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Chapter 1 - Introduction 

The objective of this research was to develop a tool to effectively estimate contract time 

for future construction projects.  This will improve the accuracy and consistency of estimating 

contract time, leading to shorter construction periods and reduced construction impacts to the 

traveling public.  It will also improve the efficiency of creating estimates, thereby saving the 

designer’s time.  The implementation product of this research study is a contract time estimating 

tool that provides state transportation agencies the flexibility of estimating contract time across a 

broad range of project types.  The tool was developed from a database containing state 

transportation agency historical project data.  The tool includes parametric models that can be used 

to estimate contract time based on project quantities for specific project types based on both size 

and scope.   

Estimating durations of highway construction is a challenge. State Transportation 

Agencies (STAs) often have to develop an estimate during project development, when many of 

the project parameters are in flux.  Furthermore, STAs’ development of an accurate duration 

requires knowledge of both construction means and methods as well as contractor strategy, 

which relies of keen insights into the resource constraints that drive contractors’ decisions (Zhai 

et al. 2016). In order to help address this challenge, the Federal Highway Administration 

(FHWA) developed a Guide For Construction Time Determination Procedures, but even when 

using it, State Transportation Agencies (STAs) struggle to calculate accurate estimates of project 

durations (Zhai et al. 2016). These inaccurate estimates, which are often set in the contract 

documents, affect owners (STAs) and road users, i.e., taxpayers. Some of the consequences of 

inaccurate estimates are: (1) requiring the STA to allocate extra resources; (2) road users 

(taxpayers) spending more time driving; (3) longer commutes; (4) and unsafe roads (due to 

construction hazards) (Zhai et al. 2016). 

In order to achieve accurate estimates, it is necessary to understand what drives the 

durations of projects and what are the actual production rates. Generally, contract times are 

determined by production rates (e.g. Critical Path Method or Bar Charts) or predicting the 

duration using cost (e.g .Estimated Cost Method). If the preferred method is based on production 

rates, the accuracy of the estimate is only as good as the accuracy of the production rates (Jiang 

and Wu 2007). Achieving accurate production rates and estimates require experienced engineers. 
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Alternatively, estimated cost method (also referred to as regression method) models can be used 

quickly and do not require such expertise (FHWA 2002).  

Zhai et al. (2016) conducted a study to gather information about the different methods 

and how they are used among STAs. In this study, they determined that only 29 of the 50 STAs 

have their time determination procedures available online and are subject to inaccuracy. This 

inaccuracy was explained with mean absolute percent errors (MAPE) (Equation 1.1). Having 

such inaccurate models is yet another incentive to determine what are the primary drivers of a 

project’s duration, in order to be able to come up with more realistic estimates. 

 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

� ∗ 100         [1.1, APE] 

 

In order to understand why estimates are inaccurate, it is necessary to explain which factors have 

a relationship with project durations, which is a focus of the described research. To determine 

which are these factors, this research will explore parametric and nonparametric methods for 

duration estimation. The team chose Multiple Linear Regression (MLR) as the parametric 

method and Artificial Neural Networks (ANNs), was the chosen to be the studied nonparametric 

method. 

Another issue influenced by production rates and duration estimates is the ability to 

accurately measure productivity over time. Several difficulties of measuring productivity have 

been studied over the years. One difficulty highlighted by Goodrum et al. (2002) is the challenge 

of accurately measuring construction inflation in order to develop accurate measures of real 

industry output. Challenges noted by others include the heterogenous nature of the construction 

industry, lack of consistent data standards, and lack of consensus about the techniques for 

measuring different inputs and outputs of construction productivity (Building Futures Council 

(2006)). Such difficulties lead to differences in the way productivity is measured. Vereen et al. 

(2016) explained how some of these differences occur. They measured labor productivity using 

the same metric but different data sources. A total of four different combinations of the data 

sources were used by Vereen et al. (2016), and unfortunately none of data sources produced 

similar results.  They concluded that, depending on the input and output data sources, 

productivity has been increasing or decreasing. The studies by Goodrum et al. (2002), the 

Building Futures Council (2006), and Vereen et al. (2016) might help explain why there are two 
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main schools of thought when it comes to construction productivity trends. First some, like 

Teicholz (2013), suggest that productivity in construction has been declining. On the other hand, 

there are economists like Sveikauskas et al. (2016), that suggest that productivity has been 

increasing since 2006. 

Highway construction is a multi-billion dollar industry, and the expenditure trend is 

expected to grow (US Census Bureau Construction Expenditures 2018).  Considering its effect 

on both the overall construction industry and impact on national and regional economic growth, 

a better understanding of the factors that influence project durations and how to better estimate 

durations too is warranted. As a result, this report addresses three main issues:  

(1) Determine which factors are most influential on a highway project’s durations;  

(2) Determine if nonparametric approaches to determine such durations, can produce 

more accurate time estimates compared to traditional parametric approaches, such as 

Multiple Linear Regression (MLR) models; and 

(3) Create a metric that allows to explain the industry-level productivity trends in 

highway construction over the last 14 years. 

Literature Review 
Background and Terminology 

Part of this report explores the differences between parametric and non-parametric 

models. Parametric modeling uses data that follow certain rules – or parameters – to estimate the 

value of one dependent variable. In order to estimate the dependent variable, one or several 

independent variables are used. Both, the dependent and the independent variables, have to 

follow the parameters established for the kind of relationship used in the modeling (Sheskin 

2003). In the case of parametric time estimation, cost has been the most popular independent 

variable used to predict the duration (dependent variable) of a project (Herbsman and Ellis 

1995).  On the other hand, Non-parametric models do not rely on an assumed distribution or 

other type of parameter but instead is determined from data. The term non-parametric is not 

meant to imply that such models completely lack parameters but that the number and nature of 

the parameters are flexible and not fixed in advance. Furthermore, Conover (1980) states that a 

statistical method can be considered nonparametric if the distribution of the data is unspecified. 

This means that nonparametric methods can ignore assumptions that are used to analyze data 

with parametric methods. 
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Jiang and Wu (2004) conducted research to analyze the factors affecting production rates 

as well as factors affecting durations in highway construction projects. After determining these 

factors, they determined the relationships (e.g. linear, exponential, and logarithmic) that best 

fitted their data, between a project’s cost estimate and its duration. These relationships allowed 

them to create models that help predict project durations during the different stages of a project. 

One model was created per project type, namely, resurfacing, bridge replacement, among others. 

This method provided satisfactory accuracy for time estimation on the 95% confidence interval. 

The models’ mean accuracies, within this confidence interval, ranged from ± 0.2 σ (New Road 

Construction) to ± 0.9 σ (Bridge Replacement (County Road)). Taylor et al. (2013) developed a 

similar method but included more estimators in the regression equations. Instead of developing 

an individual model per type of project, they used the type of project as a prediction factor and 

also included bid quantities as independent variables. In this research project, they came to the 

conclusion that a linear regression equation is satisfactorily accurate (See Table 1.1) for projects 

above $1M, suggesting that for smaller projects, unit rate-based estimators were more accurate. 

The median absolute percent error in Table 1 refers to the median value of the computed APEs 

(Equation 1.1). The median percent difference is the median value of the percent differences, 

computed according to Equation 1.2. 

 

               ∆% =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑛𝑛

∗ 100    [1.2, Percent Difference] 
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Table 1.1. Taylor et al. (2013) Accuracy Results 

Project Type Sub-group 

Absolute Percent 

Error Percent Difference 

Mean Median Mean Median 

Limited Access  

All Projects 53.31% 27.33% 28.51% -1.21% 

Only >$1,000,000 70.36% 28.89% 48.73% 8.13% 

Only >$3,000,000 32.87% 21.53% 13.21% 3.96% 

Open access 

All Projects 189.59% 75.89% 150.35% 45.66% 

Only >$1,000,000 61.26% 34.98% 26.34% 1.23% 

Only >2,000,000 60.82% 23.36% 38.76% 2.92% 

New route 

All Projects 206.09% 69.78% 177.56% 36.96% 

Only >$1,000,000 72.31% 54.69% 28.02% 10.70% 

Western KY 66.02% 43.78% 36.46% 2.81% 

Central KY 287.25% 60.75% 270.73% 48.83% 

Eastern KY 148.98% 61.60% 114.21% 34.03% 

Western KY Only >$1,000,000 91.12% 33.37% 67.32% 9.12% 

Eastern KY Only >$1,000,000 77.23% 45.35% 55.53% 33.45% 

Bridge Rehab 

All Projects 102.00% 48.73% 73.82% 17.16% 

Western KY 106.43% 66.90% 81.74% 66.90% 

Only >$1,000,000 60.06% 77.20% -50.44% -77.26% 

Bridge 

Replacement 

All Projects 57.77% 35.77% 32.27% 0.47% 

Only >$1,000,000 27.36% 17.03% 9.98% 5.67% 

 

Woldesenbet (2010), demonstrated that location and traffic condition are big influencers 

of productivity in highway construction. This is due to proximity to metropolitan areas, type of 

terrain, and how they affect delivery of materials to the jobsite, which why this research is 

including project locations as a factor that might help explain the project durations. 

 

Typical Methods used for Duration Estimation 

According to the FHWA (2002), there are several methods used to estimate the duration 

of highway construction projects. However, the FHWA recommends one of three methods: 1) 
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Critical Path Method, 2) Bar Charts Method, and 3) Estimated Cost Method. The first two 

methods rely highly on the accuracy of the production rates and require skilled engineers to 

produce reliable estimates due to required expertise in construction methods in order to replicate 

realistic construction schedules. On the contrary, the estimated cost method relies on the 

relationship between cost and duration to produce the estimates and does not require as much 

skill and experience to create estimates. That being said, the engineers’ judgement is still key on 

determining whether the estimates produced are reasonable.  

Critical Path Method (CPM) 

The Federal Highway Administration (2002) describes the CPM as an analysis of the 

relationships amongst activities. CPMs emphasize the relationships of activities that must be 

completed in order to start a succeeding activity. The CPM shows such relationships in a 

diagrammatical way. These diagrams also contain information about the time required to 

complete each task and the float that each activity has (total float and free float). Total float is the 

time that an activity can be delayed without delaying the entire project and free float is the time 

an activity can be delayed without affecting its successors. In the critical path method, 

information is shown about which activities will cause a change in the project’s completion day 

if delayed. 

