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EXECUTIVE SUMMARY

The objective of the modeling in this study was to evaluate the reliability of the
axisymmetric finite element computer program FEQDrain for computing excess pore pressure
ratios (Ry) and settlement at sand sites treated with prefabricated vertical drains (PVDs).
FEQDrain was found to be capable of successfully modeling measured excess pore pressure ratio
time histories from the laminar shear box experiment, as long as an appropriate combination of
‘number of equivalent cycles’ and ‘shaking duration’ was chosen, and sensitive soil parameters
were in the range of measured values. Hydraulic conductivity, soil compressibility, and cycles to
liquefaction are sensitive parameters and govern the computed Ry values. Computed Ry values
decreased as hydraulic conductivity increased and compressibility decreased. Computed
settlement was somewhat overestimated relative to measured values.

Modeling shows that the loading rate in the laminar shear box (15 cycles at 2 Hz) likely
induced higher Ry values than would be expected in a typical earthquake event with a longer
duration. The longer duration allows the drains to dissipate pore pressures and prevent
liquefaction. The number of equivalent cycles and duration of shaking combinations
recommended for various moment magnitudes in the FEQDrain user manual predict lower, but
similar Ry versus time curves. Thus, suggesting that P\VDs would be equally effective for any
size earthquake. However, drains are most effective at preventing liquefaction when earthquake
ground motions are long and uniform, rather than short and intense.

Results from models in this study compare favorably with those from computer modeling
performed by Howell et al. (2014) in connection with centrifuge tests. In both cases, the drains
were more effective at decreasing pore pressures at greater depths than at shallow depths
presumably owing to upward fluid flow. Similar Ry values can be modeled with different
combinations of hydraulic conductivity and compressibility.

Based on computer analyses, wick drains and 2” diameter PVDs were found to be
relatively ineffective for preventing liquefaction. However, 3” diameter PVDs are fairly effective
but can be overwhelmed during intense shaking. In contrast, 4” diameter and larger PVDs are

significantly more effective.



1 INTRODUCTION

1.1 Background

Earthquakes occur all over the world each year and cause substantial damage. Much of
the damage caused by earthquakes is from soil liquefaction rather than strong ground motions.
Lateral spreading caused by liquefaction led to the collapse of the Showa Bridge in the 1964
Niigata, Japan earthquake (NRC, 1985). Figure 1-1 shows sections of the bridge deck that fell
into the river when the piers were pulled apart by lateral spreading of the soil. In the 1964
Alaska, USA earthquake liquefaction triggered massive landslides. The largest slide in
Anchorage was two miles long and 900 feet wide. This slide destroyed about 75 houses and
severed utility and telephone lines. (Stover and Coffman, 1993). Figure 1-2 Shows a portion of
the downtown area which experienced flow deformations caused by liquefied soil slumping
towards the harbor. More recently the 1995 Kobe, Japan earthquake caused $12 billion in
damage to the city’s port facilities (EQE, 1995).

The 2011 Christchurch, New Zealand earthquakes caused widespread and severe
liquefaction of the central business district. Over a third of buildings in this area had to be
demolished because of damage caused by liquefaction, not shaking. Tens of thousands of
residential homes were affected or destroyed by liquefaction or associated slope failure and
instability (Cubrinovski et al. 2011).

Liquefaction occurs when loose, saturated sand, experiences ground motions. The loose
soil particles rearrange and densify. As the soil compacts, water attempts to leave the voids. But
if drainage cannot occur, the tendency to decrease in volume will cause an increase in pore
pressure. If pore pressure becomes equal to the overburden pressure the effective stress is null
and the soil behaves like a viscous fluid, thus the term “liquefaction”. It should be noted that

pore pressures don’t have to rise high enough to reduce effective stress to zero to cause failure of
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the soil. Flow deformations can occur once the resisting forces in the soil are less than the

driving forces.

Liquefied soil loses shear strength and becomes prone to lateral movement, even on mild
slopes. Excessive settlement also occurs in liquefied soils because they cannot support
concentrated loads such as structures or embankments. Underground structures with low density
such as tunnels or sewer lines can even float to the surface of the liquefied soil. Non-structural

signs of liquefaction include sand boils, subsidence, ground fracturing, and horizontal sliding.

o

Figure 1-1 Lateral Spread Collapsed the Showa Bridge, Niigata, Japan. The City
Suffered Slight Damage from Shaking, But Heavy Damage from Liquefaction (NRC,
1985).



Figure 1-2 Downtown Anchorage, AK Experienced Flow Deformation and Lateral
Spreading Which Caused Downhill Slumping Towards the Harbor as a Result of
Liquefaction Caused by Mw 9.2 Earthquake of 1964.

1.2 Liquefaction Mitigation

Preventing liquefaction is usually accomplished by densification of soil to prevent
seismic compaction. In-situ densification can be accomplished by techniques such as vibro-
compaction, vibro-replacement, deep soil cement mixing, compaction grouting, and dynamic
compaction (shown in Figure 1-3). These methods densify the loose soil layer which prevents
seismic compaction during an earthquake. Although these techniques are usually less expensive

than deep foundations or switching sites, they are still costly and slow.

Using deep foundations to bypass the liquefiable layer is another option, but it is more
costly if not otherwise needed. In addition to vertical loads, these foundation members must be
designed to withstand lateral spreading and downdrag, both of which are liquefaction effects on
deep foundations. Drilled concrete shafts are better suited for this application because they have
greater flexural resistance and a lower surface area to cross section ratio. Another foundation



style is a thick concrete mat foundation which is designed to float like a raft. These mat
foundations must be capable of withstanding the differential and total settlements that may occur
(Lew and Hudson, 2004). A full discussion of foundation types, however, is outside the scope of

this report, which is concerned only with using drains to mitigate liquefaction.

Figure 1-3 In-situ Densification Methods, from L-R: Vibro-compaction, Vibro-
replacement, Soil Mixing, Compaction Grouting, and Dynamic Compaction.
(Pictures from haywardbaker.com)

Soil improvements may be avoided if pore pressures can be quickly dissipated as they are
being generated. Vertical drains made of gravel, which allow horizontal drainage of soil, were
introduced by Seed and Booker (1977). These vertical drains reduce the drainage path distance,
and are particularly effective if horizontal layers of impermeable silt or clay block vertical flow.

Having these drains closely spaced, or made larger increases their effectiveness.

Vertical gravel drains have been use for decades, but the design engineer often relies
upon the soil densification that occurs during installation, not the drainage (Rollins and
Anderson, 2004). Whether the gravel drains would be effective in preventing the buildup of
excess pore pressures from drainage alone is questionable. Some designers worry that drainage
alone would still allow unacceptable settlement to occur. Settlement is related to soil
compressibility, and soil compressibility increases with pore pressure ratio (shown in Figure
1-4). If the soil compressibility can be kept low, excessive settlement can be prevented. For
example, by keeping excess pore pressures ratios below, R, = 0.40 the increase in soil
compressibility is negligible, from 0.4-0.6 the compressibility increases about 40%. For Ry above

0.6 the compressibility may increase by 10-12 times (Seed et al., 1975a).
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Large diameter prefabricated vertical drains (PVDs) are designed to rapidly dissipate
pore pressures, and are quick and inexpensive to install. When earthquake induced shear stresses
cause excess pore water pressure, the water can flow horizontally to the drains and then up and
out the large diameter drain, as illustrated in Figure 1-5. Prefabricated drains are made from a 75-
150mm diameter corrugated plastic pipe, perforated with short slits or small holes. The pipe is
sleeved in a geosynthetic filter fabric to prevent infiltration of soil. PVDs are installed vertically
into the soil by a vibrating mandrel, which has fins to increase the area of soil densified by the
installation process, although this is a secondary effect only. The installation process is similar to

that for “wick drains” for clay consolidation.
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Figure 1-5 Large Diameter Prefabricated Drains in Liquefiable Sand. Pore Water Flows
Laterally to Drains, then Escapes

Drains are installed in a triangular pattern to provide the shortest radial drainage path
with minimum overlap. This creates nearly cylindrical columns of soil with drains at each center.
The spacing is usually 1-2m, depending on the permeability of the soil. Though similar to “wick
drains” which have a maximum flow rate of (2.8x10° m%/s at hydraulic gradient=0.25), a 100mm
diameter prefabricated drain has a much larger flow capacity, (0.093 m%/s at the same gradient).

This is also about 10 times the flow capacity of a 1m diameter gravel drain (Rollins et al. 2003).

Installation time requirements and costs for PVDs are also more favorable than for gravel
drains. If a 12m thick layer at the surface needed to be mitigated, the gravel drains (stone
columns) might cost about $107/m?. Vibro-compaction might cost $75/m?, but PVDs would only
cost $48/m?. The installation time for drains is also about half or one-third of usual methods
(Rollins et al. 2003).

1.3 Motivation

Prefabricated drains are of particular interest to geotechnical engineers and specialty
contractors because they show promise of being a fast, low cost method to mitigate liquefaction.

However, no site at which PVDs have been installed has yet experienced an earthquake,



therefore their performance must be predicted using computer models. This lack of empirical
knowledge is a hindrance to the wide spread use of drains for preventing liquefaction. The
overall objectives of this research study are to investigate the performance of vertical drains for
liquefaction mitigation and to evaluate the ability of a current numerical model for predicting
pore pressure dissipation and settlement. Even in the absence of this information, a significant
number of project owners have chosen drains as their preferred solution for low rise buildings
with a large footprint, linear infrastructure such as roads and pipelines, as well as ports, tanks and
other infrastructure because of the cost and time advantages described previously (Ellington
Cross, 2008), (Hayward Baker, 2015).

1.4 Prefabricated Drains Research Program

This report is focused on evaluating a finite-element program, FEQDrain, developed by
Pestana et al. (1997) for modeling the performance of vertical drains in liquefiable sand based on
full-scale shake table experiment data (Oakes, 2015). The results from the computer model will
be compared against the experimental results to determine the accuracy and realism of outputs
produced by the computer program. The end goal, which is beyond the scope of this report, is to
develop a tool or design procedure that engineers can confidently use to predict the behavior of
PVDs during seismic events.

The earthquake drain testing and data collection was conducted in August 2014 at the
University at Buffalo, New York, by a previous graduate student, Caleb Oakes and is reported in
his thesis (Oakes, 2015). Tests were performed within a 20-ft high laminar shear box. The first
set of tests used PVDs on a 4ft triangular grid. The soil was then placed around the drains by
hydraulic pluviation. Three rounds of shake tests were conducted at different accelerations, for a
total of nine tests. This experiment was then reconstructed and repeated with drains on 3ft
spacing. The results for both spacing were similar. A more complete description is found in
Section 2.3.

1.5 Objective

The main objective of this part of the research is to examine the reliability of an existing

computer modeling program designed for use with prefabricated drains. All tests from Oakes
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(2015) experiments will be modeled through iteration until the theoretical curve matches the
measured pore pressure curve. Every computer model makes assumptions and generalizations,
and has limitations in terms of accuracy and reliability. But, if it can be shown that our
calibrated model parameters are similar to the measured soil values, then the computer model
becomes a valuable tool. By showing that FEQDrain can reliably predict excess pore pressure
ratios and settlements for a controlled full-scale shake table experiment, then we are one step
closer to being able to trust it for predicting the effects of prefabricated drains, in natural soil,

under natural conditions.

1.6 Report Outline

The rest of this report is organized as follows:

e Chapter 2 presents a literature review, including an in-depth review of the parent study
(Oakes, 2015).

e Chapter 3 explains the methods that were used to generate and analyze the finite element

models.

e Chapter 4 presents the calibrated excess pore pressure ratios (Ry) from the finite element
model which were matched to Oakes’s experiment. This chapter analyzes model input
values and discusses the accuracy of the modeling software. In addition, results from a
parametric sensitivity study are presented.

e Chapter 5 explains the conclusions which were reached as a result of this study, and

possibilities for future research.



2 LITERATURE REVIEW

Soil drainage has long been proposed for liquefaction mitigation, starting with vertical
gravel drains (Seed and Booker, 1997). Later it was found that gravel columns are less effective
at conducting water than early studies assumed (Onoue ,1988). Prefabricated drains can conduct

more water out of the soil, but studies are ongoing to prove their efficacy.

2.1 Behavior of Gravel Drains

Although this report is interested in PVDs, it is helpful to understand the behavior of

gravel drains. Their behavior may provide insights into how PVDs may be used most effectively.

2.1.1 The Original Idea

It is well known that loose, saturated sands tend to liquefy when pore pressures cannot
escape. Seed & Booker (1977) suggest using vertical columns of gravel installed down through
the liquefaction susceptible soil layer, to dissipate excess pore pressure. The higher hydraulic
conductivity of gravel will create a preferential drainage path laterally to the drain, instead of
vertically to the soil surface. Also, soil is generally more permeable in the horizontal direction,
so lateral flow is again favored, especially if there are interspersed lenses of impermeable silt or

clay which inhibit vertical flow.

Seed & Booker (1977) expanded on the pore pressure generation and dissipation
equations previously developed by Seed, Martin & Lysmer (1976) to model a system with radial

symmetry and purely radial drainage.

Seed & Booker (1977) used these equations and wrote a finite element program to
perform liquefaction analysis for radial flow. They varied the sand permeability, drain spacing,

and the intensity and duration of the cyclic accelerations in the model. They equated the irregular
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motions of an earthquake to an equivalent number of cyclic loadings. They found that a small
drain delayed liquefaction, but a large drain might entirely prevent liquefaction. They plotted
their results and constructed curves for design that show peak pore pressure ratio vs. spacing

ratio. A second set of curves plotted the greatest average pore pressure ratio vs. spacing ratio.

The results of their theoretical model were insensitive to the coefficient of volumetric
compressibility, but sensitive to the coefficient of permeability. Thus in-situ permeability should
be measured carefully. The model also assumes zero head loss through the gravel, which they
specify as permeability of the drain at least 200 times that of the sand. Thus for most sands a
medium-to-fine gravel would suffice. Also, vertical drainage through the sand is considered

negligible, which may be true for sand inter-bedded with impermeable silt or clay layers.

Seed & Booker (1977) suggest that having a drainage system of some type is an economical way

to reduce liquefaction potential in loose sands.
2.1.2 Well Resistance of Gravel Drains

For many years, gravel drains have been used to reduce liquefaction potential of loose,
saturated sands, but these methods did not account for well resistance, which a number of
researchers found to be significant, Tokimatsu and Yoshimi (1980), Ishihara (1982), Okita et al.
(1986), Onoue et al. (1987a). Therefore, a simple method to account for it was needed. Onoue
(1988) expanded on the work of Tanaka et al. (1983, 1984, and 1986) to create simple design

charts.

Onoue (1988) applies the finite difference model to the same pore pressure generation
and dissipation equations as used by Seed & Booker (1977), along with well resistance equations
created by him and other researchers to produce new design charts that accounted for well
resistance. These charts are usable over a range of values for the design pore pressure ratios,
cycle ratios, and coefficients of well resistance, not just one resistance as others had done. A

design excess pore pressure ratio (Ry) of below 0.6 is used.

The diagrams, which included well resistance, were compared against in-situ liquefaction
experiment values. A 120cm steel pipe was driven into the ground, isolating a cylinder of soil in
which a 30, 40, or 50cm gravel column was formed at the center. This is a practical replica of the
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geometry of the finite difference model. Cyclic accelerations were generated by vibrations

applied to the head of the steel cylinder with a vibratory hammer.

The measured pore pressure ratios were compared to the analytical charts previously
developed by Seed and Booker (1977) and more recently by Onoue (1988). When plotted, these
values agree well with the computed analytical values that accounted for well resistance, thus
validating the usefulness of the structured analysis model including well resistance. It was found
that resulting pore pressure ratios were not affected by whether water flowed vertically through
the sand, or through the drain only. Finally, it was determined that the required drain spacing was
about four times closer when well resistance is accounted for. Even very low well coefficients
affected the calculated pore pressure ratio significantly. Thus, well resistance should always be

considered.

2.1.3 Centrifuge Modeling of Flow to a Gravel Drain

Brennan & Madabhushi (2002) performed high quality centrifuge testing to analyze the
behavior of vertical gravel drains and the flow patterns they cause within the soil. It was found
that when pore pressures are generated they immediately attempt to flow upward, however
because the drain has higher permeability a zone of horizontal gradient begins to develop. The
drain’s zone of influence expands with time, progressively slower, and reaches a limit. The study
also found that shallow soil layers liquefied sooner than deep layers, in fact the deepest soil did
not liquefy. Equally important, it was discovered that pressure at deep layers dissipates first, and
shallow layers stay liquefied the longest. Deep layers drain quickly, and shallow layers drain
later and longer likely owing to upward flow of water from deeper layers to the surface.

2.1.4 Centrifuge Modeling of Partial Depth Gravel Drains

Brennan & Madabhushi (2006) also explored the behavior of partial depth gravel drains
via centrifuge testing as a method to facilitate drainage of shallow soils, which had been
previously found to drain only after pore pressures have dissipated from deep soils. Two
experiments were conducted. In the first experiment all drains penetrated the full depth of the
liquefiable layer, while the second experiment had only half of the drains penetrated the full
depth while the remainder only penetrated the upper half of the liquefiable zone. Results showed

that no water flowed into or out of the partial drains until the entire lower half had finished
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dissipating its excess pore pressure. From this it was concluded that partial drains are completely
ineffective, and that the only way to improve drainage of the shallow soils is to quickly drain the
lower layers first. Thus, all drains should be installed to the full depth of the liquefiable soil

strata.

2.2 Behavior of Prefabricated Drains

Large diameter prefabricated vertical drains (PVDs) are a newer method of allowing
dissipation of elevated pore pressures to escape from cyclically loaded soil. These drains have a
diameter of 75-150mm and are hollow which allows greater flow than through gravel.
Theoretically, a 100mm PVD can convey 10 times the flow of a 1m diameter gravel column
(Rollins et al. 2003). They are placed vertically into the soil by a vibrating mandrel, which gives
the added benefit of densifying the surrounding soil during installation. The PVD is made of a
corrugated tube with perforated walls and sleeved in filter fabric. Although PVDs have been

installed in several places, no treated site has experienced an earthquake.

2.2.1 FEQDrain Computer Model

Pestana et al. (1997) developed the axi-symmetric finite element computer program
FEQDrain, working in collaboration with industry experts. FEQDrain computes the generation
and dissipation of excess pore pressure ratios in the soil, with or without prefabricated drains,
due to a specified number of uniform cycles of loading. In addition, the computer program
computes the settlement of the profile resulting from the dissipation of the excess pore pressure.
FEQDrain uses the pore pressure generation and pore pressure dissipation equations from Seed
and Booker (1977). These are the same equations that had been used to create the design charts

in the original 1977 journal article on gravel drains.

2.2.2 Behavior of PVD Drains from Controlled Blasting Field Tests

Rollins et al. (2004) and Rollins & Anderson (2004) describe research investigations to
investigate the performance of PVD drains at two geotechnical field test sites (Treasure Island,
CA and Vancouver, BC). The performance of treated and untreated sites were compared at both

sites to assess drain performance.
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Immediate settlement caused by the installation process of PVDs was measured and
reported, since this was also a matter of interest. The use of high vibration during drain
installation increased the relative density of the soil by 10% and produced volumetric strains of
2.5% which is similar liquefaction-induced settlements observed in earthquakes. The use of
PVDs typically decreased the settlement in treated sites to only 60% of that measured at the

untreated sites.

The soil profile was instrumented and rigged with explosive charges at various depths
and locations. The charges were fired in sequence, with a very small pause between each. This
rapid cyclic loading produced liquefaction very quickly. The treated and control areas both
liquefied. This was attributed to the extremely fast cyclic loading caused by the explosives
(about 3seconds) instead of an earthquake (about 10-60seconds). During an earthquake the
drains would likely work more effectively since they would have more time to expel water from
the soil, thus preventing liquefaction. Also, despite the drain fabric meeting filter requirements,
sand still infiltrated some of the drains. Still, the excess pore pressures dissipated more quickly

from the treated areas.

The soil parameters measured at each site were used to model the pore pressure response
using the computer program FEQDrain. The modeled and the measured pore pressure ratios
agreed well, despite the accidental sand infiltration which affected the field test. The model was
next adjusted by the equivalent cycles method to simulate earthquake loadings with longer
durations. The adjusted model indicated that the maximum excess pore pressure would have
been kept low enough to have prevented liquefaction. Table 2-1 compares blast testing to other
earthquakes based on a combination of duration, and ratio of equivalent cycles to cycles before

liquefaction.
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Table 2-1 Summary of Computed Maximum Ry and Settlement for VVarious Earthquake
Events and Drain Spacings at the Vancouver Site (Rollins and Anderson 2004).

