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Task 3. EICM Validation and Analysis

Sensitivity analysis of the effect of EICM predictions on the overall MEPDG performance
prediction was conducted. This work also included an analysis of the effect of the thermal
conductivity, heat capacity, and the concrete coefficient of thermal expansion in both an
AC/PCC and PCC pavement. Both pavement structures used the Minneapolis — St. Paul, MN,
EICM file as the climate input. Different traffic levels were selected for the two pavement
structures. This was done so the predicted percentage of cracked slabs would be 20% when
using default MEPDG inputs. Average Annual Daily Truck Traffic (AADTT) levels were set at
7420 for the AC/PCC structure, and 8250 for the PCC structure. The parameters under
consideration, thermal conductivity and heat capacity, were adjusted +/- 25% from the default
values in the MEPDG version 1.1.

Heat Capacity

When the heat capacity was increased, the predicted amount of transverse cracking in the PCC
layer was reduced. This was true for the AC & PCC layers in the composite structure and the
PCC layer in the rigid structure. A change in heat capacity in the AC layer of the composite
pavement had the smallest effect on predicted transverse cracking. The PCC-only rigid
pavement was most sensitive to a change in heat capacity. The results are listed in the table
below.

% Cracking % Cracking
Heat Capacity — AC AC/PCC Pavement PCC Pavement
0.1725 25.8 -
0.23 (default) 20 -
0.2875 15.2 -
% Cracking % Cracking
Heat Capacity — PCC AC/PCC Pavement PCC Pavement
0.21 32.1 45.3
0.28 (default) 20 20
0.35 12.2 10.7

Thermal Conductivity

Thermal conductivity in the AC and PCC layers was also examined. An increase in thermal
conductivity in the AC layer resulted in higher predicted cracking in the PCC layer. However,
an increase in thermal conductivity in the PCC layer resulted in lower predicted cracking. At
first glance, this may seem contradictory, but it is not. A temperature gradient in the PCC layer
will induce internal stresses. When the conductivity of the AC layer is increased, more heat
conducts from the AC layer to the top of the PCC layer. Therefore, the top of the PCC layer is
warmer than the bottom, resulting in a thermal gradient and thermal stresses. Conversely, if the
conductivity of the AC layer is lower, then not as much heat will be transferred to the PCC layer,
resulting in lower thermal gradients, and lower thermal stresses. An increase in thermal
conductivity in the PCC layer would reduce thermal gradients in the PCC layer because heat will
transfer easier. ldeally, an AC layer with low thermal conductivity and PCC layer with high
thermal conductivity would reduce thermal gradients in the PCC layer, thereby reducing thermal
stresses. The results are listed in the table below.



% Cracking % Cracking
Thermal Conductivity AC AC/PCC Pavement PCC Pavement
0.5025 7.7 -
0.67 (default) 20 -
0.8375 33 -
% Cracking % Cracking
Thermal Conductivity PCC AC/PCC Pavement PCC Pavement
0.9375 35.6 35.1
1.25 (default) 20 20
1.5625 11.2 15.1

Coefficient of Thermal Expansion
The sensitivity to the coefficient of thermal expansion of the PCC layer was also examined, and
the results are listed below.

Coefficient of Thermal % Cracking % Cracking
Expansion of the PCC Layer AC/PCC Pavement PCC Pavement
4,125 13.3 3.3
55 20 20
6.875 30.7 78.7

As expected, a decrease in the coefficient of thermal expansion of the PCC layer resulted in
lower predicted transverse cracking values from the MEPDG. It is important to note that the
composite AC/PCC structure was far less sensitive than the PCC-only rigid pavement to
differences in the coefficient of thermal expansion of the PCC layer. This appears to be due to
the insulating effect of the AC layer. When the PCC layer is not insulated it is subjected to
greater temperature fluctuations and temperature extremes, both of which are exacerbated by an
increased coefficient of thermal expansion and thus result in higher cracking.

Task 4. Evaluation of Pavement Response Models
Last quarter, the following activities were conducted:

e Development of a computational procedure for the non-linear strain-causing temperature
stresses using equivalency concepts for a 3-layered system of AC — PCC — Base, and
e Development of rapid solutions for predicting critical PCC bottom surface stresses.

Computation of the non-linear strain-causing temperature stresses using equivalency
concepts for 3-layered system of AC — PCC — Base.