The FHWA (2002) defines the five steps required to develop a CPM: (1) project 

breakdown by activities; (2) defining the relationships between activities, specifically, which 

activities need to be completed (preceding) before the beginning of another activity (succeeding) 

or whether activities can be done simultaneously; (3) develop a graphic representation of the 

relationships defined in the previous step; (4) by using production rates, each activity’s duration 

is estimated and shown in the diagram, along with float, early start, and early finish; and (5) with 

the use of the CPM, the ideal amount of work days required to complete the project can be 

estimated. 

CPM is popular among DOTs because of a number of advantages. Some of those 

advantages include: the ability to perform analysis of delays and how to lessen them, activity 

breakdown visualization, and, as stated in the name, track the critical path of a project. Basically, 

CPMs help calculate contract time while showing the hierarchy of operations (Herbsman and 

Ellis 1995; Khallaf et al. 2016). On the downside, in order to achieve accurate estimates, CPM 

schedules require experienced labor and reliable production rates (FHWA 2002). 
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Figure 1.1. CPM 

 

Louisiana DOT is one STA that uses CPM to estimate project durations. Louisiana DOT 

uses production rate-based time determination tool (Lotus), developed by (McCrary et al. 1995). 

They developed a set of three templates to estimate project durations. The templates, Lotus 1-2-

3, have their own sets of production rates. Quantities of each activity are input into the templates. 

These quantities are then related to production rates to compute the project durations. These 

templates also have logic-based relations that, along with the production rates, are then used to 

estimate project durations (Werkmeister et al. 2000). The durations of these activities can be 

used in bar charts to create project schedules. 

Bar Charts Method 

Bar Charts, also known as Gantt Charts, display information related to duration using 

horizontal lines. Each line represents the duration of an activity and the duration is shown in 

dates, usually on the top of the chart. Like CPM, before constructing a bar chart, work 

breakdown is conducted in order to determine the list of activities to be depicted in the chart. 

Unlike the CPM, Bar Charts do not show relationships between activities. However, they do 

display the overall duration of a project (Mubarak 2015).   

When DOTs select this as their duration estimation method, it is because of its 

advantages, which include facilitating the tracking a project’s actual duration and comparing it to 

the planned one, ease of understanding, and powerful visual impact (FHWA 2002; Herbsman 

and Ellis 1995). On the other hand, but they do not show the relationships between different 
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phases of the project, which is a major disadvantage and why they are not recommended for 

large complex construction projects (FHWA 2002). Another downside for bar charts is that, like 

with CPM, bar charts rely on the quality of the production rates in order to produce trustworthy 

estimates 

 

 
Figure 1.2. Bar charts example (Taylor et al. 2017) 

 

One STA that uses bar charts to create their final schedules is Texas DOT (TxDOT), 

which incidentally is one of the pioneers in developing custom contract time determination 

systems (CTDS). TxDOT used a CTDS in which production rates and activity quantities are used 

to estimate durations. The production rates are developed by engineers with expertise to create 

better estimates. The production rates are selected by the user and the quantities are introduced in 

the software. These durations can then be adjusted with correction factors that depend on 

geography, traffic, and other characteristics pertinent to each project. Finally, the TxDOT 

Contract Time Determination system creates a output schedule that produces Gantt charts to 

present the durations. 

Estimated Cost Method 

Per FHWA (2002), the estimated cost method relates dollar value to duration, based on 

historical data. This method utilizes different charts to depict cost versus duration for projects 
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with different locations, traffic volumes, and scope. Following the estimated cost method, Zhai et 

al. (2016) created MLR models that included cost and other variables, like bid quantities. In their 

research, Zhai et al. (2016) justify the usage of MLR with the following arguments: (1) bid 

quantities are highly correlated with duration; (2) highway construction projects are very 

repetitive; (3) practices are similar across the United States; and (4) parametric modeling utilizes 

historical data for prediction. In the present research, we try to expand what Zhai et al. (2016)  

did with their MLR models by adding additional variables and creating a single model for all 

project types. The new independent variables being studied include: Location, Project Type, 

Project Condition (New Vs. Old), Terrain Type, and Average Annual Daily Traffic (AADT), as 

part of the predicting factors. Studying the relationships that all these variables have on project 

durations is going to be studied in this research. This study will help address the statement by 

FHWA (2002) about the estimated cost method: “Many items affecting the completion of a 

project are not taken into consideration when applying this method. Any special features that are 

unique to a specific project cannot easily be accounted for when using this very simplistic 

procedure.” 

The history of the Estimated Cost Method can be summarized and described by 

reviewing several researches conducted since the 1960s.   Fulkerson (1961) conducted an early 

effort by creating a Simple Linear Regression model to estimate duration of projects (dependent 

variable) by using cost as an independent variable. From that point on, several variations of the 

relationship were studied. For example, Falk and Horowitz (1972) studied concave (non-linear) 

relationships between cost and duration. Additionally, Jiang and Wu (2007) created several 

regression equations to estimate duration using cost. Each project type (e.g. bridge rehabilitation, 

resurfacing, etc.) was represented in a different equation. Furthermore, Irfan et al. (2011) created 

one different exponential  per project type (e.g. bridge, resurfacing, or maintenance) to predict 

duration using cost and contract type. Alternatively,  Zhai et al. (2016) created various multiple 

linear regression models to estimate the duration of highway transportation projects. The 

different models were developed for different combinations of ‘project type’, ‘project size’, and 

‘accessibility’. These models used not just cost but also specific construction quantities that were 

observed to be significant predictors of required project duration. 

A good example for the estimated cost method is the tool developed by the Kentucky 

Transportation Cabinet (KTC). KTC uses a custom time determination tool (KY-CTDS). The 



 13 

tool was first developed in 2000 by (Werkmeister et al. 2000) and later updated by Taylor et al.  

(2013). In the last update, the final tool created was a regression-based parametric model. This 

tool lets the user decide which approach to use, based on project size (budget and duration) and 

type. For larger projects (≥$1,000,000), the tool guides the user into selecting one of the 5 

regression models, based on project type (i.e. Limited Access, Bridge Rehabilitation, New Route, 

Open Access, and Bridge Replacement). Each of the regression model has its specific 

coefficients that allow the user to calculate the duration. These durations are then translated to 

working days, which help develop the project schedule. For smaller projects (<$1,000,000), a 

production rate approach was designed. In that approach, the user selects the production rates 

and inputs them, along with quantities, into a worksheet. The output of range of durations is then 

used to develop the project schedules. 

Combined Methods 

Some STAs use a combination of time estimation methods to develop their schedules. A 

good example is Indiana DOT (INDOT) time estimation tool. Jiang and Wu (2004) developed a 

tool for INDOT that incorporates Regression Method, Mean Production Rate Method, and 

Adjustment for Contract Time. The method chosen to estimate the duration and the adjustment, 

depends on a what is known about each project. If the production rates cannot be identified, the 

tool uses the Regression Method, which is comprised by 15 different Univariate Regression 

equations, in which the independent variable is the project’s cost and the dependent variable is 

the duration (in work days). The 15 equations developed were to satisfy the 15 project types (e.g. 

Asphalt Resurface, Bridge Painting, Bridge Rehabilitation (Deck Replacement), Bridge 

Rehabilitation (Superstructure Repair), among others) identified in their research. The type of 

regression (linear, exponential, or logarithmic) varies depending on the type project. This 

variation is given to the nature of the data. After imputing the cost, these equations then compute 

the preliminary duration of the projects. On the other hand, if the production rates can be 

identified, the tool uses Mean Production Rate Method. In this method, the installed construction 

quantities are associated with each of their production rates to develop a preliminary estimate, 

similar to the Small Projects in Ky-CTDS and the Lotus model used by Louisiana DOT. 

Artificial Neural Networks (ANN) 

Artificial Neural Networks are machine-learning algorithms. Contrary to regression 

modeling, machine-learning algorithms are nonparametric and specifically nonlinear by nature, 



 14 

because they do not require to satisfy any assumptions (e.g. normality, linearity, and 

independence for MLR) in order to analyze the data contained within them. These networks are 

structured in a similar manner to the neural networks within the human brain. This similarity 

helps us understand the functioning of ANNs, because both consist of independent units 

(neurons) that combine to form a larger, more powerful unit. Minimally, ANNs consist of three 

layers of neurons, including an initial input layer (equivalent to independent variables), followed 

by hidden layer(s) of interconnected neurons, and finally an output layer (equivalent to 

dependent variables) (Figure 1.3). The neurons of each layer are connected to all the neurons of 

the preceding and succeeding layers and each connection has a unique weight. Such weights are 

optimized during the training process (Klerfors and Huston 1998). To optimize these weights, 

ANNs use a function called backpropagation (Frandina et al. 2013), which adjusts the individual 

weights after comparing the predicted and the observed values. This backpropagation, often 

referred to as training the ANN, happens through several iterations that are specified within the 

ANN’s code. One drawback of backpropagation is the challenge of overfitting the model, which 

is expanded upon in later chapters of this report. 

 
Figure 1.3. Artificial Neural Networks 

 

ANNs have been used to create different estimating models in areas that are not limited 

to construction. Starting in the late 1990’s, Boussabaine and Elhag (1997) compared traditional 

cost and time estimation methods with Neurofuzzy Models - a combination of ANNs and Fuzzy 
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Logic - to determine which performed better. They found Neurofuzzy models had stronger 

performance at predicting cost and duration of vertical construction projects. To create these 

predictions, they used characteristics (input variables) that described each project. Such 

characteristics included: height, size, location, market behavior, area, and whether or not 

excavation was required for the foundation systems. In that same year, Smith and Mason (1997) 

concluded that ANNs performed better at estimating than regression models. One of the 

strengths they found was the robustness to assessments required for parametric modeling (e.g. 

linear or quadratic regressions). The data they predicted was the cost (output variable) of 

pressure vessels for chemical production. Their input variables were: height, diameter, and wall 

thickness. Their findings replicated those of Boussabaine and Elhag (1997), concluding that 

ANNs perform better than commonly used methods, particularly when the data does not meet the 

assessments required for parametric models. In an effort to explore the use of machine learning 

to estimate the development effort for software engineering, Finnie et al. (1997) compared the 

advantages and disadvantages among MLR, ANNs, and Case-Based Reasoning (CBR), another 

type of machine learning. They concluded that ANNs and CBR outperformed MLR models, but 

they have a disadvantage. Even when they perform better, ANNs are harder to interpret, meaning 

that it is harder to explain the contribution of each independent (input) variable in the 

explanation of the dependent (output) variable. Later on, Hegazy and Ayed (1998) compared 

optimization methods used within ANNs. They compared the performance of backpropagation 

and simple optimization in adjusting weights. The networks they developed were used to predict 

the cost of highway construction projects (output variable). Their input variables were project 

type, geographic elements, and project scope. 

