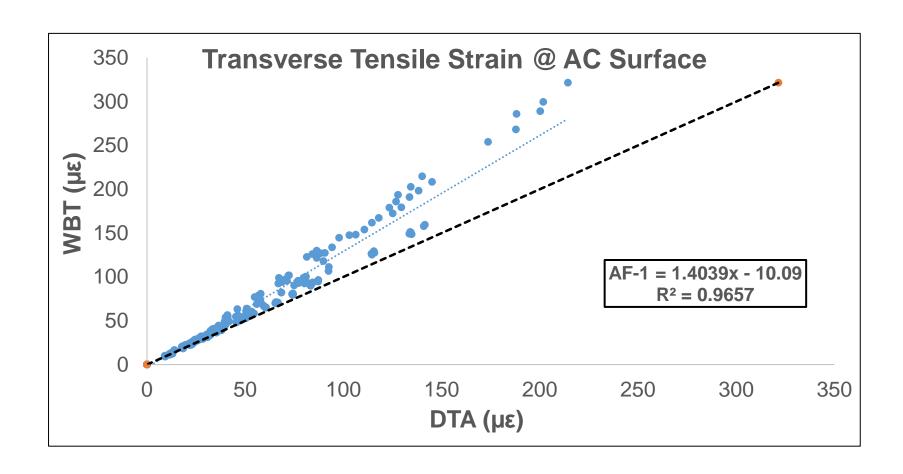
Adjustment Factor Approach


AF-2: MEPDG to FEA

- Since MEPDG cannot simulate WBT,
 only DTA cases are considered for AF-2
- A total of 336 cases were run in ABAQUS for DTA
- □ Same cases were simulated in MEDPG

AF-2: MEPDG to FEA

	FEA (Reference)	MEPDG
Axle load	Sar	ne
Contact stresses	Measure 3D	Tire pressure
Contact area	Measured	Circular
Motion of tire (speed)	5 mph	From E*
Temperature	Calculated	Sublayers
Friction between layers	Elastic stick model	Spring model
AC	Viscoelastic	E*/Elastic analysis
Base	Linear (Thick)/ Nonlinear (Thin)	Linear elastic
Subgrade	Linear elastic	Linear elastic

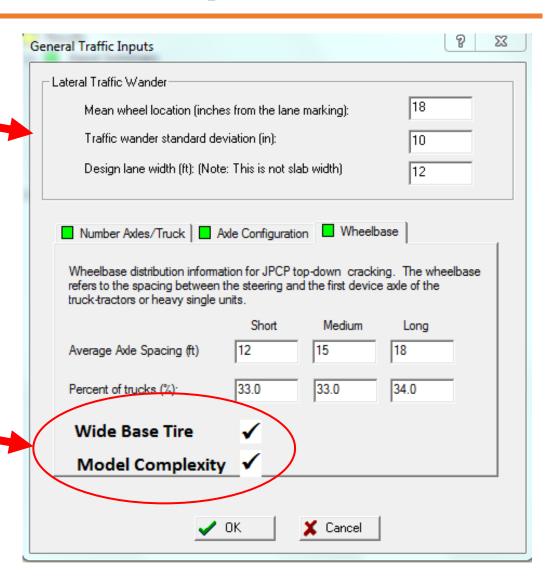

AF-2: MEPDG to FEA

AF-1: DTA to NG-WBT

- Total of 240 cases for WBT and 240 cases for DTA were run in ABAQUS considering same material properties and pavement structures
- Only differences were contact stresses and contact areas (measured under same axle load for WBT and DTA)

AF-1: DTA to NG-WBT

Numerical Example


- □ Case: AC=125 mm, Base=150 mm, P=44 kN, ρ=758 kPa
- \square MEPDG Response: $\varepsilon_{22,subg}$ =557.0 με
- $\exists \epsilon_{22,subg}$ = subgrade max. vertical strain (secondary rutting)
- \Box AF2 (Model Complexity) = 0.7433×MEDPG 10.163
- \Box AF1 (DTA to WBT) = 1.1615×DTA 4.5571