In order to evaluate the stresses in the PCC layer of an AC over PCC pavement, the methodology
adopted by the Mechanistic Empirical Pavement Design Guide (MEPDG) is followed closely in
this research and the document. The solutions developed for a two-layered system of PCC-Base



are extended to the three-layered system of AC-PCC-Base. The analysis involves the equivalent
single layer slab concept which states that PCC stresses in a three-layered slab can be found from
the corresponding stresses in the equivalent homogeneous plate that exhibits the same deflection
profile as the in situ pavement (loannides et al. 1992).

Equivalent Linear Temperature Distribution Concept:

The equivalent temperature gradient concept for a single-layer slab was introduced by
Thomlinson (1940) and was further developed by other researchers (Choubane and Tia 1992,
Mohamed and Hansen 1997). The concept was later generalized for a non-uniform, multi-layered
slab (Khazanovich 1994, loannides and Khazanovich 1998). This concept states that if two slabs
have the same plane-view geometry, flexural stiffness, self-weight, boundary conditions, and
applied pressure, and rest on the same foundation, then these slabs have the same deflection and
bending moments distributions if their through-the-thickness temperature distributions satisfy the
following condition:

[E.(2)a, ()T, (2)~T,.)2dz =[ E, (2)er, ()(T, (2) ~ Ty, ) 22 (1)

where: a and b are subscripts denoting two slabs,
z is the distance from the neutral axis,
To is the temperatures at which theses slabs are assumed to be flat,
T(2) is the temperature distribution in the slab,
a. is the coefficient of thermal expansion,
E is the modulus of elasticity, and
h is the slab thickness.

To apply this concept for the curling analysis of a three-layered system, the temperature
distribution throughout the three-layered slab thickness should be split into its three components:

e The temperature component that causes constant strain throughout-the-slab-thickness.
e The temperature component that causes linear strain throughout-the-slab-thickness.
e The temperature component that causes nonlinear strain.

The constant strain-causing temperature component T¢(z), in its general form, is given as:

> j a(2)E@)[T(2)-T, |z

T.(2)=T,+ . )
a(2)Y. [E(2)dz
i=l p
where: i is the layer index, and

| is the total no. of layers in the system.

The linear strain-causing temperature component T, (z), in its general form, is given as:



Z': j a(2)E(2)[T(z) - T, Jzdz

z i=
TL@=T 3)
« ZI E(z)z°dz
i=1 p

By definition, the total temperature distribution is given as:

T (Z) _To = [Tc (Z) _To ]+ [TL (Z) _To ]+ [TNL (Z) _To] (4)
Therefore, the nonlinear strain-causing temperature component Ty (z) is:

TNL(Z)_TO :T(Z)_[Tc(z)_To]_[TL (Z)_To]_To (5)

The corresponding nonlinear temperature components and stresses at the bottom and the top of
the PCC layer are given as:

(TNL,PCC,bot _To) = T11 - (Tc,Pcc _To) - (TL,PCC,bot _To) _To (6)
Eoccax
O'NL,PCC ot = _M(TNL,Pcc,bot _To) (7)
d- )
(TNL,PCC,top _To) = T1 - (Tc,Pcc _To) - (TL,PCC,top _To) _To (8)
o - _M(T -T,) 9)
NL,PCC,top (1_ ,U) NL,PCC top 0
where: onL IS the stress due to nonlinear temperature component,

w1 1s the Poisson’s ratio for PCC,
T, is the temperature at the top surface of the PCC layer, and
Ty1 Is the temperature at the bottom surface of the PCC layer

The following analysis details the process of computing constant-, linear-, and non-linear strain-
causing temperature components for a case of fully bonded AC/PCC and fully bonded PCC/base
interfaces. There are three (3) other cases namely,

1. Unbonded AC/PCC and unbonded PCC/base interfaces,
2. Unbonded AC/PCC and fully bonded PCC/base interfaces, and
3. Fully bonded AC/PCC and unbonded PCC/base interfaces.

The equivalency analysis for these cases is documented in Appendix A.