Drain
Magnitude | Duration | Ng/N, Spacing | Maximum. | Settlement
(sec) (m) R, (mm)

Blast 8 4.0 1.22 1.0 310
6.0 8 2.0 0.91 0.40 31

6.75 17 2.0 0.91 0.47 35

6.75 17 3.0 0.91 0.61 48
7.5 35 2.0 0.91 0.65 53

2.2.3 Localized Vibration

Rathje et al. (2004) performed field tests on a volume of reconstituted, saturated sand
measuring 1.2 m x 1.2 m x 1.2 m, surrounded by an impervious membrane. Tests were
conducted with and without a PVD in the center of the test volume. The relative density of the
sand for both tests was approximately 35 percent. Stress cycles were applied using a large
Vibroseis oil-prospecting truck, with pore pressure and acceleration measured at several points

within the test volume.

Plots of the measured excess pore pressure ratio with and without a drain from this test
are presented in Figure 2-1. Without a drain, liquefaction was produced during the application of
60 stress cycles (3 second total duration), while the excess pore pressure ratio did not exceed
25% for the test volume with a drain subjected to the same vibrations. VVolumetric strain

decreased from 2.1% without a drain to less than 0.5% with a drain in place.

While PVDs successfully prevented liquefaction for this shallow deposit, questions remain
about their performance for deeper soil deposits. Of particular concern is the observation made
by Brennan and Madabhushi (2002, 2006) that shallower soils drain after deeper soils. In a
liquefiable soil only 1.2 m thick, this phenomenon may not fully develop or indeed may not

occur at all.

15



No Drain

3
0
o
(o
L
5
vl
0
[a'H
v
&
Time (sec)
120 -
Sensor 3 Drain
100 (7-0.69 m)
80 ,
gavg =1.31x10“ %

Pore Pessure Ratio (%)
L))
(]
1

Time (sec)
Figure 2-1 Excess Pore Pressure Ratio Time Histories Induced by Vibroseis Oil-
Prospecting Truck for Sand Volume with and Without PVD.
(Reproduced from Rathje et al., 2004).

2.2.4 Centrifuge Testing to Evaluate Performance of PVD Drains

As part of the NEES Grand Challenge project for Seismic Risk Management of Port
Systems, a series of three dynamic centrifuge tests was conducted. Each test had a gently sloping
liquefiable soil profile that included zones treated with prefabricated drains and zones left
untreated. The goal was to determine the effects of PVDs in preventing lateral spreading and
slope failures. Design methods for drains have previously only focused on keeping seismically-

induced pore pressures below a certain level, rather than controlling soil deformations.

Testing was performed on the 9m radius centrifuge of NEES at UC Davis. Three separate

models of liquefiable, sloping ground were spun at 15g: SSK01 (Kamai et al. 2007, Marinucci et
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al. 2008, Howell et al 2009b, Marinucci 2010), RNKO01 (Kamai et al. 2008, Howell 2009a), and
RLHO1, (Rathje et al. 2012).
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The first test (SSKO01) used two zones, treated and untreated, sloping towards a central
channel. Saturated loose sand was placed with a 3 degree surface slope, and a clay crust over the
two zones, but not over the channel. Figure 2-2 shows the experiment setup. No-drain/drain-
treated zones in plan view (a), and soil profile and slope in side view (b). The results of the
experiment are shown in the following two figures. The measured pore pressure ratios Figure
2-3, and horizontal and vertical displacements for the treated and untreated zones are shown,

Figure 2-4.
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Figure 2-3 Measured Data from Centrifuge Experiment SSK01. Excess Pore Pressure
Profile for Varying Times for PGA=0.28g for (a) Treated and (b) Untreated Sides.
(Reproduced from Marinucci et al 2008).

These plots show lower excess pore pressures and smaller deformations for the zone that
was treated with drains. This means the drains were effective in preventing or reducing
liquefaction. This second test (RNKO1), (not shown) used the same geometry as SSKO01, but the
untreated area had non-draining tubes to rule out the possibility of the shear strength of the drains
preventing lateral deformations of the soil, called ‘soil pinning’. Results again showed that

drainage was effective, but also demonstrated that soil pinning was negligible.
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Figure 2-4 Shaking Induced Deformation: (a) Horizontal and (b) Vertical Directions.
(Reproduced from Marinucci et al 2008).

This third test (RLHO1) re-examined the same factors as both the first two, but with slight
changes. It was designed as a stand-alone test, even though it was part of a series. This model
used a single, wide incline, divided into three zones; treated, untreated, and non-draining tube
zones, as illustrated in Figure 2-5. It also had a steeper slope of 10 degrees, with all zones
oriented in parallel towards a common channel. Earthquake time histories were applied as the
cyclic motion scheme, also one sinusoidal shake was applied. The results from the previous test
were confirmed again, with the addition of observing the effect of different ground motion types.

The untreated area and non-draining tube area had similar pore pressure ratios, Figure
2-6, and equal deformations, Figure 2-7, both of which were significantly higher than the treated
zone. Thus it was clear that drainage was causing the improvement in performance and soil
pinning was insignificant. Also, the impact of drains was shown to be sensitive to the
characteristics of the input motion. They found that the characteristics of the shaking are more

significant than the peak ground acceleration.
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Figure 2-5 Views of Model Geometry for Centrifuge Test RLHOL. (a) Plan View, (b) Cross-
Section. (Reproduced from Howell et al. 2012).

For example, earthquakes with high intensity at the beginning caused elevated pore
pressures that eventually subsided when the drains caught up with the generation of pore
pressures. Ground motion time histories that slowly increased in intensity were better controlled
by the drains. However, the sinusoidal shake quickly overwhelmed the drains because there was
no interval of low intensity for the rate of drainage to catch up with the induced pore pressures.
When the drains are overwhelmed, their full impact was not noticed until the shaking stopped, at
which time the pore pressures dissipated significantly faster than untreated areas. Ground
settlement were reduced by 30 to 60% while lateral spread displacements were also reduced by
30 to 60%.
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Figure 2-6 Measured Data from Centrifuge Experiment RLHO1. Pore Pressure Ratio
Curves Versus Time for Treated and Untreated Cases. The Corresponding Acceleration
Time History is Plotted Immediately Beneath Each. (Reproduced from Howell et al.
2012).
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Figure 2-7
Horizontal and (b) Vertical Displacements at Mid-Slope in Treated and Untreated Areas
for All Shaking Events. (Reproduced from Howell et al. 2012).
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2.2.5 Numerical Modeling of Peformance of PVD Drains

Howell, Rathje, and Boulanger (2014) conducted 2D and 3D numerical modeling of the

centrifuge experiments described in the previous section. The finite element program OpenSees
was used to create: a 2D model of the full centrifuge test, and 2D and 3D unit-cell models. It was
discovered that the geometry of the soil surface and mode of deformation affected which model
type produced a more accurate representation. Horizontal and vertical deformations were

modeled fairly well, Figure 2-8, as were pore pressure ratios, Figure 2-9.
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Figure 2-8 Deformation Responses From Centrifuge Tests and Numerical Simulations for
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SSKO01 11. (Reproduced from Howell et al. 2014).

The hydraulic conductivity (k), scaled down to prototype scale from 15g, was k=0.03
cm/s. Numerical modeling showed that for a set value of hydraulic conductivity, the rate of pore
pressure dissipation is controlled by soil compressibility. The numerical simulations also
showed that constitutive models over-predicted the volumetric stiffness, Figure 2-10, thus either
hydraulic conductivity or soil compressibility must be modified to achieve accurate modeling.
This study chose to adjust the conductivity, within a range, until a best fit value was obtained;
rather than deviate from suggested values of soil compressibility. This under prediction of

volumetric compressibility inherent in the constitutive model produced an under-prediction of

settlement.
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Figure 2-10 Measured and Simulated Volumetric Strain Response for Liquefiable Sand.
Excessively High Stiffness Necessitated Adjustment of Hydraulic Conductivity
(Howell et al. 2014).

Numerical modeling by Vytiniotis et al. (2013), using OpenSees, compared slope
deformations of a partially-submerged sandy slope, for drain-treated and untreated cases. Model
geometry is shown in Figure 2-11, and is similar to some facilities at U.S. ports. Boundary
conditions, ground motions, pore water pressures, and soil deformations were modeled. Soil was
modeled with an elasto-plastic effective stress soil model (Dafalias & Manzari, 2004). A total of
58 seismic ground motions were used as input ground motions, all having a minimum moment

magnitude of Mw=>5.5 and duration of less than or equal to 33.10sec.

The results of the simulations showed that drained systems are effective in reducing
earthquake-induced permanent lateral deformations by a factor of 1.2 to 3.5, for 1m drain
spacing. Though the drains are behind the crest of the partially submerged slope rather than
directly within it, they reduce slope deformations by prohibiting diffusion of excess pore

pressures from far afield to the slope.
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Figure 2-11 Diagram of Partially-Submerged Sandy Slope, with Details, Analyzed by
Finite-Element Numerical Modeling (Vytiniotis et al. 2013).

It was also found that computed permanent slope deformations were well correlated with
peak ground accelerations (PGA) and especially Arias Intensity. The Arias Intensity being the
integral of the square of the acceleration time-history. However, there was no correlation found
between the improvement ratio and the Arias Intensity. From this, Vytiniotis (2013) asserted that
the effectiveness of drained systems is largely independent of the characteristics of the ground

motions.

2.2.6 Previous Laminar Shear Box Testing Without Drains

Large-scale testing of liquefiable soils without prefabricated drains was performed using
the NEES@Buffalo site laminar shear box. Tests included a Level Ground Test, LGO, (Bethapudi,
2008), Level Ground Test, LG1 (Dobry & Thevanayagam, 2013) and Induced Partial Saturation Test
IPS-1 (Yegian, 2015). The soil was comprised of loosely placed saturated sand with a relative density
of about 40%. Input motions were provided by high speed hydraulic actuators at the base of the
laminar box. LGO used sinusoidal inputs of progressively higher acceleration, in a single
continuously shaking test as illustrated in Figure 2-12. Accelerations ranged from 0.001g to 0.30g.
Profiles of excess pore pressures and excess pore pressure ratios (Ry) from this test are provided in

Figure 2-13.

26



Mon—destructive

35

20

______+___
S
|
[ T
1

Time [s]

15

I T e T

ﬁ | I T I

1 T T T |

A

[ T T T T |

[ N I T |

FaA—a—— I P T - -

| TR T B [ | I T I

[ N 1o [

I 1 11 I 1 | I T R |

| I Y I I | | N Y R I I B |

I 1 11 10 11

L 111 | IR I T N N D B

a1 T-r-r—a— 11T

1 1 1 10 11

I 1 1 1 1 1

e | | | | I Y IR I |

[ T e L1 [ T T

| TR T B | I e o T T B |

1 1 1 L1l 1 L1l 1 1 L1 1 1
— Yy =+ ]

10

03 a =001z

04

i
o

i
et =
=] =]

o

i
i
T T

[7] vonwaaaay

4

_ﬁ_3 I
-0
Figure 2-12 Input Motions for Level Ground Test LGO. (Bethapudi 2008).

(]
[w] ypedagy

0.6 0.8

0.4
{b) Excess pore pressure ratio

27

40

30

(a) Excess pore pressure
Figure 2-13 Excess Pore Pressure Profiles for LGO (Bethapudi 2008).




Tests on LG1 (Dobry and Thevanayagam, 2013) used seven distinct series of shaking, so
that an increase in liquefaction resistance could be observed with increasing numbers of shaking
events. The soil conditions were the same as LGO. Accelerations ranged from 0.03g to 0.1g with 15
uniform shaking cycles per test. The cumulative settlement versus the number of shaking tests is

plotted in Figure 2-14.Settlement decreased for each successive shake as the soil densified.
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Figure 2-14 Settlement Due to Number of Cycles (Dobry and Thevanayagam, 2013).

The IPS1 tests investigated whether a partially saturated condition, would increase the
liquefaction resistance of the soil. This was done by injecting a chemical compound into the
ground, to create bubbles that would entrain in the pore water. The top 10ft of the total 16ft of

soil in the box were treated.

Shake testing consisted of six 0.1g tests with 15 cycles, followed by two 0.2g tests with 15
cycles. This is similar to LG1 for all but the last two shakes, as the many 0.03g shakes in LG1 are
less significant than the 0.1g shakes that separate them. Instrumentation of IPS1 showed that the
untreated layer experienced the majority of settlement. To provide a comparison with settlement
from LG1, the settlement of the untreated layer was then scaled up by the ratio of the full soil

thickness divided by the thickness of the untreated layer. Cumulative settlement from both tests after
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this adjustment are plotted in Figure 2-15 The cumulative settlement is remarkably consistent for the

0.1g shake tests but increases substantially for the 0.2g shake tests.
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Figure 2-15 Settlement vs Number of Tests for IPS with Scaled Settlement (Yegian, 2015)

2.3 Laminar Box Shaking Tests with Drains (Oakes, 2015)

A previous graduate student working under Dr. Rollins, Caleb Oakes, conducted full-
scale laminar shear box shaking tests on loose sand, prepared with large diameter prefabricated
drains (PVDs). The experimental data from Oakes (2015) was used as the basis for the numerical
modeling conducted in this report. The accelerations, excess pore pressure ratios, and settlement
data, were presented by Oakes (2015). Prefabricated vertical drains, and several arrays of
instruments were installed. After this, sand was pumped into the tank. The measured
accelerations, excess pore pressure ratios, and settlement data were presented by Oakes (2015).
A detailed description of the shake table, instrumentation scheme, soil characteristics, shake

strength, and recorded measurements are provided subsequently in the respective sub-sections.

2.3.1 Laminar Shear Box Shake Table

Equipment and technical support for the NEES laboratory laminar shear box were
provided by the University at Buffalo, New York. The shear box is 20ft tall and has plan view

dimensions of 9ft and 16.4ft. It has 40 horizontal rectangular layers called ‘rings’ which, being
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separated by ball bearings, are free to slide relative to each other. The rings are made of wide
flange steel beams turned on their side, with the web horizontal, and attached at the corners to
form a rectangle. A double-layer flexible rubber membrane contains the saturated soil within the
box and prevents drainage on the sides and bottom.

Accelerations are imposed at the base of the box by high-speed hydraulic actuators.
Because the mass of the soil is large relative to that of the rings and interface friction is minimal,
shear waves transfer through the soil as they might during an earthquake under field conditions.
Photographs in Figure 2-16 show the laminar box in the UB@NEES laboratory and the actuators
at the base of the laminar box. The box and its dimensions are depicted in Figure 2-17,

Figure 2-18, and Figure 2-19.

y

Figure 2-16 Laminar Shear Box and Hydraulic Actuators at the Base (Oakes, 2015)
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Figure 2-17 Profile and Plan View of Laminar Shear Box. (Oakes, 2015)
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2.3.2 Instrumentation and Drain Scheme

Drains were hung vertically in the box on a triangular grid, and columns of instruments
were hung at various distances from drains before the sand was placed. This was done to
eliminate the densification caused by pushing/vibrating drains into place from the soil surface,
but also it was not feasible to drive them in with a mandrel while indoors. Plan and profile
drawings showing the locations of the drains and instrumentation arrays are provided in, Figure
2-18, Figure 2-19, Figure 2-21, and Figure 2-22. As shown in Figure 2-18 and Figure 2-19, the
instrumentation attached to the rings consisted of horizontal accelerometers (AE1X-AE35X) and
LDVTs (HOX-H31X) to record acceleration time histories and displacement time histories,

respectively during the tests.
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20 HOX B3X

Figure 2-18 Pr_ofile_\}iew of Pore Pressure Transducers (IP1-1P118), Horizontal LVDTSs
(HO-H31) and Horizontal Accelerometers (AE1X-AE35X) (4 ft drain spacing, Oakes, 2015).

The instrumentation within the sand inside the laminar box consisted of three vertical
arrays of pore pressure transducers, two Sondex settlement profilometers, slotted pipes for

measuring horizontal soil permeability, and three string potentiometers attached to surface
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Figure 2-19 Profile View of Pore Pressure Transducers (IP1-1P118), Horizontal LVDTSs
(HO-H31) and Horizontal Accelerometers (AE1X-AE35X) (3 ft drain spacing, Oakes, 2015).
settlement plates (Figure 2-21 and Figure 2-22). While the surface plates provided continuous
settlement versus time, the Sondex profilometers, only gave settlement at 2ft intervals at the
conclusion of each test. Each column of piezometers were attached to a vertical mesh to maintain
position during sand filling. The instruments and drains for the 4ft spacing tests were held in

place at the base, but not the top; so they were moved slightly as the sand was deposited.

1
Before | I Settlement | After
~
o] Corrggated N
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Ly ensor reads new

location of rings

Sensor N

Access Pipe

Metal Rings

Figure 2-20 Profile View of Sondex Settlement Profilometer (Oakes, 2015
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Thus they were close, but not in exactly the right places during the testing. Error in
positioning increased with height above the base. For the 3ft spacing, the instrument columns

and drains were held in place at the bottom and top, so the spacing was much more consistent
and reliable.

West
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Legend
Pre-fabricated vertical drains (3.5 inch inside diameter, 3.7 inch outside diameter with filter fabric)
@ surface settiement plates (ZP1, ZP2, and ZP3)

A sondex settiement profilometers (SP1 and SP2)

B8 vertical arrays of pore pressure transducers (PPTs) @2.5, 5, 7.5, 10, 12.5, and 15 ft below ground
u Drain with connection to monitor water outflow

(") Slotted pipes for measuring horizontal permeability (SL5°, SL10’°, SL15")

Figure 2-21 Elevation View of Drains and Plan View of Sensors for the Tests With
Drains at 4ft Triangular Spacing (Oakes, 2015)
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Figure 2-22 Elevation View of Drains and Plan View of Sensors for the Tests With Drains

at 3ft Triangular Spacing (Oakes, 2015)

2.3.3 Soil Characteristics

The sand in the box was a commercially obtained Ottawa F55 sand that was used because

of its consistent and well-known properties. The sand is a poorly graded clean sand with a mean
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grain size (D50) of 0.23 mm. The sand classifies as SP material according to the Unified Soil
Classification System and A-3 according to the AASHTO system. Minimum and maximum void

ratios along with grain size characteristics are summarized in Table 2-2.

Sand was pumped into the box as a slurry, then it passes through a diffuser and falls into
standing water before being deposited. This deposition method, called wet pluviation and
illustrated by a photo in Figure 2-23, ensured that the sand was deposited loosely and somewhat

uniformly. Filling the box took about 5 days.

Y

3 ' ) \
T, : ':‘ \ ;
: ’ . - ‘ I g
3 "Hléﬂt A ,im, o

Figure 2-23 Sad B' If)ebsited in Laminar Shear Box by PIu{/Ai\gl:["ion (Oaké"s: 2015)

Prior to filling for the tests with the 4 ft drain spacing, NEES@UBuffalo staff apparently
left about 2.5ft of sand in the bottom of the box from previous testing because of difficulty in
removing it with the sand extraction system. This sand was denser than newly placed sand.
However, prior to subsequent tests with the 3 ft drain spacing, this lower sand layer was
excavated by hand so that the entire profile consisted of more uniform loose sand. In addition,
for the 4 ft tests the sand only extended to a height of 14.5 ft while for the 3 ft tests the sand
extended to a height of 16 ft.
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The relative density of the new sand was measured at different depths while filling the
tank. This was done by lowering a bucket on a rope and allowing the bucket to fill with sand as it
was deposited. The collector of the sample then had to be careful to pull up the bucket without
letting it bump into anything, or else the vibration would compact the loose sand and give an
incorrect density. Measured average relative density profiles for the 4ft and 3ft drain spacings are

plotted versus depth in Figure 2-24.
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Figure 2-24 Relative Density Measurements for (a) 4ft and (b) 3ft-Drain Spacing From
Bucket Samples Taken During Filling (Oakes, 2015).

The relative density was typically between 40 and 50% based on the reported minimum
and maximum void ratios; however, investigations indicate that this density is likely lower as
will be discussed subsequently, in section 3.4.2. Before each of the three rounds of testing a
Cone Penetration (CPT) test was conducted to define the soil properties and document potential
densification, Figure 2-25 and Figure 2-26. A pulley system above the box provided the force to
drive the CPT.
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Table 2-2 Properties of F55 Ottawa Sand Used in the Laminar Shear Box (Oakes, 2015)

Depth (ft)
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=
S

=
[=)]

Parameters Values
FC (%) 0
e max 0.800
“Cmin 0.608
Dyo (mm) 0.161
Dso (mm) 0.201
Dso (mm) 0.230
Dgo (mm) 0.245
C, 1.522
C. 1.024
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Figure 2-25 CPT Cone Tip Resistance Values for 4ft Test (Oakes 2015).
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Figure 2-26 CPT Cone Tip Resistance for 3ft Test (Oakes 2015).

Hydraulic conductivity was measured, using the slotted pipes illustrated in Figure 2-27

and Figure 2-28. Horizontal hydraulic conductivity was calculated from a constant head

horizontal borehole permeability test. The flow rate necessary to keep the water level at the top

of the pipe was measured and hydraulic conductivity was computed for each segment of slotted

pipe. For the 4 ft drain spacing, measurements were only made before the shaking tests started

and at two depth intervals, 4.5 to 9.5 ft and 9.5 to 14.5 ft. The measured permeability was

0.07cm/s for the upper level and 0.05cm/s for the lower level. For the 3 ft drain spacing,

measurements were made before and after each round of shaking, at three depth intervals 0-5ft,
5-10ft, and 10-15ft.
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Figure 2-27 Layout of Slotted Casing for Hydraulic Conductivity Test,
(4ft Drain Spacing) (Oakes, 2015).