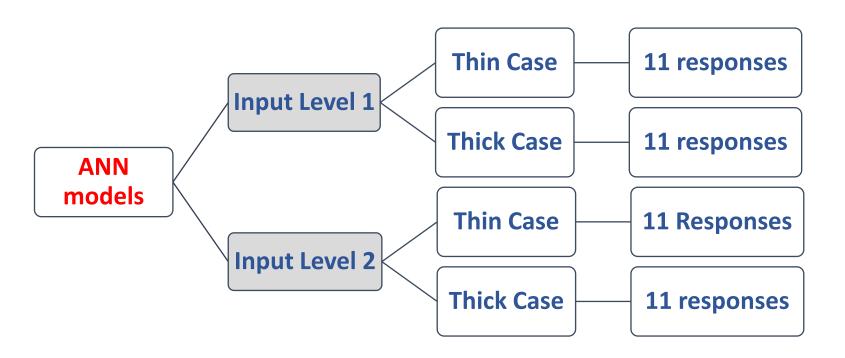
Response	MEPDG	Adjusted MEPDG	NG-WBT
$\varepsilon_{22,subg}(\mu \varepsilon)$	557.0	403.9	464.5

Adjustment Factor Implementation

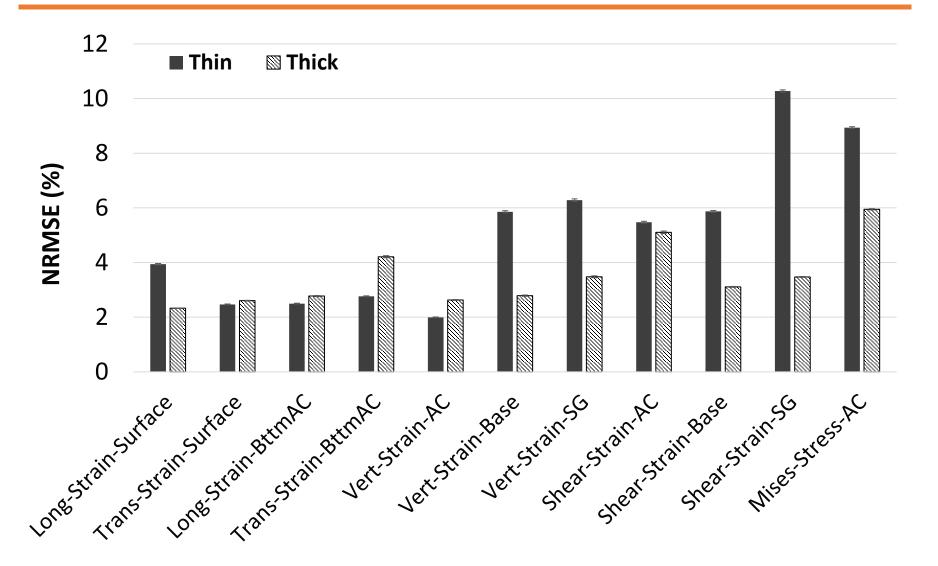
Current MEPDG Window

Proposed addition

Artificial Neural Networks

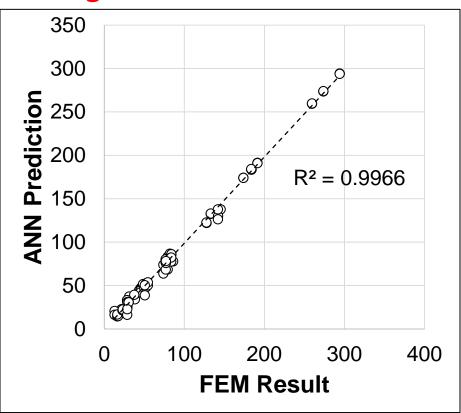

- FE is a powerful analytical method for pavement analysis, but:
 - Requires highly technical knowledge
 - Not user friendly
 - Time consuming
 - Not a prediction tool
- A simple tool to evaluate the effect of parameters on pavement response is needed

