

The learning Process

- We have a set of data samples
- ☐ Each sample is an input (variables) output(responses) pair
- ☐ In training the goal is finding the best Weights (W_{ii})

Training Algorithm

Feed Forward Bāčk Propagation

Forward pass:

Hidden layer: $net_j = w_0 + \sum_i w_{ij} x_i$

$$H_j = f(net_j)$$

Output layer:

$$net_j = v_0 + \sum_i v_{jk} H_j$$

$$Y_k = f(net_i)$$

Error Function:

$$E = \sum_{p} E_{p} = \sum_{p} \frac{1}{2} (T_{p} - Y_{p})^{2}$$

Back propagation:

$$\Delta V_{j} = -\eta \frac{\partial E}{\partial V_{j}} + \alpha V_{old} \qquad \begin{array}{c} \text{Gradient Descen} \\ \text{Algorithm} \end{array}$$

$$V_{new} = V_{old} + \Delta V_{j}$$

where η is the learning rate, $\eta \in (0,1]$, and

 α is the momentum coefficient, $\alpha \in [0,1]$.

$$\Delta W_i = -\eta \frac{\partial E}{\partial W_i} + \alpha W_{old}$$

$$W_{new} = W_{old} + \Delta W_i$$

