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GUIDELINES SECTION 2 — TECHNICAL APPENDIX
Covers technical issues related to Section 2. Develop an Evaluation Plan of the guidelines.
Guidance on Reidentification Link Length

On page 11 (Section 2) and page 21 (Section 3), there is guidance that recommends that “... the
benchmark link length should not differ from the TIS link length by more than 10%.” This is reported as
a “general rule-of-thumb” but is also supported by an error analysis done for the I-95 Corridor Coalition.
In their January 2009 evaluation report of INRIX data, the University of Maryland also addressed this and
gave the following guidance (bold underline emphasis is added here):

The Bluetooth technology measures a sample of travel times between two cross sections of the
highway. The distance between a pair of sensors will then be needed to convert the travel times
into speeds. In practice sensors were deployed based on the coordinates provided in the traffic
message channel (TMC) location database supplied by INRIX. In the deployment process, every
effort was made to minimize the distances between sensor deployment locations and the target
TMC points. The targeted TMC points were pinpointed on a geographical information system
(GIS) map overlaid on top of the aerial photos of the highways of interest so that the TMC points
could be identified with ease in the field. Also, the TMC coordinates were inputted into a hand-
held global positioning system (GPS) device which was used in the field. Apart from normal
device and human errors that can be expected in this type of operation, occasionally lack of
shoulders in the right place along the highway, and/or lack of a permanent object in the close
proximity of the TMC point to which the sensor could be safely tethered introduced some
unwanted but additional errors in the placement of the sensors. Sometimes, the location of the
TMC point that was of interest fell in a construction zone that also could be a cause for minor
errors.

Due to the importance of this issue and its effect on validation results a thorough analysis on the
size and causes of the deployment errors were performed. To this end, the recorded coordinates
of the sensor deployment locations (as recorded by the GPS component of the sensor upon
deployment) were overlaid on the same GIS map as TMC points. Since the great circle distance
between two points may not be an accurate estimate of the actual distance traveled by vehicles
between two points along the highway, in all cases the highway distances between the sensor
location and its corresponding TMC point were measured on a GIS system. These discrepancies
are reported as the placement errors in the corresponding result tables which will appear in the
following sections. The actual distance between any pair of deployed sensors is estimated using
the same GIS map on which the TMC points were located. For each TMC segment and “ground
truth” speed estimations, this is reported as the corrected length of the segment under
consideration.

It can be shown that, if we were to use the standard TMC lengths instead of actual distances
between sensors for speed estimation, the acceptable tolerance in sensor deployment would be
a function of travel time between two sensors. Specifically, to keep the error in speed estimation
to less than one mph, the discrepancy between the length of the segment and actual TMC length
(in feet) should be less than 1.47 times observed travel time on the segment in seconds. For a five
minute travel time this translates into a 441 ft or 8.3% (on a one mile segqment) tolerance which




for all practical purposes was adopted as the maximum acceptable tolerance in sensor
deployments.

Estimation of Ground Truth Travel Time Using Statistical Sampling Theory

Background

Many past data quality evaluations have treated the determination of ground truth travel time as a
measurement problem. This is to say, that ground truth travel time was treated as a fixed value. These
guidelines take a slightly different approach and suggest that ground truth travel time is a value that can
only be estimated. The main difference in these approaches is that the guidelines acknowledge that
there is a degree of uncertainty in estimating a random variable. This is in some ways a fairly
conservative approach because it does not provide a single point value that can be used for benchmark
evaluations of a traveler information service. Rather, a confidence interval, or range of likely values is
generated from the sample data. This range represents the benchmark or ground truth estimate of
travel time.

Statistical Sampling

The statistical sampling approach to estimating ground truth travel time follows the same approach
taken in many statistical sampling applications. First, a population of interest is defined. The population
is simply an enumeration of what is to be estimated. For travel time studies, the population is the set of
travel times for all vehicles that traverse a specified link during a specified time interval. In reality, there
are a finite set of vehicles that traverse a specified link during a specified time interval. So, in theory at
least, they could be exhaustively enumerated. In practice it would be extremely costly to observe the
travel time of every vehicle so a sample of observations is collected.

Statistical sampling is the process whereby a randomly selected subset of the population is observed
and statistics are computed from the sample data. For example, since not every vehicle can be
observed, a random subset of the vehicles traversing a link could be observed and the travel times for
those vehicles then recorded. This would then be a sample of observations from the population. The
sample plays an important role in statistical inference.

Statistical Inference

Statistical inference is the process whereby statistics computed from the sample data are used to infer
population parameters. For example, ground truth travel time is generally defined as the average travel
time of a link during some time interval. This is equivalent to stating that ground truth travel time is the
mean travel time of the population. Using statistical inference, the population mean can be estimated
from the sample mean. However, the sample mean is a random variable and therefore is subject to
some uncertainty. The Central Limit Theorem states that the distribution of the sample mean is
approximately normal and the variance of the sample mean decreases as the sample size increases.
This is an important insight into the problem of estimating a value to use as ground truth. For small
samples, the variance of the sample mean is quite large. Therefore, there is very little certainty or
confidence in the sample mean as an estimate of the population mean. However, as the sample size
increases, the sample estimate of the population mean becomes more precise due to the decrease in
the variance of the sample mean.