ANN Inputs/Outputs

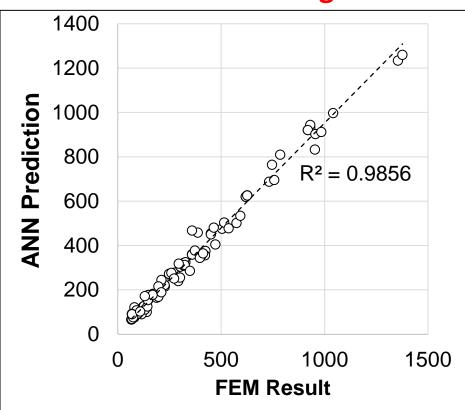

Inputs	Outputs
Loading information • Axle Load • Tire Type • Tire Pressure Pavement Structure • High Volume/Low Volume • Layer Thicknesses • Material Properties	 Critical pavement responses Long./Trans Strain Surface Long./Trans Bottom of AC Vertical Strain in AC Shear Strain in AC

ANN Development

 11 ANN models for each response, pavement structure, and input level



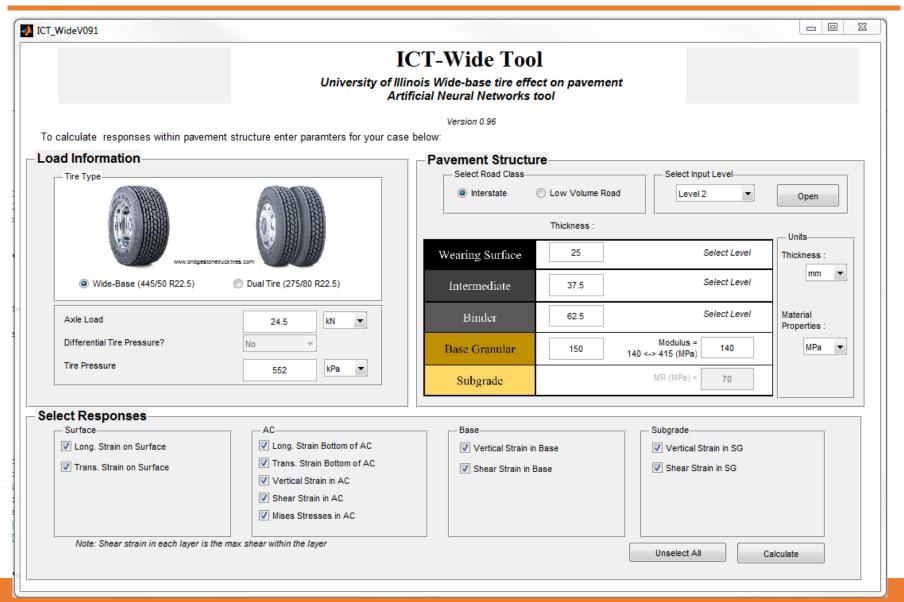
Results – Example Performance



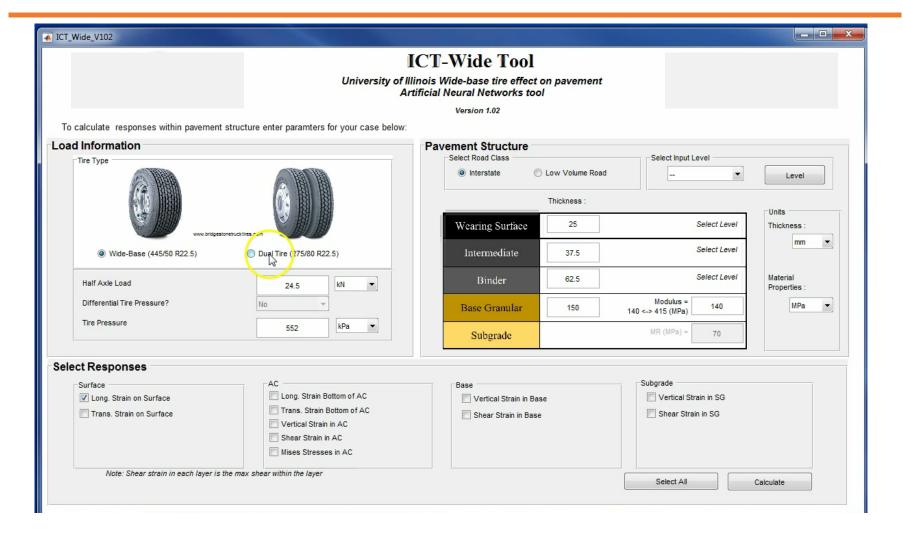
Example of Correlation Results

Longitudinal Strains Surface

Vertical Strain Subgrade


Average Performance

	Thick				Th	nin		
	Le	evel 1	Level 2		Level 1		Level 2	
	R ²	%NRMSE						
Average	0.983	3.07	0.993	3.92	0.992	5.55	0.991	3.73
