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Task 3. EICM Validation and Analysis 
Sensitivity analysis of the effect of EICM predictions on the overall MEPDG performance 
prediction was conducted.  This work also included an analysis of the effect of the thermal 
conductivity, heat capacity, and the concrete coefficient of thermal expansion in both an 
AC/PCC and PCC pavement.  Both pavement structures used the Minneapolis – St. Paul, MN, 
EICM file as the climate input.  Different traffic levels were selected for the two pavement 
structures.  This was done so the predicted percentage of cracked slabs would be 20% when 
using default MEPDG inputs.  Average Annual Daily Truck Traffic (AADTT) levels were set at 
7420 for the AC/PCC structure, and 8250 for the PCC structure.  The parameters under 
consideration, thermal conductivity and heat capacity, were adjusted +/- 25% from the default 
values in the MEPDG version 1.1. 
 
Heat Capacity 
When the heat capacity was increased, the predicted amount of transverse cracking in the PCC 
layer was reduced.  This was true for the AC & PCC layers in the composite structure and the 
PCC layer in the rigid structure.  A change in heat capacity in the AC layer of the composite 
pavement had the smallest effect on predicted transverse cracking.  The PCC-only rigid 
pavement was most sensitive to a change in heat capacity.  The results are listed in the table 
below.   
 

Heat Capacity – AC 
% Cracking  

AC/PCC Pavement 
% Cracking  

PCC Pavement 
0.1725 25.8 - 

0.23 (default) 20 - 
0.2875 15.2 - 

      

Heat Capacity – PCC 
% Cracking  

AC/PCC Pavement 
% Cracking  

PCC Pavement 
0.21 32.1 45.3 

0.28 (default) 20 20 
0.35 12.2 10.7 

 
Thermal Conductivity 
Thermal conductivity in the AC and PCC layers was also examined.  An increase in thermal 
conductivity in the AC layer resulted in higher predicted cracking in the PCC layer.  However, 
an increase in thermal conductivity in the PCC layer resulted in lower predicted cracking.  At 
first glance, this may seem contradictory, but it is not.  A temperature gradient in the PCC layer 
will induce internal stresses.  When the conductivity of the AC layer is increased, more heat 
conducts from the AC layer to the top of the PCC layer.  Therefore, the top of the PCC layer is 
warmer than the bottom, resulting in a thermal gradient and thermal stresses.  Conversely, if the 
conductivity of the AC layer is lower, then not as much heat will be transferred to the PCC layer, 
resulting in lower thermal gradients, and lower thermal stresses.  An increase in thermal 
conductivity in the PCC layer would reduce thermal gradients in the PCC layer because heat will 
transfer easier.  Ideally, an AC layer with low thermal conductivity and PCC layer with high 
thermal conductivity would reduce thermal gradients in the PCC layer, thereby reducing thermal 
stresses.  The results are listed in the table below.     
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Thermal Conductivity AC 
% Cracking  

AC/PCC Pavement 
% Cracking  

PCC Pavement 
0.5025 7.7 - 

0.67 (default) 20 - 
0.8375 33 - 

      

Thermal Conductivity PCC 
% Cracking  

AC/PCC Pavement 
% Cracking  

PCC Pavement 
0.9375 35.6 35.1 

1.25 (default) 20 20 
1.5625 11.2 15.1 

  
Coefficient of Thermal Expansion 
The sensitivity to the coefficient of thermal expansion of the PCC layer was also examined, and 
the results are listed below.   
 

Coefficient of Thermal 
Expansion of the PCC Layer 

% Cracking  
AC/PCC Pavement 

% Cracking  
PCC Pavement 

4.125 13.3 3.3 
5.5 20 20 

6.875 30.7 78.7 
 
 
As expected, a decrease in the coefficient of thermal expansion of the PCC layer resulted in 
lower predicted transverse cracking values from the MEPDG.  It is important to note that the 
composite AC/PCC structure was far less sensitive than the PCC-only rigid pavement to 
differences in the coefficient of thermal expansion of the PCC layer.  This appears to be due to 
the insulating effect of the AC layer.  When the PCC layer is not insulated it is subjected to 
greater temperature fluctuations and temperature extremes, both of which are exacerbated by an 
increased coefficient of thermal expansion and thus result in higher cracking. 
 
Task 4. Evaluation of Pavement Response Models 
 
Last quarter, the following activities were conducted: 
 

• Development of a computational procedure for the non-linear strain-causing temperature 
stresses using equivalency concepts for a 3-layered system of AC – PCC – Base, and 

• Development of rapid solutions for predicting critical PCC bottom surface stresses. 
 