A couple years later, Kim et al. (2004) explored the same comparison used by Finnie et 

al. (1997). They compared how ANNs, CBR, and MLR performed at estimating cost (output 

variable) of multi-story residential construction (considered commercial construction in the US) 

in Korea. Their input variables were year, area, stories, total units, duration, roof type, 

foundation system, basement usage, and finishing grades. With this study, they came to the 

conclusion that ANNs performed better at predicting cost than the other two (CBR and MLR). 

However, ANNs were still challenging to interpret and they also concluded that CBR performs 

better over time. This is due to the fact that CBR appends the cases studied to its database, 

whereas ANNs have to be manually updated. In that same year, Günaydın and Doğan (2004) 
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studied the capabilities of ANNs when used for cost estimation. They also predicted the cost of 

multi-story residential construction projects, achieving 93%, using several project characteristics 

as input variables. Wilmot and Mei (2005) used ANNs to estimate cost indices for several pay 

items in highway construction. They used market conditions to predict cost indices. With this 

study, they were able to predict cost indices estimates –  not different to the observed ones – at a 

95% confidence level. Pewdum et al. (2009) also compared ANNs vs. a conventional estimation 

method for highway construction projects. In their study, they found that ANNs produce a better 

cost and duration estimates than the ones obtained by the Earned Value. Some other efforts have 

been made at estimating cost of different areas of construction in the transportation industry. One 

study concluded that ANNs performed better at estimating the cost of Road Tunnel Construction 

than MLR. This study created the ANNs models in a two-step fashion. First, they created models 

to estimate the values of what would be the inputs of the subsequent model in order to estimate 

the final cost of projects. (Petroutsatou et al. 2011). A summary of this literature review can be 

found in Table 1.2. 

 
 



AUTHOR AND 
YEAR 

COUNTRY AND 
JOURNAL 

INDUSTRY RESULTS DEPENDENT / 
OUTPUT 
VARIABLES 

INDEPENDENT / INPUT VARIABLES 

BOUSSABAINE 
AND ELHAG, 
1997 

England - RICS Commercial 
Construction 

Neurofuzzy models are more accurate than 
traditional methods for cost and time estimation on 
commercial buildings. 

Cost and 
Duration 

Height, site, foundation, market, area, location, 
excavation required (y/n) 

SMITH AND 
MASON, 1997 

USA – The 
Engineering 
Economist 

Engineering/ 
Manufacturing 

Neural networks are a better choice than Regressions 
when the data does not enable the use of a 
commonly used model, such as linear. 

Pressure Vessel 
Cost 

Height, Diameter, and Wall Thickness 

FINNIE ET AL., 
1997 

Australia – Journal 
of Systems & 
Software 

Software 
Engineering 

Artificial Neural Networks (ANNs) and Case-Based 
Reasoning (CBR) perform better than Multiple Linear 
Regression (MLR) at providing software effort 
estimation. 

Estimated 
Development 
Effort 

System size, programing environment, and general 
software characteristics 

HEGAZY AND 
AYED, 1998 

Canada - JCEM Highway 
Construction 

Simple Optimization performed better than 
Backpropagation and Generic Algorithms for cost 
estimation in highway construction. 

Cost Project type, scope, year, season, location, duration, 
size, capacity, water body (y/n), and soil condition 

KIM ET AL., 
2004 

Korea – Building 
and Environment 

Residential 
Construction 

ANNs and CBR perform better than MLR for cost 
estimation in residential buildings. ANN is more 
accurate but CBR performs better in long term use. 

Cost Year, area, stories, total units, duration, roof type, 
foundation system, basement usage, and finishing 
grades 

GÜNAYDIN 
AND DOĞAN, 
2004 

Turkey – 
International 
Journal of Project 
Management 

Multi-Story 
Residential 
Construction 

Models utilizing ANNs achieved a 93% accuracy for 
cost estimation of structural systems of buildings. 

Cost Area, ratio of typical floor area to total area, ratio of 
ground floor area to total area, stories, console 
direction of the building, foundation system, floor 
type, and building’s core location 

WILMOT AND 
MEI, 2005 

USA – JCEM 
 

Highway 
Construction 

An ANN model produced cost indices estimates not 
significantly different from the observed ones at a 
95% confidence level. 

Cost indices for 
different pay 
items 

Price of labor, price of material, price of equipment, 
pay item quantity, contract duration, contract 
location, quarter in which contract was let, annual bid 
volume, bid volume variance, number of plan changes, 
and changes in standards or specifications 

PEWDUM ET 
AL., 2009 

Thailand – 
Engineering, 
Construction, and 
Architectural 
Management 

Highway 
Construction 

ANNs provide better cost and duration forecasting 
than Earned Value Method. 

Cost and 
Duration 

Traffic volume, topography, weather conditions, 
evaluating date, contract duration (for cost 
estimation), percent of as planned completion, and 
percent of actual completion. 

PETROUTSATO
U ET AL., 2011 

Greece - JCEM Road Tunnel 
Construction 

ANNs provide better cost estimates than MLR for 
road tunnel construction projects. ANNs were 
developed in two steps. 

Step 1: Steel sets, 
shotcrete, 
rockbolts, 
concrete, steel 
Step 2: Cost 

Step 1: Geology, geological strength index, strain of 
geological environment, depth of overburden, 
excavated area of the mined section 
Step 2: Output variables of step 1 

Table 1.2. Prior Construction Focused ANN Models 



Although previous studies in construction have used ANN, the use of ANN to study the 

relationships between duration (dependent variable) and construction quantities, cost, and project 

characteristics (independent variables) is a novel concept. Studying these relationships using 

ANNs is the primary objective of this research. 

 

 

  



 

Chapter 2 – Methodology 

The research examined two mathematical approaches to estimate contract time using 

various project quantity and project characteristics from CDOT data, including Multiple Linear 

Regression and Artificial Neural Networks.  The process and processes for each approach are 

described below.  The reader will note that there is overlap in the sections describing each 

approach. This was intentional to allow each description to be viewed independently of each 

other.  

 

The Multiple Linear Regression Approach 
Two different data sources are included in this study. The first one, is a compilation of 

projects executed by CDOT between 2004 and 2016. The second one is a compilation of projects 

executed by GDOT during the same period. The data gathered from CDOT was provided by the 

agency in a Microsoft Access file. Such file contained information about each project in, linked 

to the individual project IDs. These project IDs allowed the researchers to link the variables 

(characteristics and quantities) to each individual project. These variables were then used in the 

analysis of this research. A summary of this data can be found in Table 2.1.  
 

Table 2.1. Data Source 
 

State n Criterion 
Measure 

Independent 
Variables 

Min 
(2003) 
US$ 

Max (2003) 
US$ 

Mean 
(2003) US$ 

Colorado 1500 Charge Days 23 33,284 60,035,291 2,783,012 
 

Construction Quantities 

The construction quantities refer to the amount required to be installed, per bid item for 

the completion of a project. For Colorado, construction quantities were extracted from bid 

tabulations, after the completion of project, i.e. installed quantities.  

Project Characteristics 

The project characteristics can be separated into two different types, continuous and 

categorical variables. 

The continuous variables are: 

• Cost, measured in 2003 USD, converted using the National Highway Construction 

Cost Index (NHCCI) and 



 

• Annual Average Daily Traffic (AADT), which describes the number of axels that 

use the road in which the project is being executed. 

The categorical variables, represented in the model as dummy variables, are: 

• Project Type, a description of the category of work to be executed (e.g. bridge 

rehabilitation, resurfacing, and road widening, 

• Terrain Type, which describes topography in which the project is being executed.  

• Project Condition, whether the project is a new project or a revamp of an existing 

project, and 

• Project Size with three levels, small (between $0 and $1,000,000), medium (over 

$1,000,000 and under $10,000,000], and large ($10,000,000 and over) 

Dummy variables refer to a categorical variable with n levels represented by n-1 binary 

variables. For example, project size has three levels (s1, s2, and s3) that are represented by s2 

and s3. In this case, if a project is size=1, the values for s2 and s3 would be 0. The interpretation 

of the coefficients for s2 and s3 would be relative to projects of size = 1. More about this 

interpretation is after the model interpretation.  

 

The variable Project Type refers to the type of project executed on each contract (as 

presented by CDOT). This variable is presented as a dummy variable, in the same way as project 

size. In this case, the variable is a factor variable with 23 levels. Levels 1 through 22 are 

presented as a binary variable. In this case, when all levels (1 though 22) equal 0, project type = 

23. A list of all project types is presented in Table 2.2. 
 

Table 2.2. Project Types dummy variables 
Project Type Variable Project Type Variable 
Resurfacing Type1 New Construction Type13 
Bridge Restoration/Rehabilitation Type2 Rest Area Type14 
Bridge Replacement Type3 Noise Walls Type15 
Restoration/Rehabilitation Type4 Landscaping Type16 
Safety Type5 Miscellaneous Type17 
Hazardous Locations Type6 Enhancement Type18 
Rail/Highway Separation Type7 Planning Type19 
Transit System Management (TSM) Type8 Major Surface Treatment Type20 
Traffic Signals Type9 Minor Surface Treatment Type21 
Minor Widening Type10 Routine Maintenance Type22 



 

Major Widening Type11 Other Type23 
Reconstruction Type12 

  

Note: these Project Types are assigned by CDOT and are not modified by the author. 
 