Confidence Intervals

All of these facts can be summarized succinctly in terms of a statistical confidence interval on the sample
mean. A confidence interval (Cl) is a method of expressing the likelihood that a population parameter
falls between two values. For example, a confidence interval can be used to express how likely it is that
the ground truth travel time falls between two values.

The expression for a confidence interval is given by:
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where:

X is the sample mean

ta,_, is the Student's t statistic
>

a is the acceptance level of the test statistic
s is the sample standard deviation

n is the sample size

U is the population mean

The expression states that for some given acceptance level (alpha) the population mean will lie between
the computed values in approximately (1 — alpha) percentage of the observed cases. To a test engineer,
this is simply a method to determine the most likely range of values for the ground truth.

A Note on Test Statistics. One thing to note is that the expression for a confidence interval uses a
“Student’s t Test Statistic”. In many engineering applications the test statistic is given as “Z” which is the
standard unit normal distribution. There are some reasons to consider using the “t” statistic over the “Z”
statistic in computing a confidence interval.

First, the “Z” statistic is used in cases where the population variance is a known value. In some
engineering applications, the population variance is fairly stable between sample data collections. In
these cases, the population variance can be reasonably assumed to be a known constant value that can
be estimated from a large sample collection. However, in travel time studies the population of interest is
the set of travel times of vehicles traveling a link during some time interval. The variance of this
population is subject to a fair amount of uncertainty due to a number of different factors. For example,
the variance of travel times on an arterial link will be different than the variance of travel times on a
freeway link. The variance will be affected by time of day, volume of traffic, geometric design, weather
conditions, and a number of other factors. Therefore, the variance of the population is typically
estimated from the sample variance. From a mathematical statistics perspective, whenever the variance
is estimated from sample data, it is suggested that a Student’s t statistic be used to account for the
additional uncertainty.

Although the Student’s t statistic is computationally more complex than the Z statistic, there is a second
reason to prefer its use. The “t” statistic provides a more conservative confidence interval than the “Z”
statistic because it is sensitive to the sample size. The “Z” statistic is only sensitive to the alpha-level
which is typically set at a constant 0.05 or 95% confidence level. The “t” statistic, however, is sensitive to
both the alpha-level and the sample size (expressed in degrees of freedom). So, for small samples where
the sample variance is also small, a confidence interval expressed using a “Z” statistic will be
unreasonably narrow. This is likely a misleading result, because the estimate of the population variance
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from the sample variance is dependent on the sample data collected and would likely change if a new
sample were taken. The Student’s “t” statistic provides a more conservative estimate of the confidence
interval width because it “penalizes” very small samples and accounts for the additional uncertainty due
to the use of sample variance.

The following chart shows a comparison of the “Z” and “t” test statistics. In particular, one can see that
for very small sample sizes (e.g. 3 observations) the width of the confidence interval is far too wide for
any meaningful applications when using the “t” statistic. The width of the “Z” statistic at only 10%
variation (i.e. CV = 0.10) and a sample size of n = 3 observations is about 11% which is close to the
acceptable range for many applications. This indicates that in cases where the number of sample
observations is limited, caution should be used when developing a confidence interval using a “Z”
statistic.

Comparison of Z and t Test Statistics
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Figure A-1. Comparison of Z and t Test Statistics

Example of a Confidence Interval Application. Assume that sample travel time observations are
collected in the field for some link. A total of 3 observations are collected in a 15 minute period using
the floating car method. The average travel time from these observations was 120 seconds with a
standard deviation of 9 seconds. A confidence interval can be computed using the two methods
described in the previous section.

X =120 secs
a = 0.05
n=3

t%,n—l = 4.30 (found using a lookup table or statistics package)

s = 9 secs



Using the Student’s “t” statistic:

A 95% Confidence Interval is expressed as: 120 — 4.30 % < u< 120+ 4.30 %

Therefore, the range of feasible values for the mean travel time lies between 98 and 143 seconds. In this
case, it should be clear that although the standard deviation for the observations was fairly small at only
9 seconds, the confidence interval is approximately 22 seconds on each side of the sample mean.

Using the “Z” statistic:

A 95% Confidence Interval is expressed as: 120 — 1.96 % < u< 120+ 1.96 %

The “Z” statistic at the 95% level is approximately 1.96. Therefore the range of values for the confidence
interval when using a “Z” statistic would be between 110 and 131 seconds. This range is a much more
optimistic range and does not account well for the small sample size or the uncertainty in estimating the
variance from the sample.

The choice of a test statistic is an important decision because it will affect the precision of a statistical
estimate. The Z statistic has been used in many studies because it is easier to compute and is generally
accepted for many engineering applications. The guidelines do not endorse either test statistic but do
encourage users to consider the trade-offs in terms of precision and robustness of estimates when
deciding on a test statistic.