The Equivalency Analysis for Fully Bonded AC/PCC and Fully Bonded PCC/Base Interfaces:




For a fully bonded system of AC-PCC-base layers, the distance between the neutral axis (N.A.)
and the top surface of the AC layer is determined from the following equation:

E, h: h =S Ngas
AC;C‘*‘hPcc(hAc + PZCC j+ ; Base(hAC +hPpee + Bzej

— E PCC PCC
EAC

e + Npee + Eows (10)

PCC PCC

Base

where, x is the depth of the N.A. from the top of the AC layer. For an effective single layer slab
with the same modulus of elasticity and Poisson’s ratio as the PCC layer, the slab thickness and
unit weight are given as:

E Eroee E hee \ h ? Epe ewe )
heff = 3\/EAC hic +hgcc + EB h;ase +12|:EAC hAc(X_;C] + hPCC(hAC + chc _Xj +EBhBase(hAC +hPCC + Bzae _X)

PCC PCC PCC PCC

(11)

Nac¥ac + Necc ¥ pec + Naase ¥ ase
heg

Vet =
(12)

Where hef is the thickness of the effective single layer slab, and y is the unit weight. Therefore,
the constant strain-causing temperature component derived from egn. (2) is:

hac —X hac +Npee —X hac +hpcc +hgase =X

_[aAc Euc[T(2)-T,Jdz + _[apcc Epc [T(2) T, Jdz + J.aBaseEBase [T(2)-T,Jdz
Tc (Z) _To — —X hac—x Nac +hpcc —x
a(z) Eachac + EpccNoce + EgaseNpae

(13)
In order to maintain consistency with the analysis in MEPDG, it was assumed that

1. The coefficient of thermal expansion of the PCC layer is equal to the coefficient of
thermal expansion of the base layer,

2. The temperature Ty is equal to the temperature at the bottom surface of the PCC slab, and

3. The temperature throughout the base layer is equal to the temperature at the bottom
surface of the PCC slab.

Since the temperature distribution in the AC layer is known at 5 points and in the PCC layer is
known at 11 points, integrals in eqn. (13) were evaluated numerically resulting in the following:

ApcEpc [ D : h 3

TAETEEN T Ty + 2*ZTACi +Tacs |~ Tolac |+ Epcc| oo | T+ Z*ZTi T |~ Toheee
Xpec 8 i—2 20 =2

Tc (Z) _To = h

EAC hAC + EPCChPCC +E

Base " "Base

(14)



The linear strain-causing temperature component derived from eqn. (3) is:

Nac —x Nac +hpce —x Nac +hpcc +Npase =X

IaAC Enc[T(2) - T, Jodz + IaPCCEPCC [T (2) - T, Jedz + J.aBaseEBase[T (2)-T,Jzdz
12z bt
TL(Z) = To t—

a(2)

EAChiC + EPCCthC +E

Nac =X Nac +hpec =X

hee V' h ? howe )
Basehgase +12|:EAC hAC(X - f) + Epcc hPCC(hAC + chc - Xj + EBasehBase(hAC + hpcc + BT - XJ

(15)

The linear temperature distribution in the effective slab is defined by the difference in the
temperatures at the top and bottom surfaces such that it causes the same bending moment
distributions in the effective single-layer slab as in the original composite slab. This difference is
given as:

A(TL,eff - To )
Nac =X Nac +Npec =X Nac +Npcc +Ngase =X
IaAC Enc [T(Z) =T, ]ZdZ + J.aPCCEPCC [T(Z) =T, ]ZdZ + J.aBaseEBase [T (2)-T, ]ZdZ
_ _12heff X hac =X hac +hpec —X
Apec Epcc he3ff

(16)

As it was assumed that the temperature in the base layer is constant and equal to the temperature
at the bottom of the PCC layer, we have:

TBase (Z) = T11 = To

hac—X hac—x hac +hpcc —X hac +hpcc —x
_12 a E AC a E AC AC PCC AC PCC

AT g —T,)=— 2tk -[T(z)zdz——AC T, J'zdz+ jT(z)zdz—Tll jzdz
het | pccEBpcc % OpccEpec X hac—X hae—X

17)

It can be approximated numerically as:

4
ApcEnc hiz(-l-i *((3i _ 2)*%_3)()4_]“ *((Bi —1)*%—3X)J

OpccEpec 24 13
_ ApcEnc T

—Lh, (h,. —2x
12| e Epee 2 AC( AC )

+hg%1202(-ﬂ *((3i B 2)*%_3()( —Nae )j +Ti *((3i _1)*%—3& —Nue )jj

i=1

T
_%hpcc (hPCC + 2hAC - 2X)

(18)



Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer is
given as:

A(TL,eff - To)

TL,PCC,bot _To = h—(hpcc + hAc - X) (19)
eff
AT e —T,)
T pccrop —To = _+(X —hae) (20)
eff

Eqgns. (14) and (19) along with eqgns. (6) and (7) will compute the stress due to non-linear strain-
causing temperature at the bottom of the PCC layer and eqgns. (14) and (20) along with egns. (8)
and (9) will give the stress at the top of the PCC layer.

