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EXECUTIVE SUMMARY 
 

 

 

A significant amount of research and development has been conducted for decades to provide a 

tool for the design and analysis of jointed slabs on different types of foundations.  JSLAB, which 

has been maintained by the Federal Highway Administration (FHWA) and is distributed free of 

charge, is one example of such programs.  JSLAB has gone through several iterations of 

improvements in the last thirty years.  There has been interest in further improving the 

capabilities of that software package in recent years.. 

 

Researchers at the University of Texas at El Paso (UTEP) have been charged to implement 

several modifications in the latest version of JSLAB called JSLAB2004.  A thorough review of 

JSLAB2004 source code that was developed in the 1970’s revealed that it would be beneficial to 

recode the software completely to take advantage of the modern programming and finite element 

modeling (FEM) tools available today.  As such, a new code was developed in MATLAB that 

significantly enhances the efficiency and capabilities of JSLAB2004.  The new software will be 

referred to as NYSlab hereafter.   

 

The most significant improvements implemented in NYSlab over other software are: a) Finite 

Element model based on an isoparametric element that allows for the modeling of irregular 

geometries, b) no limitation in the number of PCC and foundation layers, c) more accurate 

modeling of the contact between unbonded PCC layers, PCC and foundation layers using Gap 

elements, d) foundation model extended beyond the edge of the slabs to more accurately model 

the edge deflections and stresses, and e) implementation of non-linear thermal gradient models 

applied to any number of PCC layers. 

 

In addition to discussing the improvements to JSLAB2004 in this report, a comparison between 

the improved code and the other common codes is also presented.  Several studies were 

conducted to determine the convergence characteristics of the new FEM formulation.  Finally, 

several parametric studies were conducted to verify the appropriate behavior of the code for 

different geometric configurations, foundation models and parameters, and temperature gradient 

profiles. 

 

 



x 

These studies indicate that the new code results compare well with the other codes and have 

good convergence characteristics.  The parametric studies also demonstrate a well behaving code 

for various pavement-section configurations. 
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CHAPTER 1 – INTRODUCTION  
 

 

 

A number of analytical software tools for modeling jointed slabs on different types of 

foundations and their application in pavement design have been developed in the past decades. 

The finite element program ILLI-SLAB, which was developed for the structural analysis of one 

or two layered portland cement concrete pavements (PCCP) with or without mechanical load 

transfer system at joints and cracks, has been under continuous revision and verification to 

improve its accuracy and ease of use [5, 6, 9]. 

 

The finite element program JSLAB, which determines the stresses developed in rigid pavement 

under various loading conditions, was developed shortly after.  JSLAB has been updated several 

times to incorporate thermal stresses, calculate the principal stresses, and search for the location 

and the value of the maximum stress.  That version of the software was perceived as more user-

friendly in comparisons with other software packages [9, 16]. 

 

The next generation of this software, JSLAB2004, incorporated an axel configuration library and 

an “Express Mode” interface. JSLAB2004 can be used to analyze jointed pavement responses 

under several loads for a two-layer system of up to nine slabs. Different kinds of joints can be 

uniformly or non-uniformly spaced.  JSLAB2004 also provides the capability to calculate 

pavement response under a moving load.  

 

In the following sections, the application of the finite element in analyzing the rigid pavements is 

discussed, and the available software for this purpose is introduced. A brief history of JSLAB 

development is also presented. ISLAB2000, which was developed to reduce or eliminate some of 

the limitations of the ILLI-SLAB, will be described also.  These codes are discussed because 

they are the most widely used jointed-pavement analysis tools. 

 

 

1.1 RIGID PAVEMENTS MODELING 

 

Elastic layered programs (ELPs) are the most common programs used for design of pavements. 

The horizontal infinity assumption for the slabs makes these programs a reliable theoretical 

method for pavements without discontinuities, which are mostly classified as flexible pavements.  

In contrast, a portland cement concrete (PCC) pavement with joint connections naturally cannot 



2 

be considered as an infinite slab.  The concept of semi-elastic half space used in ELPs is not 

applicable for rigid pavements. In rigid pavements, the tire proximity to the edges and the 

rigidity of the joints have a significant role in the mechanical performance of the system.  

Therefore, a more complex method is required to estimate the maximum bending stresses and 

deflections experienced by rigid pavements [2].  In addition, the contact between the slab and 

subgrade has a major effect on the rigid pavement performance.  Pumping, temperature curling, 

and moisture warping cause a discontinuity between the slab and the subgrade that makes the 

analysis of the pavement a non-linear problem. This complex behavior can only be modeled 

using numerical algorithms like the finite element method (FEM) [2, 5, 10]. 

 

 

1.2  HISTORY OF THE DEVELOPMENT OF JSLAB 

 

In 1965, Cheung and Zienkiewicz added the stiffness coefficients of the foundation to analyze 

the stiffness of the slabs on liquid and solid elastic foundation by using FEM [11].  Huang and 

Wang used the FEM in early 1970’s, for the analysis of jointed slabs on liquid foundations.  

Huang further applied the method to jointed slabs on solid foundation in 1974 [5].  In the same 

year, Huang and Wang used FEM for concrete slabs having partial contact with the foundations 

[12].  This research resulted in the development of the WESLIQUD program by Huang and 

Chou [5, 13]. WESLIQUD was able to calculate the stresses and deflections in concrete 

pavements and the subgrade with or without joints and cracks.  In 1981, the Waterways 

Experiment Station developed the WESLAYER program for analyzing layered elastic solids that 

model various foundation layers [13]. 

 

Tabatabaie and Barenberg developed ILLI-SLAB at the University of Illinois in the late 1970s 

[14]. This FEM software became the basis of JSLAB, which was developed in 1986 for the 

Portland Cement Association by Tayabji and Colley [5]. 

 

 

1.2.1 Development of ILLI-SLAB 

 

The first development of the FEM for analyzing rigid pavement slabs was done at the University 

of Illinois. The result was ILLI-SLAB, a finite element program that was written in FORTRAN 

[14].  ILLI-SLAB used a rectangular 4-noded element with 12-degrees-of-freedom first 

developed by Melosh [25].  Each node has three degrees of freedom: w, the vertical deflection in 

z-direction, a rotation θx about x-axis and rotation θy about y-axis [6, 9, 15, 25].  

 

Since the first version of ILLI-SLAB by Tabatabaie and Barenberg researchers at the University 

of Illinois have implemented many improvements to make it more user-friendly and enhance its 

capabilities [2, 5, 6, 9, 10].  The first foundation model used in ILLI-SLAB was a Winkler 

foundation, modeled as vertical spring elements.  One of the improvements to this software was 

the inclusion of new foundation models, such as the elastic solid foundation.  ILLI-SLAB was 

the first program that had both types of ideal subgrades (liquid and solid elastic) in one package 

[2, 10]. 
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Cauwelaert et al. worked on solutions for analyzing the infinite and semi-infinite slabs on the so-

called Pasternak foundations [6].  To determine the parameters for a Pasternak Foundation, a 

back-calculation procedure developed by Stet and his colleagues was used [37].  Cauwelaert’s 

closed forms solution assumes full contact between the slab and the foundation and can only 

analyze the effects of wheel loading [6]. 

 

The assumptions used for the analysis of PCC layers in ILLI-SLAB were based on the classical 

medium-thick elastic plate theory.  The medium-thick plate theory is able to model out-of-plane 

transverse forces through flexure, but is not thick enough for the shear deformation to be 

important [2].  Such a plate adheres to Kirchhoff’s Theory (small deformation theory), in which 

the normal plane that is perpendicular to the middle surface of an undeformed plate will also be 

plane and perpendicular to the middle surface of the deformed plate.  In that theory the layers 

parallel to the middle surface follow the plane stress theory and the load will not cause any axial 

or in-plane shear stresses [2, 10, 25]. 

 

ILLI-SLAB can analyze any configuration of loads. To convert external loads to nodal loads, 

ILLI-SLAB uses a work-equivalent load vector. This program can also calculate stresses due to a 

temperature difference between the top and the bottom of the slab. Different types of pavement 

configurations are available in ILLI-SLAB, such as bonded or un-bonded layers (PCC to PCC, 

PCC to subgrade or PCC to overlay). In the case of bonded conditions, the interface is designed 

as fully strain compatible, and for unbonded cases, shear stresses at the interface are neglected.  