Determining the minimum sample size

The expression for a confidence interval can be manipulated to derive an expression for the minimum
sample size. Depending on the preferred test statistic there are two possible expressions for minimum
sample size:

Table A-1. Minimum Sample Size Using Absolute Width of CI

(1) When the population variance is known: (Zcr )2
n=\—
d
(2) When the population variance is estimated from sample variance: ( ts )2
n=\—
d
Where:

d is the desired width of the confidence interval in units of measure (e. g. mph, secs)

and other terms are given as above.

I

Note, that in case 2, because the Student’s “t” statistic is a function of sample size (i.e. degrees of

freedom) the solution for “n” is iterative. The method to solve for “n” is explained well in Engineering
Statistics textbooks.

The minimum sample size can also be expressed relative to the population mean. For example, rather
than determining the width of the confidence interval in absolute units (e.g. mph or seconds), the



confidence interval can be expressed as a percentage (e.g. 10%). This is sometimes preferred to avoid
problems where the magnitude of the units change between populations. The same expressions for
minimum sample size can be written using relative widths as:

Table A-2 - Minimum Sample Size Using Relative Width of CI

(1) When the population variance is known: 72 2
e
t
X
e

(2) When the population variance is estimated from sample variance: (

Where:
e is the desired width of the confidence interval, expressed as a decimal value (percentage)

Example of Determining a Minimum Sample Size. The equations for determining a minimum sample size
can also be applied to this example.

If the desired confidence interval width is specified as 10 seconds:

Table A-3 - Example of a Minimum Sample Size Calculation

(1) When the population variance is known: 1.96 * 9\?
n = (T) = 4 obs.
(2) When the population variance is estimated 430 x9\?
from sample variance: n= (—10 ) = 130 obs.

Clearly, the sample size when using the “t” statistic is too small for the desired confidence interval. An
iterative solution shows that the minimum sample size using a “t” statistic would be 7 observations.

Similarly, the sample size can be computed as a function of relative width of the confidence interval. The
width is specified as a decimal percentage and the standard deviation is replaced by the coefficient of
variation.

Coefficient of Variation

Notice, that in this new formulation of the minimum sample size, the standard deviation is divided by
the sample mean. This is called the “coefficient of variation” and is heavily used in the research
throughout these guidelines. The “coefficient of variation” (CV) is a non-dimensional (i.e. unit-less)
measure of relative variation and is the ratio of the standard deviation to the mean.

One of the nice features of the CV is that it is not sensitive to changes in the magnitude of the units of
measure. For example if travel time is being studied on a 3 mile link the mean and standard deviation of
travel time will tend to be smaller than studies on a 6 mile link. Therefore, comparing statistics between
links of different lengths is not helpful. The coefficient of variation is a useful way to express relative
variation. The CV can be compared across links of different lengths.




Network Stratification Research

The previous section on estimating ground truth travel time using statistical sampling and inference
discussed the basis for viewing ground truth travel time as a statistical estimation problem and how to
estimate a confidence interval using statistical inference. This section will present the results of
empirical research into the spatial and temporal distribution of travel time variance.

Why Stratify a Network?

The idea of stratifying a network for travel time sampling has been around for a while. In NCHRP Report
398, Quantifying Congestion, the authors recommended that congestion studies use a similar
stratification method as what is presented in these guidelines. Research has shown that when sampling
from different populations, more precise inference on population parameters can be achieved by
stratifying the populations. The basic idea is to identify variables that group the populations into more
homogeneous categories.

These guidelines presented a simple but effective approach to stratifying a road network. Basically the
network is first stratified by facility type such that samples are collected on arterials separately from
freeways. Second, the guidelines recommend that freeways be further stratified by using a classification
method to separate freeway segments into high and low variance segments. This method is based on
analysis of empirical data collected from Houston, Texas. More detailed information about the freeway
stratification method is shown in the following sections.

Influence of Time Intervals on Statistics

One of the factors that can affect the statistics of travel time studies is the time interval used to
aggregate the sample observations. In the Houston study used for the development of these guidelines,
the base time interval used to aggregate observations was 5-minutes. This time interval was selected
because it is a commonly used time interval by Traveler Information Services for reporting travel time
estimates. It is also the smallest interval of interest for most current applications. The 5-minute interval
represents a fairly granular level of analysis. Longer time intervals will have different effects on the
magnitude of variance observed in the data. Therefore, it is recommended that the values for ranges of
travel time variance reported in this research be considered within the context of a 5-minute sampling
interval. Samples collected over longer time intervals may show significantly higher ranges of travel time
variance.

Relationship between Coefficient of Variation of Travel Time and Different Traffic States

The CV of travel time was shown in previous sections to be a useful indicator of relative variation in
traffic data. When used in traffic engineering studies, CV travel time is also a useful indicator of different
traffic states. Empirical data from Houston was analyzed and it was found that the distribution of CV
travel time was correlated with different average speeds of traffic flow. The following table summarizes
the findings from this analysis.



