TPF-5(282)

Demonstration of Network Level Pavement Structural Evaluation with Traffic Speed Deflectometer

Third Meeting of the Technical Advisory Committee May 22, 2015

The Westin Alexandria - <u>Banneker</u> Room 400 Courthouse Square, Alexandria, VA 22314

Flexible Agenda

8:00 - 8:05	Opening Remarks (Siva)			
8:05 – 8:30	Findings from of FHWA research project (Siva/Senthil)			
8:30- 9:30	Results of first round of testing (Samer Katicha/Gerardo Flintsch) ✓ TSD data ✓ Auxiliary data ✓ Analysis			
9:30 – 10:00	TSD device and data analysis update (Jørgen Krarup/Greenwood Engineering)			
10:00 – 10:30	Update on UK use of TSD (Brian Ferne)			
10:30 - 10:45	Break			
10:45 – 11:15	Idaho Transportation Department District 6 "Subsurface Pavement Evaluation East Idaho Corridor Loop" (Ken Maser/Shawn Enright)			
11:15 - 12:00	Feedback from pooled fund SHA members and second round of testing logistics			
12:00 - 1:00	Lunch Break			
1:00 - 2:00	Implementation of measurements into pavement management system (discussion)			

Web/Teleconference for those wishing to attend remotely:

Webinar URL: https://connectdot.connectsolutions.com/siva

Call-in numbers: 1-877-848-7030 (toll free) or 1-404-443-2170 (toll paid)

Access Code: 8995445

(audio will also be available through the computer speaker/microphone)

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Pavement Structural Evaluation at the Network Level

FHWA Project No. DTFH61-12-C-00031

Outline

- Goal & Objective
- Field Trials
- Device Accuracy & Precision
- Deflection Indices
- Network-Level PMS Application
- Conclusions

Goal: Project Goal & Objectives

 Establish reliable measure of pavement structural condition based on traffic speed deflectionrelated measurements

Objectives:

- Assess and evaluate capability of traffic speed deflection-related devices for pavement structural evaluation at network level
- Develop methodologies for enabling use of devices in pavement management

FIELD TRIALS

Devices

Sites

MnROAD Facility

3.5-mile mainline roadway

45 sections, each 500 ft long and varying pavement types

2.5-mile closed-loop low volume roadway

28 sections, each 500 ft long and varying pavement types

Sites

18-mile loop in-service road in Wright County, MN

- Longer test sections
- Tight turns
- Rolling hills

MnROAD Accuracy Cells

Cell 3	Cell 19	Cell 34	Cell 72	
3 in. HMA	5 in. HMA	4 in. HMA	9 in. PCC	
6 in. Full Depth Reclaimed with Engineered Emulsion Base	12 in. Unbound Aggregate Base	12 in. Unbound	8 in. Unbound Aggregate Base	
4 in. Base	12 in. Subbase 1	Aggregate Base		
33 in.	7 in.			
Subbase 1	Subbase 2			
Clay	Clay	Clay	Clay	

Wheel Location

ARA RWD

Greenwood TSD

Average Difference and St. Dev. of Difference

TSD			RWD		
Sensor Distance (in.)	Average Difference	Standard Deviation of Difference	Sensor Distance (in.)	Average Difference	Standard Deviation of Difference
4	12%	5%	-7.25	11%	3%
8	4%	3%	7.75	11%	10%
12	6%	7%			
24	11%	8%			

Precision

- Included almost all MnROAD cells and 18-mile
 Wright County loop
 - Different pavement structures, horizontal curves, vertical curves, etc.
- Tested at different speeds and times of day
- Average and COV of deflection parameters for each sensor from replicate passes calculated for each reported test point

DEFLECTION INDICES

3D-Move Program

- Estimates dynamic pavement responses at given point within pavement structure using continuum-based finite-layer approach
- Calibrated for use in development of methodology for incorporating TSDD measurements into network-level PMS applications
- Key element was simulating pavement deflections using numerical models with focus on understanding parameters that affect TSDD measurements

JULEA Simulations

- To confirm the adequacy, applicability and validity of the best indices, Monte Carlo simulations were conducted
- JULEA-generated database of 15,000 pavement structures
 - Covered a wide range of layer moduli and thicknesses
 - Deflections and horizontal strains at bottom of HMA layer computed for each simulated pavement structure