Durations 

The duration for the projects that comprise the data is expressed in number of charge days. 

Charge days refer to the number of days in which work is actually performed in a project. 

Charge days account for weekends not worked, weather related stoppage days, accident related 

stoppage days or how many days per week were worked during a project. This measure 

represents an advantage when compared to other states that only collect data in terms of 

Calendar Days. States that don’t measure Charge Days need to use factors to convert calendar 

days into charge days, in order to have durations in contractual language (Werkmeister et al. 

2000). Zhai et al. (2016) created a tool that generated estimates based on calendar days. They 

offered an option to adjust this for work days, but these are based purely on estimates. These 

estimates are due to uncertainties about unforeseen stoppages. Other considerations for project 

durations is that neither of the databases include the type of shifts were worked on any project. 

They also did not include how long the work days were, in terms of hours worked per day. To 

account for the difference in durations, this research is going to use a similar approach. In order 

to come up with a calendar day-to-work day coefficient the average number of days worked 

during construction season will be used and assigned to projects according to the months in 

which they were executed.  

The Multiple Linear Regression Mechanics 
The specific approach used to analyze the data using Multiple Linear Regression is 

described below in detail. 

Data Preformatting  

In order to incorporate all the data in a single model, every project was formatted to fit a 

template created by the team (Figure 2.4). This involved combining all projects into a single file, 

where each row represents a project and each column represents a variable.  This process also 

included filling blanks with zeroes. For example, a project in which concrete was not used, 

should have “0” as the value for such variable. Also, since not all the projects were executed in 

the same year, all projects’ costs were transformed to 2003 USD to have consistency across 

projects. To achieve this transformation, the team used the National Highway Construction Cost 



 

Index (NHCCI). This index tracks the most important factors affecting construction costs in 

transportation projects. As described by Shahandashti and Ashuri (2015), it is an output index, 

which means that FHWA measures items contained in construction cost as charged by the 

contractors, including overhead, material, labor, equipment, and profit. 

 

 
Figure 2.4 Sample of Data Format 

Variable Grouping 

Since multiple regression was used, the research was observant of the ratio of specimens 

to the number of independent variables (k). A common practice is to use Fisher’s generalization 

of n / k  > 10 (Duin 1995). With the purpose of achieving an acceptable ratio of specimens to 

independent variable, the team proceeded to group variables into variables with similar physical 

characteristics. For example, PVC piping is one single variable instead of having one per 

diameter.  By doing so, the number of independent variables was reduced from over a thousand 

to just 23. Of those 23 variables, 17 belong to the category “Construction Quantities” and the 

other 6 belong to project characteristics (Table 2.3) 

 
 
Table 2.3. List of Independent Variables 

Construction Quantities Project Characteristics 
Perforated Pipe Muck Excavation Embankment Cost (2003 USD) 
PVC Pipe Rock Excavation Asphalt Size 
Concrete Pipe Concrete Unclassified 

Excavation 
Type 

Class D Concrete Concrete Pavement Structural Excavation New Project 
Pavement Marking Structural Backfill Asphalt Reclamation Terrain Type 
Aggregate Sewage  Annual Average Daily 

Traffic (AADT) 
 
For example, Table 2.4 shows an example of the grouping of sub-variables required for Concrete 

Pipe. In this case, 70 variables were grouped into one variable, Concrete Pipe. In this Table, 

some of the names seem incomplete, due to the data source. This condition made the grouping of 



 

the variables a cumbersome process and inflated the number of sub-variables per independent 

variable. 

 
Table 2.4. List of Sub-variables Present in the Independent Variable Concrete Pipe 

15 Inch Reinforced 
Concrete Pipe 

18 Inch Reinforced 
Concrete Pipe (Jacked) 

53x34 Inch Reinforced 
Concrete Pipe Elliptical 

90 Inch Reinforced 
Concrete Pipe (Complete 
In Place) 

18 Inch Reinforced 
Concrete Pipe 

60x38 Inch Reinforced 
Concrete Pipe Elliptical 

48 Inch Reinforced 
Concrete Pipe 

48 Inch Reinforced 
Concrete Pipe Special 

24 Inch Reinforced 
Concrete Pipe 

66 Inch Reinforced 
Concrete Pipe 

30x19 Inch Reinforced 
Concrete Pipe Elliptical 

78 Inch Reinforced 
Concrete Pipe Special 

30 Inch Reinforced 
Concrete Pipe 

36 Inch Reinforced 
Concrete Pipe Special 

84 Inch Reinforced 
Concrete Pipe 

48 Inch Reinforced 
Concrete Pipe (Jacked) 

36 Inch Reinforced 
Concrete Pipe 

23x14 Inch Reinforced 
Concrete Pipe Elliptical 

45x29 Inch Reinforced 
Concrete Pipe Elliptical 

54 Inch Reinforced 
Concrete Pipe (Jacked) 

42 Inch Reinforced 
Concrete Pipe 

36 Inch Reinforced 
Concrete Pipe Special 
(Install Only) 

91x58 Inch Reinforced 
Concrete Pipe Elliptical 

24 Inch Reinforced 
Concrete Pipe Special 

54 Inch Reinforced 
Concrete Pipe 

60 Inch Reinforced 
Concrete Pipe Special 
(Install Only) 

106x68 Inch 
Reinforced Concrete 
Pipe Elliptical 

83X53 Inch Reinforced 
Concrete Pipe Elliptical 

42 Inch Reinforced 
Concrete Pipe (Jacked) 

24 Inch Reinforced 
Concrete Pipe (Jacked) 

54 Inch Reinforced 
Concrete Pipe (Special) 
(Install Only) 

68x43 Inch Reinforced 
Concrete Pipe Elliptical 

18 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

30 Inch Reinforced 
Concrete Pipe (Jacked) 

66 Inch Reinforced 
Concrete Pipe (Special) 
(Install Only) 

18 Inch Reinforced 
Concrete Pipe (Complete 
In Place)(Instal 

24 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

27 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

12 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

24 Inch Reinforced 
Concrete Pipe (Complete 
In Place)(Instal 

30 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

18 Inch Reinforced 
Concrete Pipe Special 

42 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

30x19 Inch Reinforced 
Concrete Pipe Elliptical 
(Complete In 

76x48 Inch Reinforced 
Concrete Pipe Elliptical 

72 Inch Reinforced 
Concrete Pipe 

38x24 Inch Reinforced 
Concrete Pipe Elliptical 

38x24 Inch Reinforced 
Concrete Pipe Elliptical 
(Complete In 

23x14 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

68x43 Inch 
Reinforcement 
Concrete Pipe Elliptical 

60x38 Inch Reinforced 
Concrete Pipe Elliptical 
(CIP) 

21 Inch Reinforced 
Concrete Pipe 

36 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

12 Inch Reinforced 
Concrete Pipe 

36 Inch Reinforced 
Concrete Pipe (Jacked) 

45x29 Inch Reinforced 
Concrete Pipe Elliptical 
(Complete In 

48 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

21 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

54 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

76x48 Inch Reinforced 
Concrete Pipe Elliptical 
(Complete In 

60 Inch Reinforced 
Concrete Pipe 

78 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

66 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

53x34 Inch Reinforced 
Concrete Pipe Elliptical 
(Complete In 



 

60 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

34 x 22 Inch 
Reinforced Concrete 
Pipe Elliptical 
(Complete 

72 Inch Reinforced 
Concrete Pipe 
(Complete In Place) 

23x14 Inch Reinforced 
Concrete Pipe Elliptical 
(Complete In 

 
Visual Normality Check 

Prior to conducting any advanced variable transformations, each variable underwent a 

graphical normality assessment. This process consists of plotting histograms for each variable 

and, if needed, standard transformations are executed. Figure 2.1 shows an example of the visual 

normality assessment and log transformation for the variable Charge Days. 

 
 

Figure 2.1 Sample of data format 
 

After conducting this visual normality check, all continuous variables were transformed 

using a logarithmic transformation.  Equation 2.1 shows a sample of the transformations 

performed after this visual normality check. Since Ln(0) is undefined, a value of 1 was added to 

all the independent variables before proceeding to the transformations. This conversion has to be 

reverted before interpreting any results. 

 

Transformed 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 = 𝐿𝐿𝐿𝐿(𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 + 1)   [2.1, Sample log transformation] 

 

Transforming all variables using a log transformation has one major benefit. When 

interpreting the coefficients, the concept of elasticity can be applied. This concept refers to how 

the response (dependent) variable changes compared to the predictor (independent) variable. 

This change is represented with percent changes. For example,  Equation 2.2 shows a log-log 

transformation equation used in the analyses. In this case, with each 1% increment in Y, X would 



 

experience β 1 % change (Duin 1995). More about individual interpretations is detailed in the 

individual coefficient interpretations. 

 

𝐿𝐿𝐿𝐿(𝑌𝑌) =  β 0 +  β 1 · 𝐿𝐿𝐿𝐿(𝑋𝑋)   [2.2, log-log transformation] 

 

Multicollinearity Assessments 

After conducting a visual normality assessment, the Variance Inflation Factor (VIF) was 

measured, which is an estimated of the degree of collinearity for each variable (Craney and 

Surles (2002)). While there is not consensus on an acceptable VIF value before multicollinearity 

should become a concern, a value of 4 is recognized as being a conservative value; any VIF 

value above 4 indicates the presence of multicollinearity (Kabacoff 2015). Per Table 2.5, none of 

the variables’ VIF exceed 4, therefore the data used for the model remained unchanged.  

 
 

Table 2.5. VIF Values for Variable Selection. 
Variable VIF 
Sewage 1.37 
Concrete 3.80 
Asphalt 3.31 
Perforated Pipe 1.24 
PVC Pipe 1.39 
Concrete Pipe 1.82 
Class D Concrete 3.85 
Pavement Marking 1.91 
Muck Excavation 1.34 
Rock Excavation 1.04 
Concrete Pavement 1.18 
Structural Backfill 2.53 
Embankment 1.88 
Unclassified Excavation 1.90 
Structural Excavation 1.87 
COST (2003 USD) 2.47 
Asphalt Reclamation 2.85 
Aggregate Base 2.23 
AADT 1.09 

 



 

Automatic Variable Selection 

For this step of model development, two-way stepwise selection was used. This is an 

automated variable selection process that combines forward and backward stepwise selection. 