Table A-4. Relationship Between CV Travel Time and Traffic Conditions

Coefficient of Variation of Travel Time Range Description of Traffic Flow

“Low” : Values less than 0.10 Generally free flow conditions where average
speeds are around 60 mph

“Medium”: 0.10 - 0.20 Transition and congested states of traffic flow
where speeds range from 20 mph — 50 mph.

“High”: Values greater than 0.20 Highly unstable traffic flow with the possible

presence of outlier observations influencing the
degree of variation. Generally congested or
transition speeds of traffic flow.

To further illustrate this relationship, the distribution of CV travel time was computed for 5-minute
intervals on a large set of freeway segments in Houston. A histogram for different average speeds was
computed and is shown in the following plot.

o
|
0z

o
|
0F

density

o
|
09

o
|
08

1 1 1
on 1 02 03

CV_TTIME

Figure A-2. Relationship between Average Speed (In Bins) and CV Travel Time (Density Plots)

The plot shows that as average speeds get smaller (i.e. congestion forming) the distribution of CV travel
time tends to be more skewed towards larger values. This indicates that higher variances in travel time
are typically observed when traffic is transitioning between free flow and congested states. The solid red
line indicates that point where CV travel time = 0.10.



Classification of High and Low Variance

The previous section showed the relationship between CV travel time and different traffic states. The
Houston data shows that higher values of CV travel time are observed when congestion is forming or
when traffic is in a congested state. However, for the purposes of developing a classification method for
network links a “threshold” value is needed to distinguish between “high” and “low” variance states.

The threshold value used in this research was CV = 0.10. This value was selected because it represented
a reasonable point to distinguish between free-flow and congested traffic states. This is also the point
where the minimum sample size for estimation of ground truth travel time confidence intervals start to
become begin enough to warrant the exclusive use of re-identification technologies.

The following table shows the minimum computed sample size using a “Z” and “t” statistic for different
levels of CV travel time at a 95% Confidence Level and 10% precision.

Table A-5. Minimum Computed Sample Size Using a “Z” and “t” Statistic

Min. Sample Size (95% Cl, 10% precision)

cv "z" "t"
0.04 1 3
0.06 2 4
0.08 3 5
0.1 4 7
0.12 6 9
0.14 8 11
0.16 10 13
0.18 13 15
0.2 16 18

For CV levels less than 0.10, the required sample size for the “Z” and “t” statistic is around 5 or fewer
observations. For CV levels greater than 0.10 the required sample size is in the range of 7 — 18 or more
observations depending on how large the variance in the sample is. This dichotomy, while somewhat
subjective, represents a breaking point that can be used to distinguish between cases where a less
statistically robust sampling technique such as the floating car method could be substituted for a
technique that generated sufficiently large samples.

Identifying Links with “High” Travel Time Variance

The guidelines make an effort not to endorse any one particular sampling technique. However, the
research into travel time variance has shown that certain types of links are more likely to experience
high travel time variance during sampling intervals than other types of links. The rationale for providing
a freeway stratification method was so that evaluations could easily identify links in the network that
are likely to experience high travel time variation during sampling intervals. Once these links are
identified, the guidelines recommend that statistically valid samples are collected on these links to
estimate the ground truth confidence interval.
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The methodology used to develop the network stratification method presented in these guidelines was
based on a comprehensive analysis of travel time variance in Houston. Two different classification
methods were tested using an open-source data mining tool from the University of Waikato called
“Weka”. The classification methods tested were the J48 decision tree (a Java-based implementation of
Quinlan’s C4.5 decision tree) and the Naive Bayes method. These methods were selected because of
their effectiveness and simple interpretation in classification problems.

Data Collection

The freeway network in the Houston metropolitan region is monitored by an extensive network of toll
tag readers. These readers record the time a vehicle passes a specific point in the network and from
these timestamps the travel time of individual vehicles along specified links can be computed. For this
study, one year of travel time data from the year 2008 was loaded into a database for analysis. The
original data set covered approximately 200 links. This amounted to approximately 273.9 million
individual travel time observations.

Table A-6 shows the data structure for the aggregated travel times. The data was aggregated by link
(reader to reader) and 5-minute time interval. For each link and 5-minute interval sample statistics and a

confidence interval were computed.