Recommended Index

- Deflection slope index DSI₄₋₁₂ (difference between deflections at 4 and 12 inches from applied load)
 - Most appropriate index and recommended for use in network-level PMS applications
- Surface curvature index SCI₁₂ (difference between deflections at 0 and 12 inches from applied load)
 - Performed nearly as well as DSI₄₋₁₂, and hence could also be considered

NETWORK LEVEL PMS APPLICATIONS

Incorporating into Network Level PMS

- 1. Calculating representative indices for estimating structural condition of pavement
- 2. Estimating horizontal strains at bottom of HMA layer
- 3. Adjusting estimated strains to standard temperature
- 4. Establishing structural adequacy of pavements using temperature corrected strain

CONCLUSIONS

Conclusions and Recommendations

- Implementation steps need to be taken from concept to full development
- Validation and/or calibration of recommended deflection indices as well as implementation procedures need to be done using field data collected on highway agency networks

TURNER-FAIRBANK HIGHWAY RESEARCH CENTER

Thank you!

Network Level Structural Evaluation with the TSD Device

Samer W. Katicha, PhD Senior Research Associate, Virginia Tech Transportation Institute

May 22nd 2015

Pooled Fund Team

- Pooled Fund Effort (9 State + FHWA)
 - FHWA (lead)
 - CALTRANS, GDOT, IDOT, NDOT, NYDOT, PennDOT, SCDOT
 - Two new members: Idaho, VDOT
- Project Team
 - Engineering & Software Consultants, Inc. (ESCINC)
 - Project management
 - Virginia Tech Transportation Institute (VTTI)
 - Lead research team
 - Transport Research Laboratory (TRL): Brian Ferne
 - Expert advice and consulting support
 - Greenwood Engineering
 - Testing

Project Objective

- Demonstration of Network Level Structural Evaluation with the Traffic Speed Deflectometer
- ■Incorporating TSD Measurements into the PMS
 - Appropriate Indices
 - Supporting data

Project Tasks

- ■Demonstrate the use of the TSD
- Assess methods to incorporate TSD structural information in a PMS
- ■Conduct exploratory data analysis
- ■Use results of "Pavement Structural Evaluation at the Network Level"

TSD testing

- ■Two rounds of testing (2 years)
- ■Each round of testing consists of two days
- First day
 - Device calibration (if needed): morning
 - 30 to 50 miles: afternoon
- Second day:
 - Up to 250 miles

Project Status

- First round of testing completed in all participating agencies
- Obtaining auxiliary pavement data
 - e.g. pavement thickness, condition, FWD testing...
- Data analysis: processing, Deflections, SCI, SNeff, Backcalculation
- Upcoming year
 - Second round of data collection
 - Select possible indices
 - Implementation

TSD What does it measure?

What does it measure

- Deflection slope NOT deflection
 - 100, 200, 300, 600, 900, and 1500 mm
- ■What can we get from it:
 - Deflections (integrate)
 - Surface Curvature Index (SCI): difference in deflection
 - Area Under Pavement Profile (AUPP)
 - Effective Structural Number (SN): need pavement thickness
- Data is collected at 1,000 Hz (20 mm) and summarized at 10 m

Exploratory Data Analysis

1. Structural Health Index

■ Effective Structural Number

$$SN_{eff} = k_1 SIP^{k_2} H_p^{k_3}$$

Rhode et al. (1994)

$$SIP = D_0 - D_{1.5H_P}$$

Where:

 D_0 = peak deflection under the 9,000 lb load (microns)

 $D_{1.5Hp}$ = deflection at 1.5 times the pavement depth (microns)

Data Quality vs Quantity

- FWD Accurate but sparse data: 1 measurement/mile
- TSD Less accurate but dense data: 160 measurement/mile
- Error FWD = 1
- Error TSD = 0.16 (6 times better) also gives variability of section
- Equivalent FWD measurements: 40

Back to Main Objective

- ■Incorporate TSD test results into PMS
 - Select the appropriate index(es)
 - FHWA project "Pavement Structural Evaluation at the Network Level"
 - Input from DOTs
 - SN, remaining service life, SCI, strain in asphalt layer
- ■Incorporate into PMS
 - Structural condition is one of many indicators
 - Good Decisions consider many (independent) measures

Thank you... Questions?