The process compares forward and backward stepwise and selects the best possible model. The 

forward method starts by creating a model that has no predictors and includes predictors, one by 

one, until a stopping criterion is reached. It finally produces one model that only includes those 

variables present in the best model analyzed. Alternatively, the backward stepwise process 

begins with a model that includes all the predictors and subtract them one by one, similarly to 

forward elimination, but in the opposite direction, using the same stopping criterion (Kabacoff 

2015). The criterion used in this process is a metric called Akaike Information Criterion (AIC), 

which is used to measure the quality of the analyzed models. With AIC, a smaller value means a 

better model considering the use of as few independent variables as possible (James et al. 2013; 

Kabacoff 2015). Table 2.6 shows a summary of the AIC values for each iteration, until the 

optimum model was achieved. By using two-way stepwise regression, the number of variables 

present in the model decreased. These variables are shown in Table 2.7. 

 
Table 2.6. Summary of AIC values produced by the two-way stepwise regression 

Start: AIC=-2110.9 
Step 1 AIC=-2110.9 
Step 2 AIC=-2112.87 
Step 3 AIC=-2114.82 
Step 4 AIC=-2116.58 
Step 5 AIC=-2118.31 
Step 6 AIC=-2119.83 
Step 7 AIC=-2121.35 
Step 8 AIC=-2122.8 
Step 9 AIC=-2123.74 
Step 10 AIC=-2123.86 

 
Table 2.7. List of independent variables after stepwise regression 

Construction 
Quantities 

Project 
Characteristics 

Sewer Cost (2003 USD) 
PVC Pipe Size 
Pavement Marking Type 
Structural Backfill AADT 



 

Asphalt  
Structural Excavation  

 
 
Analyzing the Model 

There are several steps that comprise analyzing the model, which include: Estimating the 

regression coefficients; Interpreting the regression coefficients; Testing for significance of the 

model (overall); Calculating the coefficient of multiple determination (R2 and adjusted R2); and 

Calculating the standard error of the estimate or residual standard error (RSS).  The final model 

based on two-step stepwise regression is summarized in Table 2.8). The stepwise technique 

described previously, includes all variables that make the model better. In other words, this 

automatic variable selection technique can include variables that are not significant, but still help 

improve the overall model. An example of this would be the presence of Sewer and PVC Pipes in 

Table 2.8.   

Table 2.8. Output Table from the statistical software 
Variable Coefficients Std. Error t value p value 
(Intercept) -1.440242 0.355283 -4.054 5.34E-05 
Sewer -0.012434 0.007016 -1.772 0.07657 
PVC Pipes 0.014707 0.007762 1.895 0.05833 
Pavement Marking -0.035238 0.007239 -4.868 1.27E-06 
Structural Backfill 0.027228 0.010444 2.607 0.00924 
Asphalt -0.021042 0.0073 -2.882 0.00401 
Structural Excavation 0.015237 0.007781 1.958 0.0504 
Cost (2003 USD) 0.505969 0.027163 18.627 <2.00E-16 
AADT 0.016733 0.01011 1.655 0.09814 
Size between $1M and $10M 0.109954 0.0604 1.82 0.06892 
Size over $10M 0.217396 0.092127 2.36 0.01843 
Type_Resurfacing -0.069376 0.23399 -0.296 0.7669 
Type_Minor Widening -0.203911 0.240318 -0.849 0.39631 
Type_Major Widening -0.174805 0.24808 -0.705 0.48117 
Type_Reconstruction -0.146697 0.56241 -0.261 0.79426 
Type_New Construction -0.078505 0.564364 -0.139 0.88939 
Type_Rest Area -0.263502 0.236444 -1.114 0.2653 
Type_Noise Walls -0.096163 0.285851 -0.336 0.73662 
Type_Landscaping -0.350158 0.247082 -1.417 0.15667 
Type_Miscellaneous -0.63488 0.235148 -2.7 0.00703 
Type_Enhancement -0.252819 0.2936 -0.861 0.38934 
Type_Planning -0.227456 0.233746 -0.973 0.33069 
Type_Bridge Restoration/Rehab. -0.3172 0.240872 -1.317 0.18811 
Type_Major Surface Treatment -0.355098 0.282957 -1.255 0.20972 
Type_Minor Surface Treatment 0.126309 0.249627 0.506 0.61295 
Type_Routine Maintenance -0.098788 0.266376 -0.371 0.7108 



 

Type_Bridge Replacement -0.503307 0.343892 -1.464 0.14356 
Type_Restoration/Rehabilitation -0.162659 0.257054 -0.633 0.52699 
Type_Safety -0.297805 0.378922 -0.786 0.43205 
Type_Hazardous Locations -0.505773 0.254252 -1.989 0.04688 
Type_Rail/Highway Separation -0.319532 0.256892 -1.244 0.21378 
Trans. System Management -0.918822 0.24458 -3.757 0.00018 
Type_Traffic Signals -0.187167 0.251583 -0.744 0.45704 
 

Interpreting the Regression Coefficients for Continuous Variables 

Interpreting regression coefficients is a highly important step, because it helps explain 

how different construction quantities and project characteristics impact the duration of a project. 

Since there were transformations conducted prior to creating the final model, the interpretation of 

the coefficients can be misleading. Since all the continuous variables were transformed using a 

logarithmic transformation, the interpretation of their coefficients can be done using the concept 

that economists know as elasticity. Elasticity is used to interpret the coefficients of variables 

when the dependent and independent variables are transformed using a logarithmic 

transformation. With elasticity, the coefficients represent the percent change of an independent 

variable with a 1% change in the dependent variable (Fox 2015). The explanation of the 

continuous variables present in the final model is similar for most of them. However, an 

individual interpretation of each coefficient is presented next. 

Sewer 

Sewer represents the amount of linear feet installed of sewage pipes. Since the only 

transformation needed for this variable was the logarithmic transformation, the coefficient           

-0.012434 can be interpreted as follows: having all other variables held constant, each -

.012434% change in Sewer relates to a 1% increase in project durations. 

PVC Pipes 

PVC Pipes refers to the installed quantities of PVC pipes, expressed in linear feet. Again, 

since the only transformation needed for this variable was the logarithmic transformation, the 

coefficient .014707 means that a .014707% increment in the installed feet of PVC Pipes are 

associated with a 1% increase in project durations. 

Pavement marking 

Pavement marking refers to the installed quantities of pavement marking for the 

projects, expressed in linear feet. Since the only transformation needed for this variable was 

the logarithmic transformation, the coefficient -0.035238 can be interpreted as follows: 



 

having all other variables held constant, for each .035238% decrease in Pavement marking, 

the duration increases by 1%. This is due to the concept of elasticity.  

Structural Backfill 

Structural Backfill is a representation of to the number of Cubic Yards of backfill-

related items present in the projects. In that way, the coefficient .027228 explains that with a 

.027228% change on quantity of cubic yards an associated 1% increment is experienced in a 

project’s duration. 

Structural Excavation 

Structural Excavation refers to the number of Cubic Yards excavated from structures 

in a highway transportation project. In that way, the coefficient .015237 explains that with a 

.015237% change on quantity of cubic yards an associated 1% increment is experienced in a 

project’s duration. 

Asphalt 

Asphalt refers to the number of tons of asphalt pavement used in a highway 

transportation project. In that way, the coefficient -.021042 explains that with a -.021042% 

change on quantity of tons an associated 1% increment is experienced in a project’s 

duration. 

Cost 

Cost refers to the amount of 2003 USD needed to execute a project. The interpretation of 

this coefficient is the same as the previous variables. In this case, a .505969% increment in the 

cost of a project represents a 1% increase in the project’s duration 

AADT 

AADT refers to the annual average daily traffic that uses the road associated with a 

particular project on a daily basis. This metric is actually the number of axels use a road per day. 

In that way, the coefficient .016733 explains that with a .016733% change on AADT an 

associated 1% increment is experienced in a project’s duration. 

Understanding coefficients in MLR models 

In order to help understand the interpretation of partial correlation coefficients, the 

author developed a Table with several MLR models. Table 2.9 shows how the coefficients, R2s, 

Adjusted R2s, F-statistics, and p-values change for each model. The models shown below include 

the final model created by the stepwise regression (Model I).  Also shown are the six models that 



 

include cost and exclude variables one at a time (Models II through VIII) to demonstrate each 

variable’s effect on the statistical strength on the regression model and how coefficients change 

with each variable removed. Model IX is included to show the predictive power of cost and the 

categorical variables. Finally, Model X is included to show how the coefficient of asphalt 

changes from negative (with all variables present) to positive. 

 



 

Table 2.9. Comparison of coefficients with different variables present

 
Note: (*) denotes significance at p < .05 



 

From the Table above, there are several observations worth highlighting. First the model that 

uses only cost as an independent variable explains about 50% of the variability. On top of that, as 

variables are included or excluded from the model, the partial correlation coefficients change. 

These changes can be so drastic that coefficients that vary may from positive to negative. 

Finally, the model that includes more variables (from the Table above), has the greatest amount 

of explained variability. With the previous observations in mind, it is easier to understand how 

the partial correlation coefficients can be interpreted. The partial correlation coefficients are 

used to explain the influence that one independent variable has over the dependent variable in the 

presence of the other variables, so the amount of explained variability changes when the number 

of independent variables changes. The statistical explanation for the change of the coefficients is 

called Omitted Variable Bias. This term explains the way coefficients change in a regression 

model when excluding – or including - other independent variables in the model (Clarke 2005). 

A hypothetical practical explanation of negative coefficients could be linked to how the 

productivity of a certain activity increases when the quantity increases. This would reduce the 

time required per unit installed. This concept is known as economies of scale (Baumers et al. 

2016). These two explanations help understand the changes in coefficients between models. 