Development of rapid solutions for predicting critical PCC bottom surface stresses.

The trained neural networks (NN) as implemented in the MEPDG were used to compute PCC
stresses. The stresses were determined for a wide range of site conditions, design parameters,
and axle loading. The detailed procedure (AASHTO 2010) described below, was computed for
each hour of the pavement design life.

Step 1. Calculate the Effective Slab Thickness

Based on the interface conditions between AC-PCC layers and PCC-Base layers, the effective
single-slab thickness was calculated as described in eqn. (11) (for fully bonded interfaces; refer
to Appendix A for other cases).

Step 2. Calculate Unit Weight of the Effective Slab

Based on the interface conditions between PCC and base layers, the effective single-slab unit
weight was calculated as described in egn. (12) (for fully bonded interfaces; refer to Appendix A
for other cases). The weight of the AC layer is always accounted for as it is over the PCC layer.

Step 3. Calculate Radius of Relative Stiffness

The radius of relative stiffness of the effective slab is:

Epcchy
| =4 = (21)
12% (- pul ) *K

where | is the radius of relative stiffness, and k is the coefficient of subgrade reaction.

Step 4. Calculate Effective Temperature Differential

Based on the interface conditions between AC-PCC layers and PCC-Base layers, the equivalent



temperature difference is determined from eqgn. (18) (for fully bonded interfaces; refer to
Appendix A for other cases).

Step 5. Compute Korenev’s Non-dimensional Temperature Gradient

The Korenev’s non-dimensional temperature gradient for effective slab is given as:

= 20pcc (L+ ,upcc)l2 k

hesz VY eft

A(Ter =To) (22)

where ¢ is the non-dimensional temperature gradient.

Step 6. Compute Adjusted Load/Pavement Weigh Ratio (Normalized Load)

P

_ 23
LW}/eff heff ( )

q*

where g* is the adjusted load/pavement weigh ratio, P is the axle weight, L is the slab length, and
W is the Slab width.

Step 7. Calculate Equivalent Slab Thickness

The equivalent slab thickness is a thickness of a slab with the modulus of elasticity and Possion’s
ratio equal to 4,000,000 psi and 0.15, respectively, resting on the Winkler foundation with the
coefficient of subgrade reaction equal to 100 psi/in, and having the same radius of relative
stiffness as the effective slab. The equivalent slab thickness is determined using the following
equation:

I 4
Neg = V3410 (24)

where heq is the equivalent slab thickness

Step 8. Compute Curling-Related Stresses in the Equivalent Slab

The NNs were used to compute stresses in the equivalent slab which has the same ratio of radius
of relative stiffness to joint spacing, joint spacing, traffic offset and appropriate Korenev’s non-
dimensional temperature gradient, ¢, and normalized load ratio g*. When the pavement is
loaded by a single axle load, neural network NNA1 was employed. For tandem or tridem axle
loads NNA2 was used. The following cases were considered:

10



e Case | — resulting stress ae’;(P,AT): Korenev’s non-dimensional temperature gradient, o, is

equal to the nondimensional temperature gradient determined in Step 5; normalized load ratio
g* is equal to normalized load ratio determined in Step 6.

e Case Il — resulting stress aef; (0,AT): Korenev’s non-dimensional temperature gradient, ¢, is

equal to the nondimensional temperature gradient determined in Step 5; normalized load ratio
g* is equal 0.

e Case Il — resulting stress ae‘;(P,O) : Korenev’s non-dimensional temperature gradient, ¢, is
equal to 0; normalized load ratio g* is equal to normalized load ratio determined in Step 6.

Step 9. Compute Curling-Related Stresses in the Effective Slab

The stresses obtained in step 8 represent stresses in the equivalent slab with the modulus of
elasticity and Possion’s ratio equal to 4,000,000 psi and 0.15, respectively, resting on the
Winkler foundation with the coefficient of subgrade reaction equal to 100 psi/in, and having the
same radius of relative stiffness as the effective slab. The stresses in the effective slab are
determined using the following equation:

h
o4 (P,AT) = /¥ 54 (B AT) (25)
heff 7/eq
A heq}/eﬁ A
o (0,AT) = O (0,AT) (26)
eff 7/eq
A heqyeff A
O eff (P’O) = —Jeq (P!O) (27)
heff 7/eq

where yeq is the equivalent slab unit weight = 0.087 Ib/in®

Step 10. Using NNB1, Compute Load-only Caused Stresses in the Equivalent Structure from the
Wheels Located at the Mid-slab

For single axle loading, stresses were computed from all the wheels in the axle. In the case of
tandem or tridem axle loading, the wheels located away from the mid-slab were ignored, as
shown in Figure 1.