Update on the UK use of the TSD

TAC3 Alexandria, VA

22 May 2015

Brian Ferne, TRL

Contents

- 1 Highways England
- 2 TRASS3 status
- 3 Surveys in outer Lanes
- 4 Current use of TSD data
- 5 TRASS3 QA
- 6 TSD comparative trials
- 7 HISPEQ
- 8 DaRTS4/BeCaTS

From 1st April 2015

Highways England

has superceded The Highways Agency

Rather than

HA's TSD It is **HE's TSD!**

Page ■ 3

Highways England is:

- A new government owned agency
- Moving from annularity to 5 year plans
- Capital investment of £11B over 5 years
- Additional 1300 miles of new lanes
- Additional 400 miles of SMART motorways
- £5B spend on replacing 'worn-out' roads
- HE has more freedom and flexibility than HA
- · HE has the ethos of a commercial organisation

Two new bodies to hold HE to account

- Office of Rail Regulation to monitor performance of the highways
- Transport Focus to champion the needs of the road user

TSD Development 2006-2009

TRASS1&2 Summary

- The HA TSD was successfully developed into a system capable of delivering routine network level surveys
- Over 18000km of structural condition information was collected by TRASS1 and TRASS2
- Robust QA regime established
- HA Managing Agents could be provided with indicator of network level structural condition.....

TSD Network Structural Condition categories

Category	Description
1	Flexible pavements without any need for structural maintenance
2	Flexible pavements unlikely to need structural maintenance
3	Flexible pavements likely to need structural maintenance
4	Flexible pavements very likely to need structural maintenance

- If all the NSC categories for a scheme are 1 or 2 then a Deflectograph survey is only required if there is clear additional evidence of structural deterioration (eg longitudinal wheel-track cracking, pumping or settlement).
- If a scheme has no TSD data or has any length in NSC categories of 3 or 4 then a Deflectograph survey is required for the whole scheme

Page ■ 7

TRASS3 is a 3 year + 1 + 1 contract Awarded August 2014 to Fugro Aperio – Started September 2014

TRASS3 Objectives

- Operate and Support the TSD to Collect
 - TRASS Raw Condition Data (RCD)
 - Base Condition Data (BCD)
 - Ground Penetrating Radar (GPR) data
- Deliverables:
 - The Surveys
 - Survey Data
 - Quality Assurance records and data
 - Progress reports
- Roles:
 - Highways Agency
 - Auditor (TRL)
 - Technical Advisor (TRL)
 - Survey Consultant

Current status of TRASS3

Current and planned surveys

Main line Surveys

- Around 6000 km in 2014
- Around 3000 km plus so far in 2015
- As yet no routine GPR surveys
- Some issues over data quality revealed by QA process

Slip road surveys

- This required definition of deceleration limits
- 1 m/s/s limit embodied in validation software
- Around 500km of slip roads covered so far in 2015

Outer lane surveys

- This required official procedure for surveying and permitting undertaking
- Interim Advice Note drafted
- No surveys yet except under police guidance

Page ■ 9

Outer Lane Survey Project

Recently completed by TRL

Current use of TSD data in the UK

Usage of TRASS data stored in PMS

Reducing other surveys

- Deflection slopes converted to network structural condition categories 1 to 4
- Categories used to guide scheme selection
- Categories used to guide type of further investigation
- Categories 1 and 2 suggest less need for slow speed disruptive investigations

SMART motorways

- This mainly involves conversion of hard shoulder to part-time running lane
- TSD surveys can provide guidance on strengthening need or otherwise

Surfacing Schemes

- Central decision in England to resurface 80% of HE network
- Impossible for HE engineers to directly approve all proposals
- Simplified approval process developed based on TSD structural condition categories

TRASS3 QA

- Primary
 - A 10-20km site selected by the consultant that must be surveyed every week
 (3 repeat runs)
 - Calculate RCD and BCD and assess against requirements.
 - Auditor can provide a tool to carry out the check.
 - These are important for monitoring ongoing consistency of the TSD
- Secondary
 - Sites located on SRN, likely to be covered during the survey
 - A set will be provided at start of the first Task
 - Number will increase with survey progress (provided by the Auditor)
 - Tool provided to extract from the survey and check against the reference
 - Results to be collated and reported weekly
- Daily
 - Undertake surveys on each day to check consistency of equipment
 - There is a process in the Scope but the consultant can propose alternative
- Repeat surveys
 - Contractor to carry out repeat runs on nominated lengths that have already been covered in that Task max 4 routes per Task (not in Ad hoc)