1.1.1.1 Interpreting the Regression Coefficients for Categorical Variables 

The categorical variables in this model produce auto-generated dummy variables. This means, 

that a project can only fulfil one of the dummy variables per category, i.e. a project that is Type2 

cannot be Type3, Type4, or any other TypeX, nor a project that is Size2 can be Size1. That being 

said, the interpretation of this coefficients is different from variables that are continuous. Since 

these variables were not transformed and they are dummy variables, the general interpretation of 

these coefficients could be explained as the percent difference shown in Equation 2.3.  

 

 ∆𝑌𝑌 = (𝑒𝑒β 𝑗𝑗 − 1)   [2.3, percent difference], 

Where:  

∆Y: Percent change in duration 

β 𝑗𝑗 : J eth coefficient 

 



 

For example, if we replace the coefficient .217396 of Size3 in Equation 5,             (∆𝑌𝑌 =

(𝑒𝑒  .217396 − 1)  ≈  .24), we will conclude that a project with Size3 will take 24% longer to 

execute than a project Size1 (base dummy variable). 

 

Overall model performance 
The overall performance of the model is summarized in (Table 2.10).  First, the overall model is 

statistically significant. This is shown by the p-value of the F statistic. These low values infer 

that at least one of the predictor variables has a linear relationship with the response variable 

(charge days) and that the model is statistically significant. Second, the coefficient of multiple 

determination (R2) tells us that we can explain 66.4% of the variability in the duration of projects 

with the variables present in the model. This value drops to 65.6% even after adjusting for the 

number of independent variables and computing the adjusted R2. Lastly, the standard error of 

the estimate or Residual Standard Error (RSS) of the model is 0.5097 on 1470 degrees of 

freedom. 

 

Table 2.10. Overall model performance 

Statistics of the overall model 

F-statistic: 80.45 on 32 and 1301 DF,  p-value: < 2.2e-16 

Multiple R-squared:  0.6643, Adjusted R-squared:  0.656 

Residual standard error: 0.5097 on 1301 degrees of freedom 

 

Test for Significance of the Regression Coefficients 

As we can see from Table 11, not all the continuous variables present in the final model are 

significant, satisfying a level of α = .1, but they still improve the model’s accuracy levels. For 

the factor variables (Size and Type) we can also find significance, because at least at one level of 

each has a p-value < 0.05 (Type6, Type8, Type17, and Size3). Therefore, we can conclude that 

all the Type and Size are significant.  

Data Split 
Prior to the creation of the model, the dataset was split into training and testing subsets 

containing 90% and 10% of the data, respectively. This was done in order to test the model with 



 

data that was not used in the creation of the model. By doing so, the researcher can provide an 

unbiased evaluation of the model accuracy. 

Model Validation 
After creating the model with the training subset, the test subset was used to validate the model’s 

accuracy. To do this, the final model was used to predict the duration of the cases in the testing 

subset. After predicting the durations, Median Absolute Percent Error (MdAPE) and the Mean 

Absolute Percent Error (MAPE) Errors were computed. The MdAPE is simple the median of all 

APEs (Equation 1) and the MAPE is the mean of the APEs. The results obtained for MdAPE and 

MAPE from the test sample are shown in Table 2.11. 

 

Table 2.11. MdAPE and MAPE for MLR model 
 

Train Data (CO) Test Data (CO) 
 

MdAPE MAPE MdAPE MAPE 

MLR 43.70% 44.50% 43.18% 45.20% 

 

Testing the Underlying Assumptions 

Linearity and Homoschedasticity 

An MLR model must fulfil the assumptions of linearity and homoschedasticity (equal variance), 

which can be assessed by looking at the residual plots of the fitted values (Figure 2.2). Here, we 

can attest that the fitted values are linear and have equal variance, so the data used fits a linear 

model. 

 



 

Figure 2.2 Scatterplot of fitted values 

Normality 

For Linear Regression models, data has to fit a normal distribution. However, the central limit 

theorem states that when sample sizes are large, the data tends to fit a normal distribution. 

According to Kwak and Kim, once the sample sizes reaches n = 30, it can be assumed that the 

studentized distribution tends towards a normal distribution. With this in mind, it is safe to 

assume that, given the sample size used of this model (n>1300), the residuals approximate a 

normal distribution. 

 

The Artificial Neural Network Approach 
Data for Model Development 

The data used to develop the model was obtained from Colorado’s Department of Transportation 

(CDOT). The data involved in the creation of the model consisted of historical projects finished 

for CDOT from 2004 up to and including 2016. After cleaning and organizing the data, over 

1,500 projects were considered usable for the model. In order for a project to be considered 

usable, its data recorded had to include observed duration (work days), which is the dependent or 

output variable and overall project cost. Once the projects were considered usable, more 

variables were added to the model as input variables, including: Contract (bid) items, Project 



 

Type, Project Size, Terrain Type, Annual Average Daily Traffic, and Project Condition (new or 

restoration). 
 
In order to reduce the number of variables, the author proceeded to group them into variables 

with similar physical characteristics. For example, concrete piping is one single variable instead 

of having one independent variable per pipe diameter.  By doing so, the number of independent 

variables was reduced from over a thousand to just 23, categorized into “Construction 

Quantities” (17 variables) “Project Characteristics” (6 variables) (Table 2.12) 
 
Table 2.12. List of independent variables 

Construction Quantities Project Characteristics 
Perforated Pipe Muck Excavation Embankment Cost (2003 USD) 
PVC Pipe Rock Excavation Asphalt Size 
Concrete Pipe Concrete Unclassified Excavation Type 
Class D Concrete Concrete Pavement Structural Excavation New Project 
Pavement Marking Structural Backfill Asphalt Reclamation Terrain Type 
Aggregate Sewage  Annual Average Daily 

Traffic (AADT) 
 
The data collected for this research only includes CDOT data, but it does not necessarily include 

all the factors that can have a significant effect in project durations. To better explain this, an 

influence diagram was developed (Figure 3.x). Since this paper is trying to explore all possible 

explanations of project durations, all the variables available in the data collected were included 

in the different ANN models developed. 
 



 

 
Figure 2.3. Influence Diagram 

 
Project Type 

Project Type refers to the category assigned by CDOT to each particular project. CDOT uses 22 different 

project types. This variable is a categorical variable, and the CDOT categories are shown in Table 2.13. 

 

Table 2.13. List of Project Types  
 

Bridge replacement Major widening Planning Safety 
Bridge restore/rehab Minor surface treatment Reconstruction Unassigned 
Enhancement Minor widening Rest area Traffic signals 
Hazardous locations Miscellaneous Restoration/rehab Resurfacing 
Landscaping New construction Trans systems management (TSM) 
Major surface treatment Noise walls Planning 

*These Project Types are assigned by CDOT and are not modified by the research. 
 

Project Size 

Project size refers to the overall cost of the project, expressed in terms of 2003 USD. In order to 

achieve this, the cost of every project was converted using the National Highway Construction 



 

Cost Index (NHCCI), which measures the historical fluctuations of highway construction costs 

(“NHCCI / Description - Policy | Federal Highway Administration” n.d.). 

Project size is represented as a continuous variable as well as a categorical variable, in which 

projects are assigned a value – 1, 2, or 3 – depending whether they are under $1M, between $1M 

and $10M, or over $10M. 

Terrain Type 

Terrain type refers to the characteristics of the topography in which the project was built. There 

are 5 categories present in the data, Level (1), Mountainous (2), Plain (3), Rolling (4), and 

Unassigned (5). 

Annual Average Daily Traffic (AADT) 

Annual average daily traffic is a metric of the total number of axels that drive through a specific 

road during a year divided by 2 to represent cars and the divided by 365 to calculate daily traffic. 

AADT is also a continuous variable. It is a weighted average of the AADT for the whole project, 

using mile markers for the project and its respective AADT, the weighted AADT was computed 

and assigned to each individual project. 

Project Condition 

Project condition is a categorical variable with two possible outcomes, whether the project is 

new (0) or is a restoration of an existing project (1). 

 

Model Training 

Model training consists on a series of automated iterations conducted by the ANN algorithm 

(Figure 3.3). This process is done until a set parameter (Median Average Percent Error) reaches 

its optimum value, i.e. until it stops decreasing. For the training of the model, only 90% of the 

existing data, randomly selected, was used. This was done to have an untouched set with which 

the model was tested after each iteration. In ANNs, the training is conducted automatically, and 

it is an equivalent process of the manual processes followed in MLR (e.g. variable selections, 

autocorrelation assessment, transformations, and unusual observations). Training is the iterative 

process (Fig. 2.4) in which the algorithm adjusts the weights of the variables after comparing 

observed versus predicted values if the input variable.  This is the process in which the model 

learns and improves the predictability. In order to train the model, the data has to be fed. Feeding 

the data refers to running it through the network to start the training process. 



 

 
Figure 2.4 Model Training Process 

 

Two metrics were used to measure the accuracy of the model, including Median Absolute 

Percent Error (MdAPE) and Mean Absolute Percent Error (MAPE), where the absolute percent 

error is calculated as follows (Equation 2.4). MdAPE and MAPE are computed after each epoch 

for both, the training and the testing datasets. 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = |𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷|
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂  𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑜𝑜𝑛𝑛

∗ 100      [2.4, APE] 

 

 



 

Overfitting and How to Mitigate it 

A major issue encountered when training ANNs is what is known as overfitting, which 

Piotrowski and Napiorkowski (2013) define as the deterioration of the generalizability of the 

model. Model overfitting results in the decrease in power for predicting new cases. This happens 

when the model is trained with too many epochs, which causes the model to be extremely 

accurate at predicting the data in the train dataset, but very inaccurate for test data or any exterior 

data.  

In order to mitigate overfitting in this research, an auto stop function was added to the 

script. The goal of this function is to stop training the model based on specified parameters. In 

this case, the parameter was a ratio (Equation 2.5) of the MAPEs from the train and test (Figure 

5) datasets. After every epoch, the MAPE is calculated for each of the datasets and the training 

stops when the ratio reaches the optimal point, or when it starts decreasing again (see Figure 

2.5).  