ILLI-SLAB is able to process the analysis of several slabs with or without mechanical load 

transfer systems at the joints.  The mechanical load transfer system can consist of aggregate 

interlock, dowels, or a combination of these two. Aggregate interlock transfers the loads through 

shear, while dowel bars carry some moment as well as shear. The dowels are located at the 

neutral plane of the slab and are designed as linear elastic tools [2, 6, 9, 10]. 

 

 

1.2.2 Development of J-SLAB (1986) 

 

Tayabji and Colley developed JSLAB to compute the critical stresses and deflections in rigid 

pavements under different loading conditions [5]. This software was based on an early version of 

ILLI-SLAB and used the Portland Cement Association’s (PCA), thickness-design procedure that 

was revised in 1984 for jointed plane concrete pavements (JPCP), jointed reinforced concrete 

pavements (JRCP), and continuously-reinforced concrete pavements (CRCP).  To determine the 

thermal stresses in this first version of JSLAB, the program had to be executed twice.  In that 

version the curling analysis could only be done for a single slab.  In addition, the first version of 

JSLAB was also not able to calculate subgrade stresses.  However, the JSLAB program was able 

to analyze square and round dowels, in contrast with ILLI-SLAB, which was capable analyzing 

round dowel bars only [5], [9]. 

 

 

1.2.3 Development of J-SLAB92 (1992) 

 

An error in the curling formula was corrected and verified by theoretical and numerical 

comparisons in JSALB92.  This version of JSLAB was able to calculate the principal stresses, 
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and it was also capable of searching for the location and value of the maximum stress.  In J-

SLAB 92, the stiffness matrix of the dowel bar was corrected to accurately satisfy the 

equilibrium conditions.  Also, an additional step for the calculation of self-weight deflections 

was added to the curling analysis [4]. 

 

 

1.2.4 Development of JSLAB2004 (2001-2004) 

 

Several improvements were made to JSLAB92 that resulted in JSLAB2002 followed by 

JSLAB2004.  JSLAB2002 could analyze six different subgrade types: 

 

1. Spring foundation (SP) 

2. Winkler foundation (Dense Liquid [DL] model) 

3. Boussinesq foundation (Elastic Solid [ES] model) 

4. Vlasov Two-Parameter (TP) foundation 

5. Kerr Three-Parameter (K3) foundation 

6. Zhemochkin-Sinisyn-Shtaerman (ZSS) foundation [4] 

 

The user manual and graphic interface of JSLAB2002 with pre- and post-processors made it 

more user-friendly than the earlier versions.  This version was tested by comparing it with 

BISAR, the FAA's H5l, J-SLAB 92, and with pavement test data that was obtained at the Ohio 

Test Road [4]. 

 

The "Express Mode" option was added to JSLAB2004 to accommodate more user needs.  This 

version of JSLAB had an axel library including single, dual, and super single tires and tandem, 

triple and quad axle configurations.  The “Express” interface generated input data in a more user-

friendly way and allowed users to easily change the loading areas, axle spacing, and move the 

axle groups to any position on the slab. 

 

JSLAB2004 is capable of analyzing the jointed pavement under self-weight, traffic load, and a 

combination of these two. Temperature gradient or any combination of temperature gradient and 

traffic load can also be calculated for a single slab. JSLAB2004 can analyze up to a two-layer 

pavement system and can consider fully bonded or fully unbonded systems with a limitation of 

the three slabs in each direction (nine slabs in total). The software also allows for the 

modification, on a per-element basis, of material properties, slab thicknesses, and support 

conditions.  Uniformly or non-uniformly spaced, circular, or non-circular dowels, tie bars, and 

aggregate interlocks are the options for modeling of joints in JSLAB2004. The “Time History” 

analysis under a moving load at specified locations was another feature added to JSLAB2004. 

That version can also analyze multiple-slab curling [4].   A brief summary of the J-SLAB 

development history is presented in Table 1.1. 

 

1.2.5 Development of ISLAB2000 

 

ILSL2 and ISLAB2000 are two different FEM codes which were developed to reduce or 

eliminate some of ILLI-SLAB limitations. By introducing semi-infinite elements in one or two 

horizontal dimensions in ILSL2, Khazanovich and Ioannides [6] were able to overcome a major  
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Table 1.1: History of the development of J-SLAB [15] 

Version  Year Creditors Modification and Improvement 

ILLI-SLAB 

1977 
Tabatabaie &  

Barenberg  
   Original version 

1980 Wang    Revision 

1983 Ioannides    Several subgrade models included 

1984 Conroyd    Adapted to ANSI-77 FORTRAN 

1989 Korovesis    A new procedure for curling analysis incorporated. 

1994 Khazanovich    ILSL2, New generation of the program 

J-SLAB 1986 Tayabji 
 A program for analysis of jointed concrete pavements. 

 Version in FORTRAN. 

J-SLAB 92 1992 Dong 

  Added thermal stress in the stress expression. 

  Corrected dowel bar stiffness matrix to satisfy the 

equilibrium condition. 

  Added calculation of principal stresses, searching for 

location and value of maximum stress 

  One-step procedure replaced two-step procedure to treat the 

self-weight in curling analysis. 

JSLAB2004 
2001-

2004 

Galaxy 

Scientific 

Corp. 

  Upgraded the types of base/subgrade foundations including 

Winkler, spring, Boussinesq, two-parameter, three-parameter 

and ZSS foundations. 

  Developed user Friendly graphical user interfaces. 

  Installed a library of axle configurations and vehicles. 

  Added capability to calculate the response time history under 

the moving axle loads or a vehicle. 

  Version in Visual Basic 6 

 

 

limitation of ILLI_SLAB.  This finite element program used Toksky [7] model to analyze 

interior loading cases more accurately by considering the effects of subgrade deformation under 

slab edges.  ILSL2 offered a variety of subgrade options such as the Kerr model and the 

Zhemochkin, Sinitsyn and Shtaerman model.  The Pasternak or Kerr model for subgrade 

characterization could be used to analyze one single slab.  Curling stresses, which have a 

significant effect on PCC pavements performance, cannot be evaluated by analyzing a single 

slab, as it will omit load transferring behavior at the joints.  Khazanovich and his colleagues 

developed ISLAB2000 which had all the positive features of ILSL2 but was free of some 

unnecessary limitations (such as limitations on the number of nodes in a finite element model).  

The program was developed by the ERES Division of Applied Research Associates (ARA), with 

support from the Michigan Department of Transportation and the Minnesota Department of 

Transportation [6, 7, 8, 15].  

One of the improvements made during ISLAB2000 development was enabling curling analysis 

of slabs on the Pasternak and Kerr foundations. To do this, it was assumed that the slab and the 

subgrade are separated if there is a tensile stress between them.  Erland et al. [3] found that in 

comparison with J-SLAB 92, in which mechanistic response predicts higher strains for rigid 

pavement than measured in the field, ISLAB2000 results are more similar to field-measured data 

[6].  

 



6 

Rewriting of the code improved the software’s ability in analyzing mismatched joints and cracks, 

voids, mesh generating, load placement, and batch processing. Moreover, ISLAB2000 can solve 

pavement responses due to temperature, traffic, and construction loading. Also, its graphical user 

interface (GUI) for input and output make it more user-friendly [1, 5]. 
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CHAPTER 2: CHARACTERISTICS OF JOINTED PAVEMENTS   
 

 

 

A significant amount of research work has been conducted with the intent of finding models that 

describe the elastic and plastic behavior of beams and slabs on linear and non-linear foundations. 

A brief description of the most common foundation models used in the modeling of PCC slabs as 

well as a description of the load transfer devices used in jointed pavements will be presented in 

this section.   

 

 

2.1 FOUNDATION TYPES 

 

The following is a detailed description of the elastic foundation models currently used in JSLAB 

and also implemented in NYSlab. 

 

 

2.1.1 Winkler Model 

 

Westergaard published his first paper on the analysis of concrete pavements in 1923 and twenty-

five years later he published his last research results on “slab-on grades” in 1948 [5]. In both 

papers, assuming some restrictions, he modeled the rigid pavement as a plate on a bed of springs. 