Page ■ 13

Accreditation Workbook (50m data) V3.0

Site	A329m EB
Vehicle	TSD 1

Visit	Date of Survey	Start time of survey	Week	Average 40mm pavement temperature
V01	25/06/2014	09:58	26	30.3
V02	12/09/2014	09:21	37	19.8
V03	12/09/2014	10:07	37	22.0
V04	12/09/2014	10:48	37	24.1
V05	10/10/2014	11:41	41	20.5
V06	10/11/2014	11:29	46	12.5
V07	10/11/2014	11:54	46	12.7
V08	10/11/2014	12:23	46	12.2
V09	27/11/2014	13:07	48	20.1
V10	27/11/2014	13:38	48	20.3
V11	09/02/2015	14:20	7	16.8
V12	09/02/2015	14:42	7	16.6
V13	27/02/2015	10:59	9	17.2
V14	27/02/2015	11:24	9	17.7
V15	27/02/2015	11:49	9	18.7
V16	03/03/2015	11:06	10	18.6
V17	04/03/2015	11:36	10	19.3
V18	04/03/2015	12:03	10	19.2
V19	06/04/2015	15:46	15	29.9
V20	06/04/2015	16:12	15	28.7
V21	06/04/2015	16:49	15	27.3
V22	11/04/2015	16:47	15	24.4
V23	12/04/2015	08:52	16	21.6

Page ■ 15

Benchmark	V01	V02	V03	V04	V05	V06	V07	V08	V09	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23
n/a 1	100.0	4.4	14.4	15.4	3.1	37.5	29.3	22.3	1.2	0.0	69.0	58.1	57.7	57.3	56.3	34.6	46.7	71.0	14.1	11.5	9.2	42.1	49.3
у	/ 💌 у		у 💌	y 🔻	у 🖃	у 🔻	y 🔻	y 🔻	y 🔻	y 🔻	y 🔳	у 💌	y 🔻	y 🔳	у 🔻	у 🔻	y 🔻	у 🔻	у 🔻	у 🔻	у 🔻	у 💌	y 🔳

															Deflect	ion slop	pe 300:	Counts	of diffe	erences	from t	he ben	chmar
Bins	V01	V02	V03	V04	V05	V06	V07	V08	V09	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23
999999																							
-0.500																							
-0.200																							
-0.150																							
-0.140																							
-0.130																	1						
-0.120												1				4	2						
-0.110													3	1		3	1						
-0.100											1	2	2	2	2	9	3	1					
-0.090											1	3	4	2	3	8	5	2					
-0.080											2	5	3	6	5	16	12	4					
-0.070											5	11	7	8	7	20	17	3					
-0.060											10	25	18	15	19	33	24	11					
-0.050											12	19	30	22	27	31	22	21				1	
-0.041											33	22	23	34	30	16	27	19					
-0.040											2	7	2	3	3	6	2	2					
-0.030					0	0	0	0	0	0	38	36	27	42	26	30	24	32	0	0	0	1	3
-0.020								1			29	29	36	34	28	19	23	33				2	3
-0.010						3	1				26	22	25	15	29	7	14	22	1			5	7
0.000	232		1			2	2				24	17	21	17	19	5	23	22	1	1	1	7	5
0.010		2	2	1		8	6	4			18	8	8	4	8	4	13	13	3	3	1	11	10
0.020		1	6	4	0	11	12	2	0	0	5	2	4	6	4	3	1	15	2	4	4	20	20
0.030		3	6	10	2	25	18	12	1	0	4	1	0	1	2	0	0	9	4	9	5	17	22
0.040		4	18	20	5	38	29	14	0	0	1	0	0	0	1	0	0	4	19	7	8	27	35
0.041		1	5	1	1	5	9	3			2									1		6	3
0.050		16	24	22	7	36	29	21		2				1				1	15	18	12	24	24
0.060		27	41	39	15	32	44	27	4	2									31	15	22	32	34
0.070		38	36	40	25	32	37	25	4	1									33	38	25	26	20
0.080		34	34	37	32	19	24	19	4	3									28	26	38	20	12
0.090		39	25	22	47	9	10	7	16	9									29	30	31	8	4
0.100		35	17	18	40	10	9	8	14	20									17	17	27	4	6
0.110		15	9	9	24	2	1	2	17	15									14	21	16	1	2
0.120		8	3	4	16		1	3	12	22									9	6	6		1
0.130		4	2		11				9	9									5	7	4		1
0.140		2			2				1	6										1	5	1	0
0.150		0			1				1	0									1	3	0	1	0
0.200									1	1									1	1	1		1
0.500									0	0									0	0	0		0