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

      [2.5, Ratio] 

 



 

-

 
Figure 2.5. Illustration of auto stopping functions 
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Model Testing 

The testing of the model is a process that happens simultaneously to the training by using 

the 10% of the data randomly left out from the training data set. The model predicts the duration 

of every test project and compares it to the observed duration. After every epoch, each absolute 

percent error is computed and the MAPE for that epoch is calculated. This process is also 

iterative and is performed until the optimal model is achieved. 

Results and Discussion 

Thus far, the ANN models developed outperform any of the parametric models 

developed by the author or those found in literature (Table 2.14). One explanation for this 

performance, might be that most models are based on MLR and, at least with the data used for 

this research, none of the variables present are normally distributed, which is one of the main 

requirements to develop a Linear Regression. Of course, transformations are a valid way to 

overcome this limitation, but the ANNs are robust to this – and other assumptions – allowing a 

broader interpretation of the available data, thanks to the nonparametric nature of ANNs. Such 

nature could help find what are the driving factors for highway construction projects’ durations 

that might not even be considered important to the date.  

The Kentucky Contract Time Determination System (KY-CTDS) was used as a reference 

point for a number of reasons. First, it is one of the most recently documented Contract Time 

Determination Systems for an STA. Second, the MLR approach used by the KY-CTDS relates it 

to the Estimated Cost Method suggested by the FHWA. Third, KY-CTDS is highly accurate 

when compared to those methods existing in the literature (Zhai et al. 2016). Lastly, the author 

created a preliminary MLR model to estimate durations before creating the ANN models used 

for this paper. This last point is of great importance, because it would help compare previous 

efforts with those developed by the author. 

 

 

 

 

 

 

 



 

 

Table 2.14. Comparison of MLR, ANN, and KY-CTDS 
 

Train Data (CO) Test Data (CO) 
 

MdAPE MAPE MdAPE MAPE 

MLR 43.70% 44.50% 43.18% 45.20% 

ANN 32.78 % 35.11% 25.56% 32.26% 

KY-CTDS*   34.28% 61.25% 

* (Zhai et al. 2016) 

 

 

Summary 
 
The research found that greater accuracy of estimating contract time was obtained using ANN 

versus MLR.  In addition, ANN was found to be more adoptable to future data in the sense that 

ANN can be more easily trained and therefore revise its estimates when new data is eventually 

added to the database.  In the case of MLR, the analyses would have to be redone if new data 

was ever added to CDOT’s database.  Based on these two findings, the decision was made in 

conjunction with CDOT’s oversight time to develop the Estimating Contract Time Tool with 

ANN.   



 

Chapter 3 – The Estimating Contract Time Tool 

Introduction 

This tool was designed to estimate Project Durations (charge days) for projects in early 

stages. The Tool was developed by researchers at the University of Colorado Boulder, with Dr. 

Paul Goodrum as a Principal Investigator (PI) and Guillermo Nevett as a Research Assistant 

(RA). The tool was developed using Machine Learning, specifically an Artificial Neural 

Network (ANN), to estimate project durations. Artificial Neural Networks use historical data to 

train a model that can then be used to predict a variable. In this case, several project 

characteristics and construction quantities were used to predict the duration of transportation 

construction projects. 

The data used for the creation of this tool was provided by CDOT to CU’s researchers. 

Over 1,500 projects (from 2004 to 2017) were analyzed in the creation of this tool.  The 

researchers extracted the most relevant variables and grouped them by similarity of 

characteristics (physical and daily outputs) to reduce the number of variables required to create 

predictions. 

How it works: 

ANNs are machine learning algorithms that learn by predicting data outputs and 

comparing them to historic, actually observed values. This is done to adjust the weights of 

predictors within the model, in order to incrementally improve the accuracy of the predictions. In 

this case, the ANN uses historic project data (Project Quantities and Characteristics) to predicted 

project durations. These predicted durations are then compared to the actual (observed) 

durations, the ANN computes an error for each duration estimation, and then weights are 

adjusted within the ANN to minimize overall prediction error. After adjusting the weights, the 

ANN again estimates the durations of the same projects, computes predicted duration errors, and 

attempts to adjust weights to minimize the error again. This process is conducted hundreds of 

times until the lowest possible prediction error is achieved, resulting in the best possible model. 

Why ANNs? 

ANNs were used for several reasons:  

 They are more accurate than anything observed in literature (See Figure 1.1); 

 Their ability to adapt to changes that improve productivity (e.g. new 

technologies, new methodologies, new materials, etc.); 



 

 The final interface is easy to use; and 

 Their ability to produce quick estimates. 

 

 
Figure 3.1 Graphical representation of model accuracy 

 

As a quick overview of the tool, the process to develop a contract time estimate includes 

the following steps. 

• Access tool through link on Project Management 

website https://pmo.codot.gov/contracttimes/. 

• Input project characteristics. 

• Input item quantities. 

• Hit "Compute", tool then tells you a working day range. 

• The amount under "Expected" should be entered in the Project Management tool "MS 

Project Preconstruction Schedule"  https://www.codot.gov/business/project-

management/business/project-management/scoping under the task "Construct the 

Project". 

• The difference between the "Expected" and the "Expected +30%" should be entered 

under the task "Schedule Contingency". 

More specific details about the process to estimate contract time using the tool is descrbed in the 

next section.  

Observed vs. Predicted Values of the Test Data (log scale) 

https://pmo.codot.gov/contracttimes/
https://www.codot.gov/business/project-management/business/project-management/scoping
https://www.codot.gov/business/project-management/business/project-management/scoping


 

Interface of the Tool (Figure 3.2) 

The tool has two categories of variables: Project Characteristics and Bid Quantities  

Project Characteristics (all six variables required) 

This category refers to conditions relevant to the project locations and budget. It includes: 

Project size: Sub-grouping category used to describe the cost of the project. 

Project type: Type of construction that best describes the project. 

Terrain type: Describing the topography of the location of the project. 

Condition of the project: This refers to whether the project is new or is a reconstruction or 

renovation. 

Engineers estimate (EE): The numerical value of the cost of the project. It has to be in 2003 

constant dollar value.  To convert current dollar value to constant dollar value, use the quarterly 

National Highway Construction Cost Index (NHCCI) 2.0 

(https://www.fhwa.dot.gov/policy/otps/nhcci/pt1.pdf ). 

 

𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  
𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑓𝑓𝑓𝑓𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 

For example: Engineering Estimate in December 2018: $30,000,000; NHCCI for December 

2018 is 1.8727 (Choose the nearest quarter). 

 

𝐸𝐸𝐸𝐸 𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  
$30,000,000   

1.8727 = $16,019,651 

 

Annual Average Daily Traffic (AADT): this value is the weighted average of the traffic metrics of 

the project location. 

 

 

Bid Quantities (only those that apply) 

This category refers to the quantities of installed materials or executed work. Using the 

conversion tool (section 2.B), input all that apply. If a project doesn’t have one of the variables 

shown in the interface, the value must be zero. 

https://www.fhwa.dot.gov/policy/otps/nhcci/pt1.pdf


 

 
Figure 3.2. Contract Time Tool – Interface 



 

Table 3.1. Details of the bid items used as independent variables. 

Name Description Unit 

Sewer1 Sum of all corrugated and culvert pipe 

quantities 

LF 

Perforated pipe Sum of all perforated pipe quantities LF 

PVC pipe Sum of all PVC pipe quantities LF 

Concrete pipe Sum of all concrete pipe quantities LF 

Class D concrete Sum of all Class D concrete quantities CY 

Pavement Marking Sum of all pavement marking quantities CY 

Muck Excavation Sum of all muck excavation quantities CY 

Rock excavation Sum of all rock excavation quantities CY 

Concrete Sum of all concrete quantities (excludes piping 

and pavement) 

CY 

Concrete pavement Sum of all concrete pavement quantities Ton 

Structural backfill Sum of all structural backfill quantities CY 

Embankment Sum of all embankment quantities CY 

Asphalt pavement Sum of all asphalt pavement quantities Ton 

Unclassified excavation Sum of all unclassified excavation quantities CY 

Structural excavation Sum of all structural excavation quantities CY 

Aggregate base Sum of all aggregate base quantities Tons 

   

  

 
1 Piping items exclude connections, manholes, and anything not measurable in LF. 



 

Conversion Tool 

A complementary conversion tool (Figure 3.3) was designed to facilitate the use of the 

Contract Time Tool. This tool is needed because of the amount of different bid items that make 

up one single variable for the model. It is also required because different regions use different 

units for some project items. In order to run the conversion tool, the user has to allow editing and 

enable macros in MS Excel. The program will prompt the user to do so. 

 
Figure 3.3 Conversion Tool 

Since the data source can be from AASHTOWare or Project Cost Planner Tool, the conversion 

tool has one specific tab for each of the data sources. 

Project Cost Planner 

For the Project Cost Planner data, the tool will require data to be copied from the tab 

Model_RegionEstimate (Figure 3.4) and pasted (using paste special > values) into the 

Conversion Tool (Figure 3.5). The conversion tool has buttons to guide the users into selecting 

the appropriate data source. 

 



 

 
Figure 3.4 Sample Data from Major Construction Items (Section A in Model_Region Estimate 

Tab of the Project Cost Planner Tool). 

 
Figure 3.5 Conversion Tool Paste Area – PCP Tool 

 

AASHTOWare 

For the AASHTOWare data, copy the project’s data from the excel spreadsheet (Figure 3.6) and 

paste using the paste special command into the designated cells (Figure 3.7). 

Here are steps to print out (generate) a proposal price schedule (aka estimate) in AASHTOWare 

in excel. You may need to contact EEMA for help in generating the report.  

 

 

 

 



 

- First go to Proposal Overview: 

 

 
 

- Then use the action pull down arrow: 

 
 

 
to select CDOT Proposal Price Schedule XLS: 

 

 



 

 
Figure 3.6: Sample of excel spreadsheet generated from AASHTOware. 

 

 
Figure 3.7 Conversion Tool Paste Area - AASHTOWare 

 

Running the Tool 

Once the data is pasted and the user proceeds to results, the values obtained (Figure 3.8) 

have to be copied into the Contract Time Tool’s respective fields (Figure 3.9) below. Once this is 

done, the user clicks “COMPUTE” and the Tool gives the estimated durations with the ±30% 

values. 