Figure 2-28 Layout of Slotted Casing for Hydraulic Conductivity Test
(3ft Drain Spacing). (Oakes, 2015).
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For the 3 ft drain tests, hydraulic conductivity was measured at three depth intervals and
measurements were taken before each round of testing to evaluate potential changes with
densification. As shaking progressed, the soil became denser, and less prone to liquefaction. This
reduced the hydraulic conductivity, as shown by the borehole permeability tests conducted

between subsequent rounds of shaking for the 3ft spacing experiment, Table 2-3.

Table 2-3 Hydraulic Conductivity Measurements of 3ft Test

Horizontal Hydraulic Conductivity (cm/sec)
Depth Interval
Round 1 Round 2 Round 3 Average

(ft)

0-5 0.064 0.043 0.036 0.0477
5-10 0.045 0.032 0.029 0.0353
10-15 0.039 0.032 0.028 0.0330
Average 0.049 0.036 0.031 0.0387

2.3.4 Shake Accelerations and Load Rate

The shake tests imposed acceleration cycles at a frequency of 2 cycles per second for 7.5
seconds, equaling 15 cycles at the base of the laminar shear box. This frequency was used
because all tests by previous researchers using the facility used this frequency. It was desirable
for Oakes (2015) to be able to compare his results to these other studies. A frequency of 2
cycles/second is more rapid than many earthquakes, when counting only large shear motions.
Rapidly recurring cycles with a medium acceleration places more demand on the drains than an
earthquake with a few strong accelerations, as indicated previously in Figure 2-6. Also, 15
uniform cycles correspond to a Mw7.5 quake, according to the table produced by Seed et al.
(1975). Each of the three rounds of testing had shake tests with peak accelerations of 0.05g, 0.1g,
and 0.2g at the base of the box, as shown in Figure 2-29.
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Figure 2-29 Idealized Plot of Shake Table Acceleration Levels.

2.3.5 Test Results and Conclusions

In his thesis Oakes (2015) presents plots of the excess pore pressure ratio (PPR) or (Ry),
and acceleration plots at various depths of the laminar shear box experiment. Figure 2-30, Figure
2-31, and Figure 2-32, show the acceleration plots on the left, and Ry on the right. The horizontal
lines running across the page correspond to the labeled depths. The centerline of each
acceleration plot is aligned with the base of a Ry vs. time plot. The base of each Ry plot is at the
depth of the piezometer that made the reading. There are 18 such plots, 9 each for the 4ft and 3ft
spacing tests, respectively. Only 3 plots are shown in this section, the remainder are in Appendix
C. Parent Study Ry Plots.

Several trends were identified from the results. Pore pressures dissipate rapidly after
shaking stops at 7 seconds. The Ry values are higher in the shallow layers and lower in the
deeper layers. This agrees with centrifuge test results (Brennan & Madabushi, 2002) which
found that deeper layers must drain before upper layers can drain. Looking at successive rounds
of testing, it can be seen that pore pressures are lower for each new shake test at a particular
acceleration. This indicates that the soil is densifying, and thus becoming more resistant to
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liquefaction. Another observable behavior is the oscillation of Ry in the later rounds. This is
evidence that the soil has become dense enough that the sand is dilating at larger strain levels,
not continually contracting. High shear forces in a denser soil at low confining pressure tend to
force the particles apart towards a less dense arrangement. This induces a negative pore pressure
for undrained conditions, and increases the effective stress for a moment which increases shear
strength, before the soil contracts again and induces a high Ry value. This is the behavior that is

evident in the later rounds of testing.

Curves showing the measured settlement vs. test number for the tests with drains are
shown in Figure 2-34. The PVD-1 and PVD-2 curves are for the 3ft and 4ft drain spacing test,
respectively. The plot indicates greater settlement for higher accelerations, but less settlement for
each successive round. The LG1 and IPS1 curves in Figure 2-34 represent settlement for tests
performed without drains. The settlement with drains is about 30 to 40% lower than without

drains. This result is consistent with results from centrifuge tests reported in Section 2.2.4.
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For each shake of the laminar shear box, the settlement was measured by each of three

methods. These values represent the total settlement for each shake, and are shown in Table 2-4

and Table 2-5. The column on the left edge of the table shows which round of testing and the

acceleration level for each shake tests in descending order, there were nine tests.

Table 2-4 Settlement Measured by Different Methods for 4ft Test (Oakes, 2015).

Average Sondex (in)|Average string pot (in)| Water volume (in)
2 0.05 1.32 1.89 #N/A
= 0.1 1.80 2.03 1.94
| 02 1.68 2.64 2.88
S 0.05 0.72 0.90 0.94
S 0.1 0.84 1.22 1.36
| 02 1.56 1.39 1.83
il 0.05 0.36 0.46 0.47
= 0.1 0.60 0.67 0.65
| 02 1.08 1.19 1.02

Table 2-5 Settlement Measured by Different Methods for 3ft Test (Oakes, 2015).

Average Sondex (in) | Average string pot (in) | Water volume (in)
_‘; 0.05 1.74 1.83 2.14
S 0.1 1.92 2.78 2.52
& 0.2 3.36 3.20 3.18
g 0.05 0.84 0.88 0.88
5 0.1 1.02 1.63 1.48
& 0.2 1.74 2.30 2.08
g 0.05 0.36 0.58 0.49
S 0.1 0.66 1.10 0.66
& 0.2 0.78 1.29 1.15
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The “Average Sondex” column gives the values measured by the lowering an instrument
down a special tube. This accordion style tube has evenly spaced metal rings along its length,
that compress vertically with the sand as it settles during shaking. The “Average String Pot”
column gives the average of the values measured by each of three string potentiometers attached
to a settlement plate on the soil surface. The “Water Volume” column is total settlement back-
calculated from the volume of water collected from the soil surface after it came up from the
drains during each shake test. Settlement values presented here will be used later on to back
calculate the initial soil compressibility for use in modeling, in Section 3.4.3.

Measurements from the Sondex tube made it possible to measure how much each layer of
the soil had changed in thickness. Knowing this allowed the vertical strain at various depths to be
computed, and in turn the volumetric stain too, since changes in size and shape were constrained
by the box. Strain is later used to back calculate soil compressibility, in Section 3.2.2. The
percent of volumetric strain vs. depth is shown in Figure 2-33 for Round 1 of the 4ft spacing
experiment. Additional plots of strain vs. depth are available in Oakes’s (2015) thesis.

Strain (%)

0 0.5 1 15 2 2.5 3 3.5 4 4.5 5

o+t -ttt "ttt

Depth (ft.)

10 4

12 +

14

Figure 2-33 Profiles of Strain vs. Depth Using Smoothed Sondex Measurements for
Round 1. (4ft Drain Spacing).
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Figure 2-34 Settlement with Drains: PVD-1, PVD-2 (Oakes, 2015), and without Drains:
LG1, Scaled IPS1 (Yegian, 2015; Thevanayagam, personal communication 2015).

Based on the testing and analysis of the laminar shear box test with drains, Oakes (2015) drew

several conclusions.

1. Excess pore pressures dissipated rapidly after shaking, with higher density in later rounds of
testing increasing the rate of dissipation

2. Excess pore pressures dissipated significantly faster than previous laminar shear box testing

without drains, taking seconds rather than minutes for pore pressures to fully dissipate.
3. Higher acceleration caused more settlement and caused settlement deeper in the soil profile.

4. Settlement was reduced by 20-64% when compared to previous laminar shear box testing

without drains. This is consistent with previous results from centrifuge testing.

5. Drains spaced closer together are more effective at reducing excess pore pressures.
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3 METHODS OF INVESTIGATION

As described previously, this report evaluates the ability of the computer program
FEQDrain (Pestana et al., 1997) to model the behavior observed in the shaking tests with
prefabricated drains performed with the laminar shear box at the University at Buffalo. The
behavior includes pore pressure generation, pore pressure dissipation, and resulting ground
settlement. In this chapter, Section 3.1 gives an overview of how the FEQDrain modeling
program works. Section 3.2 explains the most important variables and their mathematical
formulation. Section 3.3 describes how the soil profile was divided into finite elements. Section
3.4 explains how values were chosen for these variables. Section 3.5 and 3.6 provides all other

needed input values. Section 3.7 explains how data processing was done.

3.1 Finite Element Model Overview

The performance of potentially liquefiable layers with prefabricated vertical drains is
commonly analyzed using the computer program FEQDrain. FEQDrain uses an axi-symmetric
finite element model of the soil profile and composite drain system. The program models an
individual drain within a grid of drains using a “radius of influence” or concept based on the
drain spacing, also called a “unit-cell” model. The program computes the excess pore pressure
ratio for each soil layer within the radius of influence. It does this by computing how much
pressure is generated by the earthquake shaking in a given time interval and then subtracting how

much pressure has dissipated from water flowing to the drain in the same time interval.

The program is able to compute head loss in the drain and also considers storage volume
of the drain. Also, it can account for the non-linear increases in modulus of soil compressibility

resulting from elevated pore pressure, which it can factor into its analysis. Besides calculating
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pore pressure response, the program can calculate settlement associated with drainage and

dissipation of pore pressure.

3.2 Mathematical Formulation

The reaction of the soil to seismic motions is modeled by FEQDrain using the solution to

the following equation

Vs ot o (1)

Where: k = hydraulic conductivity

U = pore pressure
V= space gradient operator

yw= unit weight of water

mv = coefficient of volumetric compressibility

Ug = excess pore pressure generated by cyclic loading
t =time

The derivation of Equation 1 is explained in Pestana et al. (1997) and will be omitted here.
But several supporting assumptions must be met for Equation 1 to be valid. These assumptions
are (1) continuity of flow and that flow is governed by Darcy’s law, (2) the soil is completely
saturated, and (3) the change in porosity due to seismically induced compression is equivalent to

the change in volumetric strain.

Naturally deposited soils often contain thin layers of finer-grained material intermixed with

coarser-grained material, causing the soil to exhibit anisotropic flow characteristics in the
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vertical and horizontal directions. Flow through anisotropic soils involves different horizontal
and vertical hydraulic conductivities, knand kv. For an axi-symmetric case, as assumed by the

program, Equation (1) becomes

ok van), ok o), fon_on,
or\y, ror) oz\y, oz Lot or (2)

To solve Equation (2), values for my and ug must be calculated for each time step of the
simulation.
3.2.1 Pore Pressure Generation

Pore pressure generation is modeled in FEQDrain by transforming irregular seismic
loading into an equivalent number of uniform cycles occurring within a specified length of time,
as described by Seed et al. (1975a)

ou, Ou, ON
ot 0N ot 3)

N {Nw,/t(, (O<r=1,)

o | 0 (r>1,) "

where: N = the accumulated number of cycles at time t
Neq = equivalent number of uniform cycles

tq = time period of shaking (typically equivalent to time of strong motion)
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Extensive laboratory testing using cyclic triaxial and simple shear tests has shown that

the relationship between ugand N can be expressed by

1
u 2 [ N |20
. =—= =—arcsin| — (5)
o T N;

where: Ry = excess pore pressure ratio
o’o = initial mean effective stress under triaxial conditions or the initial vertical
stress for simple shear conditions
N = number of uniform stress cycles causing liquefaction in a cyclic undrained test
0 = an empirical constant, typically equal to 0.7

As shown in Figure 3-1 this equation can be represented graphically by a plot with N/N;

on the horizontal axis, a generation function curve, and the resulting excess pore pressure ratio

Ry, on the vertical axis.
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Figure 3-1 Rate of Pore Water Pressure Build-up after N Cyclés Relative to the Number
of Cycles Required to Induce Liquefaction (NL) from Cyclic Tests.
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Taking the derivative of Equation (5) we obtain

u, o, ‘tan(ﬂ-r”/2)
ON 0-7-N, sin®(z-r /2)

(6)

Substituting Equation (4) and Equation (6) back into Equation (3), the rate of excess pore
pressure generation becomes

ou, _ o, [Ny ) tanlz-r,/2)
o 0.7 \N,-t,) sin(z-r /2) (7)

The rate of excess pore pressure generation, dug/ot, depends on the previous cyclic
loading history represented by the current value of pore pressure ratio, ry.

3.2.2  Soil Compressibility

FEQDrain computes the change in volumetric compressibility, my, caused by increases in
Ry, using the equation developed by Seed et al. (1975a).

m,  exp(y)
m, l+y+y?)/2

>1

(8)
where:y=a-r/

a=5(1.5-Dr)

b=3(4)""

Dr = initial relative density

mvwo = initial value of volumetric compressibility = Ag/Ac'
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The relationship formed by Equation (8) is charted in Figure 3-2 for different values of
relative density. Before an earthquake, the soil has some relative density, and an excess pore
water pressure ratio of zero, (r,= 0). When seismic motions cause pore pressures to rise, the soil
becomes more compressible. For low values of pore pressure ratio, ry, it has been found that
compressibility, my is essentially constant. But, for pore pressure ratios larger than 50-60%, my is
found to increase significantly with increases in the pore pressure ratio as shown in Figure 3-2.
During post-earthquake analysis, the value of my does not decrease from the highest value

obtained, as suggested by Seed et al. (1975a).
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Figure 3-2 Increase in Soil Compressibility with Increased Pore Pressure Ratio.
(a) Measured Change in Compressibility (Lee & Albaisa, 1974),
(b) Theoretical Change in Compressibility (Seed et al., 1974)

3.2.3 Boundary Conditions

Figure 3-3 shows the typical configuration of a vertical drain installed in a potentially
liquefiable layered soil profile. The soil profile is composed of n soil layers with individual
properties up to a depth H. A single vertical drain reaches the full depth of the soil layer. Since
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FEQDrain cannot model partially penetrating drains, the soil profile modeled by FEQDrain must
not extend below the bottom of the drain. It is assumed that the soil layers below the bottom of
the drain make no contribution to the drain, thus FEQDrain models the bottom of the drain and

soil profile as a no-flow boundary.
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Figure 3-3 Typical Geometry and Boundary Conditions for Analysis by FEQDrain
(Pestana et al., 1997).

Seismic motions cause hydraulic gradients to form towards drains as excess pore
pressures build-up in the soil away from the drain. This gradient causes flow towards the drain
and dissipation of pressure. The radial extent of this gradient is called the zone of influence, or
effective diameter (de) in Figure 3-3. The drain capacity is limited by the hydraulic conductivity

of the surrounding soil, and the strength and time duration of the shaking. As the zone of
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influence reaches outward, it will eventually intersect with the zones of adjacent drains. At this
intersection boundary, there will be no additional flow from outside, and so the radial limit of the

zone of influence can be modeled as a no-flow boundary.

In many soil profiles the ground water level is lower than the drain height. As water
enters the drain and the water level within the drain rises, some water can enter the unsaturated
soil. This reservoir slows the rise of water in the drain and slows the associated increase in static
pressure in the drain. The volume of water entering the drain equals the volume of water
expelled from the saturated soil. When this volume exceeds the combined volume of the drain

and reservoir, the water will overflow from the top of the drain.

3.2.4 Assumptions and Limitations

A number of simplifying assumptions and limitations are inherent in the finite element

models generated.
Assumptions of the modeling process:
e Drains are surrounded by other drains.
e Pore pressure ratios continue increasing until shaking stops or equilibrium is reached.
e Variable soil compressibility, since pore pressure ratios may exceed ry =0.6
e Sand infiltration is not significant, but head loss at the drain is accounted for.

e To better match laminar box test conditions, unit weight and relative density are adjusted
for each subsequent shake, to account for the increasing soil density. This is done by

volumetric analysis, using settlement data and CPT measurements.
Limitations inherent in the modeling process:

e Soil properties are assumed to be constant and uniform within and across a layer.
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e Coefficient of Soil Compressibility calculations are based on settlement measurements,
which may have been affected by proximity to sides of the laminar box and inaccuracies

in measurement.

3.3 Discretization of Flow Region

The sand in the laminar box was 14.5 feet thick for the test with the 4 ft drain spacing and
16 ft thick for the test with the 3 ft drain spacing. For analysis purposes, the relatively uniform
sand in the laminar box was typically divided into six or seven horizontal layers. Each layer was
typically 2.5 ft thick and had 5 vertical sub-layers 0.5 ft thick. This arrangement allowed soil
properties to be varied by layer for each piezometer. Ten radial increments were used beyond the
edge of the drain out to the mid-point between drains for the 4 ft and 3 ft drain spacing tests.
Plots of the finite element grids for both tests used in the FEQDrain program are provided in
Figure 3-4.
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Figure 3-4 Finite Element Models of the Drain and Sand Profile in FEQDrain for the 3 ft
and 4 ft Drain Spacing Tests.

3.4 Selection of Soil Input Parameters

Soil input values used in the modeling for this report are generally based on measured

values from the laminar shear box testing done by Oakes (2015). In cases where measured values
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were not available, estimates were made based on engineering principles. Where measurements

were expressed as Sl units, they have been converted to Imperial units.

The most important soil parameters for modeling are horizontal hydraulic conductivity
(kx), vertical hydraulic conductivity (ky), soil compressibility (my), relative density (Dr), and
number of cycles to liquefaction (N-Liq) for a given acceleration level. These properties are
described in the following sections along with the procedures applied for selecting appropriate

input values.

As described previously, the sand in the laminar box was a clean uniform fine sand which

classifies as a poorly graded sand (SP) according to the Unified Soil Classification System.

Figure 3-5 provides a plot showing the grain size distribution curve for the sand.
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Figure 3-5 Grain-Size Distribution Curve for Ottawa F55 Sand in the Laminar Shear Box.

The sand is an Ottawa sand with a designation of F55. Ottawa sand is a silica sand
composed of well-rounded quartzite particles. Useful grain size parameter data obtained from

the gradation curve are summarized in Table 3-1 along with minimum and maximum void ratios.
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Table 3-1 Properties of F55 Ottawa Sand Used in the Laminar Shear Box.

Parameters Values
FC (%) 0
L nax 0.800
% S min 0.608
Do () 0.161
D30 (mm) 0.201
Dso (mm) 0.230
Dso (mm) 0.245
*Cy 1.522
‘C. 1.024

3.4.1 Hydraulic Conductivity

Hydraulic conductivity desribes the average rate or speed at which water flows through
soil for a unit hydraulic gradient. The hydraulic conductivity of the sand in the laminar shear box
was calculated from constant head horizontal borehole permeability tests. These tests were
performed using slotted vertical PVC pipes, embedded in the sand prior to sand placement
specifically for this purpose. For the 4 ft drain spacing, measurements were made at two depth
intervals, 4.5 t0 9.5 ft and 9.5 to 14.5 ft, before the shake tests started and were not repeated.

The measured permeability was 0.07 cm/s for the upper level and 0.05 cm/s for the lower level.
For the tests with a 3 ft drain spacing, measurements were made at three depth intervals 0-5 ft, 5-
10 ft, and 10-15 ft, before and after each round of shaking.

The values of hydraulic conductivity measured prior to each round of shaking are shown
in Table 3-2. Measured conductivity from the 3ft experiment is shown in the upper half of the
table while values for the 4ft experiment are shown in the lower half of the table. Considering
that the hydraulic conductivity of a clean sand can vary over two orders of magnitude, the
agreement between hydraulic conductivity for the 3 ft and the 4 ft tests is quite good. The values
are also similar to the range of hydraulic conductivity (0.05 to 0.07 cm/sec) measured by Yegian
and his students while injecting water into the laminar box (Yegian, 2013, personal
communication). The measured hydraulic conductivity in the 3 ft tests decreased with each round
of shaking. Relative to the initial values, the hydraulic conductivity decreased about 30% after
the first round and 40% after the second round. The reduction in hydraulic conductivity was
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somewhat higher at shallow depths than at deeper depths. Because similar test data was not
available for the 4 ft tests, the same relative reduction in hydraulic conductivity was assumed in

the analyses that were performed.

Table 3-2 Measurements of Hydraulic Conductivity

Horizontal Hydraulic Conductivity (cm/sec)
Depth Interval (ft) Round 1 Round 2 Round 3
= 0-5 0.064 0.043 0.036
et 5-10 0.045 0.032 0.029
s 10-15 0.039 0.032 0.028
Depth Interval (ff)] Round 1 Round 2 Round 3
z
& 4.5-95 007 No Measurements
10-13 0.05

Based on measured hydraulic conductivity, the Terzaghi and Peck (1948) soil properties
chart (Table 3-3), characterizes the laminar shear box sand as medium grained sand. However,
the particle size is actually in the range of fine sand. This somewhat higher hydraulic
conductivity is likely attributable to the fact that the fines content of the sand is zero and the sand
was initially in a loose condition. Figure 3-6 is a plot of hydraulic conductivity (kn) in logrithmic
scale versus depth, prior to any shaking. Each conductivity measurement is plotted at its average
depth with a red diamond for 3ft values, or an orange square for 4ft values. The particle size
ranges of fine and medium sand, from Terzaghi and Peck (1948), are shown by the black arrows.