Page • 16

Vehicle	7	TSD 1			Offsets applied						
					Slope 100	Slope 300	Slope 756				
Visit	Date of Survey	Start time of survey	Week	Average 40mm pavement temperature	Green: <=±0.1 Amber: <=±0.2	Green: <=±0.1 Amber: <=±0.2	Green: <=±0.1 Amber: <=±0.2				
V01	25/06/2014	09:58	26	30.3	n/a	n/a	n/a				
V02	12/09/2014	09:21	37	19.8	0.000	-0.076	0.042				
V03	12/09/2014	10:07	37	22.0	0.014	-0.064	0.052				
V04	12/09/2014	10:48	37	24.1	0.012	-0.065	0.044				
V05	10/10/2014	11:41	41	20.5	-0.065	-0.085	-0.001				
V06	10/11/2014	11:29	46	12.5	-0.072	-0.048	-0.025				
V07	10/11/2014	11:54	46	12.7	-0.087	-0.052	-0.030				
V08	10/11/2014	12:23	46	12.2	-0.097	-0.056	-0.035				
V09	27/11/2014	13:07	48	20.1	-0.114	-0.098	-0.047				
V10	27/11/2014	13:38	48	20.3	-0.116	-0.104	-0.047				
V11	09/02/2015	14:20	7	16.8	-0.057	0.027	-0.015				
V12	09/02/2015	14:42	7	16.6	-0.037	0.039	0.001				
V13	27/02/2015	10:59	9	17.2	-0.082	0.037	0.065				
V14	27/02/2015	11:24	9	17.7	-0.084	0.037	0.067				
V15	27/02/2015	11:49	9	18.7	-0.087	0.036	0.067				
V16	03/03/2015	11:06	10	18.6	-0.087	0.055	0.075				
V17	04/03/2015	11:36	10	19.3	-0.105	0.043	0.064				
V18	04/03/2015	12:03	10	19.2	-0.122	0.025	0.057				
V19	06/04/2015	15:46	15	29.9	-0.221	-0.071	0.052				
V20	06/04/2015	16:12	15	28.7	-0.218	-0.074	0.054				
V21	06/04/2015	16:49	15	27.3	-0.216	-0.076	0.056				
V22	11/04/2015	16:47	15	24.4	-0.188	-0.043	0.076				
V23	12/04/2015	08:52	16	21.6	-0.139	-0.041	0.095				

1	n/a	100.0	93.0	90.4	93.4	93.0	89.7	91.4	91.2	91.7	94.4	90.6	89.5	88.7	88.7	87.8	82.2	82.7	84.6	87.3	84.1	87.9	86.4	84
? y		у 🔻	y •	у 🔻	y •	y 🔻	y 🔻	y 🔻	y 🔻	y •	у 🔻	y •	у 🔻	y 🔻	y 🔻	y -	y 🔻	y 🔻	у 🔻	y 🔻	y =	у 🔻	у 🔻	у [
															Norma	lised D	eflectio	n slope	300: C	ounts o	of differ	ences	from th	e bei
	Bins	V01	V02	V03	V04	V05	V06	V07	V08	V09	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23