Table A-6. Aggregated Data Structure

Column Data Explanation
Type

CALENDAR_KEY Number  Refers to the calendar date

TIME_KEY_FIVEX Number  Refers to the five minute aggregation period of the day (e.g. from
11:00 - 11:05 AM)

SEGMENT_ID Number  Refers to the link ORIG_ID and DEST_ID

NUM_OBS Number  Number of observations in the sample

AVG_TTIME Number  Arithmetic mean of travel time

AVG_SPEED Number  Arithmetic mean of speed

STDDEV_TTIME Number  Standard deviation of travel time

STDDEV_SPEED Number  Standard deviation of speed

MIN_OBS_TTIME_95_T Number  Minimum number of observations needed to estimate mean travel
time with 95% confidence level and 10% precision using Student’s T
statistic

CV_TTIME Number  Coefficient of Variation of travel time

HARMONIC_MEAN_SPEED Number Space mean speed computed by distance / (average travel time)

Data Filtering. The data set was filtered to only include samples between 6 am and 8 pm on weekdays.
The filtering was done to reduce the impact of weekend and off-peak travel on the cumulative
distributions. The data set was also filtered to only include samples where the sample size was sufficient
to estimate the mean travel time using a T statistic. This calculation was based on Equation 3. For each
sample it was determined if the sample size was sufficient to estimate the mean travel time with a 95%
confidence level and 10% precision. The aggregated data resulted in 20.9 million samples. From this set,
samples with 2 or fewer observations were rejected, resulting in 16.5 million samples. From the
resulting set of samples, approximately 85% of the samples (14 million) were kept.
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Links Selected for Analysis. A total of 117 links were selected for analysis. These links were identified as
the core links in the Houston network. HOV and tolled facilities were excluded from the analysis. The
selected links covered approximately 297 center-line miles of roadway with a range of ADT values
between 57,000 and 160,000 per link. ADT values were interpreted from published TxDOT ADT maps.
The number of access points on each link was determined by using GIS layers to identify on and off
ramps. Additionally, each link was visually inspected using satellite imagery (via Google Earth) to identify
the average number of through lanes over each link.

Classification Methods Examined

Decision tree methods have been widely used in data mining problems. A decision tree classifier such as
J48 attempts to classify by splitting the training data along different dimensions. Each split results in a
node with branches. The optimal size of the tree is determined by the algorithm’s pruning strategy.
Naive Bayes methods have also been widely used in data mining. The method takes its name from
Bayes’ rule. Each attribute is assumed to be independent and probability distributions are computed
from the empirical distribution of the attribute. These probabilities are combined according to Bayes’
rule and a posterior probability for a class given a set of attributes is computed. The posterior
probability is used for classification.

Baseline Model. The baseline model used for comparison is a simple classifier that “votes” for the
majority class. This method will always have a correct classification rate equal to the relative size of the
majority class. In this problem, the majority class was the “low” variance class and comprised 62% of the
cases to be classified. So the baseline model achieved a 62% correct classification against the data set.
However, since identification of the “high” variance class is of greatest interest in this problem we also
want to evaluate models based on how well they classify the target class. A classifier that both exceeds
the baseline’s correct classification rate (62%) and also improves identification of the minority class
would be considered a good candidate.

Kappa Statistic. A popular statistical measure of classifier performance is the Kappa statistic. It is shown
in Equation 4.

_ P(@)-P(e)
T 1-P(e) (4)
where P(a) is the relative observed agreement between the model and the data, and P(e) is the
hypothetical probability of a random agreement between the model and the data. A baseline model that
simply votes for the majority class has a Kappa value of 0. An ideal model that correctly classifies all
instances would have a Kappa statistic of 1.

Results of Model Exploration. The J48 decision tree and Naive Bayes classification methods were
explored using the data mining software. Each method was tested using the full set of parameters as
well as subsets of the parameters. The models generated by the data mining software were used to
guide the development of the proposed model in this paper. Exploration using these methods resulted
in the following insights:

1. ADT per lane and link length are the strongest predictors of class membership

2. Thresholds for ADT per lane were found to fall between 20,000 — 25,000 and link length was
found to fall close to 2 miles.
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3. Access point density thresholds were generally around 2.5 points / mile.
4. Chokepoint was coded as an indicator variable but did not significantly affect the
performance of either model. It was dropped from consideration.

Proposed Classification Model

Using the results of the model exploration as a starting point, the following classification model was
created. The proposed model uses only ADT per Lane, Access Point Density, and Link Length as inputs.
Links are classified by totaling the number of points based on the following criteria:

e ADT per Lane >= 20,000 (1 point)
e Access point density >= 2.5 points per mile (1 point)
e Link length < 2 miles (1 point)

A link which scores 2 or more points can be classified as a “high” variance link. Otherwise the link is
classified as “low” variance.

Model Performance

The proposed model was tested against the Houston data set and compared with the baseline model.
Table A-7 compares the performance of the proposed model compared with the baseline model.

Table A-7. Model Performance

Model Description % Correct Kappa

Classified Statistic
Baseline Vote for majority class 62% 0
Proposed Decision tree: ADT, Access Point Density, and Link 67% 0.175
Model Length

The results show that the proposed model was able to improve classification of links over the baseline
model. In addition, the proposed model achieved a correct classification rate of 60% in the “high”
variance class. Table A-8 shows the confusion matrix for the proposed model.