The measured values plot within a relatively narrow band.

Table 3-3 Coefficient of Hydraulic Conductivity for Granular Soils
(Terzaghi & Peck, 1948).

Soil type Particle size Coetficient of hydraulic
{(mm) conductivity (cm/'s)
Very fine sand 0.05~0.10 0.001~0.005
Fine sand 0.10~0.25 0.005~0.01
Medium sand 0.25~0.50 0.01~0.1
Coarse sand 0.50~1.00 0.1~1.0
Small pebbles 1.00~5.00 1.0~5.0
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Horizontal Hydraulic Conductivity, k, (cm/s)
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Figure 3-6 Depth Vs. Measured Hydraulic Conductivity, Prior to Shaking.

Red Diamonds (3ft) and Orange Squares (4ft) are Plotted at Average Depth of the
Slotted Pipe Used to Make the Measurement. Particle Size of Sands (Terzaghi & Peck,
1948) are Shown by Black Arrows.

14

The ratio of horizontal and vertical hydraulic conductivity was not measured in the laminar
box experiment. Table 3-4 shows typical ratios of horizontal to vertical conductivity. Three types
of sand are shown, along with a their typical kn/ky ratio. Uniform, clean sands have a ratio as low

as 1.5 for natural soils.

Table 3-4 Typical Values of kn/ky for Sand Deposits

Description kn'ky
Uniform (clean sands) 1.5~2
Moderately anisotropic (silt seams) 4~5
Highly anisotropic 10~100

For modeling purposes we assumed equal horizontal and vertical conductivity, so Kn/kyv
equaled 1.0. This was an acceptible simplification because our sand had a small range of particle
size and was newly deposited. Also, potential inaccuracy of vertical conductivity would have
only slight effect on the numerical model. The horizontal hydraulic conductivity has a much
stronger effect, than vertical conductivity, on pore pressures computed by FEQDrain when
vertical drains are present (Pestana, 1997).

62



For modeling purposes we interpolated trends in hydraulic conductivity from Table 3-2,
to create a matrix of assumed hydraulic conductivity for all shakes of the 3ft and 4ft drain
spacings. Table 3-5 shows the assumed hydraulic conductivity for each shake. The upper half of
the table contains values for the 3 ft experiment, the lower half of the table contains values for
the 4 ft experiment. The first column of the table indicates the general horizontal soil layer. The
remaining three columns correspond to Round 1, Round 2, and Round 3 of shaking. The ‘shake’
sub-column specifies the order and acceleration level of the specific shake. The ‘kx’ sub-column
specifies the interpolated conductivity value. Numbers shown in bold are measured values.
Adjustments were made after each shake, based on the strength of the acceleration. The sum of
past acceleration levels within that round, (0.05g, 0.15g, and 0.35g) were divided by the total
sum of accelerations, 0.35¢g. Thus the 0.05g shake accounts for 14% of the total change of that
round, and by the end of the 0.1g shake there has been 43% of the change for the round. After
the 0.2g shake there has been 100% of the change in conductivity for that round. VValues were
assumed for the end of Round 3, in order to compute the incremental change in Round 3. Values
were also assumed for Round 2 and 3 of the 4 ft expereiment based on the results from the 3 ft

experiment. All values were rounded to three decimals.

Thus for numerical modeling in FEQDrain, there will be a slightly different set of

hydraulic conductivity values used for each shake.
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Table 3-5 Assumed Hydraulic Conductivity

3ft Test Round 1 Round 2 Round 3
Shake K, Shake Ky Shake K,
Top 1.05 0.064 2.05 0.043 3.05 0.036

11 0.061 2.1 0.042 3.1 0.036
1.2 0.052 2.2 0.039 3.2 0.035
Middle 1.05 0.045 2.05 0.032 3.05 0.029
11 0.043 2.1 0.032 3.1 0.029
1.2 0.038 2.2 0.030 3.2 0.028
Bottom 1.05 0.039 2.05 0.032 3.05 0.028
11 0.038 2.1 0.031 3.1 0.028
1.2 0.035 2.2 0.030 3.2 0.027

Aft Test Round 1 Round 2 Round 3
Shake Ky Shake Ky Shake Ky
Top 1.05 0.070 2.05 0.043 3.05 0.036

11 0.066 2.1 0.042 3.1 0.036
1.2 0.055 2.2 0.039 3.2 0.035
Bottom 1.05 0.050 2.05 0.032 3.05 0.029
11 0.047 2.1 0.032 3.1 0.029
1.2 0.040 2.2 0.030 3.2 0.028

3.4.2 Relative Density

Relative density (Dr) expresses the density state of a granular soil in relation to its loosest
(Dr=0%) and densest (Dr=100%) possible states. Relative density is defined by the equation

De= (2 max— &) / (& max — & min) (9)

where emax and emin are the maximum and minimum void ratios obtained according to ASTM
standards and e is the in-place void ratio of the sand. Relative density has a strong effect on the

liquefaction potential and compressibility of sand, and this effect is incorporated in FEQDrain.

Oakes (2013) obtained sand density data during sand placement by extracting small
buckets of sand and determining the in-place void ratio. The relative density was then computed
using Equation (9) based on minimum and maximum void ratios supplied by the University at
Buffalo as indicated in Table 3-1. However, this approach produced D values which were

inconsistent with the relative density from the cone penetration tests. In addition, the difference
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between emax and emin Was much smaller than suggested by several correlations. Furthermore,
when the change in void ratio due to settlement was tracked throughout the testing process, the
relative density eventually increased above 100% which is not reasonable. During this
investigation, both emin and emax Were re-tested using sand obtained from the laminar box during
Oakes original tests. The emax value was in good agreement with the value in Table 2-2, but the
emin Value was found to be 0.48 which was considerably lower than the given value. Researchers
at the University at Buffalo indicate that they have observed a change in the sand gradation and
emin Value as the sand has been repeatedly used for shaking test during previous tests at the site

(Prof. Anthony Tessari, Personal communication, 2016).

Relative Density, Dr (%) Relative Density, Dr (%)
0 20 40 60 80 100 0 20 40 60 80 100
0 ———t —r— —r— —— 0
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Figure 3-7 Relative Density Measurements for 4 ft and 3 ft-Drain Spacing from Bucket
Samples Taken During Filling with Corrected emin 0f 0.48.

In this study, the corrected emin Value has been used to compute the relative density.
Relative density profiles for the tests with the 4-foot and 3-foot drain spacings are presented in

Figure 3-7. Relative density is typically between 25-30% and is relatively consistent with depth.

Relative density was also estimated from the CPT cone tip resistance using correlations
developed by Kulhawy and Mayne (1990). Relative density profiles are presented in Figure 3-8
for the 4-foot and Figure 3-9 for the 3-foot drain spacing tests at the start of each round of testing
and at the conclusion of testing. The relative density profiles from the CPT generally indicate

the relative density for each round of testing is progressively increasing as expected based on
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reconsolidation settlement measurements. The relative density obtained from the CPT soundings
predict somewhat lower values of relative density than what was measured from the density
buckets. It is unclear if this is attributable to failure of the CPT to account for the very
compressible nature of the sand structure after deposition or potential arching across the sand

box which may have reduced the vertical effective stress and hence the cone tip resistance.

Relative Density (%) Relative Density (%)
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Figure 3-8 (Oakes, 2015) (4ft) Relative Density from CPT Correlation, Jamiolkowsky, et al.
(1985), Left, and Kulhawy and Mayne (1990), Right.
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Figure 3-9 (Oakes, 2015) (3ft) Relative Density from CPT Correlation, Jamiolkowsky, et al.
(1985), Left, and Kulhawy and Mayne (1990), Right.

Although the relative density prior to any shaking tests was measured, the relative density
IS increasing with each shaking test as the void ratio decreases. To determine the relative density
for each shake test, the average change in void ratio was computed based on the settlement for
each shake test. First, the initial void ratio must be found. The initial void ratio can be found

using the equation

(G +e)w (10)
VYsat = 14e

where ysat = saturated unit weight of soil
Gs = specific gravity of sand
yw = unit weight of water
e = void ratio

For soil having a saturated unit weight of 122.5 Ib/ft® (average value after initial

depositions) assuming a specific gravity of 2.6, and 62.4 Ib/ft® for the unit weight of water,
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Equation (10) yields a void ratio of 0.713. This can then be simplified to a height of voids and a

height of solids, using the equation

V__e (1)
V 1+4e

where Hy = height of voids in the soil
Vv = volume of voids
V = total volume
e = void ratio

Solving for the height of the voids gives 0.4164 as the portion of the total height. This
value is then multiplied by the height of the sand in the laminar box, to give the initial height of
the voids. A new height of voids (H.vnew) is found by subtracting the prior total settlement

(H.total,prior settlement) from the |n|t|a| he'ght Of VOidS (H.v,initial).
HV new =Hy initial — H total prior settlement (12)

The new void ratio (e new) is then found by dividing the new height of voids (Hy new) by the height

of solids (H soligs) using the equation
€ new = Hv new / H solids (13)

From this new void ratio, a new relative density (Dy) is found using Equation (9). Also, a new

saturated unit weight is found by substituting the new void ratio back into Equation (10).

A summary of the relative densities calculated at the beginning of each shaking test is
provided in Table 3-6. The results indicate a gradual increase in Dy within each round of testing;
however, the rate appears to decrease with each round of testing. Once again, the computed D

values are somewhat higher than predicted by the correlations with the CPT but they are not
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unreasonable. Because the computed values are based on the measured average settlement from

the tests themselves, they have been preferred for use with the FEQDrain program.

Table 3-6 Computed Dr at the Start of each Shaking

Test for the 4 ft and 3 ft Drain Spacings.

4 ft Drain Sapcing 3 ft Drain Spacing

Base Acceleration| Round 1 | Round 2 | Round 3 | [Base Acceleration| Round 1 | Round 2 | Round 3
0.05g 27 47 58 0.05g 27 49 62
0.1g 33 50 59 0.1g 32 51 64
0.2g 39 54 61 0.2g 40 56 67

3.4.3 Modulus of Compressibility

The volumetric compressibility, my, is also referred to as coefficient of volumetric
compressibility or modulus of compressibility, in other technical literature. This parameter
defines the change in vertical soil strain relative to the change in vertical stress. For low values
of pore pressure ratio, ry, it has been found that my is essentially constant. However, for pore
pressure ratios larger than 50-60%, my increases significantly with increases in the pore pressure

ratio as described previously in Figure 3-2.

A cyclic triaxial compression test is the typical method for measuring the compressibility
of a soil sample, but values are often selected from a table of typical values in practice. However,
because of the instrumentation in the laminar box, there is sufficient data (ru and €v) to back-
calculate the volumetric compressibility of the sand, using Equation (8). Because of the
confinement provided by the walls of the laminar shear box, it may be assumed that all
volumetric strain can be attributed to the change in height of the soil, also known as the vertical
settlement.

FEQDrain uses the initial modulus of compressibility myo, and relative density, Dy, as
input values, and determines the appropriate adjusted my value as a function of r, for use in
iterative calculations. From the data collected by Oakes (2015), the my, was calculated and then
myo Was back-calculated using Equation (8). The procedure used in computing myo values is
described in the following section. To compute my, from my using Equation (8) the relative

density at the start of each shake test must be known. The procedure used to compute the
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relative density has been described in the previous section. The change is strain (A€) for each
shake test was determined within each depth interval by taking the change in settlement (As)
from the Sondex Tube profilometer measurements and dividing by the length between the two

points (AL) according to the equation

Ag = As/ AL (14)

The change in vertical effective stress (Ac’) was then computed using the equation

Ac’= Z('y new—'YW) lu (15)

where depth, z, corresponds to the depth of the transducer that measured pore pressure ratio and
¥ new 1S the unit weight of the sand. The modulus of compressibility (my) is then obtained using

the equation

my = At/ Ao’ (16)

Remember, this is the elevated (my) with compressibility increased from the excess pore
pressures. The initial compressibility (myo) value can then be back-calculated using a revised

version of Equation (8).

Myo = My (1+Y+05 YZ)/eY (17)

where Y was defined previously. There is a different ry value and thus a different Y value for

each depth at which a piezometer measured pore pressures.

The computed values of my for all shakes and all depths for the 3 ft and 4 ft drain
spacing experiments are shown in Table 3-7 and Table 3-8, respectively. These tables show the
initial soil modulus values in units of ft?/Ib, at various depths. Each column represents the myo
values in the soil profile for each shake. An average of these my, values is listed in a separate row

at the bottom of each table. The top row of each table shows the shake test number, from 1 to 9.
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The second row indicates the peak acceleration of each shake. These rows are directly above

their corresponding columns of my, data in the main area of the table. The computed modulus of

compressibility values range from 2x10° to 2x10° ft%/Ib.

Table 3-7 Computed my, Values at Each Depth for Each Shake of the 3ft Test

Shake # 1 2 3 4 5 6 7 8 9

Acceleration (g) 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
Depth (ft) | 3ft Data -- My, Values (ft%/ Ib)

32 39E-06 25E-05 20E-05 3.1E05 22E05 36E-05 46E05 64E-06 3.3E-05

5.6 1.0E-05 19E-05 7.2E-06 27E-05 11E-05 23E-05 26E-05 7.9E-06 8.9E-06

8 35E-05 7.6E-06 7.1E-06 85E-06 18E-05 90E-06 1O0E-05 37E-06 20E-05

105 30E-05 17E-05 12E-05 53E05 12605 62E06 7.7E-06 21E-05  14E-05

13 29E-05 16E-05 25E-05 19E-05 18E-05 7.5E-06 51E-05 50E-05 53E-06

15.5 #N/A  25E-05 21E-05 37E-05 24E-05 1I1E-05 #N/A  33E-05  8.2E-06

Avg Myo 2.2E-05 1.8E-05 1.5E-05 2.9E-05 1.7E-05 1.6E-05 2.8E-05 2.0E-05 1.5E-05

Table 3-8 Computed mv, Values at Each Depth for Each Shake of the 4ft Test

Shake # 1 2 3 4 5 6 7 8 9

Acceleration (g) 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2
Depth (ft) | 4ft Data -- My, Values (ft% Ib)

2.5 54E-06 3.6E-06 9.7E-06 5.4E-06 8.3E-06 18E-06 50E-06 40E-06 6.8E-06

45 3.0E-06 15E-05 20E-05 20E-06 3.7E-06 20E-06 4.2E-06 48E-06 4.1E-06

7.5 35E-06  29E-05 4.7E-06  2.3E-06 3.9E-06 7.4E-07 82E-06 7.8E-06  5.7E-06

10 15E-05  21E-05 3.9E-06 7.8E-06 25E-06 3.3E-06 3.0E-06 8.4E-06  9.8E-06

12,5 2.0E-05 #N/A  22E-05 10E-05 50E-06 84E-06 20E-05 10E-05 11E-05

Avg Myo 9.3E-06 1.7E-05 1.2E-05 55E-06 4.7E-06 3.2E-06 8.1E-06 7.0E-06  7.5E-06

As a comparison to the back-calculated values, typical compressibility’s of natural sands

are shown in Table 3-9 (Pestana et al. 1997). Several types of sands are listed, with

compressibility shown in both imperial and metric units. The mean particle size of each sand is

also listed. The compressibility values range from 1x10° to 5x107 ft?/Ib.
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Table 3-9 Typical Values of Volumetric Compressibility of Sand (After Pestana et al. 1997)

Coefticient of volumetric compressibility Mean particle
Type of sand size. Dsg

(f2/1b)* (m?/kN)* (mm)
Sacramento River Sand 1x10° 2x10° ~0.2
El Monte Sand (D) 1x10° 2x107 ~0.22
El Monte Sand (E) 1x10° 2x107 ~0.1
Akita Port Sand 1.5 ~2x10° 3 ~4x107 0.15
El Monte Sand (C) 2x10° 41x107 0.65
Monterey Sand 2x10° 4x107 0.6
Fuji River Sand 3x10° 6x 107 0.4
El Monte Sand (B) 4x10° 8x107 3.0
Ogishima Sand 5x10° 10x 10” 0.32
* Measured at .'EI;"'IO'I_; <05, o, =2048 ft*/1b = 98.1 kN/m?

For a more direct comparison, the back-calculated and the typical values of
compressibility from Pestana et al. (1997) are shown in Figure 3-10 and Figure 3-11. The
horizontal axis is modulus of soil compressibility (ft?/Ib) plotted in logarithmic scale, and the
vertical axis is depth (ft) on a linear scale. The thick vertical black lines mark the upper and
lower limits of the computed values. The gray hatched area in the background of the chart is the
range of compressibility reported in literature (Pestana, 1997). Markers plotted on the chart
represent the compressibility of the soil in the laminar box at that depth. Each of the markers for
a single shake is connected by a colored curve. The blue curves with diamond shaped markers
are Round 1. The orange curves with triangular markers are Round 2. And the green curves with
square markers are Round 3. Within each range the stronger shakes are darker shades of the
same color. In the chart legend, the series title indicates the round and acceleration level of each
shake. Thus 1.05 represents the 0.05g shake of Round 1, and 3.2 represents the 0.2g shake of

Round 3. The series titles are listed in sequential order from top to bottom.
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Modulus of Soil Compressibility, M, (ft?/Ib)

1.0E-03

1.0E-07 1.0E-06 1.0E-05 1.0E-04
0 ———+++H -+ —
Pestana,}1997 1.05
2 < >
y. ——1.1
4 4 12
= © 2.05
S 8 2.1
o
Q 10 ——2.2
8 18
12 g N g 3.05
y b j " —-3.1
> < / = —=—3.2
16

Figure 3-10 Modulus of Soil Compressibility for 3ft Experiment, Upper and Lower Limits
Marked by Black Lines. Back Calculated from Data Measured by Oakes (2015). Gray
Hatched Area is Range of Compressibility Reported in Literature (Pestana, 1997).
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Figure 3-11 Modulus of Soil Compressibility for 4ft Experiment, Upper and Lower Limits

Marked by Black Lines. Back Calculated from Data Measured by Oakes (2015). Gray

Hatched Area is Range of Compressibility Reported in Literature (Pestana, 1997).
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The modulus of compressibility back-calculated for the laminar shear box test sand had
an average of about 8x10° ft%/Ib.; which is higher than the typical values suggested by Pestana et
al (1997). However, this sand was very young (7 to 10 days old) and deposited by water
pluviation. Therefore, any "micro-structure” that would increase the stiffness of an older natural
soil would not be present. For modeling of native soils, a value within the typical

compressibility range would likely be more appropriate.

3.4.4 Number of Cycles to Liquefaction

The number of cycles to liquefaction (N-Liq) is an indicator of the liquefaction resistance
of asoil. Itis dependent on the relative density and micro-structure of the soil, as well the cyclic
stress ratio (CSR) induced in the soil by the sinusoidal accelerations applied at the base of the
model. A smaller number indicates a soil layer more prone to liquefaction, and a high number

indicates greater resistance to liquefaction.

Previous laminar shear box testing, with freshly deposited sand but without drains,
showed that the sand would liquefy within three to four cycles of loading with a peak
acceleration of 0.05 g (Bethapudi, 2008). However, as the peak acceleration of the input motion
is increased, the number of cycles to liquefaction would be expected to decrease. Unfortunately,
the selection of the number of cycles to liquefaction for each shake test is problematic because as
the sand densifies with each shake, the liquefaction resistance increases leading to an increase in
the number of cycles to liquefaction. Lastly, correlations between number of cycles to
liquefaction and penetration resistance developed for natural soils are unlikely to be applicable
for the newly deposited sand in the box with little micro-structure.

Parametric studies suggest that number of cycles to liquefaction primarily controls the
rate of excess pore pressure generation in the first few seconds of shaking but subsequent results
are not strongly influenced by this parameter. Generally, using about three cycles to liquefaction
produced acceptable results. As a simplification for the initial numerical evaluations, it was
decided to use the same number of cycles to liquefaction (N-Lig=3) for all tests, all

accelerations, and all rounds.
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For the 4ft spacing test, there was sand remaining in the shear box from previous
experiments by previous users. This sand was assumed to be dense and thus make no significant

contribution to excess pore pressures. Therefore, one hundred cycles to liquefaction was used.