Westergaard developed temperature-curling equations, and through his theoretical studies on the 

stress and deflections in concrete pavements, determined pavement performance equations for 

loading near corner, an edge, and at the interior of a large slab.  In his analyses, he assumed that 

the foundation spring at one point was independent of the others and slab subgrade reactive 

pressure was proportional to the deflection of the spring at that location. As a result, in 1961, 

Winkler created a foundation model which was a combination of a series of independent springs 

[5, 6, 10, 15, 31].  Figure 2.1 shows a slab on Winkler foundation.  These springs have an axial 

stiffness defined as: 

 

K=A*k (2.1) 

 

where K is stiffness of the equivalent spring, k is the parameter of the Winkler model, and A is 

the area of the subgrade.  
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Figure 2.1 Slab on Winkler foundation [6] 

 

The Winkler foundation is also referred to as a dense liquid (DL) foundation, where the 

displacement is proportional to the total load applied.  In other words, the term "liquid" does not 

refer to an absence of shear strength, but it means the slab is placed on an infinite number of 

springs, and the total volume of displacement is proportional to the total load applied. This 

assumption makes the Winkler model, the simplest foundation model with one parameter, k, 

which is the modulus of subgrade reaction.  This modulus is usually obtained from the plate load 

test, and it is sensitive to the radius of the plate used in its determination. The modulus k is 

assumed to be independent of stress and deflection level, but most subbase/subgrade support 

systems have a stress-dependent load-deformation response [5, 6, 7, 10].  

 

Westergaard assumed that a medium thick plate (where shear deformations ignored) for the PCC 

slab was sufficient; he also assumed that the slab and subgrade were in full contact. This 

foundation is able to model the scenario of the critical load transferred at PCC slab joints, and 

develop distresses, such as faulting, pumping and corner breaking [7]. 

 

 

2.1.2 Boussinesq Model 

 

The Winkler model was mentioned as being the simplest representation of a continuous elastic 

foundation; this foundation used approximations to avoid mathematical difficulties for cases with 

continuous foundations. Cheung and Zienkiewicz [11] showed that the actual subgrades behave 

more like an elastic solid rather than a liquid [5, 10, 23].  Pickett et al. [24] developed theoretical 

solutions for concrete slabs on an elastic half-space. Their research resulted in design charts for 

concrete pavements [23].  

 

The following equation was developed by Giroud, which was used in ILLI-SLAB to calculate 

the deflection over an elastic solid foundation: 

 

jif

fj

ij
rE

F
w

,

2
)1(




  (2.2) 

 

where ijw is deflection at position i due to force at position j, jF  is the force at position j, jir , is 

the distance between positions i and j, and fE , and f are modulus of elasticity and the Poison’s 

ratio of the foundation, respectively. The deflection at the center of a rectangular loaded area can 

be calculated as follows: 
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where Pi is the distributed load over the rectangular element with dimensions a by b (see Figure 

2.2).  For a point outside the rectangular loaded area, the deflection can be calculated using 

Equation 2.2 replacing the rectangular load with the resultant force F. Cheung and Zienkiewicz 

[11] showed that this approximation is adequate with a less than 5% error. As shown in Figure 

2.2, the deflection at a given point relates to the forces at all other points on the foundation. 

Therefore, calculating the stiffness matrix for this continuous foundation is possible through 

inversion of the flexible matrix, which is obtained using Boussinesq’s Theory described in 

Equations 2.2 and 2.3 [5, 10]. 

 
 

 
 

 

 

Figure 2.2 Deflection of the slab on Elastic Solid (ES) foundation [11] 

 

Cheung and Zienkiewicz proposed a method for incorporating the elastic solid subgrade in a 

two-dimensional plate bending finite element model for the first time [11]. Their solution for this 

problem was as complete as the Westergaard solution. To introduce soil nonlinearity, Thompson 

and Robnett proposed a resilient modulus characterization for the elastic solid foundation [10]. 

 

The shear interaction described by the Boussinesq model is stronger than usually observed in the 

field. Since Boussinesq is a continuum model, it is not well suited for implementation on 

previous FEM packages that directly add the foundation stiffness to the slab stiffness [6, 7]. 

 

 

2.1.3 Vlasov Model 

 

Because the Winkler foundation model assumes that the deflection at one point is independent of 

the deflection everywhere else (springs are not coupled), the model is incapable of capturing the 

foundation deformation beyond the edge of the slab.  This deformation decays at some distance 

but still can have a significant effect on edge stresses and deformations. By connecting the top of 

the Winkler springs to an incompressible layer of vertical elements, Pasternak proposed a model 
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that deforms by lateral shear only.  Vlasov developed a model that includes shear interaction 

between soil elements which can capture the decaying foundation deformation away from 

loading points.  The Vlasov model is a two parameter model including a modulus of subgrade 

reaction similar to the Winkler model, and a shear coefficient.  In this model, subgrade reaction 

pressure, q, is related to surface deflection, w, as follows: 

 

wGkwq 2  (2.4) 
 

where k is the modulus of subgrade reaction, G is a coefficient describing the shear interaction 

between adjacent springs, and 
2  is the Laplacian operator [6, 7, 10, 17, 23, 29].  To visualize 

this model, a combination of a shear layer resting on top of the spring layer can be used as shown 

in Figure 2.3. 

 

 
 

Figure 2.3 Slab on Pasternak foundation [6] 

 

The soil deflection, away from the point of application of the load, decays faster than what the 

Boussinesq model predicts.  The Pasternak foundation prediction for deflection decay is much 

faster than the Boussinesq, and it is a better approximation of actual foundation deflections. By 

comparing the Winkler and the Pasternak models, Pronk [18] suggests that Pasternak model is a 

logical improvement of the Winkler model as corroborated by the experiments of Ioannides et al. 

[10]. After all, in the Vlasov model, if G is set to zero, the foundation will reduce to Winkler 

foundation [6, 7, 10, 18].   ILLI-SLAB was the first finite element software to implement the 

slab on the Pasternak foundation. The studies of Ioannides et al. show that the flexural rigidity of 

the plate affects Vlasov’s parameters and thus the definition of the two parameters is not unique 

and not very straightforward to estimate from field data [6, 10].  

 

 

2.1.4 Kerr Model 

 

The Pasternak model was generalized by Vlasov and Leontev [17], and later expanded by Kerr 

[23]. Khazanovich and Ioannides [21] proposed a finite element formulation for the soil beyond 

the slab, which was based on the Vlasov and Leontev assumption. For the soft layer on top of the 

stiffer subgrade, Vlasov suggested a higher order idealization to get more accurate solutions than 

Pasternak’s model. In this assumption, the deflections beyond the slab are a function of the 

deflection of the nearest point of the slab edge and the subgrade parameters. These studies 

resulted in the three-parameter Kerr model. The Kerr model is a combination of the Winkler and 

the Pasternak models. A plate resting on the Kerr model is shown in Figure 2.4.  This model 

considers a two-layer foundation assuming that the upper layer is very thin so that its shear 

stiffness is negligible [6, 7, 20]. 
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Figure 2.4 Slab on Kerr foundation [6] 

 

Khazanovich and Ioannides [21] showed that if the stiffness of the upper Winkler springs is large 

enough, the Kerr model results would be the same as with those of the Pasternak model. 

However, a very high stiffness for upper Winkler springs cause numerical instability and non-

convergence of the finite element solution [6, 7, 21, 22].  For high
pl

pu

K

K

 

ratios, the Kerr model 

behaves as a Vlasov model, whereas for very low 
pl

pu

K

K
, the Kerr model approximates the 

Winkler model [7].  One of the weaknesses of the Kerr model is its requirement of three 

parameters that are difficult to determine experimentally. 

 

 

2.1.5 Zhemochkin, Sinitsyn and Shtaerman (ZSS) 

 

Zhemochkin and Sinitsyn in 1947 and then Shtaerman in 1949 proposed another two-parameter 

subgrade that utilizes plasticity concepts [7]. The Zhemochkin-Sinitsyn-Shtaerman (ZSS) model 

consists of a series of independent springs on an elastic half-space.  The ZSS model is a 

combination of a Winkler and a Boussinesq model.  Non-recoverable spring deformations 

simulate the plastic component and the resilient parts of soil deflections are modeled through the 

elastic half-space. For very high k values (Winkler parameter), ZSS produces results similar to 

the conventional Boussinesq half-space. As plastic deformations usually occur only at the slab 

edges, Shtaerman and Hemtenyi suggested a simpler linear model by ignoring the plastic 

deformations and assuming both deflection components as elastic, which is the assumed 

behavior in the JSLAB implementation [7]. The ZSS subgrade permits a deflection profile 

discontinuity at a loaded slab edge, which is equivalent to the Winkler model. 