Computation of the non-linear strain-causing temperature stresses using equivalency 
concepts for 3-layered system of AC – PCC – Base. 
 
In order to evaluate the stresses in the PCC layer of an AC over PCC pavement, the methodology 
adopted by the Mechanistic Empirical Pavement Design Guide (MEPDG) is followed closely in 
this research and the document.  The solutions developed for a two-layered system of PCC-Base 
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are extended to the three-layered system of AC-PCC-Base.  The analysis involves the equivalent 
single layer slab concept which states that PCC stresses in a three-layered slab can be found from 
the corresponding stresses in the equivalent homogeneous plate that exhibits the same deflection 
profile as the in situ pavement (Ioannides et al. 1992). 
 

 
Equivalent Linear Temperature Distribution Concept: 

The equivalent temperature gradient concept for a single-layer slab was introduced by 
Thomlinson (1940) and was further developed by other researchers (Choubane and Tia 1992, 
Mohamed and Hansen 1997). The concept was later generalized for a non-uniform, multi-layered 
slab (Khazanovich 1994, Ioannides and Khazanovich 1998). This concept states that if two slabs 
have the same plane-view geometry, flexural stiffness, self-weight, boundary conditions, and 
applied pressure, and rest on the same foundation, then these slabs have the same deflection and 
bending moments distributions if their through-the-thickness temperature distributions satisfy the 
following condition: 
 

∫∫ −=−
ba h

bbbb
h

aaaa zdzTzTzzEzdzTzTzzE ))()(()())()(()( ,0,0 αα     (1) 

 
where:  a and b are subscripts denoting two slabs, 

z is the distance from the neutral axis, 
T0 is the temperatures at which theses slabs are assumed to be flat, 
T(z) is the temperature distribution in the slab, 
α is the coefficient of thermal expansion, 
E is the modulus of elasticity, and 
h is the slab thickness. 

 
To apply this concept for the curling analysis of a three-layered system, the temperature 
distribution throughout the three-layered slab thickness should be split into its three components: 
 

• The temperature component that causes constant strain throughout-the-slab-thickness. 
• The temperature component that causes linear strain throughout-the-slab-thickness. 
• The temperature component that causes nonlinear strain. 

 
The constant strain-causing temperature component Tc(z), in its general form, is given as: 
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where:   i is the layer index, and 
l is the total no. of layers in the system. 

 
The linear strain-causing temperature component TL(z), in its general form, is given as: 
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By definition, the total temperature distribution is given as: 
 

[ ] [ ] [ ]oNLoLoco TzTTzTTzTTzT −+−+−=− )()()()(       (4) 
 
Therefore, the nonlinear strain-causing temperature component TNL(z) is: 
 

[ ] [ ] ooLocoNL TTzTTzTzTTzT −−−−−=− )()()()(       (5) 
 
The corresponding nonlinear temperature components and stresses at the bottom and the top of 
the PCC layer are given as: 
 

oobotPCCLoPCCcobotPCCNL TTTTTTTT −−−−−=− )()()( ,,,11,,      (6) 
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where:  σNL is the stress due to nonlinear temperature component, 

μ is the Poisson’s ratio for PCC, 
  T1 is the temperature at the top surface of the PCC layer, and 
  T11 is the temperature at the bottom surface of the PCC layer 
 
The following analysis details the process of computing constant-, linear-, and non-linear strain-
causing temperature components for a case of fully bonded AC/PCC and fully bonded PCC/base 
interfaces.  There are three (3) other cases namely,  
 

1. Unbonded AC/PCC and unbonded PCC/base interfaces, 
2. Unbonded AC/PCC and fully bonded PCC/base interfaces, and 
3. Fully bonded AC/PCC and unbonded PCC/base interfaces. 

 
The equivalency analysis for these cases is documented in Appendix A.  
 

 
The Equivalency Analysis for Fully Bonded AC/PCC and Fully Bonded PCC/Base Interfaces: 
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For a fully bonded system of AC-PCC-base layers, the distance between the neutral axis (N.A.) 
and the top surface of the AC layer is determined from the following equation: 
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where, x is the depth of the N.A. from the top of the AC layer.  For an effective single layer slab 
with the same modulus of elasticity and Poisson’s ratio as the PCC layer, the slab thickness and 
unit weight are given as: 
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Where heff is the thickness of the effective single layer slab, and γ is the unit weight.  Therefore, 
the constant strain-causing temperature component derived from eqn. (2) is: 
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In order to maintain consistency with the analysis in MEPDG, it was assumed that  
 

1. The coefficient of thermal expansion of the PCC layer is equal to the coefficient of 
thermal expansion of the base layer, 

2. The temperature T0 is equal to the temperature at the bottom surface of the PCC slab, and 
3. The temperature throughout the base layer is equal to the temperature at the bottom 

surface of the PCC slab. 
 