3.5 Drain Parameters

The outside radius of the drain was 0.1542 ft which corresponds to a drain area of 0.0491
ft>. The radius of the area of influence was 1.5 ft and 2 ft which represents a drain spacing of 3ft
and 4 ft in a triangular grid. The area of openings per unit length in the perforated pipe was
0.0077 ft?/ft of length. The constant associated with head loss through the perforations was taken
as 1.0, and the geosynthetic had a permittivity of 0.8325 s*. The constant of head loss due to
vertical resistance in the drain was C1=1.7049 and C,=2 provided by the manufacturer.
Parameters relating to a reservoir were set the same as the drain dimensions, because there was

no reservoir. The static groundwater level was at the soil surface

3.6 Other Required Input Parameters

The equivalent number of cycles was set at 15 which corresponds to the number of cycles
produced by the shaking table. the time duration of shaking was 7.5 seconds because the cycles
were applied at a frequency of 2 Hz. The total time of analysis was set at 100 seconds to capture
the full dissipation curve after shaking stopped. The FEQDrain user manual states that the total
time of analysis must be double or more than the time of shaking. However, the time of analysis
must be far greater than the time of interest. For example, attempting to analyze 15 seconds time
interval for 7 seconds of shaking will lead to error messages, and failure of the program to
complete calculations. Therefore, the time of analysis must be far greater. The standard value of

0.7 for coefficient of pore pressure generation (0) was used for all tests.

3.7 Data Processing/File Management

The FEQDrain program uses text file inputs that require the user to place the input values
together in comma delimited strings of text as shown in Figure 3-12, with varying lengths and
numbers of lines, depending on the soil layer geometry chosen. A full discussion of what each
line means can be found in the FEQDrain user manual (Pestana et al., 1997). The process of
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creating these input files is tedious and prone to human error, also they are non-intuitive for

visualizing the values of the parameters.

PPR Matching 1 2 42
7,10,62.4,0,0,1,0

2,1,0.00105,0.000105,0.00002,122.5,1,0.55,0.7
5,2.5,0.00105,0.000105,0.000008,122.5,1,0.55,0.7
5,2.5,0.001,0.0001,0.000007,122.5,1,0.55,0.7
5,2.5,0.001,0.0001,0.000006,122.5,1,0.55,0.7
5,2.5,0,0017,0.00017,0.000008,122.5,1,0.55,0.7
5,2.5,0.0012,0.00012,0.000008,122.5,7,0.55,0.7
,2.5,0.0002,0.00002,0.000001,122.5,100,0.7,0.7

14,7,1,100
100,1,1

-

2ed, a2, 7

0.154 166060060667 ,2,0.0491
1.704%5,2,1,0.0077,0.8325
0.04891,0,1.7049,2

end

Figure 3-12 Example of Input File Ready for Processing in FEQDrain.

To simplify the creation of these input files, an Excel spreadsheet with VBA macros was
used. The input file spreadsheet was originally developed by a previous graduate student, Strand
(2008). This spreadsheet is shown in Figure 3-13. Input parameters are grouped by type. The
group in the top left corner (General analysis parameters) specifies the dimensions of the finite
element node-array, and groundwater level. The group in the top middle (Earthquake loading
conditions) specifies the strength of ground motions which are expressed as number of
equivalent uniform cycles, duration of shaking, and time extent of the model computation. The
group in the top right corner (Drain and reservoir parameters) relates to the type, and presence or
absence of drains in the soil. The group in the center (Additional drainage parameters) specifies
the geometry of the drain and the head loss into and within the vertical drain. The largest group,
located on the lower half of the figure (Soil profile and properties) contains the properties
specific to each layer of the soil, (hydraulic conductivity, soil compressibility, relative density,
unit weight, etc.). This chart format makes it easy to see the value of each parameter, make

changes to input values, and visualize the variations.
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The spreadsheet file has two embedded macros. The first macro (activated by click)
creates the input file. Next, the user opens FEQDrain and types the title of the macro-generated
input file. FEQDrain closes automatically upon running to completion, which takes 2-3 seconds.
Then a second macro (activated by click) imports and sorts the output file, and pastes it to a new
sheet of the workbook. The second macro also copies and pastes input values from the first page,

thus preserving a record of both the input and output on a single sheet.
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The graphing tools that come with FEQDrain when downloading the program from the
NISEE e-Library are illustrated in Figure 3-14. These plots show excess pore pressure ratios for
the entire profile at a given time. Each colored bar represents a node. The graphic presented are
all for the same time.

Pore Pressure Ratio Values at Time = 30 seconds.

Pore Pressure Ratio

Columnar plot of pore pressure ratios

Pore Pressure Ratio Values at Time = 30 seconds.

1 Surface plot of pore pressure ratios

Figure 3-14 Plots Made Using the Graphing Tools Provided with FEQDrain.

Unfortunately, these plots do not allow for computed excess pore pressure ratio (Ry) to be
easily compared with measured Ry time histories. Therefore, as part of this study, a separate
spreadsheet was used to plot the measured and calculated time histories at selected nodes. This
greatly facilitated the evaluation of the effect of various input parameters on the measured
response.
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Computer models were made for all shake tests done by Oakes (2015), one at each
acceleration level for each of three rounds. Thus nine models for 4ft spacing tests and nine more
models for 3ft spacing tests. Also a parametric study was done with models to determine the
effect of changing the soil property parameters. More modeling was later done to determine the
effects of drainage and seismic parameters. Modeling was somewhat of an iterative process to

produce a good match with appropriate parameters.

Because so many similar files were created, a naming system was implemented for
managing the hundreds of input and output files. The name of each model corresponds to which
round (1, 2 or 3), acceleration level (0.05g, 0.1g or 0.2g), and iteration number they represent;
generally following a # # ## format. For example, 2_05_4 is: round 2, acceleration=0.05g,

iteration 4. The file name cannot be more than eight characters for FEQDrain to accept it.
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4 FINITE ELEMENT RESULTS AND DISCUSSION

This chapter provides comparisons of the measured and computed excess pore pressure
ratio time histories at six depths for each shake test. In Section 4.1, plots of measured and
modeled pore pressure ratios are presented using modulus of compressibility, relative density
and hydraulic conductivity from the experimental data for each shake. This approach did not
consistently yield good agreement with measured response over the entire depth of the profile.
Therefore, in Section 4.2, similar comparison plots are provided; however, the modulus of
compressibility has been back-calculated to provide the best-fit with the measured excess pore
pressure ratio time histories. Generally, the modulus was adjusted within the range of measured
values to achieve improved agreement with the measured pore pressure response. In addition,
plots comparing the measured and computed settlement for reconsolidation after liquefaction are

also provided in this section.

A separate model was made for each shake in each section; thus, nine models were
developed for each of the 3-foot and 4-foot drain spacing shake tests. However, drain geometries
and properties were the same for all drain tests with a given drain spacing. The number of cycles

to liquefaction was kept constant at three for every model as indicated in the previous chapter.

Section 4.3 investigates the effects of varying soil input parameters. Section 4.4
illustrates the difference caused by different drain diameters. Section 4.5 Shows and discusses
how different earthquake magnitudes are treated by the program. Section 4.6 and 4.7 make
comparison between this numerical modeling effort and those of Vytiniotis et al. (2013), and
Howell et al. (2014). Section 4.8 makes comparison with the conclusions of the parent study
(Oakes, 2015). Section 4.9 provides suggestions on the practical use of FEQDrain.
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4.1 Computed Pore Time Histories with Experimental Soil Properties

The computer program FEQDrain (Pestana et al, 2007) was used to compute time histories
of excess pore pressure ratios at selected depths corresponding to the locations of the pore
pressure transducers in the laminar shear box experiment. Figure 4-1 through Figure 4-3 provide
comparisons of measured and computed excess pore pressure ratio (Ry) time histories for the
shake tests at 0.1 g for rounds 1, 2, and 3 using the measured hydraulic conductivity, along with
the back-calculated relative density and modulus of compressibility obtained from the
experimental data. Similar comparison curves were also developed for each shake test for each
pore pressure transducer depth.

Results are presented at the depths of the six pore pressure transducers in the profile.
Generally, the computed Ry time histories are higher than the measured curves at a given time
and the over-prediction becomes worse with depth. The least reliable parameter in the analysis is
the modulus of compressibility which is based on strain from the settlement versus depth curves
which appeared to be somewhat irregular with depth. A major assumption in back-calculating the
static modulus of compressibility (mvo) is that the static compressibility can be interpreted from
the compressibility associated with the liquefied sand according to equation 8. Recent
experience in the Tohoku earthquake has shown that the compressibility of liquefied sands can
vary significantly from average values leading to discrepancies in predicted settlements. Even if
the average measured modulus of compressibility is used for each shake test, the disagreement
between measured and computed Ry’s also increases with depth, with the computed values being
higher. Howell et al. (2014) also found that the error in the computed Ry in centrifuge tests was

largely attributable to discrepancies in the modulus of compressibility used in the analyses.
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Figure 4-1 Comparison of Measured and Computed Excess Pore Pressure Ratio Time
Histories at Six Depths Using myv from Experimental Data for 3-Foot Drain Spacing, Round
1, Amax=0.10g. (Measured-Solid Blue Curve and Computed-Dashed Black Curve)
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Figure 4-2 Comparison of Measured and Computed Excess Pore Pressure Ratio Time

Histories at Six Depths Using mv from Experimental Data for 3-Foot Drain Spacing, Round
2, Amax=0.10g. (Measured-Solid Blue Curve and Computed-Dashed Black Curve)
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Figure 4-3 Comparison of Measured and Computed Excess Pore Pressure Ratio Time
Histories at Six Depths Using my from Experimental Data for 3-Foot Drain Spacing, Round
3, Amax=0.10g. (Measured-Solid Blue Curve and Computed-Dashed Black Curve)
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A spreadsheet containing calculations of the initial soil modulus of compressibility (myo)
is shown in Appendix D. Soil Compressibility. Therein is also shown how the vertical strain
divided by the vertical effective stress is used to calculate the post liquefaction soil
compressibility (my) for each soil layer. From there, the settlement, is used to determine the
change in height of total soil voids, via volumetric analysis. From there a new void ratio and
relative density is found for the soil profile after subsequent shakes have occurred. This new
relative density is then available for computation of the equations for myo presented earlier in
section 3.2.2

4.2 Computed Pore Time Histories with Adjusted Soil Compressibility

To provide increased understanding of the effect of the drains relative to the material
properties for the sand in the box, the modulus of compressibility at each depth was adjusted to
optimize the agreement between the computed Ry’s and the measured results. Typically, this
required some decrease in the modulus of compressibility (mvo ) with depth. The compressibility
has a pronounced effect on the rate of pore pressure generation and dissipation. The relative
density and hydraulic conductivity values were kept equal to the measured values from the
laminar box experiments because they are fairly well-constrained by the data. Figure 4-4
through

Figure 4-6 provide comparisons of measured and computed excess pore pressure ratio
time histories for the shake tests at 0.1 g for rounds 1, 2, and 3. Similar comparison curves were
also developed for each shake test for each pore pressure transducer depth. Generally, the
computer model is reasonably capturing the basic features of the Ry time histories in Figure 4-4

through

Figure 4-6, such as the peak Ry and the dissipation time, but there are some discrepancies

in some instances.
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Figure 4-4 Comparison of Measured and Computed Excess Pore Pressure Ratio Time
Histories at Six Depths Using Back-Calculated my to Fit Ru Time Histories for 3-Foot Drain
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Figure 4-7 through Figure 4-9 provide comparisons of measured and computed excess
pore pressure ratio time histories for the shake tests of Round 1, at 0.05g, 0.1g, and 0.2g. These
results illustrate the ability of the computer model to compute the measured Ry time histories for

various acceleration levels within a given round of testing.
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Figure 4-7 Comparison of Measured and Computed Excess Pore Pressure Ratio Time
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The back-calculated myo values are plotted versus depth for each shake test and for each
drain spacing in Figure 4-10. Generally, the back-calculated my, values plot within the center of

the range of my, values obtained experimentally, as illustrated in and decrease with depth.
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Figure 4-10 Back-Calculated Modulus of Compressibility Values Necessary to Produce
Agreement with Pore Pressure Response in Comparison with Range of Experimental
Compressibility Values for All Shaking Tests with the (A) 3-Ft. and (B) 4-Ft. Drain
Spacings.
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This agreement suggests that the back-calculated my values are reasonable values
considering the potential for local variations in the measured settlement versus depth curves. The
back-calculated my values are generally higher than those tabulated by Pestana et al (1997) in the
user’s manual for the FEQDrain program for cyclic triaxial shear specimens. This could be due
to the nature of the deposition process in the laminar shear box which appears to produce a loose,

unstructured soil deposit which is more compressible than conventional soils.

4.2.1 Settlement Computation

The FEQDrain program also computes the settlement which develops as a result of
liquefaction. and reconsolidation. Computed settlements are plotted against the measured
settlements for the 3-ft. and 4-ft. drain spacings in Figure 4-11. In all cases of this test, the
computed settlements are higher than the measured settlements. For the 3ft drain spacing test,
FEQDrain overestimated by 66%, and overestimated by 94% for the 4ft test. It should also be
noted that measured settlement values are for pre-placed drains to which the sand was added
rather than vibrating mandrel-installed drains. Thus, the measured settlement would conceivably

be even lower, thus increasing the disagreement with the settlements predicted by FEQDrain.

However, the large variation in computed and measured settlements is not unexpected
since the calculation of liquefaction induced settlement is a challenging undertaking. The range
of variation in measured settlement is often two times to one-half of the predicted settlement
based on recent comparison with large settlement data bases in New Zealand and Japan. In
addition, reconsolidation settlements following cyclic shear testing are known to vary over a
considerable range. Therefore, the discrepancies in the measured and computed values are not
too surprising. Again, it should also be noted that measured settlement values are for pre-placed
drains to which the sand was added rather than vibrating mandrel-installed drains. These results

should be limited to this test only.
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Figure 4-11 Comparison of Measured and Computed Settlement for Each Shaking Test for
Both the 3-ft. and 4-ft. Drain Spacings.

4.3 Parametric Sensitivity Study

A parametric study was performed to determine the effect of changing certain model
parameters that are related to soil properties, and drain properties. For this investigation, the
calibrated model for the 4ft drain spacing during Round1 testing, with amax=0.1g was used as the
example. This changing of parameters was done systematically, with all other parameters kept
equal, despite the fact that some parameters might be cross-correlated. The resulting excess pore
pressure vs. time curves were plotted together on one plot for each depth where a pore pressure
transducer was located for comparison. It is assumed that the behavior observed when varying

each parameter in this example will have the same or very similar effects on all other models.

It was found that for the initial Ry rise (generation curve), and the peak Ry value attained,
the number of cycles to liquefaction and the hydraulic conductivity have the greatest effect.
However, the downward slope (dissipation curve) is most influenced by hydraulic conductivity
(k) and coefficient of compressibility (my), with the latter having particular effect on the initial
angel of the dissipation slope.

In the subsequent sections, the effect of variations in hydraulic conductivity, relative
density, modulus of soil compressibility, coefficient of soil compressibility, number of cycles to
liquefaction, soil unit weight, coefficient of pore pressure generation, drain diameter, and
earthquake magnitude will all be examined
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4.3.1 Effect of Variations in Hydraulic Conductivity (k)

The hydraulic conductivity of the soil has the strongest effect on the dissipation of pore
pressures to drains and the resulting Ry values. It is also the most sensitive property as shown by
parametric study. However, conductivity was relatively simple to measure in-situ for these tests,
thus reducing the variability in modeling. Intuitively, a higher conductivity value leads to a lower
Ry value since water can escape more easily; this is confirmed by the parametric study. In real
field applications, the determination of an accurate hydraulic conductivity in the horizontal
direction becomes of paramount importance. It should also be noted that the computer model
assumes that the hydraulic conductivity remains constant within a single seismic event,
regardless of Ry even after liquefaction has begun. This may differ from reality, since a liquefied
soil could be expected to have significantly greater conductivity while still liquefied. However,
densification of the soil resulting from the seismic event would reduce the void ratio for
subsequent seismic events. Thus a slightly lower relative density and conductivity should be

chosen for modeling the next event.

Results of the parametric study for hydraulic conductivity are shown in Figure 4-12 and
hydraulic conductivity values used in this analysis are summarized in Table 4-1. The dashed
black curve is the model prediction of Ry made using the measured hydraulic conductivity while
the measured Ry time history is shown in dark blue. Changing the hydraulic conductivity by
about 25% (Kmodel X 1.25 and kmodel X 0.75) typically changed the computed peak Ry values 10 to
25 percentage points. The highest and lowest Ry vs time curves use the overall maximum and
minimum k-values (upper bound k, and lower bound k) measured in the laminar shear box, and
use the same k at all depths. Peak Ry values change somewhat for the 25% variation case

particularly at shallow depth and dissipation times increased markedly for the lowest k values.

Results produced using a wider range of hydraulic conductivity values (Table 4-1) are
shown in Figure 4-13, while the type of soils that may correspond to that k value is shown in
Table 4-2. Specific examples of soil type are difficult to provide because the property varies
widely and can be drastically affected by a small percentage of fines within the gradation.
Nevertheless, when the hydraulic conductivity decreased by a factor of 5 to 10 times, the peak Ry
values typically increased to near 1.0 while the rate of dissipation increased substantially for the

drain spacing and diameter analyzed.
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The results of these parametric studies highlight the importance of selecting appropriate k
values when designing a mitigation strategy based on drainage. Analyses should always
consider the lower range of k values that might be present in the field and in-situ testing data is
extremely valuable in this process because variations in particle gradation, fines content, and

clay plasticity could have a pronounced effect on the peak Ry values generated and the rate of

excess pore pressure dissipation.

Table 4-1 Hydraulic Conductivity Values Used in Sensitivity Analysis

Horizontal Hydraulic Conductivity (cm/sec)
Lowest Back-Calculated Highest
Measured Kie Measured
Depth Interval (ft) Kmin 0.75 x K¢ 1.00 x Kpc 1.25 x Kpc Kax
0-6 0.028 0.046 0.061 0.076 0.07
6-11 0.028 0.032 0.043 0.054 0.07
11-16 0.028 0.029 0.038 0.048 0.07

97



Z=5ft

Z=8ft
1.0 +
Measured
o K.min
0.75 x/K.bc
05 Hr= AN | _==7== 1.00 x/K.bc
1.25 x K.bc

K.max

00 'II_'l 1 1 1

0 10 20 30 40
Time (sec)

1.0 A

Z=10ft

40 50
Z=13ft
1.0 -
=
o
1 1
20 30 40 50
Z=15ft
1.0 A
Measured
- K.min
of
0.75 X K.bc
----- 1.00 X K.bc
1.25 xK.bc
K.max
0 10 20 30 40 50
Time (sec)

Figure 4-12 Effect of Varying Hydraulic Conductivity (k) at Each Piezometer Level.
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Table 4-2 Possible Correlation of Hydraulic Conductivity and Soil Type

Conductivity Range (crmsec) Soil Type Possible Conductivity Expef:ted Relative
(cm/sec) Density (Dr)
Sandy gravel 0.100
Course to Fine Sand Very loose clean sand 0.060 25%
0.1to 0.001 Loose clean sand 0.040 50%
Clean sand 0.020 75%
Fine Sand/ Silty Sand Dense/Fine sand 0.010
0.001 to 0.00001 Well graded/ Very fine sand 0.005
Very fine sand/ Silty sand 0.001

4.3.2 Effect of Variations in Modulus of Soil Compressibility, (mv)

As previously stated, soil compressibility has a strong effect on the peak values and
dissipation rate of the computed Ry curves. The back calculated my values for the experimental
soil was much higher than those suggested in the FEQDrain manual for natural soils. Most of the
back-calculated myo values were close to 8x10° ft%/Ib, but the suggested values were around
2x10° ft?/Ib. This is likely because the sand in the laminar box was very uniform, newly

deposited and did not have any significant structure or bonding between the particles.

Results of the parametric study of the modulus of soil compressibility are shown in
Figure 4-14 for each level where pore pressure transducers are located. Comparisons are
provided with measured and back-calculated models as was done previously. The results of
modeling show a higher coefficient of compressibility produces higher Ry peak values, and
slower dissipation. Lower compressibility produces lower pore pressures and faster dissipation.
This effect is clearly illustrated in Figure 4-14, which shows several curves produced by
increasing or decreasing the myo by multiplying the back-calculated compressibility for each
layer by a factor. The values in the legend and Table 4-3 indicate what factor was applied for

each curve.

100



Z=10ft

Z=5ft Z=13ft

Z=8ft ] Z=15ft
1.0 + 1.0 4+
—T— Measured ——  Measured
& ———  Mv.max e ] —_— Mv.max
1.25 xMv.bc 1.25 x Mv.bc
0.5 1 0.5
----- 1.00 xMv.bc =====1.00 x Mv.bc
0.75 x Mv.bc
0.0 T 1 L} _-.-LI. 0.0 L} 1 1 T L}
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)

Figure 4-14 Effect of Varying Coefficient of Volumetric Compressibility (mvo) at Each
Piezometer Level.

Changing the my, values by factors of 1.25 and 0.75 changed the peak Ry values by 10 to
25 percent points which is very similar to the sensitivity observed with the hydraulic
conductivity. This explains why Ry values observed by Oakes (2015) were similar for all tests;

because the progressive reduction in compressibility, caused by successive densification, is
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counteracted by the decreasing hydraulic conductivity. Ry vs time curves computed using the

maximum and minimum range of my, values measured in the experiment show a variation in
peak Ry values of plus 25% to 50% and minus 20 to 50%.