STD	0.018	1.29	0.008	1.08	0.008	2.94	0.010	1.48


Level 1: Detailed (sigmoidal coefficients)

Level 2: Simplified (modulus at 25°C)

ANN TOOL

ANN TOOL

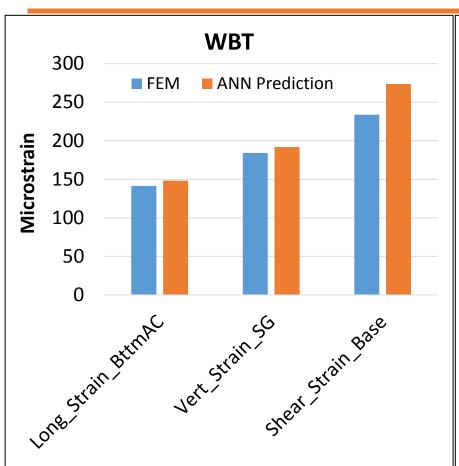
EXAMPLE: ANN AND AF

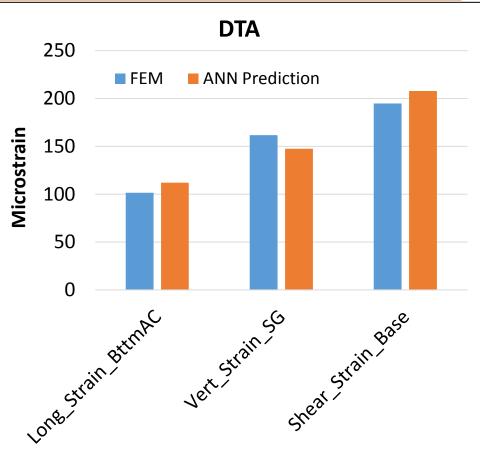
- Thin PavementMaterial Property
 - "Weak" AC
 - "Strong" Subgrade (E=140 MPa)

Asphalt Concrete 5" (125mm)

Granular Base (150mm)

Direction	Strong Base		
Vertical	k_1 =453.3 k_2 =0.8858 k_3 =-0.571		
Horizontal	k_4 =282.4	k_5 =0.6701	<i>k</i> ₆ =-1.1341
Shear	k_7 =310.3	<i>k</i> ₈ =1.0297	k_9 =-1.1036


- Loading Condition (measured)
 - Load: WBT=43.7 kN, DTA=39.3 kN
 - Tire Inflation Pressure = 758 kPa


FEM Responses

Tire Type	$\epsilon_{11,botAC}$	$\epsilon_{22,subg}$	γ23,base
WBT	148.2	191.9	273.6
DTA	112.1	147.5	207.8