11
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Figure 1. Analysis of tandem and tridem axle loading using NNBL1.
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Step 10.1 The stresses in the equivalent structure were computed with the assumption that there
is no load transfer between the slabs in the system B (LTE=0). If the axle consists from dual
tires, it was subdivided into two sub-axles as shown in Figure 2. The stresses were calculated

separately from these sub-axles and the resulting stresses were superimposed to obtain aqul 0).

Set 2

Set 1

critical
stress
location

——

Figure 2. Analysis of a single axle load with dual tires using NNB1.

Step 10.2 The stresses in the equivalent structure were computed with the assumption that the
load transfer efficiency between the two slabs in the system B is equal to shoulder LTE. If the
axle consists from dual tires, it was subdivided into two sub-axles as shown in Figure 2. The
stresses were calculated separately from these sub-axles and the resulting stresses were

superimposed to obtain o (LTE,,).
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Step 11 (only if tandem or tridem). Compute Stresses from the Remaining Wheels in the Axle
using NNB2

Step 11.1 The stresses in the equivalent structure were computed with the assumption that there
is no load transfer between the slabs in the system B (LTE=0). The stresses should be computed
from the individual wheels (four for a tandem axle and eight for a tridem) and superimposed to

obtaino’ (0).

Step 11.2 The stresses in the equivalent structure were computed with the assumption that the
load transfer efficiency between two slabs in the system B is equal to shoulder LTE. The stresses
should be computed from the individual wheels (four for a tandem axle and eight for a tridem)

and superimposed to obtain o, (LTE,,)

Step 12. Determine Load-only Caused Stresses in the Equivalent Structure from the Entire Axle

e Single axle loading

0 (0) =04 (0)and o, (LTE,) =0 (LTE,,) (28)
e Tandem or tridem laoding

0y (0)=0g (0)+05(0) and o, (LTE, ) =og (LTEy) +og (LTE,,) (29)

Step 13. Determine Load-only Caused Stresses in the Effective Slab

The load-only causing stresses in the effective slab can be determined using the following
expression:

Per e
o (0)=—"—"08(0) (30)
eq ' eff

2
peff heq
2
eq ' leff

Ger'f (LTEsh) = O-eBc; (LTEsh) (31)

where peq is the wheel pressure in the equivalent system = 100 psi, and pess is the actual wheel
pressure,

Step 14. Find Stress Load Transfer Efficiency for the Given Axle Load Configuration and the
Axle Load Position

oo (LTE
LTEstress = %(O)Sh) (32)
Geff
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Step 15. Find Axle Loading Induced Component of Bending Stresses in the Effective Slab if the
Shoulder Provides no Edge Support to the Traffic Lane Slab

The axle loading induced component of bending stress is the stress in the slab caused by the
action of axle loading along with temperature curling and is given as:

=l (P,AT)-0% (0,AT) - ok (P,0)+ ok (0) (33)

O_Ioad ,noshoulder

Step 16. Find Axle Loading Induced Component of Bending Stresses Accounting for the
Shoulder Edge Support to the Traffic Lane Slab

— *
O-Ioad,shoulder - O-Ioad,noshoulder LTEstress (34)

Step 17. Find Combined Stress in the Effective Slab

o curl (35)

= ol (0,AT) (36)

comb — Gload,shoulder to

O_curl

Step 18. Find Bending PCC Stresses

Bending stresses (i.e., stresses caused by an axle load and a linear component of the temperature
distribution) at the bottom of the PCC slab can be found using the following relationship:

1. Fully bonded AC/PCC and fully bonded PCC/base interfaces

2*(hoee +hye — X
GPCC,bend = ( Pece A )O-comb (37)

heff

2. Unbonded AC/PCC and unbonded PCC/base interfaces

h
Opccpend — %O— (38)

comb
eff

3. Unbonded AC/PCC and fully bonded PCC/base interfaces

2% (ho . —X)
O pce bend :I:—CC comb (39)
eff

4. Fully bonded AC/PCC and unbonded PCC/base interfaces

14



2*(hoee +hye — X
GPCC,bend = ( Fee AC )O-comb (40)

heff

where: x is the depth of the N.A. from the top of the AC layer.

Step 19. Find Total PCC Stresses

Opcc = Opecpend T O NL,PCC ot (41)

where o is the total stress at the bottom of the PCC slab, o .qq IS the bending stress at the
bottom of the PCC slab, and o pcc o IS the stress at the bottom of the PCC layer caused by the
nonlinear strain component of the temperature distribution.