Table A-8. Confusion Matrix, Proposed Model

Predicted Class
High Low
T
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Validation of Model

A small validation set was collected to test the proposed model’s performance. The validation data was
assembled from a sample of links tested by the University of Maryland for a validation study of private
sector traveler information. Individual travel times of vehicles were measured using Bluetooth re-
identification and data was aggregated following the same method (described earlier in this paper) used
for the Houston data set. The distribution of CV travel time was computed for each link.

A larger validation data set will be compiled in the future and used to further test the proposed model.
Three links were evaluated using the data from the University of Maryland study. Table A-9 shows
attribute data for each link along with the 90" percentile CV travel time and the predicted class based
on the model. The validation data shows that the model correctly identified these links as “high”
variance based on the given attributes.

Table A-9. Validation Data

Link Validation ADT per Access Point  Link Length 90" Predicted

Description Date Lane Density (mi.) Percentile CV  Class

MDO03-0004 April 2010 26,250 2.30 2.17 .101 High

PA01-0007 March 2010 21,166 1.92 1.56 .103 High

110+04178 February 31,333 1.74 1.23 .102 High
2010

Discussion of Findings

The model exploration resulted in a proposed model that classifies links based on ADT per lane, access
point density, and link length. The threshold values for these attributes were found by testing different
classification methods using a data mining software package. These values can also be considered in the
context of traffic engineering. For example, links with ADT per lane >= 20,000 are more likely to
experience volumes which approach capacity. The fact that the model identified short links with higher
access point density as “high” variance links also concurs with what one would expect to find in the field.
The validation of the model, while limited, indicates that thresholds for the parameters are appropriate.
The fact that chokepoints were not incorporated in the model may be due to a problem in coding the
parameter. Future research may develop a method for coding this information and incorporating this
parameter in the model.
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GUIDELINES SECTION 3 — TECHNICAL APPENDIX
Covers technical issues related to Section 3. Collect and Reduce Benchmark Data of the guidelines.
Comparison of Floating Car and AVI Travel Time Estimates

The floating car (FC) method assumes the probe vehicle passes as many cars as it is itself passed. As
such, the floating car's speed, etc. should behave like the median of the traffic group in which it is
traveling. A quantitative test of this assumption proceeds from a comparison of floating car data to
interval estimates derived from AVI data taken contemporaneously and co-located with the FC
observations. Interval estimates of the mean and median should roughly "cover" the respective floating
car values to the nominal confidence level if the FC observation is actually behaving like a mean or
median. If not, then the question becomes whether FC values are behaving like aggregates of
observations or are no more privileged than a single random value.

Houston AVI data for 32 segments were matched to an equivalent number of floating car runs. Any AVI
matches whose start times fell within +/- 120 seconds of the floating car start times were included. As
may be seen in Table 1, each floating car run was matched with between 6 and 94 AVI samples. Three
interval estimates were constructed from the AVI data:

1) A 95% Confidence Interval for average (mean) travel time. This is a parametric (normality
assumption) confidence interval.

2) A nonparametric (rank-based) 95% confidence interval for the median travel time. This
interval is a more robust estimate of travel time since it does not rely on any distribution
assumptions (symmetry, etc.).

3) A 95% Prediction Interval for a “new” travel time. Prediction intervals are used to estimate
"new" observations based on information about the previous sample.

The first two intervals estimate average or median travel time. We expect the nonparametric interval
for median travel time to be slightly “wider” than that for the parametric interval for the mean. While
confidence and tolerance intervals estimate present population characteristics, the prediction interval
estimates what future values will be, based upon the present sample. They are intervals which estimate
likely values for individual observations, not aggregate statistics such as mean, median, etc.

Under the assumption that the AVI and floating car travel times constitute samples from the same
respective geographic and temporal cohorts, then it should be possible to compare how well the AVI
interval estimates “capture” or “cover” the observed floating car travel time. Since the floating car
travel time is assumed to estimate median travel time, we should expect it to lay within the bounds of
the 95% confidence interval for the median approximately 95% of the time.

Referring to Table A-10, the floating car travel time estimates are compared to the three AVI-based
interval estimates. Interval estimates that fail to include the floating car estimates are highlighted in
red. From the table, the 95% confidence intervals for the mean only manage to cover the floating car
estimate 43.8% of the time, while the coverage of the 95% intervals for the median are slightly better
than chance (62.5%). In contrast, the 95% prediction intervals provide the closest coverage to nominal
(90.6%). This would seem to indicate that the floating car estimate is not behaving like a median travel
time; rather, it is behaving more like a random vehicle from the traffic group. Were this to be the case,
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then floating car estimates would necessarily be more variable and less consistent than AVI estimates,
whose variability declines with larger sample size.

While the results here are necessarily limited in scope and may therefore constitute more qualitative
than quantitative evidence, they nevertheless highlight a possible deficiency in floating car estimates as
practiced. If a larger study repeats the initial findings here, then the practice of floating car speed
estimation should be reassessed. Either many more runs must be performed, or the runs must be
conducted to rigidly observe median speed behavior (e.g., keeping exact running counts of passes).