Since the temperature distribution in the AC layer is known at 5 points and in the PCC layer is 
known at 11 points, integrals in eqn. (13) were evaluated numerically resulting in the following: 
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The linear strain-causing temperature component derived from eqn. (3) is: 
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The linear temperature distribution in the effective slab is defined by the difference in the 
temperatures at the top and bottom surfaces such that it causes the same bending moment 
distributions in the effective single-layer slab as in the original composite slab.  This difference is 
given as: 
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As it was assumed that the temperature in the base layer is constant and equal to the temperature 
at the bottom of the PCC layer, we have: 
 

( ) oBase TTzT == 11  
 











−+−

−
=−∆ ∫∫∫∫

−+

−

−+

−

−

−

−

−

xhh

xh

xhh

xh

xh

xPCCPCC

ACAC
xh

xPCCPCC

ACAC

eff
oeffL

PCCAC

AC

PCCAC

AC

ACAC

zdzTzdzzTzdzT
E
EzdzzT

E
E

h
TT 11112, )()(12)(

α
α

α
α

            (17) 
 
It can be approximated numerically as: 
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Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer is 
given as: 
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Eqns. (14) and (19) along with eqns. (6) and (7) will compute the stress due to non-linear strain-
causing temperature at the bottom of the PCC layer and eqns. (14) and (20) along with eqns. (8) 
and (9) will give the stress at the top of the PCC layer. 
 
Development of rapid solutions for predicting critical PCC bottom surface stresses. 
 
The trained neural networks (NN) as implemented in the MEPDG were used to compute PCC 
stresses.  The stresses were determined for a wide range of site conditions, design parameters, 
and axle loading. The detailed procedure (AASHTO 2010) described below, was computed for 
each hour of the pavement design life. 
 

 
Step 1. Calculate the Effective Slab Thickness 

Based on the interface conditions between AC-PCC layers and PCC-Base layers, the effective 
single-slab thickness was calculated as described in eqn. (11) (for fully bonded interfaces; refer 
to Appendix A for other cases).   
 

 
Step 2. Calculate Unit Weight of the Effective Slab 

Based on the interface conditions between PCC and base layers, the effective single-slab unit 
weight was calculated as described in eqn. (12) (for fully bonded interfaces; refer to Appendix A 
for other cases).  The weight of the AC layer is always accounted for as it is over the PCC layer. 
 

 
Step 3. Calculate Radius of Relative Stiffness 

The radius of relative stiffness of the effective slab is: 
 

4
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where l is the radius of relative stiffness, and k is the coefficient of subgrade reaction. 
 

 
Step 4. Calculate Effective Temperature Differential 

Based on the interface conditions between AC-PCC layers and PCC-Base layers, the equivalent 
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temperature difference is determined from eqn. (18) (for fully bonded interfaces; refer to 
Appendix A for other cases). 
 

 
Step 5. Compute Korenev’s Non-dimensional Temperature Gradient 

The Korenev’s non-dimensional temperature gradient for effective slab is given as: 
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where φ is the non-dimensional temperature gradient. 
 
 

 
Step 6. Compute Adjusted Load/Pavement Weigh Ratio (Normalized Load) 

effeff hLW
Pq
γ

=*           (23) 

 
where q* is the adjusted load/pavement weigh ratio, P is the axle weight, L is the slab length, and 
W is the Slab width. 
 

 
Step 7. Calculate Equivalent Slab Thickness 

The equivalent slab thickness is a thickness of a slab with the modulus of elasticity and Possion’s 
ratio equal to 4,000,000 psi and 0.15, respectively, resting on the Winkler foundation with the 
coefficient of subgrade reaction equal to 100 psi/in, and having the same radius of relative 
stiffness as the effective slab.  The equivalent slab thickness is determined using the following 
equation: 
 

3
4

3410
lheq =            (24) 

 
where heq is the equivalent slab thickness 
 

 
Step 8. Compute Curling-Related Stresses in the Equivalent Slab 

The NNs were used to compute stresses in the equivalent slab which has the same ratio of radius 
of relative stiffness to joint spacing, joint spacing, traffic offset and appropriate Korenev’s non-
dimensional temperature gradient, φ, and normalized load ratio q*.  When the pavement is 
loaded by a single axle load, neural network NNA1 was employed.  For tandem or tridem axle 
loads NNA2 was used.  The following cases were considered: 
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• Case I – resulting stress ),( TPA
eq ∆σ : Korenev’s non-dimensional temperature gradient, φ, is 

equal to the nondimensional temperature gradient determined in Step 5; normalized load ratio 
q* is equal to normalized load ratio determined in Step 6.  