Table 4-3 Soil Compressibility Values Used in Sensitivity Analysis

Modulus of Soil Compressibility (ft*/Ib)

Lowest Back-Calculated Highest
Measured M, (bo) Measured

Depth Interval (ft) | My min 0.75 x My (bc) 1.00 x My (bc) 1.25 X My (pc) My max
0-1 4.00E-06 1.13E-05 1.50E-05 1.88E-05 2.00E-05
1-35 4.00E-06 1.13E-05 1.50E-05 1.88E-05 2.00E-05
3.5-6 4.00E-06 1.05E-05 1.40E-05 1.75E-05 2.00E-05
6-8.5 4.00E-06 9.75E-06 1.30E-05 1.63E-05 2.00E-05
8.5-11 4.00E-06 6.75E-06 9.00E-06 1.13E-05 2.00E-05
11-13.5 4.00E-06 5.50E-06 7.33E-06 9.16E-06 2.00E-05
13.5-16 4.00E-06 1.50E-06 2.00E-06 2.50E-06 2.00E-05

4.3.3

Interaction of Hydraulic Conductivity and Modulus of Compressibility

As discussed in the previous two sections, the hydraulic conductivity and modulus of
compressibility are sensitive parameters, and are both related to void ratio and hence related to
relative density. Conductivity and compressibility are both inversely correlated to the relative
density. As relative density increases, both the conductivity and the compressibility decrease.
However, these parameters have opposite effects on the excess pore pressures generated. For
example, low conductivity contributes to high pore pressures, but a low compressibility reduces
the generation of pore pressures. Because these parameters are inter-related, it is unrealistic to
change one of these sensitive parameters in a calibrated soil model without changing the other an

appropriate amount.

Best-fit curves defining the hydraulic conductivity (K) and soil compressibility (myo) as a
function of relative density (D:) are shown in Figure 4-15. These correlations are based on the
average K, myo, and Dy values for nine shaking tests for the 3ft drain spacing. Average K and myo

are plotted on separate y-axes relative to Dr on the x-axis.
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Figure 4-15 Best-fit Correlations of Average Hydraulic Conductivity (K) and Average Soil
Compressibility (mvo) with Relative Density (Dr). The Nine Markers of Each Parameter
Because of the Nine Shake Tests of the 3ft Drain Spacing Test.

The best-fit curves in Figure 4-15 and the resulting equations were used to
mathematically compute a new relative density when one sensitive parameter was adjusted.
From this relative density, a new combination of conductivity and compressibility were used to
model the expected Ry vs time curves with FEQDrain. To determine the parameters for the
analysis, the conductivity was first changed to 1.25 and 0.75 times its measured value, then the
relative density and compressibility were adjusted with the best-fit equations in Figure 4-15 to be
compatible with these changes. The computed Ry vs. time curve at each piezometer depth is
plotted along with the measured curve in Figure 4-16 and Figure 4-17, considering the variation

in K and myo, respectively.
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Figure 4-16 Combination Parametric Study, with Changes to Compressibility and Relative
Density Following Changes of Conductivity (K).
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A review of the plots in Figure 4-16 indicates that the peak computed Ry values were
only about 10 percentage points higher or lower than the best-fit curve for the shallower three
depths and about 5 percentage points higher or lower than the best-fit curve for the deeper three
depths This variation in the peak Ry is a reduction of about half relative to the sensitivity curves
where K was adjusted without appropriately considering the effect of this variation on the
compressibility. This analysis indicates that the sensitivity of the Ry vs time curves to changes in
K and my, are much less pronounced than originally predicted when adjusting either K or myo
without considering the effect on the other parameters. As illustrated in this analysis, the
counter-balancing effects of the K and my, values help to reduce extreme variations in the

predicted response.

Similar results, were obtained when the compressibility was first changed by factors of
1.25 and 0.75 times the best-fit values and then relative density and hydraulic conductivity were
adjusted to be compatible. The computed Ry vs. time curve at each piezometer depth is plotted

along with the measured curve in Figure 4-17 considering the variation in my.

4.3.4 Effect of Variations in Relative Density (Dr)

To investigate the effect of relative density on pore pressure response, three values of
relative density (Dr) were used, namely 30%, 50%, and 70%. The sand in the laminar box was
typically within this density range. This range of relative densities includes loose to dense sands.
Results of the parametric study for relative density are shown in Figure 4-18 for each level where
pore pressure transducers are located. Comparisons are provided with measured and back-
calculated models as was done previously. The computed curves show that relative density by
itself has a small effect on pore pressure dissipation when the number of cycles to liquefaction is

held constant. However, D, will affect the number of cycles to liquefaction in most cases.
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Although the change in D has little effect on the computed Ry, the relative density is
cross-correlated with hydraulic conductivity and the modulus of compressibility which both have
large effects on pore pressure response. Typically, increasing the relative density decreases the
hydraulic conductivity but also decreases the modulus of compressibility. These factors have

compensating effects which would tend to reduce the influence on pore pressure response.

However, while performing preliminary modeling and parametric studies, the relative
density was found to have a fairly significant effect on Ry when using a higher number of cycles
to liquefaction.

4.3.5 Effect of Variation in the Cycles to Liquefaction

The number of cycles to liquefaction (N-Liq) is a property of each soil layer. A lower
value indicates greater susceptibility to liquefaction. A method to determine an appropriate value
for this parameter is described by Pestana et al., (1997); however, this method is difficult to
apply to the laminar shear box testing where multiple shaking events are progressively applied
with little time between effects for the sand to redevelop a micro-structure after densification.

To determine the sensitivity of this parameter, the number of cycles to liquefaction was
systematically varied to show the general behavior. Results of the parametric study of the
number of cycles to liquefaction are shown in Figure 4-19 for each level where pore pressure
transducers are located. Comparisons are provided with measured and back-calculated models
has been done previously. From Figure 4-19, we observe that lower values correspond to higher
pore pressure values. It was found that the range N-Lig=1 to N-Lig=4 generally produce similar
Ru vs. time curves. For N-Lig=10 or more cycles there is also a progressive reduction in peak Ry

values, but the computed Ry vs time curves grossly under-estimate the measured curves.
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Figure 4-19 Effect of Varying the Number of Cycles to Liquefaction (N-Liq) at Each
Piezometer Level.
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It should be noted that N-Lig=2 is the effective lower limit for this value, because N-
Lig=1 produces the same computed Ry vs time curves. These results indicate that the drains
perform much better when the sand becomes denser and develops a greater number of cycles to
liquefaction.

Experience also showed that the number of cycles to liquefaction must be an integer value.
Non-integers will be rounded by the program before computations are performed. This can be

seen by viewing the parameter values shown in the *.OUT’ output file.

4.3.6 Effect of Variation in the Coefficient of Pore Pressure Generation (0)

The coefficient of pore pressure generation (0) controls the shape of the curve defining
the generation of excess pore pressure with the number of cycles as illustrated in Figure 3-1.
While 6 is typically assumed to be 0.7, but the variable commonly ranges from 0.5 to 1.0. For
the parametric study 0 values from 0.3 to 1.1 were used. Results of the parametric study for the
coefficient of pore pressure generation number of cycles to liquefaction are shown in Figure 4-20
for each level where pore pressure transducers are located. Comparisons are provided with
measured and back-calculated models has been done previously. A review of the data in Figure
4-20 indicates that the coefficient of pore pressure generation appears to have little effect on the
computed Ry, vs. time cures, thus it seems best to use the recommended value (6 = 0.7), from the

FEQDrain manual, for all soil types (Pestana et al., 1997).
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Figure 4-20 Effect of Varying Coefficient of Pore Pressure Generation (0) at Each
Piezometer Level.
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4.3.7 Effect of Variation in the Soil Unit Weight (y)

The soil unit weight (y) is directly related to the vertical effective stress versus depth

profile. While the average v in the profile was approximately 122.5 Ib/ft3, variation could occur

in this parameter. Therefore, analyses were performed with y ranging from 115 Ibs/ft® to 135

Ibs/ft3.which represent lower and upper bounds, respectively.
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Figure 4-21 Effect of Varying Unit Weight (UW)/(y) at Each Piezometer Level.
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Results of the parametric study for the soil unit weight are shown in Figure 4-21 for each
level where pore pressure transducers are located. Comparisons are provided with measured and
back-calculated models as has been done previously. A review of the data in Figure 4-21
indicates that hardly any effect on the Ry vs time was noticeable from trying different soil unit
weights. For soil unit weights below 66 Ib/ft?, a default value of 66 Ib/ft® is automatically chosen

by the program.

4.4 Effect of VVariation in Drain Diameter

Drain diameter has a significant effect on the ability of water to escape from the soil and
thus prevent excess pore pressures. Models were made to compare several sizes of drains,

namely: no drain, a wick drain, and circular PV drains with diameters of 2, 3, 4” and 6”.

Modeling of the 'no drain' case was not successful using the 'kopt' parameter (no drain/
constant my drain/ variable my drain). Instead a very small decimal value less than one was used

for drain diameter, which produced the high Ry values expected from having no drain.

When using appropriate parameters for modeling wick drains, the program fails to run to
completion. It appears that when vertical resistance in the drain becomes large, the calculations
don't converge. For larger drains, the vertical head loss is a small decimal less than 1 (3" drain or
bigger), but for wick drains and even 2"drains, the value is orders of magnitude larger. By using
the maximum stable vertical resistance value and proportionally reducing the drain size to
increase the head loss, the resulting Ry curves are reasonable. The values used to describe drain

properties and head loss coefficients are shown in Table 4-4.

Modeling of 2" drains required a reduced head loss value and also needed a slight

reduction to the drain size to reach convergence, while still accounting for the full head loss.

The 3" drains are the same size as those used in the laminar shear box and did not require any

special adjustments. No special adjustments were needed for the 4” and 6” diameter drains.
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Table 4-4 Values Used for Modeling Various Drain Sizes

Drain Type Drain Radius Drain Radius Drain Area 1 ¢l Orifice  Permittivity
(expected)  (modeled) (expected) (modeled)
ft ft 2 ft2/ft st
No drain N/A 0.0001 0.049 1.705 1.705 0.008 0.083
Wick drain 0.110 0.003 0.004 200 6 0.690 0.500
2"PVD 0.108 0.046 0.022 14 6 0.002 0.083
3"PVD 0.154 0.154 0.049 1.705 1.705 0.008 0.083
4"PVD 0.200 0.200 0.087 0.368 0.368 0.013 0.083
6" PVD 0.288 0.288 0.196 0.042 0.042 0.015 0.083

Results of the parametric study for the effect of drain diameter are shown in Figure 4-22
for each level where pore pressure transducers are located. Comparisons are provided with
measured and back-calculated models as has been done previously. The presence of the wick
drain clearly increases the rate of pore pressure dissipation at the conclusion of shaking;
however, the peak Ry values are not significantly decreased relative to the curve for no drain.
The 2” diameter drain further increases the rate of pore pressure dissipation relative to the wick

drain curve, but does not decrease the peak Ry value significantly.

The 4” diameter drain reduces the peak Ry value by 20 to 25 percentage points at shallow
depths (3 to 8 ft.), but only by about 10 percentage points at deeper depths (10 to 15 ft.) relative
to the 3” diameter drain. The rate of dissipation following shaking decreases only marginally.
Use of a 6” diameter drains has relatively little effect on the Ry vs time curve relative to the 4”
diameter drain and may not be economically justifiable for clean sands such as those investigated

in this study.
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4.5 Effect of Variation in Earthquake Magnitude

The FEQDrain program uses the number of equivalent cycles and shaking duration to
define the magnitude of a seismic event. Having a longer duration of shaking (tq) with a greater
number of equivalent cycles (Neq) describes a higher magnitude earthquake which would last
longer or have higher accelerations. The user’s manual provides recommendations for the
number of equivalent cycles (Seed & Idriss, 1982), and duration of shaking (Seed et al., 1975b)
to correspond to different moment magnitudes(Mw), shown below in Table 4-5. The basis for the
cycles and time combination is provided by research with undrained cyclic shear tests which
showed it does not matter whether the shear cycles were applied at 1 Hz or 10 Hz. (Seed, Martin
& Lysmer, 1976). Because the frequency of loading had no effect, it follows that only the
number of cycles really matters. This is probably why Pestana et al. (1997) recommended the

combination of number of cycles and duration to account for increasing magnitude.

Table 4-5 Equivalent Number of Stress Cycles and Duration for Modeling Specific
Magnitude Ground Motions. (Neq)

Equivalent number of cycles due to Duration of earthquake strong
earthquake loading (from Seed & Idriss, 1982) motions (from Seed et al., 1975b)
Magnitude Neq Magnitude Duration (sec)
3 Ya 2-3 5%-6 8
6 5-6 6% 14
6 % 10 7 20
7Y% 15 1Y% 40
8 1 26 8 60

However, for the situation involving PV drains, the frequency and duration of loading is
relevant. For example, an intense, short duration earthquake would likely overwhelm the drains
and liquefy the soil. But a similar number of cycles applied over a longer time period might
suggest that the drains would be sufficient to prevent liquefaction. In fact, the application of 15
cycles of loading, typical of a 7.5 My earthquake, in 7.5 seconds during the laminar shear box
testing, could represent a relatively severe loading for the drains in comparison with a 40 second

duration that would be typical of a 7.5 My, earthquake.
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To investigate the effect of earthquake duration and number of cycles on pore pressure
response, the computer program FEQDrain was used to analyze the soil profile for various
magnitudes of earthquakes. Results of the parametric study for the effect of earthquake
magnitude are shown in Figure 4-23, for each level where pore pressure transducers are located.
It should be noted that this model represents one of the 4 ft drain spacing test, and as such its
piezometers were at slightly different depths. Comparisons are provided with measured and

back-calculated models as has been done previously.

As shown in Figure 4-23, the peak Ry values computed for all the different earthquake
magnitude events are substantially lower in almost all cases than that observed with 15 uniform
load cycles over a 7.5 second duration in the experimental testing. The primary pore pressure
response includes an initial pore pressure rise, a plateau, and dissipation when the shaking stops.
There is a noticeable difference in the plateau length of each curve, but none has a very high
maximum value. Surprisingly, there is no progressive increase in peak pore pressure for higher
magnitude events. Higher magnitude seismic events have more cycles (Neq) and a longer
duration (tgq) which results in a longer plateau, but with nearly the same pore pressure rise as for
smaller quakes. This response occurs because the longer duration “dilutes” the energy of the
shear cycles by allowing time for drainage and dissipation to occur while shaking continues,
without overwhelming the drains. Similar pore pressure response among models for increasing
earthquake magnitude agrees with the similarity in the ratio of shaking duration to equivalent
uniform cycles (seconds/cycle) for each magnitude.
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Figure 4-23 Effect of Number of Cycles and Shake Duration with Variations in Earthquake
Magnitude Suggested by FEQDrain User Manual (Pestana et al. 1997).
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Based on the recommendations in the FEQDrain user’s manual (Pestana et al, 1997),
typical seconds/cycle values range from about 2 to 2.67 seconds/cycle for My, values ranging
from 5.5 to 8.5. Of course, this loading rate is much slower than the 0.5 seconds/cycle loading
rate actually used in the experimental testing. Therefore, the results from the laminar shear box
testing likely represent a conservative estimate of the response that might be observed in a real
earthquake. However, it should be recognized that earthquakes do not typically apply cycles at a
uniform rate over the entire duration of shaking. Therefore, higher frequency shaking over a
short portion of the total duration could still reduce the effectiveness of PV drains relative to the

predictions in Figure 4-23.

4.6 Comparison to Vytiniotis et al. (2013)

The numerical modeling performed by Vytiniotis et al. (2013), was a full 2D model
instead of a unit-cell axisymmetric model. The assessment of soil improvement measured by
Vytiniotis et al. (2013) was horizontal soil deformations of a slope adjacent to the treated area,
rather than excess pore water pressures in the treated area itself. The horizontal lateral
deformations were found to be well correlated with peak ground acceleration (PGA). Also, no
correlation was found with Arias Intensity (la), which implies that drain systems would be
similarly effective under different acceleration time histories. Significant reductions in horizontal
displacement were observed just as significant reductions in vertical displacement were observed

in the laminar shear box testing.

Results from FEQDrain agree with some conclusions of Vytiniotis (2013) in that drain
effectiveness is relatively independent of earthquake magnitude, but for different reasons.
FEQDrain simplifies all earthquakes of a specific magnitude to a number of equivalent cycles
over a specified duration and results from modeling show no increased pore pressure effects
from larger magnitude events. Vytiniotis et al. (2013) used unique time histories and found no
correlation between Arias intensity and improvement ratio, relative to the untreated case.
FEQDrain showed pore pressures reaching a plateau within 1-2seconds, instead of 15seconds as
suggested by Vytiniotis et al (2013), but this is likely related to differences in the duration of
shaking and the density of the sands in the two studies.
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4.7 Comparison to Howell et al. (2014)

The numerical modeling performed by Howell, Rathje, and Boulanger (2014), used
computer models to match preexisting experimental data similar to what was done in this study.
The three finite element model types were: a 2D model of the full centrifuge test, a 3D unit cell
around a single drain, and a 2D unit cell. The study showed that finite element models predict
excess pore pressure ratios consistent with the experiments. However, a few of the back
calculated soil properties were not within the expected range, and had to be adjusted to achieve
agreement. Also, the computer model most like the centrifuge test geometry gave the best
prediction of horizontal displacements.

Howell et al. (2014) observed similar trends in the generation and dissipation of Ry
versus time relative to basic soil properties as was noted in the modeling performed in this study
with FEQDrain. The two most important input properties, hydraulic conductivity (k) and soil
compressibility (my), were opposite between the two studies. However, the differences in both
properties appear to be proportional and inverse, thus resulting in nearly the same modeled Ry

values.

The compressibility (my) used by Howell et al. (2014) ranged from 0.7 x10° to 1.5 x107
m2/kN, which is 3-14 times smaller than the values reported by Pestana et al. (1997), which
means their model assumed a very stiff soil. Howell et al (2014) found their compressibility
range by back-calculating from a constitutive model, for different levels of pore pressure
generation. These compressibility figures followed the trend that the my increases as the pore
pressure increases, but were noted as being very small compared to tests of Monterey sand by
Lee and Albaisa (1974). The prototype conductivity measured in the centrifuge was k=0.03
cm/sec, but it was adjusted to satisfy the chosen constitutive model. Thus k=0.007cm/sec was

used in the finite element models.

The compressibility (myo) used for FEQDrain models in this study ranged from 2 x10° to
2 x107° ft?/Ib, or (4.2 x107° to 4.2 x10™* m?/kN) which is 2-10 times larger than the values
reported by Pestana et al. (1997), which represents a softer soil. The conductivity measured in
the laminar shear box was k=0.028 - 0.07cm/sec. This is 4-9 times larger than the values used in

the analysis by Howell et al. (2014). However, the actual measured values in both cases are very
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similar. Therefore, based on the raw hydraulic conductivity values, it is likely that the hydraulic

conductivity of the sand used in both experiments was similar.

Because the hydraulic conductivity and compressibility have inverse effects on Ry, then
modeling in FEQDrain with the higher, but measured, k values and with high my produced
similar Ry values to the Howell et al. (2104) 3D unit cell model which used lower k and lower my

values.

Howell et al. (2014) chose to adjust the conductivity, within a range, until a best fit value
was obtained; rather than deviate from suggested values of soil compressibility. This under
prediction of volumetric compressibility inherent in the constitutive model produced an under-
prediction of settlement. This under prediction suggests that the compressibility used by Howell
et al. (2014) was far too low, and that higher compressibility values would be appropriate, such
as was used in this modeling with FEQDrain, which allowed it to closely predict settlement. In
any case, the sand in the centrifuge test and in the laminar box are both very young and would

tend to have a higher than expected compressibility.

Both modeling efforts calculated a soil compressibility that differed, by up to one order
of magnitude, from the values recommended by Pestana et al. (1997). Both parent experiments
used artificially placed, saturated loose sand, in a freshly formed state, with no cementitious
bonds. Both experiments had comparable levels of acceleration and some tests used sinusoidal

input motions.

4.8 Comparison to Oakes (2015)

The findings of this numerical modeling study, shown in regular text, are described after

each of Oakes (2015) conclusion points, shown in bold.
1. Excess pore pressures dissipated rapidly after shaking, with higher density in later tests
increasing the rate of dissipation.

Modeling of the 3 ft and 4 ft spacing tests had rapid dissipation for all shakes. Later test were
modeled with higher relative density and somewhat lower my values. Therefore, later tests

also had faster dissipation.
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2. Excess pore pressures dissipated significantly faster than previous laminar shear box
testing without drains, taking seconds rather than minutes for pore pressures to fully

dissipate.

Modeling showed pore pressures dissipated within seconds, and there was faster dissipation
for closer drain spacing. A parametric study of drain size indicated faster pore pressure

dissipation for larger drains and longer dissipation rates for very small drains.