 

 

2.2 LOAD TRANSFER DEVICES 

 

To allow for slab movements due to temperature and moisture variations, PCC pavements can be 

constructed with transverse and longitudinal joints. A critical point for maintaining a satisfactory 

performance of PCC pavements is the transfer of the loads across these joints. Having proper 

transfer mechanisms will result in smaller deflections and reduced intrusion of water into the 

joints that leads to a loss of load bearing capacity of the foundation [26, 30]. 

 

Both theoretical and field results show that increasing the thickness of the slab or subbase is not 

a sufficient solution to prevent slab faulting or breaks at the corner of the slab. An adequate load 

transfer mechanism can prevent large permanent deformations so that slab faulting or breaks at 

the corner of the slab cannot occur [25]. 

 Vlasov 

Winkler 

Plate 
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2.2.1 Aggregate and Key Interlock 

 

Aggregate and key interlock is perceived as the simplest means of load transfer when the crack 

faces are held together. This mechanism is useful only if the traffic volume is low, and the 

pavement lay on a firm support such as a stabilized subbase. The aggregate and key interlock 

mechanisms transfer the loads across cracks or joints only by shear.  Figure 2.5 illustrate the 

application of aggregate interlocks. The material properties of the concrete, such as coarse 

aggregate type, mix design, and gradation, have a significant impact on the aggregate interlock 

load transfer [14, 25, 26].  

 

 
Figure 2.5 Aggregate interlocks [41] 

 

2.2.2 Dowels and Ties 

 

The National Cooperative Highway Research Program (NCHRP) Synthesis 211 states that when 

slab lengths increase the use of the aggregate and key interlock begins to become ineffective 

[30]. Many highway agencies utilize dowel/tie bars to interconnect slabs to transfer the edge 

loading and reduce the differential deflection of the mating slabs; Figure 2.6 shows the 

implementation of these transfer devices.  Dowel bars are then used as structural elements for 

eliminating or reducing the potential for faulting, pumping and corner breaks [10, 26, 30].   

 

 

 

(a) Tie Bars                                                             (b) Dowels 

Figure 2.6 Application of dowels and tie bars [41] 

 

 

http://images.google.com/imgres?imgurl=http://training.ce.washington.edu/wsdot/modules/02_pavement_types/Images/main_pictures/aggregate_interlock.jpg&imgrefurl=http://training.ce.washington.edu/wsdot/modules/02_pavement_types/02-5_body.htm&usg=__7BdJJWzE6c
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CHAPTER 3: THE FINITE ELEMENT CORE PROCESSOR 
 

The MATLAB software was used to develop the new processing core and to implement the 

required improvements and new capabilities.   The decision was based on MATLAB’s built-in 

capabilities to handle matrix and vector operations on which the FEM is based.  This section 

describes the finite element formulation used in the modeling of the slabs, foundation and load 

transferring devices. 

 

3.1 PAVEMENT SECTION MODELING 

 

Figure 3.1 illustrates the mathematical modeling of a typical jointed-pavement section.  To 

implement the necessary improvements to JSLAB2004, the general geometric modeling of the 

jointed slabs and foundation was significantly changed.  The pavement structure (layers of slabs 

and soils) are treated as three dimensional. Unbonded slab layers were modeled independently 

and connected to each other using gap elements.  The bottom slab layer and the top foundation 

layer were also connected thru gap elements.  To model the Winkler foundation, the foundation 

layers below each slab were modeled as disconnected elements to allow for the independence of 

Winkler “springs” across the joints.  To model foundations with shear layer or the Boussinesq 

foundation, the soil elements were connected across the joints with high stiffness springs.  This 

FE structure deviates from the one used in JSLAB2004 where all slabs and foundation stiffness 

matrices were condensed to the top slab.  

 

3.1.1 Mindlin Plate Theory 

 

Although JSLAB2004 used the Kirchhoff plate theory that applies to thin to medium-thick 

plates, for NYSlab the Mindlin plate theory was used to account for the shear deformation that 

becomes significant for relatively thick plates.  In this plate formulation, the rotation of the plate 

cross section is not equal to the derivatives of the displacement w as is the case in the Kirchhoff 

plate theory.  The cross-section rotations x and y are thus, independent of the transverse 

displacement.  The governing equations for a single isotropic plate will be discussed first and 

then an explanation of the treatment of bonded plates (laminates) in NYSlab will be presented. 
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Figure 3.1 Jointed slab pavement section in NYSlab 

 

The displacement and strain equations are [32]: 
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Using a plain stress constitutive matrix for isotropic plates, the strains are related to the stresses 

as follows: 
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where E is Young’s modulus, G is shear modulus,  is Poisson’s ratio and  is a shear correction 

factor, to account for the non-uniform distribution of transverse shear stresses over the plate 

thickness. Since the cross sections of plates are always rectangular,   was assumed as 5/6 in the 

transverse shear stress equations [32].  

 

The equilibrium equations are the same as those for the Kirchhoff plate theory, i.e.: 
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where, xV , yV , xM , yM , and xyM are shear force and moment intensities. Shear force and 

moments in matrix form would be represented as follows: 
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where, 
)1(12 2

3




Eh
D  is the bending or flexural rigidity [32]. 

3.1.2 Mindlin Plate Element 

 

The finite element formulation of the Mindlin plate element requires three interpolation schemes 

for w, x and y.  Since all three quantities are independent they can be expressed in terms of the 

element nodal transverse displacements and right-handed rotations as follows [32] , letting  w [=] 

Vertical deflection, x [=] Rotation about x-axis y , and y [=] Rotation about y-axis x   
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For a four node isoparametric quadrilateral, 
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The derivatives that appear in the definition of the strains can be defined as: 
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Without going through the weak formulation of the governing equations, the element stiffness 

matrix is calculated as follows using numerical integration, 

 

Bending Stiffness Matrix: 
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Shear Stiffness Matrix: 
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Total Stiffness Matrix: = kb+ks
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The plate element equations described above suffers from “shear locking” when the thickness 

becomes small and the shear term becomes dominant.  Several numerical schemes have been 

implemented to solve this problem.  Selective reduced integration where the shear stiffness 

matrix is calculated using one quadrature point while the bending stiffness is calculated using 

four is one of these methods [32].  Although reduced integration eliminates the shear locking 

problem, it produces the problem of rank deficiency which can lead to oscillatory behavior.  

Bathe and Dvorkin [33] described an effective element which does not lock in thin plate/shell 

analysis and does not have any spurious zero energy modes [33].  This element, which is 

commonly called MITC, is used in NYSlab.  In this element formulation, the interpolation 

functions used to determine the shear strains are defined as follows in the natural space: 
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where A

z , B

z , C

z  and D

z  are the transverse shear strains at points A, B, C and D located at the 

midpoints of the sides of the quadrilateral element (see Figure 3.2).  These are called “tying” 

points and is where the isoparametric interpolations predict exact strains.  Thus, the MITC 

interpolation uses the strains at the tying points to extrapolate the strains using a linear 

interpolation.  This translates into a reduction of the order of the interpolation functions from bi-

linear to linear. 
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Figure 3.2 Quadrilateral elements with MITC tying points 

 

This reduction of order of interpolation from bi-linear to linear of the shear strain components 

produces a stiffness matrix that has very good convergence characteristics for any plate 

thickness.  The shear stiffness matrix in this formulation is integrated using four quadrature 

points. 

 

3.1.3 Foundation Elements 

 

All the foundation models, except for the solid elastic, can be model as a single or a combination 

of two Vlasov layers in series.  For example the Kerr foundation can be modeled as two Vlasov 

layers where the shear parameter on the top layer is set to zero.  The Winkler foundation is 

modeled as one Vlasov layer with a zero shear parameter and the ZSS foundation is modeled as a 

Vlasov layer with zero shear coefficients on top of a solid elastic (Boussinesq) foundation.  If 

several foundation layers across the pavement section need to be modeled, the entire foundation 

then becomes a series of Vlasov layers with the appropriate parameters.  The solid elastic 

foundation can only appear at the bottom of the pavement section as part of a ZSS layer or as the 

only foundation layer. 

 

In NYSlab the Vlasov element is modeled as an eight node element with one degree of freedom 

per node associated with the vertical displacement.  The Winkler contribution to the stiffness 

matrix for this element is calculated as follows, 

 


A

T

www dABBkk 1          (3.12)

 

where 

 

 000 21 NNBw          (3.13) 

 

k is the modulus of subgrade reaction and the shape functions are the same isoparametric 

interpolation functions used for the plate element discussed in the previous section. 