The neural networks and the computed critical PCC stresses were implemented into a
FORTRAN program on guidelines similar to MEPDG. This program computes the stress for
each hour of the pavement design life based on the hourly temperature distributions in the AC
and PCC layer and traffic distributions obtained from MEPDG internal files.
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APPENDIX A

Computation of the non-linear strain-causing temperature stresses using equivalency
concepts for 3-layered system — Additional Cases

1. Unbonded AC/PCC and unbonded PCC/Base

For unbonded layers (full slip) with no horizontal constraint, the constant strain-causing
temperature component causes free expansion of the layer. This free expansion in one layer does
not affect the other layer as they are not bonded. It does not cause stress (and strain) in any of
the other layers. Therefore, the layers can be treated independently of one another to compute
the constant strain-causing temperature component. The neutral axis (N.A.) of the AC and the
base layer in terms of the N.A. of the PCC layer is given as follows:

hAC+hPCC
=7+ —FC
S [ >

hPCC + hBase j

gBase = Z_( 2

The constant strain-causing temperature components for each layer are:

hAC

IaACEAC [T (Cac) T, ]dé’AC

Tc,AC :To +—2 hac = h JT (é/Ac)dgAC
2 AC Pac
X pc IEACdé/AC ?
hAC
2
hecc
2
Iapcc Epcc [T(2) - T, Jdz hecc
Pece. 1 2
Tepce =To + 2 n = IT(z)dz
e PCC  fpce
Xpce J.EPCCdZ ’

e
2
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hBase

2
J‘aBase EBase [T (é,BaSE ) - TO ]d é’Base

hBase

—hpgase 1 2

— 2 —
Tc,Base - To + Ngase - h J.T (é/Base )d CBase

2 Base —hgase

2

aBase j E Base d gBase
7hBase
2

The constant strain-causing temperature in the PCC layer can be approximated as:

1 hPCC * S
Tc,PCC = A T1 +2 ZTi +T11

hPCC 20 i=2
Therefore,
l 10
TC,PCC _To = %(Tl + Z*ZZ:Ti +Tll]_To

The linear strain-causing temperature component is:

Z zja(z)E(z)[T(z) ~T, Jzdz
T (2)=T,+ =h

a(2) ZIE(z)zzdz

i=1l p

T =T, +8, %2 =T, 4125 2

A pc 29

Topec =T+, =T, +12S

Apcc Upec

Tipae = To + 81% =T, +1ZS%
Foase Xgase
hﬂ hPCc hBase
I e Enc[T(Cac) - TolacdS e + fapcc pec [T (2) =T, Jzdz + jasm (o) -T K el o

JEAchcdgAc+ IEPCCZ dZ+ IEBasegBasengase

AC Npcc Base
2 2 2
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hAC hPCC hBase

jaACEAC[T(é,AC)_To]é/ACdé/AC+ j-aPCCEPcc[T(Z)_To]ZdZ"' j.aBaseEBase[T(é,Base)_To]é’Basengase

_hAC _hPCC _hBase

S=-—2 2 2
- Enchie + Epcchice + Egaehl
AC"'AC PCC''PCC Base " 'Base

For an equivalent slab with EPCC and aPCC, the effective thickness is given as:

E E
hef‘f :3\/ = h/ic + thC + EBase hgase

PCC PCC

Nac¥ac +Necc?ecc
heff

7eff:

Therefore, the linear strain-causing temperature can be written as:

Z
T =T, +125—
Opcc
Pac. Pece. Pgase.
2 2 2
jaAC EAC [T (gAC )_ To ]gAC dé,AC + IaPCC EPCC [T (Z) - To ]ZdZ + J.aBase EBase [T (é,Base ) - To ]é,Basedé/Base
hAC hPCC hBase
S = 2 2 2
EPCC h:ff
—h, /2
To et iop = To +125 a—ﬁ/
PCC
h, /2
TL,eff bot = T, +128 ;ﬁ—/
pPCC
heff
ATy =T,) =125
PCC
A(TL,eff - To )
Pac Pece Pease
~12| auEpe 3 2 CpoeEone 2
=2 he A I [T (gAC )_ To ]‘é/AC dé/AC + _[ [T (Z) - To ]ZdZ + —Bose _Bose. J. [T (C:Base ) - To ]é/Basedé/Base
heir | @pcc Epcc e Hece Apcc Epce
2 2 2