• Case II – resulting stress ),0( TA
eq ∆σ : Korenev’s non-dimensional temperature gradient, φ, is 

equal to the nondimensional temperature gradient determined in Step 5; normalized load ratio 
q* is equal 0.  

• Case III – resulting stress )0,(PA
eqσ : Korenev’s non-dimensional temperature gradient, φ, is 

equal to 0; normalized load ratio q* is equal to normalized load ratio determined in Step 6. 
 

 
Step 9. Compute Curling-Related Stresses in the Effective Slab 

The stresses obtained in step 8 represent stresses in the equivalent slab with the modulus of 
elasticity and Possion’s ratio equal to 4,000,000 psi and 0.15, respectively, resting on the 
Winkler foundation with the coefficient of subgrade reaction equal to 100 psi/in, and having the 
same radius of relative stiffness as the effective slab. The stresses in the effective slab are 
determined using the following equation: 
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where γeq is the equivalent slab unit weight = 0.087 lb/in2 
 

 

Step 10. Using NNB1, Compute Load-only Caused Stresses in the Equivalent Structure from the 
Wheels Located at the Mid-slab 

For single axle loading, stresses were computed from all the wheels in the axle.  In the case of 
tandem or tridem axle loading, the wheels located away from the mid-slab were ignored, as 
shown in Figure 1. 
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Figure 1. Analysis of tandem and tridem axle loading using NNB1. 

 
Step 10.1 The stresses in the equivalent structure were computed with the assumption that there 
is no load transfer between the slabs in the system B (LTE=0).  If the axle consists from dual 
tires, it was subdivided into two sub-axles as shown in Figure 2. The stresses were calculated 
separately from these sub-axles and the resulting stresses were superimposed to obtain )0(1B

eqσ . 
 

 
Figure 2. Analysis of a single axle load with dual tires using NNB1. 

 
Step 10.2 The stresses in the equivalent structure were computed with the assumption that the 
load transfer efficiency between the two slabs in the system B is equal to shoulder LTE.  If the 
axle consists from dual tires, it was subdivided into two sub-axles as shown in Figure 2.  The 
stresses were calculated separately from these sub-axles and the resulting stresses were 
superimposed to obtain )(1

sh
B
eq LTEσ . 
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Step 11 (only if tandem or tridem). Compute Stresses from the Remaining Wheels in the Axle 
using NNB2 

Step 11.1 The stresses in the equivalent structure were computed with the assumption that there 
is no load transfer between the slabs in the system B (LTE=0).  The stresses should be computed 
from the individual wheels (four for a tandem axle and eight for a tridem) and superimposed to 
obtain )0(2B

eqσ . 
 
Step 11.2 The stresses in the equivalent structure were computed with the assumption that the 
load transfer efficiency between two slabs in the system B is equal to shoulder LTE. The stresses 
should be computed from the individual wheels (four for a tandem axle and eight for a tridem) 
and superimposed to obtain )(2

sh
B
eq LTEσ  

 

 
Step 12. Determine Load-only Caused Stresses in the Equivalent Structure from the Entire Axle 

• Single axle loading 
 

)0(B
eqσ = )0(1B

eqσ and )( sh
B
eq LTEσ = )(1

sh
B
eq LTEσ       (28) 

 
• Tandem or tridem laoding 
 

)0(B
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eqσ + )0(2B
eqσ  and )( sh
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sh
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sh
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Step 13. Determine Load-only Caused Stresses in the Effective Slab 

The load-only causing stresses in the effective slab can be determined using the following 
expression: 
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p
p

σσ =          (30) 

 

)()( 2

2

sh
B
eq

eff

eq

eq

eff
sh

B
eff LTE

h
h

p
p

LTE σσ =         (31) 

 
where peq is the wheel pressure in the equivalent system = 100 psi, and peff is the actual wheel 
pressure, 
 

 

Step 14. Find Stress Load Transfer Efficiency for the Given Axle Load Configuration and the 
Axle Load Position 