3. Higher acceleration caused more settlement and settlement deeper in the soil profile.

FEQDrain predicted settlement relatively well for all acceleration levels and both drain
spacings. FEQDrain does not provide a way to specify higher acceleration levels, while
keeping the number of cycles the same because the effect of acceleration is expressed by

shortening the number of cycles to liquefaction.

4. Settlement was reduced by 20-64% when compared to previous laminar shear box

testing without drains. This matches previous results from centrifuge testing.

When modeled with very small drains (simulates having no drain) the computed settlement
was one tenth as much. This settlement figure is based on the volume of water discharged,
which was also one tenth of the treated case. In reality, the soil would still experience upward
flow, though not in the drain, and thus even larger settlements would occur. Settlement

predicted with FEQDrain was somewhat greater than measured in the experiments.

5. Drains spaced closer together are more effective at reducing excess pore pressures, and

may have slightly reduced settlement.

Models with drains spaced closer together were more effective at reducing excess pore
pressure, but they increased the computed settlement somewhat, because more water was
discharged. This was also true for the freshly placed laminar shear box sand. However, under
field conditions during earthquakes, better drainage with longer durations helps keep Ry

values below 0.4 or 0.5 and may lead to less settlement.
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4.9 Suggestions for Practical Use of FEQDrain

Given the uncertainties encountered in performing this study of modeling excess pore
pressure ratios via the program FEQDrain, a discussion is in order for practical use of the
program in evaluating liquefaction prevention by large diameter vertical drains. General usage is

described first, followed by a discussion of key parameters.

General Usage

This paragraph is a list of steps for using FEQDrain, but the primary reference should still
be the FEQDrain user manual or Pestana et al. (1997). First, determine appropriate input values
as discussed in sections 3.4, 3.5, and 3.6. Second, determine an appropriate number of
equivalent cycles and shaking duration. Third, determine appropriate values for sensitive
parameters of hydraulic conductivity (K), modulus of soil compressibility (myo), and cycles to
liquefaction (Niig). Fourth, run FEQDrain and change a few parameters within a reasonable range
to determine if the model will run properly or if it will crash. Fifth, test a combination of input
values to produce the highest, middle, and lowest expected Ry curves. Sixth, evaluate

predictions, review and refine assumptions, model again.

Program troubleshooting-- Run FEQDrain and change a few different parameters within
a reasonable range to determine if the model will run properly or if it will crash. If FEQDrain
keeps crashing using normal input values, then try lengthening the total time of analysis as
discussed in section 3.6. If the problem persists, try using the opposite system of units or attempt
to duplicate a previous researcher’s FEQDrain model, such as this study or Strand (2008). These

actions may solve the issue or will help uncover the problem.

Key Parameters

Drain geometry-- Use standard diameters for which there is available flow property data.
This should be based on data provided by a drain manufacturer, as shown in the Appendix,
section A.2 Flow Properties of HDPE Corrugated Pipe. Also, assume a drain spacing interval.

Many studies have used a drain spacing of 3-4 ft, which are good starting values.
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Number of layers and model increments-- These are described in section 3.3 of this

document, and are discussed more fully in Pestana et al. (1997).

Non-sensitive parameters— These properties usually can be measured, and have little
effect on the Ry or settlement predictions.

Cycles to Liquefaction (Niig)-- For very loose soils use a value between 2 and 4, as seen
in Figure 4-19. For denser soils, use the SPT and CPT correlations provided by Pestana et al.
(1997), for natural soils. But, using a higher Niiq value will suppress the predicted pore pressures,
even if the hydraulic conductivity and modulus of compressibility are high. Nevertheless, using a

number from 2-4, in these cases is still recommended because it will be conservative.

Hydraulic Conductivity (K) -- Use an in-situ pump test to measure this value if possible.
If pump testing is not possible, or not possible for a given soil layer, use the suggested
conductivity values from Table 3-4, based on grain size.

Modulus of Soil Compressibility (mvo)-- Use either of two methods. Preferred method:
Calculate modulus directly from expected strain (via liquefaction settlement predictions), this is
the recommended method and is described in the next paragraph. Alternate method: Use the
values suggested in Table 3-9, but note that the fairly wide range of compressibility values in the
table can give noticeably different pore pressure predictions. Perhaps use a value in the middle of

the range of mvo. when using the table values.

One might select appropriate myo values for aged soils by using tables but my, values
could be better estimated based on liquefaction settlement prediction equations. First, compute
factor of safety against liquefaction for a given layer using a triggering curve such as Boulanger
& Idriss (2014) based on CPT or SPT penetration resistance for an appropriate magnitude
earthquake with a peak ground acceleration. Second, determine the relative density of the sand
layer from the CPT or SPT penetration resistance. Third, use Ishihara & Yoshimine (1992)

graph, Figure 4-24, to determine volumetric strain (ev) for the layer.
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Figure 4-24 Graph of Post-Liquefaction Strain (gv %), Ishihara & Yoshimine (1992).

Fourth, compute the initial vertical effective stress (c’o) at the center of the sand layer.
Fifth, compute my by using the equation (mv= &v 6’°0). Sixth, compute the initial (pre-

liquefaction) modulus, myo using the equation (M =my (1 +Y +0.5Y?)/e¥ ) with (y=a*rp,

where a =5(1.5-Dr),and b = 3(4)'Dr), which are respectively, Equation (8) and Equation (17).

Number of equivalent cycles and shaking duration-- Use the values provided in Table 4-5
based on the design earthquake. These combinations are perhaps appropriate in designing for a

consistent long, uniform pattern of accelerations. But since seismic motions can manifest
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different acceleration time-histories at various locations, it would be prudent to design for a
shorter more intense version of the same earthquake. This can be done by leaving the number of

cycles the same and using a fraction of the shake duration, perhaps half or a quarter as long.
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5 SUMMARY AND CONCLUSIONS

In this study, numerical modeling was performed with the finite element program
FEQDrain, using data from shake testing of large diameter prefabricated drains in the NEES@
Buffalo laminar shear box. Test results were reported by Oakes (2015) for drain spacings of 3ft
and 4ft on centers. For each drain spacing, the physical testing was performed for three rounds
of shake tests with three shake tests per round having peak acceleration levels, 0.05g, 0.1g, and
0.2g, respectively for a total of nine shake tests. For each successive shake test the soil became
progressively denser with more resistance to liquefaction and lower hydraulic conductivity and
compressibility. Results from drain spacings of 3ft and 4ft were both modeled and compared to

the measured experimental data, and compared to modeling done by other researchers.

Numerical modeling used measured soil parameters and simplified input motions to
match the measured pore pressure ratio time-histories. Each input parameter of the modeling
program was systematically evaluated to determine its effect on the outcome. Parameters that
were found to have the greatest effect were compared against the upper- and lower-bound

measured values to ensure they were within the correct measured range.

The objective of this modeling effort was to examine the reliability of the existing
computer modeling program, FEQDrain, designed specifically for use with prefabricated drains.
By showing that this program can predict excess pore pressure ratios for a controlled full-scale
shake table experiment, the program can then be used more confidently to predict the effects of

prefabricated drains in natural soil, under real earthquake scenarios.

5.1 Conclusions

FEQDrain is capable of modeling the excess pore pressure ratio time-histories observed

in the laminar shear box experiments, as long as an appropriate combination of ‘number of
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equivalent cycles’ and ‘shake duration’ is chosen and sensitive soil parameters are compatible
with measured values. However, predicted settlement values are typically somewhat higher than

measured settlements in almost all analyses.

Hydraulic conductivity, soil modulus of compressibility, and cycles to liquefaction are
sensitive parameters in numerical evaluations of response. Conductivity can be measured in-situ,
but soil modulus and cycles to liquefaction are more difficult to estimate. Higher conductivity
results in lower Ry values, presumably because pore water can more easily flow to vertical
drains. Vertical conductivity has minimal effect because horizontal flow to drains is more
significant than vertical flow in the soil. Higher compressibility results in higher computed Ry
values, presumably because for a given change in pressure there is a greater tendency of
contraction which produces greater pore water pressure. In this study, back-calculated and
experimentally derived compressibility values were typically about four times higher on average
than those suggested by Pestana et al (1997). The higher compressibility is likely because the
water-pluviated sand in the laminar box was very uniform, newly deposited, and did not have

time to develop any significant micro-structure or bonding between the particles.

Similar Ry values can be modeled with different combinations of conductivity and
compressibility. For example, Howell et al. (2014) in modeling centrifuge results used a lower k
and lower my than suggested by Pestana et al. (1997) while in this study higher k values and
higher my values were used than Pestana et al. (1997) recommended. Nevertheless, both studies
yielded similar Ry values, because the differences generally offset each other.

The number of cycles to liquefaction (N-lig) is a somewhat ambiguous parameter
defining the liquefaction susceptibility of the soil. N-lig decreases as acceleration increases and
increases as relative density increases. For sands deposited by natural processes and aged for a
reasonable time, N-lig can be estimated using liquefaction triggering curves based on the SPT
(Ny1)so or CPT (gcin) values along with the peak ground acceleration. However, for the newly
deposited hydraulic fill used in this study, these correlations are not well calibrated. For these
laminar shear box tests, liquefaction generally occurred within three cycles for shake tests
without drains, thus N-lig was assumed to be equal to three; however, N-lig likely increased
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somewhat with each round of shake tests. Nevertheless, parametric studies showed that the peak

Ruand dissipation rate were not significantly affected for N-liq values less than about five.

The application of 15 uniform load cycles in 7.5 seconds (2 Hz frequency) during the
laminar shear box testing represents a relatively severe loading case for the PV drains. In this
study, parametric analyses investigated the effect of earthquake magnitude by considering the
variation of earthquake duration and number of uniform cycles with Mw. Typically, the average
frequency of loading for the earthquakes events was only about 0.4 Hz. As a result, in Figure
4-23, the peak Ry values computed for the different earthquake magnitude events were almost all
substantially lower than computed with 15 uniform load cycles over a 7.5 second duration. This
response occurs because the longer duration “dilutes” the energy of the shear cycles by allowing
time for drainage and dissipation to occur while shaking continues, without overwhelming the
drains. However, it should be recognized that earthquakes do not typically apply cycles at a
uniform rate over the entire duration of shaking. Therefore, higher frequency shaking over a

short portion of the total duration could still reduce the effectiveness of PV drains

Parametric analyses involving drain size suggest that wick drains are relatively
ineffective for preventing liquefaction while 2”” diameter PVDs are also fairly ineffective for the
sand properties in this study. The 3” diameter drains were generally effective for keeping pore
pressures low, but can be overwhelmed during very intense short duration seismic shaking.
Drains which are 4” in diameter or larger are most effective at keeping pore pressures low and
should be used whenever possible, if increased costs can be accommodated. Drains placed

closer together (e.g. 3ft vs 4ft) also show improvement in Ry dissipation.

Soil parameter such as the unit weight, relative density, and the pore pressure generation

coefficient were found to have minimal effect on the test results.

FEQDrain will fail to function properly when certain parameters are outside of an
expected range. However, related parameters can sometimes be adjusted to have a similar effect
while bringing the excessive parameter back into the stable range. The total time of analysis

should be five to ten times the time of interest, not two times as suggested in the user’s manual.
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5.2 Recommendations for Future Research

In corresponding with industry professionals, it was suggested that an experiment be
performed using the recommended combination of number of cycles and duration for different
earthquake magnitudes, as given in the FEQDrain manual and developed by Seed & Idriss
(1982) and Seed et al. (1975b). For example, Mw=7.5 corresponds to 12-14 cycles over 40
seconds. These tests would show if the pore pressures developed are similar for each
combination as computer modeling suggests. Tests could also be used to show the effect of

sinusoidal motions versus irregular earthquake motions.

It would also be useful to conduct laminar box testing of several recorded earthquake
time histories, and several uniform shakes with different numbers of cycles. This would provide
a better understanding of how induced Ry values correlate with FEQDrain’s method of
equivalent cycles. Modeling would be done to determine the relationship between time history
characteristics and the appropriate combination of cycles and duration to use for predicting
behavior of natural soils. Future experiments would also ideally be tested by CPT, before and

after every shake test.
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APPENDIX A. PARAMETER DESCRIPTIONS AND PROPERTIES

A.1 FEQDrain Parameter Descriptions

Filename: The name of the file generated (8 character max).

Title: A text description that appears in the main output file.

N layers: number of layers in the soil profile. This is how many different ranges of soil properties there
are. i.e. different my, or K values. Strand had 6. I’'m using 7.

Rad Increm: number of radial increments used in the math calcs (remember it’s a finite element model).
Between10-15 is usually appropriate. Use 10, that’s what my macros are set for.

Unit weight of water: 62.4 pcf or the Sl value. All values must match these units.

Depth to GWT: We will use 0 feet because our soil is all saturated.

Eff Vert Stress at surface: Use Opcf (no surface load).

Drain allow: YES (water can escape from drains).

Initial PPR: Obviously not =0

Earthquake Loading Conditions

Equiv earthquake cycles (nq) or Neq: Refers to the magnitude of the EQ/ground accelerations, (see Tables

4&5). We are setting this as the number of acceleration cycles (14cycles) for the experiment. Neq, can be
found by analyzing an earthquake stress history using the method proposed by Seed et al. (1975b). Values
in Table 5 (Seed & Idriss, 1982), based upon the analysis of numerous earthquakes, may be used.

Equiv time of shaking (td), duration of strong motion or bracketed duration. It can be estimated from

Table 6. Program will still run if td=0 (pore pressure dissipation only). We will use 7-7.5 seconds.
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N time steps: number of distinct time-steps (see section 4.3.2 for example). We’ll use 1.

Total analysis time: Use something longer than 7.5sec to see PPR dissipation rate. (Should be at least

twice the duration of the earthquake). Use 15 seconds.
Time Integration Parameters

N iterations per time-step: (see Pestana et al (1997), section 4.3.2 for example).

Duration of time-step: controls accuracy of the integration scheme (see section 4.3.2 for example).

Print resolution: The frequency of results output, results printed every PRNSTEP seconds.

Drain and Reservoir Parameters

Symmetry: Axisymmetric (used for most drainage cases)
Compressibility: Variable or Constant, (constant for PP < 0.6)
Type of drain (kopt): Probably use “composite drain”

Out files: How many types of files will be created.

Additional Drainage Parameters

rw: outside radius of drain (3.7” for us) = 3.7/12/2 =0.154171t

rout: tributary area radius (1.5ft and 2ft)

aread: Cross-sectional area of inside of drain (3” = 0.0491 ft"2)

arear: Cross-sectional area of inside of reservoir, (can’t be less than that of drain).

depres: Depth to bottom of reservoir (0 for us, no res)

cl: constant, provided by the manufacturer, see data sheet (c1=1.7049). If c1=0->no vertical head loss.
c2: constant, provided by the manufacturer, see data sheet (c2=2)

¢3: constant for reservoir, leave blank or use same value as c1.

c4: constant for reservoir, leave blank or use same value as c2.

corf: 1 or 0 depending on full head loss vs. no head loss.
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orf: area of perforations per foot of pipe, provided by manufacturer, see email (0.0077 sq ft/ft).
permit: filter permittivity, provided by manufacturer, (Use 0.8325 ft3/sec/ft2/ft), fabric alone value is 4x
higher but % of it is against corrugations

Horizontal & vertical hydraulic conductivity: Kh was measured and reported in Caleb’s Thesis. Kv can be

obtained by dividing (see table below). But Kv is less important.

Number of cycles to cause liguefaction: See FEQ Manual Pg29-34.

Relative density, Dr: use adjusted Dr values from my, spreadsheet.

Total unit weight: Saturated unit weight of the soil. Caleb’s thesis never specifies this. Try 100pcf.

Coeff of pore pressure generation: Uniform sand range 0.5-0.9, higher values for very loose deposits. 0.7

is often used for design.

Types of Output Files:

.out : Standard output file, summary at top, labeled results of each time-step are below.

.col: Unlabeled columns of data for importing into a spreadsheet (six columns). Time, node number, x-
cord, y-cord, excess PP, PPR.

.sum: Summary data file, shows max PPR for each layer during the entire analysis (at each printed step).
.exr: PPR data file at time t, first row is x-coords, first column is y-coords, all rest are PPRs at that node.
This can be used to make a 3D plot.

.exp: same format as .exr, but gives pressures not ratios.

.con: Consolidation Data File, only made when an initial excess PP is specified. Can be used w/o drain

and w/o EQ to determine consolidation settlement as pore pressures redistribute and dissipate.
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A.2 Flow Properties of HDPE Corrugated Pipe
CORRUGATED PLASTIC PIPI (eg ADS):
Manning equation

1.486
v=——
n

2/3 172
R*°S

where
R is the hydraulic radius = Area/Wetted Perimeter
N is th Manning factor
S is equivalent to i (the hydraulic gradient)

For a circular conduit flowing full, Area = nr?

R T
2mr 2

And
AR = m*(r12)*? =1.97917*%

ADS (and Hancor) recommend:
n=0.015 for 2” to 6” pipe
n=0.016 for 8” pipe
n=0.017 for 10” pipe
n=0.018 for 12’ to 15” pipe
n=0.020 for 18’ to 24 pipe

Therefore for 2”corrugated pipe

OQ=vA= 1486, 970172975172 — 0 25082
n

or
I=14.8198Q°
Therefore:
27 C1=14.8198 C2=2
37 C1=1.7049 C2=2
4” C1=0.3676 C2=2
6” C1=0.04229 C2=2
8” C1=0.01037 C2=2
10 C1=0.003562 C2=2
12” C1=0.001510 C2=2
15” C1=0.0004594 C2=2
18” C1=0.0002145 C2=2

24”  C1=0.00004625 C2=2
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Equivalent radius 4” = 0.1996 ft
Internal area = 0.1214 sq ft

Equivalent radius 3” = 0.1542 ft
Internal area = 0.0594 sq ft

Equivalent radius 2” = 0.1083ft
Internal area = 0.0264 sq ft

Orfice (slit) area:
For 4” = approx 1.90 sq in/foot pipe = 0.01319 sq ft/ft
For 3” = approx 1.1 sq in/ft pipe = 0.0077 sq ft/ft
For 2” = approx 0.325 sq in/ft = 0.0023 sq ft/ft

Fabric (Amaco CEF Style 4545)
Permitivity — 0.333 ft*/sec/ft*/ft head
Reduce this to 0.333/4 = 0.08325 ft*/sec/ft*/ft head because about % of fabric rests
against corrugations
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APPENDIX B. FEQDRAIN OUTPUT FILE TYPES

This appendix contains examples of the five types of output files created by FEQDrain.
.COL—This file is far larger than any of the others. It has six columns showing (L-R):
Time, Node number, X-coordinate, Y-coordinate, pore pressure, pore pressure ratio.
This file is what gets imported and sorted in Excel. It would take hundreds of pages to show a
full example of this file.
.EXP/.EXR—This file shows the calculated pore pressure (.exp) and pore pressure ratio (.exr)
values for each node in the array, at each printed time. The values of each node are in a
rectangular table which preserves the spatial organization of the nodes.
.OUT—This file shows all of the input parameters displayed in table form at the top. Below that
is a table of coordinates and effective stress for each node, and a table of nodal connectivity. The
remainder of the file are tables of pore pressure values (average and max), by layer, at the time
interval specified for printing results.
.SUM—This file lists the values of several parameters, all in a single horizontal row. Each
printed time is a new row. If print interval is 1sec, and time of analysis is 100sec, we get 100

rOws.
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.COL

=

@r GAFEQDrain'dft FEQ cutput files\1_2_42.col - Motepad++
] File Edit Search View Encoding Language Settings Macre Run  Plugins Window 7
cHHB s R shEk e Rt BEIHT1ECEN =E
[=l1_2 42 col E!I
] 1710 3.00 423 -8825 16.0000 50.331 -0523
1711 3.00 424 1.0771 16.0000 51.810 -0540
1712 3.00 425 1.2617 16.0000 53.071 -0352
1713 3.00 426 1.4463 16.0000 S3.898 0561
1714 3.00 427 1.6308 16.0000 54.448 0566
1715 3.00 428 1.8154 16.0000 54.757 .05639
1 1716 3.00 azg 2.0000 16.0000 54 .853 -0370
1717 4.00 1 -0000 -0000 . 000 -0000
1 1718 4 .00 = 07T 0000 . 000 . 0000
1 1719 4.00 3 -1542 -0000 . 000 -0000
1720 4.00 k! -.3388 -0000 000 - 0000
] 1721 4.00 =) -5233 -0000 . 000 -0000
1722 4.00 [ -TOT2 -0000 . 000 -0000
1723 4.00 7 -8825 -0000 . 000 -0000
1 1724 4.00 8 1.0771 -0000 . 000 -0000
1 1725 4 .00 =] 1.2617 0000 . 000 . 0000
3 1726 4.00 10 1.4463 -0000 . 000 -0000
! 1727 4.00 11 1.6308 -0000 . 000 -0000
| 1728 4 .00 iz 1.8154 0000 . 000 . 0000
| 1729 4.00 13 2.0000 -0000 . 000 -0000
1730 4.00 14 - 0000 - 5000 2.371 -0O789
1 1731 4.00 15 0771 - 5000 2.371 -0789
1 1732 4.00 16 -1542 -5000 2.527 -0841
i 1733 4.00 17 -.3388 - 5000 14.523 -4833
! 1734 4.00 18 -5233 - 5000 20.8912 -&695%9
| 1735 4 .00 ] .TOTS . S000 Z24.673 8211
| 1736 4.00 20 -8825 - 5000 26.881 -8945
1737 4.00 21 1.0771 - 5000 28.160 -9371
1 1738 4 .00 22 1.2617 . S000 28 .83%6 -.9816
1 1739 4.00 23 1.4463 - 5000 22.315 -2756
i 1740 4.00 24 1.6308 - 5000 29.547 -9833
! 1741 4.00 25 1.8154 - 5000 29.861 -8871
] 1742 4.00 26 2.0000 -5000 292.694 -9882
] 1743 4.00 27 -0000 1.0000 4.724 -0786
1744 4.00 28 0771 1.0000 4.724 -0786
] 1745 4 .00 29 1542 1.0000 5.083 .0846
f 1746 4.00 30 -.3388 1.0000 27.243 -435333
1747 4.00 31 -5233 1.0000 32.351 -6548
| 1748 4 .00 32 .TOTS 1.0000 46.8a69 .TTa39
] 1749 4.00 33 -8825 1.0000 S1.6808 -.8587
1750 4.00 34 1.0771 1.0000 54.566 -90749
1751 4.00 35 1.2617 1.0000 56.392 -9383
1 1752 4.00 36 1.4463 1.0000 S7.500 -2567
1753 4.00 37 1.68308 1.0000 S8.145 -2875
1 1754 4.00 38 1.8154 1.0000 58.475 -9730
1755 4 .00 339 2.0000 1.0000 58.573 .9746
1756 4.00 40 -0000 1.5000 T.045 0782
1757 4.00 41 0771 1.5000 7.045 -0782
1758 4 .00 42 1542 1.5000 T.583 .0841
1759 4.00 43 -.3388 1.5000 36.875 -40390
1760 4.00 44 -5233 1.5000 53.300 -58912
1761 4.00 45 -TOT2 1.5000 64.155 -T117T
Mermal text file length : 2642069  lines: 433320 Ln:1717 Cel:1 Sel:0]0 Dos\Windows
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OuT