As per the assumption, the temperature distribution in the base layer is constant and equal to the
temperature at the bottom of the PCC layer. Also, the reference temperature, i.e., the
temperature at which the slab is flat, is equal to the temperature at the bottom of the PCC layer.
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T (é’Base ) = T11 and To = T11

hac hece.
~12| apEpe 2
AT e —To) =3 — J.[T(é/AC)_Tll]é’ACdé/AC_'_ “T(Z)—Tu]ZdZ
hat | @pcc Epcc e hece
2
Nac fece.
-12| a,.E 2 2
Ao —To) = 5| =222 [T(Cac K aclSne + [T(2)2dz
et | @pecEpcc fac heee
2 2

This can be approximated as:

A(-I-L,eff - To)

4
ApcEpc Nac

—12| ApccEpec 24 I

(Ti *[(3i - 2)*%_3XACJ+TH1 *((3i _1)*%_3)(/% jJ

_ hezﬁ +h'°&io: T* (3i—2)*—hpCC - 3% +T.,,* (3i—l)”‘—hpCC —3X
60 — i 10 PCC i+1 10 PCC

where,

X ac :h%C and Xpee :hpﬁ

Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer,
respectively, can be written as:

AT 4 —T,)h
TL,PCC,bot _To = ( L’hff ) PZCC
eff

T T = _A(TL,eff _To) hpcc
L,PCC top 0 heff 2

2. Unbonded AC/PCC and bonded PCC/Base

x: From the top of PCC layer (AC — PCC interface)
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hZ E h
PCC Base Base
+ Base hPCC + 2

2 PCC

Xpg = E
hPCC +

Base
Base

PCC

m

EAC 3 3 EBase 3 hPCC ’ Base hBase
heff =3 E hAC + hPCC + E hBase +12 hPCC Xpg — + hBase hPCC +T

m

PCC PCC PCC

Nac?ac + Mpcc Ve + Naase? Base
heg

j/eff=

The constant strain-causing temperature component is:

hAC
2
J.aACEAC[T(é’AC)_To]dgAC hac
: Mac
_fac 1 2
Tonc =T, +—2 = [T(610)d¢
2 AC _fac
U e _[ Eacdd ac ?
hAC
T2
Npcc —Xpg Npce +Ngase —Xpa
1 IaPCCEPCC [T(Z) _To ]dZ + IaBaseEBase [T(Z) _To ]dZ
Tc (Z) _ TO " —Xpg Npcc —Xpg
a(z) EpccNpce + EgaseNpase

For the PCC layer this can be approximated as:

h 10
EPCC (;BC(Tl + Z*ZTi +T11j _TohPCCJ

i=2

TC,PCC T, =

0
E PCC h PCC + E Base h Base

The linear strain-causing temperature component is:

j a(2)E2)[T(2) T, Jzdz

|
Z ia

a(2)

T (2)=T,+
jE(z)zzdz

|
i=1
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Cac =Z+(h§+xpsj

Toac =T, +128§i

A pc

T (2)=T, +125
(94

hAC

2 Npcc —Xpg
IaAC Eac [T(gAc )_To ]gAcdgAc

Npcc +Ngase —Xpe
+ IaPCC EPCC [T (Z) _To ]ZdZ + IaBaseEBase [T(Z) _To ]ZdZ
hac —Xpg pcc ~XpB
S=—2 :
hece ) h ?
EAC h/:-S\C + EPCC thC + EBasehgase + 12|:EPCC hPCC (XPB - PZCC j + EBasehBase (hPCC + Bzase - XPBJ :l
A(l-L,eff _To)
hac
2 Npcc —Xpg Npcc +Ngase —Xpa
IaACEAC [T(é/AC)_To ]é/ACdé/AC + J.aPCC EPCC [T(Z)_To]ZdZ + IaBaseEBase [T(Z)_To ]ZdZ
~ _12heff ,h%c —Xpp Npcc —Xpg
Apcc Epcc h:ff
Taace (Z) =T, =T,
Nac
_ 12 a E 2 hpcc —Xpa
A(Tl_,eff _To) = h2 AC EAC J.[T(Q/AC)_Tll]é/ACdé/AC + HT (Z) _Tu]ZdZ
eit | XpccEpcc e ~Xpg
2
L h h
-12| «.-E 2 pcc ~Xpe pcc —Xpe
AT —To) = | 225 [Tl + [T(@2dz-T, [ 2dz
eff | XpccEpcc iy Xeg “Xog
2