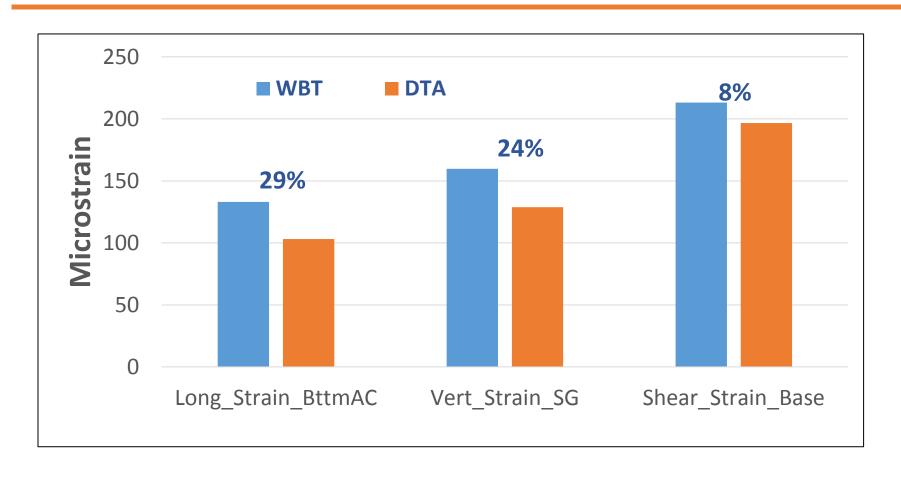
- $\epsilon_{11,botAC}$ = longitudinal and transverse tensile strains at bottom of AC (fatigue cracking)
- $\nabla \gamma_{23,base} = \text{shear strain in granular base layer}$

ANN Prediction

Average difference: WBT=DTA=8.6%

ANN Interpolation

Typical Case:


- Load = 8.5 kips; Tire Pressure = 690 kPa
- Typical thin pavement structure
- Same material properties as previous example

Asphalt	125 mm	Weak
Base Granular	150 mm	Strong
Subgrade		Strong

□ Critical Responses:

- Trans./Long. Strain at bottom of AC
- Shear Strain at Base
- Vertical Strain at top of SG

ANN Interpolation

Life-Cycle Assessment

LCA and LCCA

- □ Life cycle assessment (LCA)
 - Evaluates interactions of environment and product system (cradle to grave)
- □ Life cycle cost analysis (LCCA)
 - Evaluates total economic worth of a usable project by analyzing initial costs and discounted future costs

Life Cycle of Pavement

NG-WBT Impact Adoption

- Energy: includes primary and secondary energy demand in "MJ"
- Global warming potential (GWP): characterized by greenhouse gases (GHGs)
- Costs: Associated with material production, equipment operation, and fuel change in the Use phase

Scope

- Functional unit: 2-lane 2-mile-AC pavement in one direction with annualized analysis period
- Life cycle phases: material, construction, and use phases
- Pavement structure: surface AC overlay (pavement structure below the surface overlay is out of scope)

Life Cycle Inventory

Material phase

- Aggregate, AC binder, electricity and hauling
- UIUC LCI and cost database were modified to reflect general conditions of N. America

Construction phase

- Productivity and fuel use of equipment
- Used NCHRP 744, NONROAD, Ecoinvent, etc.
- Construction occurs during nine-hour nighttime closure (no construction delay)

Life Cycle Inventory - Use phase

- □ Time progression of IRI and MPD
- Rolling resistance (RR) model used to update vehicle emission model
 - HDM-4 as a RR model
 - MOVES as a vehicle emission model
- Assumed 3.2% fuel economy improvement¹
- Asphalt Institute transfer functions for rutting and fatigue cracking