														Norma	alised D	eflection	on slope	e 300: (Counts	of diffe	rences	from th	e bei
Bins	V01	V02	V03	V04	V05	V06	V07	V08	V09	V10	V11	V12	V13	V14	V15	V16	V17	V18	V19	V20	V21	V22	V23
- 9999999	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-0.500	0																						
-0.200	0																						
-0.150																							
-0.140																							
-0.130	0																						
-0.120																							
-0.110																							
-0.100																							
-0.090																	1					1	
-0.080								1				1							1		1	1	
-0.070		2									1		5	1	2	1	3	1	1	1	1	2	4
-0.060	0	1	1	1		2	1		1		1	2	1	3		4	3	3	3	4	3	1	2
-0.050	0	2	3	2	3	1	2	2		3	4	3	4	2	7	5	2	4	2	6	5	5	7
-0.041	0	2	6	4	8	7	7	3	4	1	4	5	3	6	4	11	8	6	4	6	4	6	5
-0.040		0	2		2	1	3	0			2	1	1	0	0	0	3		1	2	0	2	0
-0.030	0	15	6	16	8	13	11	9	3	1	10	11	8	10	12	6	13	18	18	12	12	15	11
-0.020	0	27	31	21	18	18	19	12	5	5	22	26	25	15	24	24	21	21	15	16	19	19	19
-0.010	0	29	26	31	33	38	36	20	13	15	33	19	30	30	31	24	22	23	31	24	22	23	24
0.000	232	37	44	36	47	41	32	28	11	18	36	35	24	33	30	32	28	36	33	36	32	31	33
0.010	0	34	31	40	37	30	46	27	16	18	29	33	36	42	27	29	28	29	28	24	35	27	27
0.020	0	40	33	31	28	35	32	22	16	15	26	30	34	33	28	27	24	26	31	28	31	28	35
0.030		22	24	24	21	22	23	10	11	9	21	17	17	15	20	21	15	11	15	18	21	25	19
0.040	0	9	10	13	18	10	10	7	2	4	14	16	14	11	15	13	23	17	14	15	9	15	12
0.041	0	1	3	1		2	1					3	1	1		4	1	2	2		1	1	1
0.050		6	6	5	4	7	7	4	1	1	5	5	6	4	9	5	12	8	7	4	3	6	3
0.060		2	3	2		5	1	3	1		2	2	4	5	3	5	7	5	5	8	4	3	6
0.070					1		1				3	1		1		1		3		1	2	1	2
0.080															1	2		1	1	2			1
0.090	0													1					1		1	1	1
0.100	0																						
0.110																						1	
0.120	0																			1			
0.130	0																						1
0.140	0																						
0.150	0																						

TSD Comparative trials

To assess relative performance of first and second generation TSD's in terms of:

- · Measured deflection response
- Short-term repeatability of measurements
- · Stability of measurements, i.e. long-term repeatability
- Methods of calibration

And therefore provide guidance to the English Highways Agency (HA) on the potential benefits of upgrading their TSD

UK Comparative trials October 2013

- October 2013
 - Closed instrumented site MIRA HA test sections
 - Two 1st generation TSD's
 - HA TSD with sensors at 100, 300 and 756mm LH WP
 - DRD TSD with sensors at 100, 200 and 300mm RH WP
 - One 2nd generation TSD
 - ANAS TSD with sensors at 100, 200, 300, 600, 900 and 1500mm – RH WP
 - Poor weather
 - Slow height sensor failure on UK TSD

1ST

Page • 21

Figure 21 - P300: Repeat runs of HA TSD at 70kmph

Figure 36 - P300 mean slope profiles (NSWP MIRA) with offset and HA TSD temperature corrected

Page • 24

Page ■ 23

Figure 50 - Average slopes against speed (asphalt sections)

Some preliminary conclusions:

- Both 1st and 2nd generation TSDs show reasonable short term repeatability on the test track
- However, some runs showed significant offsets in level although with very similar patterns
- Comparison between machines showed some different levels but again similar patterns
- All machines ranked the test sites in the same order as the FWD and Deflectograph

Page ■ 25

HI-SPEQ – European project sponsored by CEDR

- Hi-speed survey SPecifications, Explanation and Quality
- Commissioned under the CEDR Ageing Infrastructure Management Call – High-speed non-destructive Condition Assessment. Managed by Ireland National Roads Authority
- 6 project partners (TRL, AIT, VTI, ZAG, COWI, Fugro). Start date 14th April 2014, Duration: 24 months
- HI-SPEQ will draw on a Reference Group of road owners & operators, survey equipment builders & users, Data users, researchers etc.

HISPEQ

Summary to date

Prime aim is to develop templates

- Describing high speed survey equipment
- Specifying surveys
- Specifying QA regimes
- Advising on the use of data

Cover high speed surveys of

- Surface condition
- Structural condition

To date HiSPEQ has produced three 'Key requirements' documents for review by Reference/Stakeholder group

- Key requirements for high speed surface condition surveys
- Key requirements for high speed structural condition surveys
- Key requirements for accreditation and quality assurance of high speed condition surveys (p64-66 summarises TSD QA)

These can be viewed on the HiSPEQ website:

www.hispeq.com

1ST

Page ■ 27

Specialist High-speed Deflection Device Groups

- DaRTS (Deflection at Road Traffic Speed)
 - International Group
 - By invitation only
 - · Coordinator Brian Ferne, TRL, UK
 - Set up by English Highways Agency and TRL in 2012
 - Meetings
 - 2012 London, England
 - 2013 Trondheim, Norway
 - 2014 Blacksburg, USA
 - 2015 Berlin, Germany
 - Specialist sub-groups
- BeCaTS (Bearing Capacity at Traffic Speed)
 - European FEHRL Working Group
 - Leader Adam Zofka, IBDiM, Poland
 - Set up by FEHRL 2014.