 

The integration indicated to calculate kw1 is over a horizontal cross section of the element.  The 

total element Winkler stiffness matrix is then calculated as: 
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The shear layer contribution to the stiffness matrix is calculated from: 
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G is the shear parameter and the shape functions the isoparametric functions previously 

discussed.   

 
The total Vlasov element stiffness matrix is then the sum of the two stiffness matrices as follows, 
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The solid elastic (Boussinesq) foundation model is not based on a FEM formulation but uses a 

flexibility matrix that then is inverted to obtain a stiffness matrix.  The flexibility matrix is 

calculated as follows, 
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where iiS
 is the deflection at node i caused by a unit force at node j, and rij is the distance 

between nodes i and j. 
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where iiS

 

is the deflection at node i cause by a unit load at node i.  In this equation, a and b are 

the dimensions of the rectangular element formed by connecting the center points of the four 

elements connected to each node in the FE mesh of the foundation.  For edge and corner nodes 

this equation is adjusted to account for the fact that there could only be two or one element 

connected to a node.  It should be noted that this formulation is only valid for rectangular 

elements. 
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The stiffness matrix of the Boussinesq foundations is then calculated as: 

 
1 SKb           (3.19) 

 

This matrix is then added, through a degree of freedom mapping scheme, to the global stiffness 

matrix. 

 

It is important to note that the flexibility and stiffness matrices of the Boussinesq model are full 

matrices and thus very memory intensive.   This not only affects memory requirements but also 

increases the computation time for the manipulation of the global stiffness matrix and the 

solution for the displacement vector. 

 

To reduce the memory and CPU time overhead, the stiffness matrix is made sparse by zeroing all 

off-diagonal elements associated with nodes separated by more than a specified distance.  This 

distance is an input parameter, but 10 ft was found to produce good results since at that distance 

the flexibility has decayed significantly.  The use of smaller distances tends to significantly 

affect the stresses in the slabs. 

 

3.1.4 Load Transfer Elements 

 

Adjacent slabs might be connected (jointed) through dowels, ties, aggregate interlock or keyed.  

Any combination of all or some of these “load transfer” mechanisms can be used in a jointed 

pavement.  Dowels and ties are modeled as beam elements with two degrees of freedom per node 

including a displacement w and a θ rotation about the axis perpendicular to the beam longitudinal 

axis (see Figure 3.3).   Because of the unconstrained length of the beams is governed by the 

small separation of the slabs (usually a fraction of an inch), shear deformation cannot be ignored.  

For this reason a Timoshenko beam is used for the modeling of dowels and ties.  Having 

2
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EI
  as a dimensionless coefficient, the stiffness matrix for the Timoshenko beam is given 

by the following equation, 
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For the aggregate interlock and keyed connection, a bar element with one degree of freedom per 

node, associated with the longitudinal displacement w, is used.  These bars connect 

corresponding nodes across the jointed slabs.  The stiffness of this bar element is calculated from 

the stiffness per unit length of the interlock or key.  The stiffness of this bar element is given by, 
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Figure 3.3 Dowel bar Degree of Freedom  

 

3.1.5 Gap Element 

 

Gap elements are used to model the contact between unbounded slab layers and between the 

bottom slab and the foundation.  These elements are modeled as bar elements with one degree of 

freedom per node and are activated if the gap closes or deactivated if the gap is opened.  When a 

gap element is activated, its stiffness is given as 1,000 times the maximum of the diagonal of the 

global stiffness matrix.  On the other hand, when a gap element is deactivated, its stiffness is 

given as 10
-9

 times the minimum of the diagonal of the global stiffness matrix.  The contact 

problem is solved through an iterative process over which gap elements are activated and 

deactivated until two consecutive iterations produce no change in the state of gap elements [42].  

 

3.2 LOAD VECTORS 

 

Pavements are subject to various types of loading conditions with different levels of intensity 

over their lives.  Loads generated by trucks and thermal gradients across the thickness of the 

slabs are the loads used in the analysis and design of jointed pavements since they are the most 

significant.  The implementation of these two types of loads will be discussed in this section. 

 

3.2.1 Truck Loads 

 

Truck loads are the main types of loads pavements are subjected to.  These loads are transferred 

through the contact “patch” between the tires and the pavement.  The contact patch is assumed to 

be rectangular.  It is also assumed that the load is uniform across the patch.  Because the 

rectangular patch will not necessarily have the same dimensions as the slab elements, and more 

than likely the patch will span more than one slab element, the tire loads are simulated as an 

equivalent series of point loads.  This eliminates the need to calculate the nodal loads associated 

with a distributed load that does not cover the entire element.  The rectangular tire contact patch 

is treated as a nine node rectangular element (see Figure 3.4), each tire load can be divided into 

nine concentrated loads that coincide with the nine nodal points.  The intensity of these loads is 

calculated as: 



F  qNwdA
A

          (3.22) 
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where the shape functions are for those of the nine node isoparametric elements and q is the tire 

contact pressure.  This integral is calculated using the appropriate quadrature rules for a nine 

node element. 

 

 
Figure 3.4 Shape Function N1 

 

The shape (interpolation) functions for the nine node isoparametric element are: 
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3.2.2 Thermal Loads 

 

Changes in temperature could exert additional load to the pavement. During the day the 

temperature of the top of the slab is higher in comparison with the bottom, causing the slab to 

curl upward. On the other hand, at night time the lower temperatures at the top of the slab force it 

to curl downward.  To calculate the thermal loads, a thermal gradient given by a cubic function is 

assumed.  This order of polynomial was selected because it is common for temperature to be 

measured at four points across the thickness of the slabs at pavement test sites.  Assuming the 

origin at the mid-plane of the slab, the temperature gradient is defined as: 

 



t  a0  a1z a2z
2  a3z

3
        (3.24) 

 

where the ia s can be fitted from field data measured at a specific pavement site.  The moments 

caused by the thermal loads can then be calculated as: 
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where Bb is as defined in Section 3.1.2,  is the linear coefficient of thermal expansion and zb 

and zt are the distances from the “Neutral Plane” to the bottom and top of the slab.  The interior 

integral can be calculated analytically, but the integral over the area needs to be calculated using 

Gauss quadrature rules. 

 

If the pavement section is made of bonded layers with different mechanical properties then the 

thermal moment should be calculated as: 
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where n is the number of slabs that make the bonded pavement section.  In this case, subscript i 

will identify the corresponding mechanical or geometric property of each slab.  The function t 

still is assumed to be the temperature change across the bonded pavement section with origin at 

the “neutral plane”.  The neutral plane concept is similar to the neutral axis in beams, but it only 

“exists” for cases where the Poisons ratios of all bonded slabs are the same. 

 



24 



25 

 

 

 

 

 

 

 

 

 

CHAPTER 4: CONVERGENCE STUDY  
 

 

 

In order for NYSlab to be used with confidence, several verification steps were followed to 

determine that the governing equations that describe the behavior of the jointed slab system have 

been accurately implemented in the FE model. One of the critical components in the process was 

to verify that the finite element model converges to a solution as the number of elements used in 

the space discretization increases [38]. 

 

4.1 NUMBER OF ELEMENTS 

 

The number of elements used in a finite element model is one of the parameters that have the 

most effect on the numerical accuracy of the solution.  In general, a more refined mesh results in 

more numerically-accurate results [38].  However, a finer mesh leads to a longer execution time.  

A convergence analysis can be carried out to optimize the mesh fineness without incurring on 

excessive computation time.  The results converge when a significant increase in the number of 

elements produces an insignificant change in a particular response. 

 

NYSlab can generate uniform and non-uniform meshes with any level of refinement as seen in 

Figure 4.1.  The non-uniform mesh is automatically generated in NYSlab by increasing the 

number of elements in the regions close to the point of application of the truck loads and on the 

edges of the slab. 

 

         
 (a) (b) 

Figure 4.1 Uniform (a) and non-uniform (b) meshes 
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4.1.1 Single Slab Study 

 

To demonstrate the convergence of the software, a single slab with a single tire load was 

modeled.  The dimensions of the slab were 100 in. by 100 in., which had a 10 in. by 10 in. tire 

contact at the center with a 100 psi contact pressure. The maximum deflection and normal 

bending stress were the control parameters used to characterize the convergence. 