 

 
Figure 3.8. Grouped Values 

 
Figure 3.9: Contract Time Tool – Interface 

Results and Interpretation 

The results of the tool are an estimated working day duration and one value that is 30% 

above the working day estimate and another one that is 30% below the working day estimate. 

Since the average percent error of the tool is 25%, these values provide an interval in which the 

duration of a project should fall. These results, however, are intended to be used in the early 

stages of the project, so the Project Mangers’ evaluation is required to determine whether the 

estimates are reasonable. This tool is not intended to be used to develop contract time or replace 

the Form 859 and Critical Path Method schedule. 

There may also be other variables the Project Manager or Engineer should consider when 

determining contract time, such as procurement of items with a long lead time, special events, or 



 

a seasonal project shutdown. There may be additional considerations like these that are not 

strictly related to actual construction time, and the tool will not automatically accommodate 

those as one would reflected in the Construction End Date. The user has to take all the above 

factors into account when estimating the Construction End Date or construction duration (in 

months). This tool is meant to help validate, or serve as a starting point for a more detailed 

Microsoft Project schedule as required in the form 859. 

 If it is necessary, converting a Working Day estimate to a Calendar Day estimate is done 

by multiplying the Estimated Contract Days by 1.4 to add weekends. This is based on the 

assumption that work time is five days per week. Once the weekends are added the next step is to 

account for the additional no-work periods such as holidays and a reasonable number of weather 

days. 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 = (𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂𝐂 𝐃𝐃𝐃𝐃𝐃𝐃𝐃𝐃 × 𝟕𝟕 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅  
𝟓𝟓 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

 ) + 𝑵𝑵𝑵𝑵 𝒘𝒘𝒘𝒘𝒓𝒓𝒌𝒌 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑  

 

For example, the Contract Time Tool provides a result of 250 contract days, with an estimated 

Construction start date of April 1, 2019.  

 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 =  𝟐𝟐𝟐𝟐𝟐𝟐  𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 × 𝟏𝟏.𝟒𝟒 = 𝟑𝟑𝟑𝟑𝟑𝟑 𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝  

March 16, 2020 is 350 Calendar days after April 1, 2019 and at this point, the contract time does 

not account for no-work periods.  

There are eight holidays between April 1, 2019 and March 16, 2020. Add 12 days to 

account for the holidays. This is based on this estimate of non-work days per holiday: Memorial 

Day (1.5), Independence Day (1.5), Labor Day (1.5), Thanksgiving (2.5), Christmas Day (1.5), 

New Year’s Day (1.5), Martin Luther King Jr. (1) and President’s Day (1). A half-day was added 

to some holidays per 108.08, because six of these holidays restrict work after noon on the day 

before the holiday. 

Next assume seven days per month for weather. This is an estimate for this example and 

will vary based on project location and time of year. The project spans 12 months, therefore add 

84 days for weather. 

𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 (𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏 𝒘𝒘𝒘𝒘𝒘𝒘𝒘𝒘 𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑) =  𝟑𝟑𝟑𝟑𝟑𝟑 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝟏𝟏𝟏𝟏 𝑫𝑫𝑫𝑫𝑫𝑫 + 𝟖𝟖𝟖𝟖 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫

= 𝟒𝟒𝟒𝟒𝟒𝟒 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

In summary, the tool provided an expected Estimated Contract Days of 446 days and based on 

weekends, holidays and other no-work. 



 

As part of the implementation, the research team assisted CDOT personnel in installing 

the tool on the agency’s servers.  The general overview of the installation steps are included in 

Appendix A.  
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Appendix A – Steps for Tool Server Installation 
 

Part I: Ensure that app is able to run locally using flask. 

 

1. Run as administrator. 

 

2. Ensure that python 3.6.3 is installed, along with all the following libraries: numpy, 

pandas, keras, sklearn, flask and wtforms and that the version of Windows is Windows 

Server 2016 or earlier (Windows 10 as the earliest). 

a. Make sure to add Python to Path. 

b. Make Theano the backend framework for keras instead of TensorFlow. Go to the 

file “~/.keras/keras.json” and replace “tensorflow” with “theano”. 

 

3. Download miniconda for windows: https://docs.conda.io/en/latest/miniconda.html. Use 

the miniconda command line to run all the upcoming commands in this tutorial. (This 

allows Windows to use Theano which makes the epoch processing faster, and the 

command prompt for “conda” should appear by typing “anaconda” on search bar) 

a. Once you download miniconda, ensure to run the following commands inside its 

designated terminal: 

i. conda install m2w64-toolchain 

ii. conda install -c anaconda libpython 

 

4. Download the folder “NiseCdot”. This contains all of the files you will need for this 

application. 

 

a. Run the “newtrain.py” file using the “python newtrain.py” command on your 

terminal or the terminal of any editor you may be using. This will load the model 

and create a sample prediction of a dataset used for proofing and debugging. 

b. Run the “middle_man.py” file using the “python3 middle_man.py” command to 

ensure all is compiling correctly. 

https://docs.conda.io/en/latest/miniconda.html


 

c. Finally, to run the application locally using flask run the following two 

commands: “export FLASK_APP=nisecdot.py”, “flask run”. 

i. It should default to the following port: http://127.0.0.1:5000/ 

 

5. In case the data changes and you need to upload a different excel file, as long as there 

isn’t any structural change to the columns or file (there is still the same number of 

columns and each input stays on its named column), nothing is necessary besides 

replacing the excel file.  

a. In case you do change or add a column, you will need to mark the range of 

columns you are going to use as inputs through “dataset.iloc”. The “iloc” 

command is what determines what data is getting retrieved from the file you 

inputted. In the “newtrain.py” file it is specified as columns 1 – 45 

(“dataset.iloc[:, 1:45]”) currently. You can see this on line 17. You will also have 

to change the number of columns you have in line 18, currently 0 – 45. The same 

goes for line 53 in the same file because you need to specify the range for the 

testing data. 

b. You will also have to change line 22 on “nisecdot.py” and switch the two 

instances of the number “44” to one minus whatever number of inputs you may 

have. Currently the count is “45”, therefore the correct number is “44”. 

c. The “methods.py” file also needs to be edited. You need to add or remove 

whatever input you changed. If you added one, the format for adding a new one is 

“NAME = FloatFIeld(validators = [validators.InputRequired])” because this is 

what provides all of the different inputs that will be brought in though the website 

on order to make a prediction. 

d. The “middle_man.py” file would also have to be changed in a way similar to the 

“newtrain.py” file, on line 16 the “dataset.iloc” needs to be adjusted accordingly. 

e. The “nisecdot.py file would also have to be updated because adding or removing 

an input will change the list that is passed into the “compute” function called from 

“middle_man.py”. Similar to all the inputs from the request form that are in lines 

19 – 92 you will have to add the added input with the same format (“nameUsed = 

form[‘Name From “methods.py” File’].data”). After adding this you will also 

http://127.0.0.1:5000/


 

have to reference and add it to the “totalList” field in line 94 according to the 

order of the columns in the excel file that contains the training data. Please note 

that the order of the values inside the list:“totalList” are in the exact same 

order as they appear in the columns from the excel file:“Final Data CO.xslx”. 

This order must be maintained in order for the prediction to work properly.  

f. Lastly you will have to edit “main_page2.html” and have to delete or add the new 

input so it is visible in the user interface. The format to add the input is: 

 

<label> 

<action=”” method=”POST”> 

Name of input 

<input id=”input ID” name=”Name of Input how you will reference it in other files” 

type=”number” class=”small” value=0> 

<small>Abbreviation for quantity or Acronym</small> 

</label> 

 

More examples are between lines 213 and 436. 

 

An addition to the “onsubmit” field on line 212 also has to be added with 

“saveValue(InputName)” next to all the other for the value to be saved. And finally 

an addition between lines 468 and 490 with the format: 

“document.getElementById(“InputName”).value = getSavedValue(“InputName”). 

 

If you removed an input just make sure to remove all references to that input in this 

file and all other files. 

 

6. Finally, once the application is successfully running locally and it will be deployed to a 

server, make sure to change the base url in “main_page2.html” because it is currently 

pointing to https://www.cdot.gov/programs-projects/landing-page. This is because the 

html structure of that webpage was used to render nisecdot. The last edit after this would 

be to change the “href” in line 463, currently http://127.0.0.1:5000/data, to whatever 

https://www.cdot.gov/programs-projects/landing-page
http://127.0.0.1:5000/data


 

location the downloadable file “NISE Grouping and Conversion Tool.xlsm” is moved to 

or whatever base url gets used for the web application. 

 

Part II: Deploy the app using IIS. 

 

1. Run every app as Administrator. 

2. Run “pip install wfastcgi”. 

3. Run “wfastcgi-enable”. 

a. It will produce output like this: 

i. “… Applied configutation changes to section “system.webserver/fastcgi” 

for “MACHINE/WEBROOT/APPHOST” at configuration commit 

“c:…\python36\python.exe|c:…\python36\lib\site-packages\wfastcgi.py” 

can now be used as a FastCGI script processor. 

4. Go to “Control Panel”, then pick “Programs”, then “Turn Windows features on or off”. 

Check “Internet Information Services” and under that open “Application Development 

Features”. Check the “CGI” box, then press okay. 

5. Run IIS 

6. Select “Sites” under “Connections” 

7. Click “Add Website” on right of console under “Actions”. 

8. Fill in necessary site info: Site Name, Directory Containing the website content, IP 

address and port (I used 5000). 

9. The physical path you specified should have an exact copy of the NiseCdot folder. 

a. Please make sure to change the “PYTHONPATH” inside “web.config” file to 

what path the “nisecdot” folder is. 

b. “ScriptProcessor” inside “web.config” needs to also be changed to wherever the 

“python.exe” and “wfastcgi.py”. These are inside the “Pyhton36” folder that you 

downloaded with python 3.6.3. They are also found when you do “wfastcgi-

enable” from instruction 3.a.i. 

10. Make sure that “nisecdot” and that “Python36” have permissions of “read” and “write” 

for IIS_IUSRS and IUSR. 
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