Under current circumstances, AVI estimates can be seen to perform more favorably, in that they provide

statistically justifiable estimates.

Table A-10. Coverage Rates of Confidence Intervals Based on AVI Data

Bluetooth Spacing Guidelines

Floating | 95% Prediction Interval | 95% Confidence Interval | 95% Confidence Interval
AVI Sample Segments Car for New TT for Median TT for Mean TT
Orig_ID | Dest_ID | Length | Samples FC-TT Lower | Upper Lower | Upper Lower | Upper
298 386 3.00 18 290 253 308 272 289 275 286
146 147 1.85 13 110 95 119 101 111 104 110
387 130 2.70 19 295 260 322 288 301 285 297
138 139 1.45 9 86 77 100 85 93 86 92
131 132 2.95 31 375 336 422 368 393 373 386
157 158 1.80 29 146 111 140 123 130 124 128
81 83 4.45 9 317 213 300 242 273 245 267
161 162 5.10 24 338 299 411 339 370 345 364
133 134 1.50 6 89 74 120 85 102 91 104
83 374 3.10 30 232 154 212 175 189 179 188
134 135 1.25 25 74 58 82 68 72 68 72
160 161 1.60 34 105 90 126 104 113 105 111
150 151 1.61 8 94 70 113 87 100 86 97
148 149 3.65 10 225 184 287 217 256 223 248
124 125 1.85 11 115 81 129 99 112 99 110
122 123 3.30 19 194 151 227 180 199 182 196
294 387 2.10 18 387 290 444 357 383 352 382
125 292 3.80 10 233 162 264 197 231 200 225
123 124 1.35 9 77 58 96 70 82 72 81
295 293 1.40 21 84 66 101 78 88 80 86
386 295 2.10 16 195 155 245 188 212 191 209
162 163 1.61 44 135 98 147 120 126 119 125
293 145 1.00 38 62 49 75 58 65 60 64
139 140 2.75 15 157 114 192 139 162 145 161
80 157 1.80 8 203 166 311 212 273 220 258
130 131 2.20 22 202 142 238 180 205 181 198
292 294 1.40 22 89 67 116 86 98 87 96
147 148 1.05 16 57 45 84 61 67 61 68
159 160 1.35 94 183 139 238 179 195 184 193
140 298 2.10 9 193 112 255 152 203 166 202
158 159 2.50 32 463 275 592 444 468 409 457
145 146 2.65 20 207 124 298 196 210 195 227
COVERAGE:  90.6% | COVERAGE:  62.5% [JCONERACERIS

The following is an excerpt from a technical memo prepared by TTI for the Mobility Measurement

Pooled Fund Study.
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Bluetooth Reader and Antenna Placement

Bluetooth reader placement is somewhat dependent on whether the application is short-term data
collection or permanent continuous data collection. For short-term data collection, Bluetooth readers
can be deployed in a portable, weather-resistant case (e.g., Pelican case or similar) with a portable
battery power source. The Bluetooth reads can be stored on a local processor/computer that is also
contained within the weather-resistant case. This is the approach that was first taken by the University
of Maryland in validating I-95 travel time data from INRIX (Figure A-3).

Figure A-3. Portable Bluetooth Reader in Weather-Resistant Case
(Source: Stan Young, University of Maryland)

For permanent continuous data collection, Bluetooth readers are most commonly installed in existing
traffic signal systems cabinets (Figure A-4). This solution provides the most cost-effective solution, as the
signal cabinets offer weather resistance, a power source, and in some cases, a real-time
communications link. If a communications link is not available within the cabinet, a cellular modem can
be used to communicate the Bluetooth reads to a central database in near-real-time.
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Figure A-4. Permanent Bluetooth Reader in Traffic Signal Cabinet
(Source: Darryl Puckett, Texas Transportation Institute)

For permanent installations, most traffic signal cabinets are located in the immediate vicinity of a
signalized intersection. With some signal systems, a midblock cabinet also may be provided for data
collection for signal system operation. Placement of permanent Bluetooth readers in the immediate
vicinity of major signalized intersections is optimal for motorist understanding of link travel times;
however, this may be sub-optimal in terms of accurate measurement of individual intersection delay,
particularly if several signalized intersections are located between adjacent Bluetooth readers.

If Bluetooth readers cannot be conveniently located within an existing traffic signal cabinet, one low-
cost alternative being tested by TTl on other projects is the use of a smaller-sized, solar-powered cabinet
that can be located on an existing sign or roadside structure. Another alternative for locations without a
traffic signal cabinet is to install/construct a new cabinet or enclosure. However, new cabinet
installation significantly decreases the cost advantages of Bluetooth readers.

For both short-term and permanent Bluetooth readers, the antenna should be placed at vehicle
windshield height or higher (at least three feet). This height is ideal so as to minimize obstructions
between the antenna and the mobile Bluetooth device. The Bluetooth communication was designed to
operate around obstructions, but extensive field experience has shown that Bluetooth read rates are
consistently higher with a relatively clear line-of-sight.