Specialist High-speed Deflection Device Groups

- DaRTS (Deflection at Road Traffic Speed)
 - International Group
 - By invitation only
 - Coordinator Brian Ferne, TRL, UK
 - Set up by English Highways Agency and TRL in 2012
 - Meetings
 - 2012 London, England
 - 2013 Trondheim, Norway
 - 2014 Blacksburg, USA
 - 2015 Berlin, Germany
 - Specialist sub-groups
- BeCaTS (Bearing Capacity at Traffic Speed)
 - European FEHRL Working Group
 - Leader Adam Zofka, IBDiM, Poland
 - Set up by FEHRL 2014.

Page ■ 29

DaRTS4

International Symposium

Non-Destructive Testing in Civil Engineering (NDT-CE)

September 15 - 17, 2015, Berlin, Germany

One of the sessions at NDT-CE is focused on measuring deflections at road traffic speed.

- Nine abstracts on this subject have been submitted
- Seven(?) will be presented orally or as posters on the Thursday?
- DaRTS meeting on Friday 18 from 0900 to 1500
- To discuss presented papers/posters and related issues

BeCaTS

- Bearing Capacity at Traffic Speed
- FEHRL WG established in 2014
- To exchange and summarize specific knowledge on highway speed deflectometers, particularily TSD
- FHWA, TRL, ARRB, DRD, BASt, and IBDiM + IFFSTAR
- www.becats.eu

ROAD AND BRIDGE RESEARCH INSTITUTE (IBDIM)

2/1

BeCaTS

4 online meetings to date

Agreed to produce two deliverables

- Little Book of Pavement Structural assessment
 - This will be a published document
- Operational issues with TSDs including:
 - Calibration
 - Achieving repeatability
 - This will initially be an internal document

Website in progress:
summary of TSD's in use?
links to members

www.becats.eu

Page ■ აა

Subsurface Pavement Evaluation East Idaho Corridor Loop (EICL) (518 Miles)

Project planned by the Idaho Transportation Department District 6

Elements of EICL

Corridor			Centerline
Segment Name	BMP	EMP	Miles
US 93	82.6	350.819	268.219
US 20	248.555	256.073	7.518
SH 33 (west)	0	78.236	78.236
SH 22	24.67	68.606	43.936
SH 28	15.15	135.645	120.495
		Total	518.404

Project Scope and Objectives

- Continuous evaluation roadway substructure over entire 518 mile length
 - Pavement layer thickness (GPR)
 - Layer deflections/properties (TSD, with selective FWD)
 - Condition Evaluation of 42 Bridge decks (GPR & IR)
- Determine pavement structural capacity

Project Scope and Objectives (cont'd)

- Divide pavement into structurally homogeneous sections based on calculated remaining life
- Demonstrate project-level rehabilitation design for select sub-segments
- Incorporate all data into an ArcGIS geodatabase

Project Participants

- Idaho District 6 project sponsor
- Infrasense
 - Project coordination, GPR, IR, ArcGIS database
- Nichols Consulting Engineers
 - TSD Data Analysis
 - FWD Testing and analysis
- American Geotechnics
 - Coring/boring and sample testing
 - Project-level rehab design

Background

- Two Previous Studies
 - SH75 Stanley to Clayton (28 miles)
 - US26 Snake River to WY State Line (29 miles)

Previous Studies: Data Collection

- Continuous GPR (asphalt and base thickness)
- FWD at 0.1 mile interval
- Cores/borings at 1 mile for AC thickness confirmation and base/subgrade properties
- Spatial coordination using GPS

Previous Studies: Data Analysis

- SN calculated from FWD and GPR data @ 0.1 mi
- SN and traffic forecast used to predict remaining life
- Pavement segmented into subsections according to remaining life
- Preliminary rehab design proposed for subsections using surface condition and remaining life data
- Data incorporated into substructure geodatabase

Goals for East Idaho Loop

- Extend the previous methodology to network level evaluation
- Assess the opportunity for TSD network level pavement structure evaluation
- Extend the application of the geodatabase to various stakeholders (network, project, planning)
- Demonstrate thee use and value of network-level structure assessment for project-level rehabilitation design