 

Figure 4.2 shows the variation in deflection ratio with the number of elements used to model the 

slab.  Deflection ratio is defined as the ratio of the maximum deflection estimated from a given 

mesh divided by the maximum deflection estimated by a very refined mesh of 128 by 128 

elements.  The maximum deflection converges very rapidly, for both the uniform and non-

uniform meshes.  The error is smaller than 2% with only five elements in each direction.  A slab 

with a non-uniform mesh had more concentration of elements near the loaded area and 

progressively became less refined farther from the load.  For example, a slab with 225 elements 

gave the smallest element size of 1.56 in. under the load, while the largest element was 6.25 in. 

away from the load (as opposed of uniform element sizes of 6.67 in. for the uniform mesh).   

 

 
Figure 4.2 Deflections convergences for single slab 

 

The convergence of displacements does not guarantee the convergence of stresses because the 

stresses are associated with the derivatives of the displacement field. As a result an increase in 

the number of elements under concentrated loads or close to the boundaries and edges may be 

required [38].  The stress ratios for uniform and non-uniform meshes as a function of the number 

of elements are shown in Figure 4.3.  Stress ratio is defined as the ratio of the maximum normal 
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stress estimated from a given mesh divided by the maximum normal stress estimated from a very 

fine mesh of 128 by 128 elements.  Since the slab geometry and the applied load were square in  

 
Figure 4.3 Stress convergences for single slab 

 

geometry the stresses in both X and Y directions are the same.  The stress converges at a lower 

rate than displacements, and a finer mesh was needed for the convergence.  The stresses 

converge with a 16 element non-uniform mesh, while uniform mesh needs at least 32 elements in 

each direction to converge. 

 

4.1.2 Control Case Study 

 

To further evaluate the convergence characteristics of NYSlab, a three by two slab pavement 

system was used as the control case. The slabs had a dimension of 16 ft by 14 ft.  These slabs 

were loaded with a standard truck shown in Figure 4.4 (called Modified Truck L14 in 

JSLAB2004 truck library). This truck had a single axle for steering, and two sets of tridem axles.  

Figure 4.5 shows the truck load layout on the slabs.  The front tridem axle of the truck was 

placed on the center of the second slab in the slow lane.  As a result, the last axle of the rear 

tridem axles could not be fitted within the pavement. For each tire, a contact pressure of 100 psi 

was applied assuming that the dimensions of the tires were 8 in. by 6 in.  

 

Figures 4.6 through 4.8 show the convergence study for this pavement with a non-uniform mesh. 

The deflections and stresses are normalized to the results from a case with 40 elements in each 

direction.  As shown in Figure 4.6, the deflections essentially converged with 16 elements in 

each direction.  The largest fluctuation shown in this figure is 0.14%. On the other hand, as 
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shown in Figures 4.7 and 4.8, the absolute maximum stresses converge with approximately 30 

elements in each direction.  
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Figure 4.4 Scheme of the truck 

 

 
Figure 4.5 Tire layout 

 
Figure 4.6 Deflections convergences for control case  
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Figure 4.7 Stress convergences in the X direction for control case 

 
Figure 4.8 Stress convergences in the Y direction for control case 
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4.2 ELEMENT ASPECT RATIO 

 

The length-to-width ratio of rectangular elements can affect the deflections and stresses. To 

determine the effect of element aspect ratio, the same single slab with 30 elements in each 

direction, using uniform mesh was selected to demonstrate this phenomenon. For this study the 

element aspect ratio was changed while maintaining a constant total number of elements set at 

900 (30 square elements in each direction for an aspect ratio of 1).  Figures 4.9 and 4.10 

represent the results where, a and b are the dimensions of the elements in x (longitudinal) and y 

(transverse) directions, respectively. 

 

Figure 4.9 shows that the geometry of the element does not have a major effect on the 

convergence of the absolute maximum deflection.  The deflection did not change more than 3% 

even for a large aspect ratio. As shown in Figure 4.10, the maximum decrease of normal stresses 

in the x direction is 3.2% relative to square elements, while the maximum stress in the y direction 

is 9.6% less than the stress for the element with an aspect ratio of one.  The reason for the drop in 

the stress in the y direction is that for large aspect ratios, the number of elements in the y 

direction decreases below the number required for convergence.  Thus, the big error is mostly a 

result of non convergence and not related to the aspect ratio. 

 
Figure 4.9 Deflections convergence as a function of element aspect-ratio 
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Figure 4.10 Stresses convergence as a function of element aspect-ratio 
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CHAPTER 5: COMPARISON STUDY 
 

The results from NYSLAB were compared with those from JSLAB2004 and ISLAB2000, using 

the same pavement geometry and applied loads. The next section will discuss how the 

comparison case was implemented in each software and the results obtained.  The case study is 

the same one used in Section 4.1.2 and Section 6 below. 

 

5.1 DESCRIPTION OF CASE STUDY 

 

Since JSLAB2004 is restricted to a maximum of three by three slabss with up to two PCC layers, 

a pavement with three by two slabs was modeled to carry the load of a standard truck. The slabs 

had a dimension of 16 ft by 14 ft, with a thickness of 12 in.  A modulus of elasticity of 4000 ksi, 

a Poisson ratio of 0.15, and unit weight of 150 pcf were used for the PCC slabs. 

 

ISLAB2000 is capable of analyzing pavements with fine, medium, or coarse meshes.  A model 

with a medium mesh has one element/ft, the fine mesh has two elements/ft, and the coarse mesh 

has elements that are 2-ft long. In this case study a medium mesh was used to analyze the model 

for all three software. 

 

The gap between two adjacent slabs was set to 0.25 in. in both directions.  The slabs were 

connected by load transfer devices. The key joints were used in both directions as the common 

load transfer devices.  However, dowels were used for the transfer joints while the tie bars were 

applied to the longitudinal joints. The stiffness of the key joints in both directions was set to 

60,000 psi/in. along the length of the joints. The following material and geometry properties 

were chosen to model the dowels and tie bars: 

 

Modulus of elasticity (E) = 29,000 ksi 

Poisson ratio (ν) = 0.3, 

Dowel-Concrete Interaction (DCI) = 6105.1   (lb/in.), 

Length of dowel/tie bar in concrete (L) = 9 in., 

Dowels outside diameter = 1.25 in., 

Tie Bar outside diameter = 0.75 in. 

 

The dowels were uniformly distributed in the transfer joints with a 1-ft spacing in the transverse 

direction and the spacing between the tie bars was set to 2 ft in the longitudinal direction.   
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ISLAB2000 is capable of analyzing Winkler, Kerr, and Vlasov types of foundations, while 

JSLAB2004 works properly for Winkler and Vlasov foundations. In this case study, the Winkler 

foundation with a modulus of subgrade reaction of 200 psi/in was used. 

 

The modified truck, L14 (see Figure 4.4) was selected from the JSLAB2004 library. Figure 5.1 

shows the tire dimensions and spacing between the axles of L14 truck in JSLAB2004.  The front 

tridem axle of the truck was placed on the center of the second slab in the slow lane. Since 

JSLAB2004 is not capable of analyzing the tires located outside of the pavement, the last axle 

was removed for the JSLAB2004 executions.  As mentioned in Chapter 4, 8 in. by 6 in. tires with 

a contact pressure of 100 psi were used in all programs.  In ISLAB2000 an aspect ratio of 0.75 

(6/8) was selected for the tire contact for best match with the other two programs.  

 

 
Figure 5.1 Truck dimensions 

 

The reference coordinate system used in ISLAB2000 is not the same as the one used in NYSlab 

and JSLAB2004.  While NYSlab and JSLAB2004 use a right-handed system, ISLAB2000 uses a 

left-handed system; this means that the normal stress in the x direction in ISLAB2000 

corresponds to the normal stress in the y direction in NYSlab.  In this study the results are 

compared using the right-handed system.   

 

Figures 5.2 through 5.4 show the results for JSLAB2004, ISLAB2000, and NYSLAB, 

respectively.  ISLAB2000 and NYSLAB provide contour plots of the results, while JSLAB2004 

provides 2D plots of the results. 
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Figure 5.2 JSLAB2004 outputs 

   
Figure 5.3 ISLAB2000 output (X-stress) 
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Figure 5.4 NYSLAB MATLAB code output (X- Stress) 

 

5.2 COMPARISON 

 

Figure 5.5 compares deflections along the exterior tires on the pavement from the three 

programs. The NYSlab and JSLAB2004 deflections are similar while ISLAB2000 exhibits less 

deflection but with a similar shape to the other programs.  The reason for the smaller deflection 

in ISLAB 2000 is that it subtracts the deformations caused by the self weight of the slab(s).   

 

The stresses in the longitudinal direction along the exterior tires are compared in Figure 5.6.  