1. Genivar (2005)

Pavement Sections

120mm HMA wit	h 15% reclaimed asphalt	t
pa	avement	

250mm recycled base, milled and recompacted, no stabilization

320mm old aggregated base

Top 200mm subgrade tipped and recompacted

Clay subgrade

671 HC (thick) Section

60mm HMA with 15% reclaimed asphalt

250mm recycled base, milled and recompacted, no stabilization

320mm old aggregated base

Top 200mm subgrade tipped and recompacted

Clay subgrade

670 HC (thin) Section

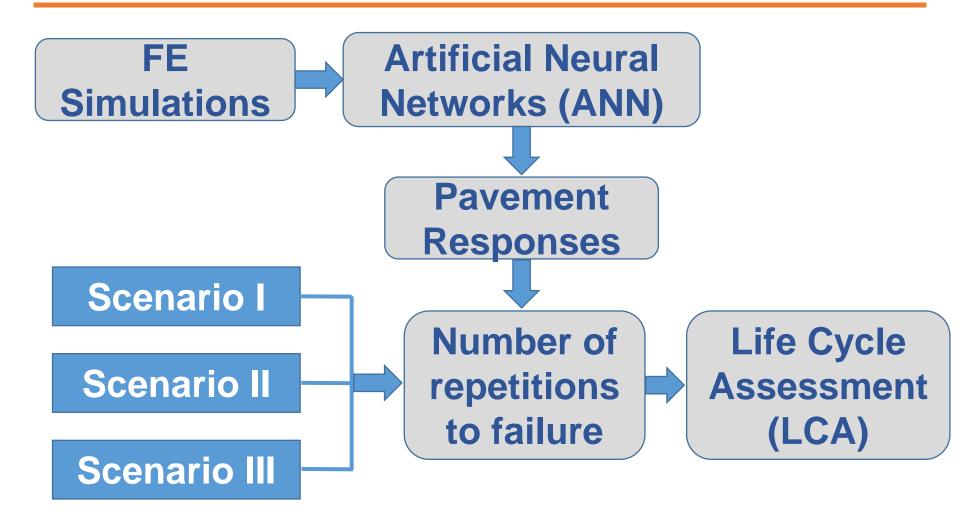
Pavement Information

Case Study	671HC (Thick asphalt)	670HC (Thin asphalt)	
County	Nevada	Los Angeles	
Route	I-80 Westbound	SR-213 Westbound	
Surface	Asphalt concrete	Asphalt concrete	
Section length	3,129 m (2 miles)	3,129 m (2 miles)	
# of lanes in each direction	2	2	
Lane width	3.66 m	3.66 m	
AADT (One-way)	13,500	15,750	
Truck percentage	19%	2%	
Construction type	Mill and asphalt overlay	Mill and asphalt overlay	
HMA layer thickness	120 mm	60 mm	
Tire types analyzed	DTA and four levels of market penetration of NG-WBT	DTA and four levels of market penetration of NG-WBT	

Maximum Strain and # of Repetition

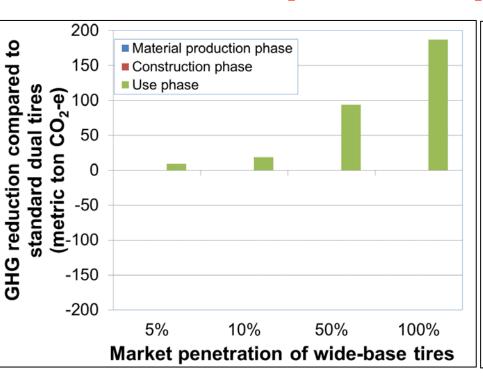
- □ For 16 & 20 kips and 100 psi at 20°C
 - Max. tensile strain (bottom of AC)
 - Max. compressive strain (top of subgrade)

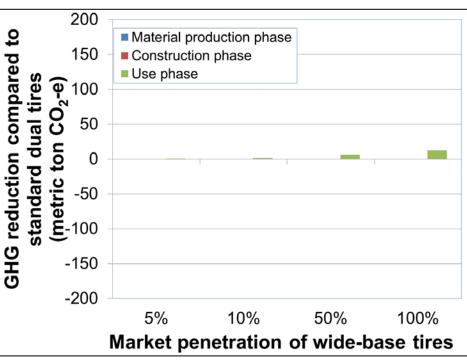
Maximum number of repetitions


Tire type	Distress type	Case 670HC (Thin asphalt)	Case 671HC (Thick asphalt)
DTA	Fatigue cracking	282,405	3,042,203
	Rutting	714,044	1,700,743
NG-WBT	Fatigue cracking	128,638	2,007,418
	Rutting	395,690	2,125,011