)0(
)(

B
eff

sh
B
eff

stress

LTE
LTE

σ
σ

=          (32) 
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Step 15. Find Axle Loading Induced Component of Bending Stresses in the Effective Slab if the 
Shoulder Provides no Edge Support to the Traffic Lane Slab 

The axle loading induced component of bending stress is the stress in the slab caused by the 
action of axle loading along with temperature curling and is given as: 
 

)0()0,(),0(),(,
B
eff

A
eff

A
eff

A
effnoshoulderload PTTP σσσσσ +−∆−∆=     (33) 

 

 

Step 16. Find Axle Loading Induced Component of Bending Stresses Accounting for the 
Shoulder Edge Support to the Traffic Lane Slab 

stressnoshoulderloadshoulderload LTE*,, σσ =         (34) 
 

 
Step 17. Find Combined Stress in the Effective Slab 

curlshoulderloadcomb σσσ += ,          (35) 

),0( TA
effcurl ∆= σσ           (36) 

 

 
Step 18. Find Bending PCC Stresses 

Bending stresses (i.e., stresses caused by an axle load and a linear component of the temperature 
distribution) at the bottom of the PCC slab can be found using the following relationship:  
 
1. Fully bonded AC/PCC and fully bonded PCC/base interfaces 
 

comb
eff

ACPCC
bendPCC h

xhh
σσ

)(*2
,

−+
=         (37) 

 
2. Unbonded AC/PCC and unbonded PCC/base interfaces 
 

comb
eff

PCC
bendPCC h

h
σσ =,           (38) 

 
3. Unbonded AC/PCC and fully bonded PCC/base interfaces 
 

comb
eff

PCC
bendPCC h

xh
σσ

)(*2
,

−
=         (39) 

 
4. Fully bonded AC/PCC and unbonded PCC/base interfaces 
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comb
eff

ACPCC
bendPCC h

xhh
σσ

)(*2
,

−+
=         (40) 

 
where:  x is the depth of the N.A. from the top of the AC layer. 
 

 
Step 19. Find Total PCC Stresses 

botPCCNLbendPCCPCC ,,, σσσ +=          (41) 
 
where PCCσ  is the total stress at the bottom of the PCC slab, bendPCC ,σ  is the bending stress at the 
bottom of the PCC slab, and botPCCNL ,,σ  is the stress at the bottom of the PCC layer caused by the 
nonlinear strain component of the temperature distribution. 
 
The neural networks and the computed critical PCC stresses were implemented into a 
FORTRAN program on guidelines similar to MEPDG.  This program computes the stress for 
each hour of the pavement design life based on the hourly temperature distributions in the AC 
and PCC layer and traffic distributions obtained from MEPDG internal files. 
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APPENDIX A  

Computation of the non-linear strain-causing temperature stresses using equivalency 
concepts for 3-layered system – Additional Cases 

 
 
1. Unbonded AC/PCC and unbonded PCC/Base 
 
For unbonded layers (full slip) with no horizontal constraint, the constant strain-causing 
temperature component causes free expansion of the layer.  This free expansion in one layer does 
not affect the other layer as they are not bonded.  It does not cause stress (and strain) in any of 
the other layers.  Therefore, the layers can be treated independently of one another to compute 
the constant strain-causing temperature component.  The neutral axis (N.A.) of the AC and the 
base layer in terms of the N.A. of the PCC layer is given as follows: 
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The constant strain-causing temperature components for each layer are: 
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The constant strain-causing temperature in the PCC layer can be approximated as: 
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The linear strain-causing temperature component is: 
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For an equivalent slab with EPCC and αPCC, the effective thickness is given as: 
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Therefore, the linear strain-causing temperature can be written as:  
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As per the assumption, the temperature distribution in the base layer is constant and equal to the 
temperature at the bottom of the PCC layer.  Also, the reference temperature, i.e., the 
temperature at which the slab is flat, is equal to the temperature at the bottom of the PCC layer. 
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This can be approximated as: 
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Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer, 
respectively, can be written as: 
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2. Unbonded AC/PCC and bonded PCC/Base 
 
x: From the top of PCC layer (AC – PCC interface) 
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The constant strain-causing temperature component is: 
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For the PCC layer this can be approximated as: 
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The linear strain-causing temperature component is: 
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This can be approximated as: 
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Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer, 
respectively, can be written as: 
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3. Bonded AC/PCC and unbonded PCC/Base 
 
xAP: From the top of AC layer 
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The constant strain-causing temperature component is: 
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This can be approximated as: 
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The linear strain-causing temperature component is: 
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This can be approximated as: 
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Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer, 
respectively, can be written as: 
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