Generally good agreement is observed among the three programs.  As reflected in Figure 5.7, the 

stresses in the transverse direction from the three software packages are very similar, except 

close to the joints.  This can be due to the fact that dowels are modeled differently in NYSlab 

(see Chapter 3) and/or because the type of the elements is not the same in NYSlab as in the other 

two codes.  NYSlab uses four-node bi-linear isoparametric elements, while the other two codes 

use a four-node quadratic rectangular element.  This should be a topic of further study. 
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Figure 5.5 Deflections comparison  

 

Figure 

5.6 Comparisons of stresses in the X direction  
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Figure 5.7 Comparisons of stresses in the Y direction  



39 

 

 

 

 

 

 

 

 

 

CHAPTER 6: PARAMETRIC STUDY 
 

A series of parametric studies was conducted to better understand the interplay between the most 

relevant parameters that govern the performance of jointed rigid pavements.  The parameters 

selected for the analysis were the foundation parameters, foundation types, dimension of slabs, 

the number of slab layers, and temperature gradient.  To study the effects of each parameter 

individually, the relevant targeted parameter was varied, while all other parameters were kept 

constant. The control model described in detail in the previous chapter was used as the baseline 

case. A standard truck loading a three by two slab pavement system, the front tridem axle of the 

truck was placed on the center of the second slab in the slow lane. 

 

6.1 FOUNDATION PARAMETERS 

 

The Winkler, Vlasov and Solid Elastic foundation models were selected for this study.  Each 

model was analyzed by varying the parameters that defined the behavior of the foundation and 

by calculating the maximum slab stresses and deflections.   

 

6.1.1 Winkler Foundation  

 

The only parameter that defines a Winkler foundation is the modulus of subgrade reaction.  The 

modulus was varied from 50 to 1,000 psi/in and the maximum deflection and bending stresses in 

the slab were calculated.  Figure 6.1 and Figure 6.2 show the variation of the deflection and the 

stresses in the x and y directions as a function of the modulus of subgrade reaction, respectively. 

As expected, increasing the modulus of subgrade reaction reduces the maximum deflection and 

bending stresses.  The deflection slope is large when the modulus is small but becomes 

asymptotic to zero as the modulus increases.  Of course the behavior of the deflections and 

stresses is not only a function of the modulus but also of the geometry and properties of the 

concrete slab and thus general conclusions cannot be stated.  Still, the trend is consistent with 

expected behavior. 
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Figure 6.1 Maximum deflection as a function of modulus of sub-grade reaction  

 

 
Figure 6.2 Maximum bending stresses as a function of sub-grade reaction  
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6.1.2 Vlasov Foundation  

 

The Vlasov foundation model behavior is governed by the shear modulus that allows for the 

modeling of the deflection beyond the point of application of the load.  In addition, a modulus 

similar to the modulus of subgrade reaction in the Winkler model governs the vertical stiffness of 

the foundation.  For this parametric study, the shear modulus was varied from 5 to 120 k/in. and 

the modulus of subgrade reaction was assumed at 50, 200 and 800 psi/in. Figures 6.3 through 6.5 

show the variation of the maximum deflection and stresses as functions of shear modulus (G) 

and modulus of subgrade reaction (k).  As the modulus of subgrade reaction increases, not only 

the slab deflections and stresses become smaller but they are also less impacted by the shear 

modulus of the Vlasov foundation.  Figure 6.3 shows that for a soft subgrade (k = 50 psi/in.), the 

deflection changes significantly with shear modulus up to a shear modulus of 60 kip/in., beyond 

which the deflections are almost independent of the shear modulus.  The stresses show a similar 

pattern in Figures 6.4 and 6.5 where the effect of the shear modulus decreases as the modulus of 

subgrade reaction increases.  

 

 
Figure 6.3 Deflection as a function of Vlasov parameters (k,G) 
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Figure 6.4 Longitudinal stress in the X direction as a function of Vlasov parameters (k,G) 

 

 
Figure 6.5 Longitudinal stress in the Y direction as a function of Vlasov parameters (k,G) 
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6.1.3 Solid Elastic Foundation  

 

The solid-elastic (Boussinesq) foundation has two parameters, the modulus of elasticity and the 

Poisson’s ratio. The impact of the modulus of elasticity of the Boussinesq foundation on the 

maximum deformations and stresses of the slabs for two different Poisson ratios (=0.3 and 

0.45) is presented in Figures 6.6 through 6.8.  Variations in the maximum deflection and stresses 

are consistent with their inverse relation to the foundation modulus of elasticity.  These figures 

also show that the influence of Poisson’s ratio on the deflection and stresses is small.  By 

changing the Poisson ratio from 0.3 to 0.45 (an increase of 50%), the maximum stresses 

decreased by less than 6% while the maximum deflections decreased by 11%. 

 

 

 
Figure 6.6 Deflection as a function of Solid Elastic parameters (E,) 
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Figure 6.7 Longitudinal stress in the X direction as a function of Solid Elastic parameters 

(E,) 

 
Figure 6.8 Longitudinal stress in the X direction as a function of Solid Elastic parameters 

(E,) 

 



45 

6.2 FOUNDATION MODEL  

 

The objective of this study was to compare the general response of the baseline case described 

above under different foundation models (Winkler, Vlasov and Solid Elastic).  Since it is not 

possible to find equivalent foundation parameters for the three models, this study will only serve 

the purpose of verifying that NYSlab captures the differences between them. 

 

For this comparison study, the modulus of subgrade reaction of the Winkle foundation was set to 

200 psi/in., the Vlasov model used the same modulus of subgrade reaction as the Winkler model 

with a shear modulus of 30 kip/in. Through trial and error, a Boussinesq foundation with a 

modulus of 20 ksi and a Poisson ratio of 0.3 agreed well with the stresses of the other foundation 

types.    

 

The foundation is expanded beyond the edge of the slabs for the Vlasov and Solid Elastic 

foundations to capture the foundation deformation beyond the edge.  This has a stiffening effect 

that reduces the deflection of the edge of the slabs. Figure 6.9 shows contours of the deformation 

of the top of the foundation for the Vlasov and Winkler foundations illustrating the existence of 

foundation beyond the edge of the slabs in NYSlab.   This figure also shows the discontinuity of 

deflections on the Winkler foundation because of its assumed dense liquid behavior.  

 

The behaviors of the slabs for the three foundation models studied for the effects of shear 

stiffness in the Vlasov model and the elastic parameters of the Solid Elastic foundation. The slab 

deflections for the three foundation models are shown in Figure 6.10.  The effect of the extension 

of the foundation beyond the edge of the slab is quite apparent.  The deflections with the Vlasov 

model at the edges are significantly lower than with the Winkler model.  This difference cannot 

be attributed to the shear parameter but is the effect of the added foundation stiffness caused by 

the extension of the foundation.  This foundation extension also has the effect of changing the 

curvature of deformation close to the edge of the slab.  This translates into larger slab stresses for 

the Vlasov and Solid Elastic foundation when compared to the Winkler foundation as seen in 

Figure 6.11.   

 

6.3 SLAB DIMENSIONS 

 

For this study, the length, width and thickness of slabs placed on two types of foundations 

(Winkler and Vlasov) were varied.  The effects of these parameters on the responses of the slabs 

are discussed in the following section.  

 

6.3.1 Slab Length and Width 

 

To quantify the effects of the slab dimensions on deflections and stresses, the length of the slabs 

was varied from 12 ft to 20 ft.  Three different widths of slabs (12 ft, 14 ft and 16 ft) were 

considered. The truck was placed in the middle of the first row of the slabs for all cases.  In other 

words, the first triple-axle was placed in the middle of the second slab of the first row of slabs.  

Figures 6.12 and 6.13 show the results for absolute maximum deflections, and stresses in the X- 

and Y-directions.  
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(a) Winkler Foundation Deflection 

 

  
(b) Vlasov Foundation Deflection   

Figure 6.9 Effect of extending the foundation beyond the edge of the slab in the Vlasov 

model  
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Figure 6.10 Comparison of deflections under the Winkler, Vlasov and Solid Elastic 

foundations  

 

 
Figure 6.11 Comparison of bending stresses (in X direction) under the Winkler, Vlasov and 

Solid Elastic  
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(a) Winkler Foundation Deflection 

 
(b)  Vlasov Foundation Deflection   

Figure 6.12 Deflection as a function of slab dimensions  
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As shown in Figure 6.12, increasing the length up to 18 ft resulted in increased maximum 

deflections.  This could be due to the increased flexibility of the longer slabs. For slab lengths 

larger than 18 ft, the slab deflections begin to decrease, as the fact that the load is spread over a 

larger area begins to dominate.  This behavior is seen for all slab widths and foundation types. 