This can be approximated as:
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4
ApcEnc hﬂ (Ti *[(3i _ 2)7\—hf_?’xACJ_FTiJrl *[(3i —1)*%—3&\6 ])

QpecEBpec 24 3

-12 hPCC S *| (2 * hPCC *| (3i * hPCC
A(TL,eff _TO) = h2 +W Ti (3' - 2) W—?}XPB +Ti+1 (3' —1) T—BXPB
eff i=1

T
- % hPCC (hPCC - ZXPB )

Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer,
respectively, can be written as:

A(T eff _To)
TL,PCC,bot _To :Lh—(hpcc - XPB)
eff
AT o —T,)
TL,PCC,top _To = _Lh—XPB
eff

3. Bonded AC/PCC and unbonded PCC/Base

Xap: From the top of AC layer

E,. h? h
20 e e + 1

_ EPCC

X
AP
E AC

E hAC + hPCC
PCC

PCC PCC PCC

2 2
heff —3\/ EAC h/ic + hgcc +12{EE¢hAC(XAP _h%] + hPCC(hAC +hP%_ XAP) :|+%hgase

Nac?ac +NoccVecc
heff

j/ef'f=

The constant strain-causing temperature component is:

hac —Xap Pac +Npcc —Xap
L IaAcEAc [T(Z)_To]dz+ J-aPCCEPCC [T(Z)_To ]dZ
Tc (Z) — To + —Xap Nac —Xap
a(z) EAChAC + EPCChPCC

This can be approximated as:
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Apcc

E h 4
reZre [gc(TAm + Z*ZTACi +Thcs

i=2

h 10
J_TohAcJ"‘ EPCC( ;BC (Tl +2*2Ti +T11J_Tohpch
i=2

Tc (Z) _To =

EAC hAC + EPCC hPCC

The linear strain-causing temperature component is:

|
Z ia

j a(2)E(2)[T(2) T, Jzdz

T(2)=T, + =)

[
i=1
gBase =7 _(hAC + hPCC —Xpp Tt
T (2)=T, +125—2—
L 0 a(2)

_T, +125 Soee

IE(z)zzdz

h Base
2

TL, Base
Aase
hBase
Nac —Xap Nac +hecc —Xap 2
J.O!AC EAC [T(Z) _To ]Zdz + jaPCC EPCC [T(Z) _To ]Zdz + J.aBaseEBase [T (é/Base)_To ]é/Basedé,Base
—Xap Nac —Xap Nease.
5= :
hae h ’
3 3 AC PCC 3
EAChAC + EPCChPCC +12 EAChAC(XAP - 2 j + EPCChPCC(hAC + - XAPJ + EBasehBase
hEase
Nac —Xap Nac +hpcc —Xap 2
JaACEAC [T(Z)_To ]ZdZ + _[aPCCEPCC [T(Z)_To ]ZdZ + | e Eace [T(é/Base)_To ]é’B&eng&e
A(T T ) _ 12hef‘f —Xap Nac —Xpp J‘B%
e Opcc Epcc h:ff

TBase (Z) = Tll = To

—-12

T2
heff

A(TL,eff -T )

0

J

—Xap

Nac —Xap

M[T(z) ~T, Jzdz +

PCC =PCC
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Pac HNpcc —Xap

I[T (2) - T, Jzdz

Nac —Xap




A(-I-L,eff -T )

0

hac—X hac —X hac +hpee —X hac +hpec —X
_ 12 a E AC AP a E AC AP AC PCC AP AC PCC AP
=— AC =AC T(z)zdz - AC
heff

This can be approximated as:

AC —
= oo Eocl T, _[zdz + j T(z)zdz -T,, Izdz

—Xap Nac—Xap Nac—Xap

A(TL,eff - To )

12| apecBpec 2

4
%acErc Muc z[ i*[(3i—2)*%—3xApj+Ti+l*[(3i—1)*%—3XAPB
ApecEpee 24 T 4 4
——aAc EAC hhAc (hAC _2XAP)
+hpcci T * (3i_2)*hP&_3(X —hy) [+T,* (3i_1)*hP&_3(x —hy)
60 i 10 ap ~ Hac i+1 10 ap ~ Hac

i=1
T
_%hpcc (hPCC + 2hAc - 2XAP )

J

Therefore, the linear strain-causing temperature at the bottom and the top of the PCC layer,
respectively, can be written as:

A(T e _To)
TL,PCC,bot _To = +(hpcc + hAC - XAP)
eff
A(TL,eff _To)
Tirccop = To = T hl (X=hye)
eff
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