18



For short-term installations, achieving this optimal height may not be possible with a portable case. In
these situations, the portable Bluetooth case must be placed on the ground and locked to a sign
support, guiderail, or other roadside structure. Some portable Bluetooth installations have included an
antenna (contained within a PVC pipe) that can be placed at a more ideal height off the ground (Figure
A-5). In these situations, the antenna should be positioned such that the structure it is attached to (e.g.,
signpost, utility pole, etc.) does not obstruct Bluetooth device reading in both directions of travel.

Figure A-5. Bluetooth Reader Antenna on a Portable Installation
(Source: Darryl Puckett, Texas Transportation Institute)

For permanent installations, antenna height can be achieved in at least two ways: 1) place a connecting
antenna on top of the traffic signal cabinet (Figure A-6); 2) place a connecting antenna at a higher
elevation on a utility pole or other roadside structure.

In addition to antenna height, the antenna configuration (e.g., type, power level, etc.) is an important
parameter that should be optimized at each installation. To indicate the importance of this, TTI
conducted a simple field test by placing two Bluetooth readers (call them Reader A and Reader B) with
different antenna configurations on a 2-mile road segment with no intermediate entry or exit points.
This field test had the following results:

e Antenna 1: 51% of the Bluetooth MAC addresses were read at both Reader A and Reader B.
e Antenna 2: 88% of the Bluetooth MAC addresses were read at both Reader A and Reader B.

It is beyond the scope of this document to indicate optimal antenna and power configurations for all

possible situations. However, the importance of antenna configuration is emphasized to provide optimal
Bluetooth reading and matching rates.
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Figure A-6. Bluetooth Reader (left photo) and Antenna (right photo) on a Semi-Permanent Installation
(Source: Darryl Puckett, Texas Transportation Institute)

Bluetooth Reader Spacing

The spacing of Bluetooth readers varies based on the application, the roadway type, and the level of
through traffic. The spacing is also influenced by the Bluetooth read radius, which for Class | Bluetooth
devices is 100 meters or 328 feet. In other words, because the Bluetooth device could be read anywhere
within the 100-meter radius, the spacing should be long enough to keep this location error tolerable as
compared to the overall link length. For traveler information, the generally accepted spacing guidance is
as follows (based on University of Maryland and TTl research):

e Freeways/expressways (controlled access): optimal spacing of 1-2 miles, maximum of 4-5 miles
e Major arterial streets: optimal spacing of %-1 mile, maximum of 2-3 miles

The maximum expected error due to the location uncertainty of Bluetooth devices in the read radius can
be calculated using standard time-distance calculations, by assuming two separate cases: 1) the
Bluetooth device is read 100 meters before the first reader, but 100 meters after the second reader; 2)
the Bluetooth device is read 100 meters after the first reader, but 100 meters before the second reader.
Figures A-7, A-8, and A-9 illustrate the maximum expected error at different prevailing speeds. These
figures are in concert with the generally accepted spacing ranges shown above. That is, as speeds get
slower, the Bluetooth readers can be placed more closely together without appreciable increase in
speed error.
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Figure A-9. Maximum Bluetooth-Based Speed Error at 20 mph Due to Location Uncertainty

To confirm that the generally accepted spacing for Bluetooth readers produced acceptable reading and
matching results, TTI calculated matched sample sizes and match rates as part of this pooled fund study.
TTI has been collecting Bluetooth travel time data for other research projects in Houston and College
Station since 2009, and we used this data to analyze the results of the current spacing.

Table A-11 shows the summary results for this spacing and match rate analysis. The Bluetooth reader
spacing used by TTl in Houston and College Station is producing match rates that are in the same range
as other reported match rate results. For arterial streets in Houston where the link lengths range from
0.7 to 1.3 miles, the average match rate is about 5% of all through traffic, or 36 samples per hour. The
results on College Station arterials (0.5 to 1.1 miles in length) are similar, with a 4% match rate of
through traffic; however, on these lower volume arterials, that corresponds to about 17 samples per
hour. For a single 2.2 mile freeway link in Houston, the results are similar at 3.4% match rate of all
through traffic, but on a higher-volume freeway that means 185 samples per hour.
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Table A-11. Summary of Bluetooth-Based Match Samples and Rates in Houston and College

Station

# Range in Range in | Hourly Valid Matched Samples Hourly Valid Match Rates
City / Road Type | links AADT Length Average Daytime Avg. Average | Daytime Avg.
Houston arterial 20 10,000 to 0.7to0 1.3 36 49 5.1% 4.8%
streets (4-8 30,000 mi
lanes)
Houston 2 115,000 to 2.2 mi 185 195 3.4% 2.8%
freeways 120,000
College Station 10 11,500 to 0.5to1.1 17 21 3.8% 2.8%
arterial streets 16,750 mi

(4-6 lanes)

Note: Match rates shown are for a single Bluetooth reader covering both directions of travel on each

Street.
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