 

The shear modulus of 30 ksi in the Vlasov foundation not only reduced the deflections relative to 

Winkler foundation, but it also decreased the impact of the slab dimensions.  By increasing the 

slab dimensions for slabs placed over the Vlasov foundation, the absolute maximum deflections 

changed only by 3%, while the change in deflection under the Winkler foundation was 9%. 

 

The longitudinal bending stresses show a similar behavior as seen in Figure 6.13.  For short slabs 

with a length of 12 ft the stresses are small but as the length increases, the stresses increase up to 

a length of 14 ft.  This increase in stresses is due to the increased moment-arm in the slightly 

longer slab.  For lengths larger than 14 ft, the increased moment-arm has a smaller effect than the 

decreased contact stresses between the slab and foundation due to the larger contact area.  This 

results in a reduction of stresses as the slab length increases beyond 14 ft.  As expected, the 

stresses for the Vlasov foundation are less than those from the Winkler foundation due to the 

inclusion of shear stiffness in the Vlasov model. 

 

6.3.2 Slab Thickness 

 

To study the effect of the thicknesses of the PCC layer on a Winkler foundation, the thickness 

was varied from 6 in. to 18 inches.  As shown in Figure 6.14, the slab deflection decreased by 

increasing the thickness of the slab up to 18 in., because of the increase in the rigidity of the slab.  

For slabs thicker than 18 in., the weight of the slab becomes a dominant effect over the rigidity 

of the slab and the deflections begin to increase.  Even though not shown here, for slabs thicker 

than 24 in., the maximum deflection occurred at the edge of the slab instead of the center of the 

slab. As expected and shown in Figure 6.15, the increase in the thickness of the slab resulted in a 

reduction in the stresses, especially for the stresses in the y direction. 

 

6.3.3 Unbonded PCC Layers   

 

As previously discussed, NYSlab is capable of analyzing a pavement with several layers of PCC 

and foundation. In this section the influence of considering an unbonded two-layer slab system 

on the performance of the pavement is evaluated. For this study, the total thickness of the two 

slabs was kept constant at 12 in.  The thickness of the top PCC layer was varied from 2 in. to 10 

in.  The foundation was modeled as Winkler.  The absolute maximum deflections and stresses of 

the top layer as a function of the thickness of the top PCC layer are shown in Figures 6.16 

through 6.18.  The results are normalized with respect to the corresponding values obtained from 

a 12-in. thick monotonic slab (ratio is of unbonded over monolithic slab performance variables).  

The deflection ratio reaches a maximum when both layers are 6 in thick.  The plots for the 

longitudinal bending stresses also show the expected behavior.  As the top layer increases in 

thickness, the stresses increase up to about 8 in after which the stresses begin to decrease.  The 

stress ratio should be one when the top layer thickness is 12 in since the system becomes a one-

layer pavement; the results do show this behavior.  The behavior for the stress in the bottom 

layer shows the same expected trends. 
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(a) Winkler Foundation 

 
(b) Vlasov Foundation    

Figure 6.13 Longitudinal bending stress in the X direction as a function of slab dimensions  
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Figure 6.14 Deflection as a function of PCC layer thickness 

 
Figure 6.15 Longitudinal stresses as a function of of PCC layer thickness 

. 
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Figure 6.16 Deflection as a function of top PCC layer thickness  

 
Figure 6.17 Longitudinal stress in the X direction as a function of top PCC layer 

thicknesses  
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Figure 6.18 Longitudinal stress in the X direction as a function of top PCC layer 

thicknesses 

 

6.4  THERMAL GRADIENT  

 

To better predict pavement thermal loads, NYSlab is capable of modeling a non-linear thermal 

gradient across the thickness of the slabs.  The gradient is modeled as: 

 
3

3

2

210 zazazaat            (6.1) 

 

where, ai can be fitted from field measurements at four points across the thickness of the slabs at 

specific pavement test sections.  The origin of this equation is located at the “neutral plane”. 

 

To verify the correct implementation of this model, a linear thermal gradient was first 

considered.  Parameter a1 was varied between -1F/in. and 1F/in. while keeping all other 

coefficients equal to zero.  A  thermal expansion coefficient =5e-6/F was assumed. As an 

example, an a1=1 thermal gradient, represent a 12°F change through the thickness of the slab, in 

daytime, when the temperature on top of the pavement is higher than the bottom.  Figure 6.19 

shows the variation of maximum deflection as a function of the linear thermal gradient.  When a1 

is positive, the pavement curls up (concave down) and produces a reduction in deflection.  This 

figure demonstrates the expected linear relationship between thermal gradient and deflection 

[39].  Figure 6.20 shows the variation of the longitudinal bending stresses as a function of a1 

where an almost linear relationship is observed.  As expected, the curling up of the pavement for 

positive a1 produces an increase in stresses because of the reduction in the subgrade reaction 

(support) provided by the foundation.  If there were no external and body forces, the stresses 

produced just by the thermal gradient would have been zero [39]. 
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Figure 6.19 Maximum deflection as a function of Linear Thermal Coefficient ( 1a ) 

 
 

Figure 6.20 Maximum longitudinal stresses as a function of Linear Thermal Coefficient  
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To determine the effect of the quadratic coefficient in the thermal gradient equation, the 

parameter a2 changed from -0.04 to 0.04F/in.
2
 while the linear parameter a1 was set to 1F/in. 

and all other coefficients were fixed at zero. Figure 6.21 shows that the pavement deflection does 

not change when a2 is varied.  This is the expected behavior since the thermal moment produced  

 

 
Figure 6.21 Maximum deflection as a function of Quadratic Thermal Coefficient ( 2a ) 

 
Figure 6.22 Maximum longitudinal stresses as a function of Quadratic Thermal Coefficient  
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by a quadratic thermal gradient profile is zero [39]. Figure 6.22 shows also the expected linear 

behavior for the variation of bending stresses [39].  The results of this section verify the correct 

numerical implementation of the non-linear thermal gradient in NYSlab.  The implementation in 

NYSlab allows for a thermal gradient to exist in all PCC layers of the pavement, not only in the 

top one as in JSLAB2004. 
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CHAPTER 7: SUMMARY AND CONCLUSIONS 
 

 

 

This report presents the development of NYSlab for the analysis of rigid pavements designed to 

improve the capabilities of JSLAB2004.  The most significant improvements implemented in 

NYSlab over other software are: a) Finite Element model based on an isoparametric element that 

allows for the modeling of irregular geometries, b) no limitation in the number of PCC and 

foundation layers, c) more accurate modeling of the contact between unbonded PCC layers, PCC 

and foundation layers using Gap elements, d) foundation model extended beyond the edge of the 

slabs to more accurately model the edge deflections and stresses, and e) implementation of non-

linear thermal gradient models applied to any number of PCC layers. 

 

Uniform and non-uniform meshes were implemented and analyzed for convergence.  The results 

showed that the deflection converges with less than 10 elements in each direction for both 

uniform and non-uniform meshes.  A finer mesh of 16 elements in a non-uniform mesh and 30 

elements for the uniform mesh are needed for convergence of stresses.   

 

The effect of the element aspect ratio on convergence of the deflection and stresses was also 

studied. The aspect ratio of the elements did not seem to have a significant effect on the 

convergence of the deflection.  On the other hand, increasing the aspect ratio of the elements 

changed the results for stresses only because at high aspect ratios, the number of elements in one 

direction dropped below the required for convergence.  

 

The results produced by NYSlab were also compared with those of JSLAB2004 and 

ISLAB2000, using the same pavement and loading conditions.  A good agreement in terms of 

deflections and stresses was observed between the three software packages.  A small discrepancy 

was found in the deflection results of ISLAB2000 because it does not include the self-weight of 

the slab in the calculation. 

 

To further verify the numerical implementation of the models, a parametric study was conducted.  

These parametric studies demonstrated that NYSlab accurately models the interplay between the 

pavement geometric characteristics, foundation parameters and the resulting deflections and 

stresses.  Of significant importance was the improvement in the prediction of edge-of-slab 

deflections and stresses resulting from the extension of the foundation beyond the edge of the 

slabs included in NYSlab.  Another major improvement in NYSlab was the implementation of a 
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model to predict the pavement response under a non-linear thermal gradient.  The appropriate 

behavior of this model was also verified. 
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