Scenario-Based Case Study

- □ Various NG-WBT market penetrations
- □ Two different AC pavement sections

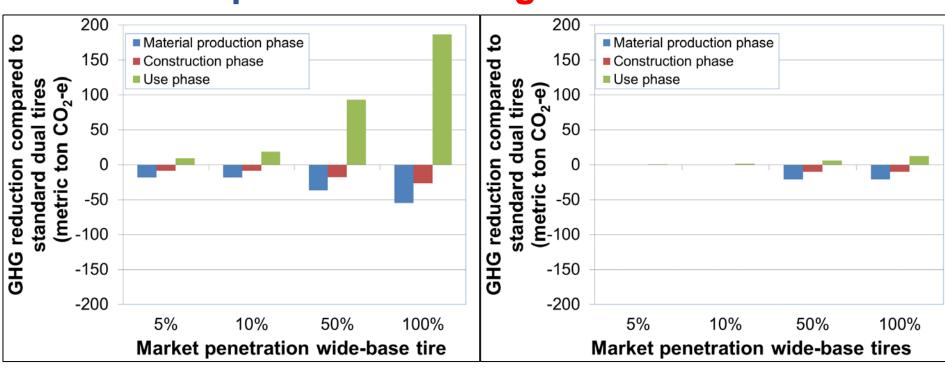

Scenario I	Dual and WBT have the same impact on fatigue cracking & roughness
Scenario II	Dual and WBT have different impact on fatigue cracking
Scenario III	Dual and WBT have different impact on fatigue cracking & roughness


Case Study Procedure

Scenario I: Reduction in GHG

Difference comes from 3.2% fuel consumption improvement

671 HC (thick) Section

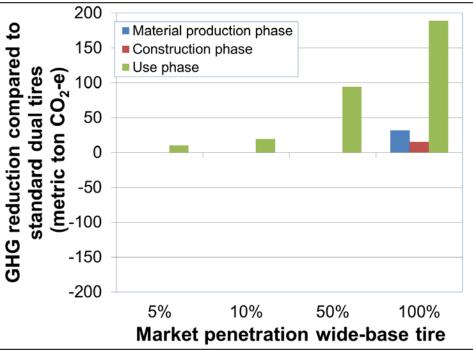

670 HC (thin) Section

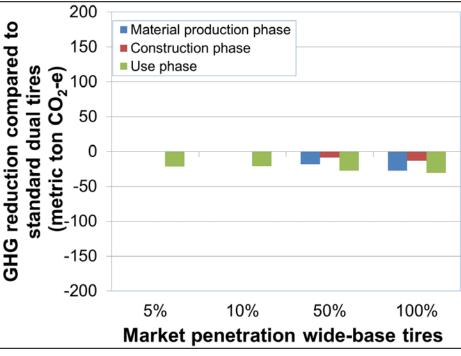
Scenario I: Thick & Thin Cases

		Thick	Thin
	Market Penetration	Use Phase	Use
Energy saving	5%	127,654	8,694
compared to	10%	255,308	17,388
baseline	50%	1,276,540	86,941
(MJ)	100%	2,553,079	173,881
GHG	5%	9	1
reduction compared to	10%	19	1
baseline	50%	94	6
(metric ton CO₂e)	100%	187	13
Economic	5%	3,108	225
saving	10%	6,216	449
compared to baseline (\$	50%	31,079	2,246
Present)	100%	62,158	4,493

Scenario II: Thick & Thin Cases

Saving from fuel economy and loss due to increased pavement damage




671 HC (thick) Section

670 HC (thin) Section

Scenario III: Thick & Thin Cases

- Thick case: Savings from fuel economy improvement and reduced pavement damage
- Thin case: Reduction from increased pavement damage and faster roughness deterioration

671 HC (thick) Section

670 HC (thin) Section

Final Remarks

Remarks

- MEPDG is not appropriate to compare NG-WBT and DTA. Adding adjustment factors was proposed to address this issue
- NG-WBT demonstrates a significant improvement compared to first generation of wide-base tires
- NG-WBT results in greater pavement responses than DTA; the difference is reduced with pavement depth

Remarks

- DTA with differential tire inflation pressure develops higher pavement responses than DTA having same tire inflation pressure, but still lower than NG-WBT
- Benefits are sensitive to the method used to determine pavement performance
- NG-WBT can save energy and reduces GHG and emissions, depending on corresponding pavement performance
- A holistic approach is needed to quantify the impact of wide-base tires