E1241o 8|
<
5 FEQDRATHN
& BNALYSIS CF PCRE PRESSURE GENERATICHN AND DISSIPATICON
7 DURING EARTHQUAWE LOADING FOR A S50IL PROFILE TREATED
8 WITH VERTICAL DRAINS
Z Version 2.1 December 1997
10
12
1LE) LMALYSIS:
14
1L S50IL PROFILE DATR:
16
17 Layer Thick Hydr. Conductivity Volum. Tot.Unit Cycles # of Theta Eel.
18 4 ness e kv Compress Weight to Verr. Dens=
19 feet ftfsec ft/sec 1/1b/ft"2 1b/fL"3 Ligusef Incr (%)
20 @ ————————————————— e
21 1 1.000 L1050E-02 .1050E-03 .200E-04 122.500 1. 2 TOO 500
22 2 2.500 .1050E-02 .1050E-03 .800E-05 122.500 1. =) 700 500
23 3 2.500 L1000E-02 .1000E-03 .TOOE-05 122.500 1. 5 TOO 500
24 4 2.500 L1000E-02 .1000E-03 .€00E-O5 122.500 1. 5 TOO S00
25 5 2.500 .1700E-02 .1700E-03 .8B800E-05 122.500 1. 5 T0O0 500
28 & 2.500 L1200E-02 .1200E-03 .800E-05 122.500 7. 5 TOO 500
27 7 2.500 .2000E-03 .2000E-04 .100E-05 122.500 100. 5 T0O0 700
28
29
30 BMALYSIS TYPE:
31 Axisymmekrig case {igrs = 2)
32 Variable compressibility (lopt = 2}
33 Composite drain (Eont = 4)
34 Cutput files created: (noprint= 7)
S 1y Main File (*.out)
36 2} Columnar File (*.col)
=17 3) Summary File [*.3uam)
38 4} Pore Pressure Ratio File (*.gxx)
ZE 5) Excess Pore Pressure File (*.exp)
40
41 EARTHQUAKE DATHA:
42 Eqgquivalent Ho of cycles 14.00
43 Duration of shaking = T7.00 =seconds
44
45 CONTRCL DATH:
46 HNumber of layers = 7
47 Radial =o0il increments = 10
48 FRadial drain increments = 2
e Vertical increments = 32
50 Effective OCwverburden = .000 1lb/Eft"2
21 Depth to water table = 000 feetc
52 Tnit weight of water = 62.400 1lb/ft"3
=i Print results to a2 limit of= 100.00 =seconds
54 No of different time =steps = 1
o5
Mormal text file length : 144745  lines: 2324 Ln:1 Col:1 Sel:0|0 Dos\Windows AMSI as UTF-8
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Humber of Step Size Print
steps [seconds) Resolution
100 1.000 1.000
DEAIN DRATRZ:
FEadius of tributary area = 2.0000 feet
Equivalent radius of drain = .1542 feet
Internal drain area = .0491 =g ft
Vertical head loss, dhfdz = C1*Q~C2 (Manning)
Coefficient C1 = 1.7049
Coefficient CZ = 2.0000

Horizontal head loss, dh/dx corf*Vo2/2g+V/permic

Coefficient of head loss,corf= 1.00000
Orifice Area,per unit length = 00770 =g ftc J feet
Geokextile Permittivity = .83250 ft/sec /[ feet

RESEERVCIE DATA:

Area of reservoir = .0481 =g ft
Depth to bottom of reservolr = .0000 feet
Vertical head lo=s, dh/dz = C3*Q~C4 (Manning)
Coefficient C3 = 1.704%9
Coefficient C4 = 2.0000
MNCDAL CCCRDIMATES AND EFFECTIVE STRESSES
Coordinates Vertical * Coordinates
Hode ® v Stres=s  * Node ® v
1 ooo0 . 000 .00 * b 77 000
3 154 . 000 .00 * 4 339 000
5 523 o000 .00 * & TO08 000
7 893 000 .00 * a8 1.077 000
g 1.262 .000 .00 * 10 1.44% 000
11 1.631 [a]uls} .00 * 12 1.815 000
13 2.000 00 .00 * 14 000 500
15 077 . 500 30.05 * 1& .154 . 500
17 L339 . 500 30.05 * g . 523 . 500
135 . 708 . 500 30.05 * 20 . 893 . 500
21 1.077 . 500 30.05 * 22 1.262 500
23 1.44¢ L 500 30.05 * 24 631 500
25 1.815 . 500 30.05 * 26 2.000 . 500
27 .000 1.000 60.10 =* i .077 1.000
29 .154 1.000 60.10 * 30 . 339 1.000
31 . 523 1.000 60.10 * 32 . 708 1.000
33 . 893 1.000 60.10 * 34 1.077 1.000
35 1.262 1.000 60.10 * 36 1.446 1.000
37 . 631 1.000 60.10 =* g 1.815 1.000
39 2.000 1.000 60.10 * 40 . 000 1.500
41 077 1.500 90.15 =* 42 .154 1.500
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Vertical

Stress

30.
30.
30.
30.
30.
30.
30.
&0.
a0.
al.
al.
al.
al.
90.
90.
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HNCDAL. CONMECTIVITY NUMEBER OF ELEMENTS = 384

Hode Connectiwvity * Hode Connectivity *

Elem 1 2 3 4 i Elem 1 b 3 4 *
1 1 2 15 14 * 2 14 15 28 27 *
3 27 28 41 40 i 4 40 41 54 53 *
5 53 54 &7 (14 * & (14 &7 80 79 *
7 73 80 93 92 i 8 92 93 106 105 *
g 105 106 118 118 i 10 118 118 132 131 *
11 131 132 145 144 * 12 144 145 158 157 *
13 157 158 171 170 i 14 170 171 184 183 *
15 183 184 187 196 * 16 196 187 210 209 *
17 209 210 223 222 * is 222 223 236 235 *
15 235 236 243 243 i 20 243 243 2a2 26l *
21 26l 262 275 274 * 22 274 275 288 287 *
23 287 288 301 300 i 24 300 301 314 313 *
25 313 314 327 328 i 26 328 327 340 339 *
27 339 340 353 352 * 28 352 353 366 385 *
29 365 366 3739 378 i 30 378 373 392 331 *
31 391 3492 405 404 i 32 404 405 418 417 *
33 2 3 la 15 * 34 15 la 29 28 *
35 28 23 42 41 i 36 41 42 55 54 *
37 54 55 68 a7 * 38 a7 68 81 80 *
35 80 81 94 93 * 40 93 94 107 106 *
41 106 107 120 118 i 42 118 120 133 132 *
43 132 133 l4g 145 * 44 145 146 159 158 *
45 158 159 172 171 i 46 171 172 185 184 *
47 184 185 138 187 i 48 187 158 211 210 *
49 210 211 224 223 * 50 223 224 237 236 *
51 236 237 250 243 i 52 243 250 263 2a2 *
53 262 263 276 275 * 54 275 276 289 288 *
55 288 289 302 301 * 56 301 302 315 314 *
57 314 315 328 327 i 58 327 328 341 340 *
59 340 341 354 353 * &0 353 354 367 366 *
6l 366 367 380 378 i 62 378 380 393 382 *
63 392 393 406 405 i 64 405 406 419 418 *
65 3 4 17 16 * (13 16 17 30 29 *
a7 23 30 43 E¥ i 63 E¥ 43 56 55 *
(3] 55 =1 (3] 34 i 70 34 a3 22 81 *
71 81 22 95 94 * T2 94 95 108 107 *
T3 107 108 121 120 i T4 120 121 134 133 *
75 133 134 147 14g * 76 14g 147 160 158 *
T7 155 160 173 172 * 78 172 173 186 185 *
79 185 186 135 158 i 80 158 153 212 211 *
g1 211 212 225 224 * g2 224 225 238 237 *
83 237 238 251 250 i 84 250 251 264 263 *
85 263 264 277 278 i 26 278 277 230 2839 *
g7 289 230 303 302 * 88 302 303 3le 31% *
g9 315 3le 323 328 i 90 328 323 342 341 *
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Current Time = 1.00 sec

3 Max. Pressure ratio= . 9580

5 Max. Average Iy = .888 at elevation = .500 feet
3 Water level drainmn = .000 feet Settlement = .0078 feet
=11} Volume Discharged = .0970 feet ~3

5048 Current Values * Cummulative Values

510 Laver Maximum HNode LavBvg Dephvg * Maximum Node Lavivg Deplvg Time
512 1 . 9580 2a. . 6549 8883 = . 958 2a. . 6549 8883 1.00
513 2 .92492 39. . 7957 .8543 = .52492 39. . 7957 .8543 1.00
214 3 .8636 104. L7737 .T7844 = .8636 104. L7737 .T7844 1.00
T L 4 .5434 1&9. . 7459 .T7646 * .5434 1&9. . 7459  .T646 1.00
Ele 5 .8059 234, LBEET2 ,T7294 = 8059 234. .B66T2  .T7284 1.00
217 & 5118 2399, .2330 .4644 * 5118 2399, L2330 .4644 1.00
18 T L1513 364, L0517 .1386 * L1513 364. L0517 .138 1.00
520

221 Current Time = 2.00 szec

222 Max. Pressure ratio= L9873

523 Max. Average Iu = .9z222 at elevation = .500 feet
524 Water level drain = .000 feet Settlement = .0234 feet
525 Volume Discharged = .2928 feet ~3

526

527 Current Values * Cummulative Values

528 Layver Maximum Node Layivg Deplvg * Maximum Node Layivg Deplvg Time
=28 | -
=30 1 L9873 26. LB830  .89222 =% L9873 2&. LBE30 . 9222 2.00
531 2 .9747 39. . 28477 ,88994 = L9747 39. L8477 .38904 2.00
S 3 .9288 104. .8254 ,8371 = .9288 104. .8254 .83371 2.00
% 4 .9085 1&9. . 7923 .8154 = . 908 169. L7823 .8154 2.00
SIS 5 .85%8 234, L6937 .T7e81 = .8588 234. .8937 .7e21 2.00
535 & .6338 299, L3150 .5631 = .6338 299, .3150 .5&31 2.00
5368 T L2207 364, .0785 .1%986 * L2207 364. L0785 .1986 2.00
539 Current Time = 3.00 sec

540 Max. Pressure ratio= .893813

241 Max. Average 1y = L8275 at elevation = .500 feet
542 Water level drain = .000 feet Settlement = .0401 feet
543 Volume Discharged = .5003 feet "3

245 Current Values * Cummulative Values

Sd6 Layer Maximum Node LayAvg Deplvg * Maximum Node Layivg Deplvg Time
548 1 .9913 26. 6876 .9275 * . 9913 2a. L8878 .9275 3.00
£z 4] b .9801 39. .8604 .S90e68 * . 9801 39. .8604 .9068 3.00
550 3 9377 104. .B407 .851& * .9377 104. .B407 .851s 3.00
251 4 .9185 1&9. .805%4 .8318 = .918 169. .8094 .3318 3.00
TiE 5 .8689 234. . 7268 .TE50 = . 868 234, . 7268 .T850 3.00
SIS & . 7149 2399, . 3695  .eg408 = . 7149 2599, .3695 .g408 3.00
554 T .2498 364. .0919 .2260 * .2488 364. .0819 2280 3.00
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2285 Current Time = 100.00 =ec

2286 Max. Pressure ratio= L0017

2287 Max. Average Iu = 0015 at elevation = .500 feet
2288 Water lewvel drain = 000 feet Sectlement = .1874 feet
2289 Volume Discharged = 2.3413 feet ~3

2280

2281 Current Values * Cummplative Values

2292 Layver Maximum HNode LavBAvg Deplivg * Maximum Node LavAvg Dephvg Time
2283 | —\———————————————————————————
2294 1 .0017 26, .000% .0015 * .9917 26. .688 .92EE 6.00
2285 2 .000% 39. .0002 .0008 * .9812 39. .8636 .9087 6.00
2288 3 .0000 104. .0000 .0OQ00 * .9427 104. .8451 .8555 &.00
2287 4 0000 169. .0000 .0QO00Q0 * 9257 169, .8156 .8369 &6.00
225 5 .0000 229. .0000 .0O000 * .8823 234, .7622 .T78938 6.00
225 [ .0000 298. .0000 .0OQ00 * .8389 289, .5174 .T7546 &.00
230 T 0000 362. .0000 .0QO00Q0 * .3102 364. L1127 .2794 &.00
2301

2302

230 -—-—1-—————————
2304 End of Run Statistics

2308 ---—-—m—-—r—m—m—————.—————————————_———————————
2306

2307

2308 Current Time = 100.00 sec

2209 Max. Pressure ratio= L9917

2310 Max. Average In = .9288 at elevation = .500 feet
2311 Water lewvel drain = 000 feet Sectlement = .1874 feet
2312 Volume Discharged = 2.3413 feet "3

2313

2214 Current Values * Cummlative Values

AEiLE Laver Maximum Node LavAvg DeplAwvy * Maximum Node LayvAvg Depivg Time
2216 ———mm—m—m—m——--—--————_——————_—_—————————E—E——E—E—— e — ——
2317 1 .0017 26, .000% .0015 * .9917 26. .688 .92EE 6.00
2318 2 .000%8 39. .0002 .0008 * .9812 39. .8636 .9087 &.00
23 3 .0000 104. .0000 .0O000 * .9427 104. .8451 .8555 6.00
2320 4 .0000 169. .0000 .0QOQ0Q0Q * 9257 169, .8156 .8369 6.00
2321 5 0000 229. .0000 .0QO00Q0 * .8823 234. L7622 .T93B &.00
2322 [ .0000 298. .0000 .0OQ00 * .8389 289, .5174 .T7546 &.00
2323 7 .0000 362. .0000 .0QOQ0Q0Q * 3102 364. L1127 .2794 6.00
Pl i
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SUM

[=1_2_41sum 3

1 Time Time/Ld Maximam Deplvg Wat_ lewvel Setklem Drain Vol Surf Vol
J e e —————————————_——————_——_————_——_—_—————_——_—_—————_—_——————_——_——
= .00 . 0000 . 0000 L0000 . 0000 . 0000 L0000 .0000
4 1.00 L1428 . 9580 . 8883 .0000 0078 0964 .0006
5 2.00 L2857 .9873 L5222 .0000 .0234 L2912 .0017
& 3.00 L4286 .9913 L9275 .0000 .0401 . 4975 .002%9
7 4.00 .5714 .9914 L9276 .0000 .0574 .T7124 .0040
8 5.00 7143 9917 . 9288 .0000 0751 L9324 .0052
£ 6.00 L8571 .9317 . 9288 .0000 0933 1.1582 .0064
10 T.00 1.0000 .9784 L8831 . 0000 L1054 1.3582 0075
11 8.00 1.142%9 . 9550 . B486 . 0000 L1223 1.5188 .0086
12 9.00 1.2857 .9241 L8136 . 0000 L1329 1.6505 .0096
13 10.00 1.4286 .8300 . T803 . 0000 .1415 1.7573 .0106
14 11.00 1.5714 .8545 . T467 .0000 .1487 1.8454 .0116
15 12.00 1.7143 .8183 L7138 .0000 .1545 1.9176 .0125
16 13.00 1.8571 .7821 L6812 .0000 15594 1.9773 .0134
17 14.00 2.0000 . 7461 L6492 .0000 1634 2.0268 .0142
18 15.00 2.142%9 7106 L6177 .0000 1668 2.0681 .0150
15 16.00 2.2857 6757 L5870 .0000 16396 2.1026 .0138
20 17.00 2.4286 L6417 . 3570 . 0000 L1720 2.1316 0165
21 18.00 2.5714 6085 L5278 . 0000 1740 2.1561 L0172
22 19.00 2.7143 .5T764 . 49397 . 0000 L1757 2.1768 .0178
23 20.00 2.8571 .5453 L4726 . 0000 L1772 2.1948 .0184
24 21.00 3.0000 .5153 L4464 .0000 1784 2.2087 .0150
25 22.00 3.142%9 .4865 L4212 .0000 17585 2.2227 .0196
26 23.00 3.2857 .4588 L3971 .0000 .1804 2.2338 .0201
27 24.00 3.4286 L4324 L3740 .0000 .1812 2.2435 .0206
28 25.00 3.5714 .4071 L3520 .0000 .181%8 2.2518 .0210
29 26.00 3.7143 .382%9 L3310 .0000 .1826 2.25891 .0214
30 27.00 3.8571 . 35598 L3110 . 0000 .1831 2.2654 .021%
31 28.00 4.0000 . 3381 2821 . 0000 .1836 2.2708 0222
32 29.00 4.1429 3173 L2741 . 0000 .1840 2.2757 .0226
SE 30.00 4.2857 .2976 L2570 . 0000 .1844 2.2800 .022%9
34 31.00 4.4286 2750 . 2408 .0000 .1847 2.2837 .0232
S 32.00 4.5714 2614 L2256 .0000 .1850 2.2870 .0235
36 33.00 4.7143 L2447 L2112 .0000 .1852 2.2898 .0238
T 34.00 4.8571 L2230 L1976 .0000 .1854 2.2924 .0241
38 35.00 5.0000 2142 .1848 .0000 .1856 2.2948 .0243
SiES 36.00 5.142%9 L2003 L1727 .0000 .1858 2.29686 .0245
40 3T.00 5.2857 1872 L1613 . 0000 1860 2.2984 .0247
41 38.00 5.4286 1748 L1507 . 0000 1861 2.3000 0243
42 39.00 5.5714 1632 .1407 . 0000 .1862 2.3014 .0251
= 40.00 5.7143 L1523 L1313 .0000 .1864 2.30286 .0253
44 41.00 5.8571 .1421 L1224 .0000 .1865 2.3037 .0254
15 42.00 6.0000 1326 L1142 .0000 .1865 2.3047 .0256
16 43.00 6.1429 1236 L1064 .0000 .1866 2.3056 .0257
47 44.00 6.2857 L1152 L0952 .0000 .1867 2.3064 .025%
8 45.00 6.4286 L1073 0924 .0000 .1868 2.3071 .0260
15 46.00 6.5714 1000 086l . 0000 .1868 2.3077 0261
a0 47.00 6.7143 0931 . 0801 . 0000 .186% 2.3083 0262
a1 48.00 6.8571 .0866 0746 . 0000 .186%9 2.3088 0263
52 49,00 7.0000 .0806 . 0694 . 0000 1870 2.3083 .0264
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62

T2

32

92

.00
683.
64.
65.
66.
aT.
68.
689.
T0.
T1.
.00
T3.
T4.
T5.
Té.
T7.
T8.
79.
80.
81.
.00
83.
84.
85.
86.
87.
88.
89.
80.
81.
.00

93.

94,

95.

96.

97.

98.

8949,
100.
100.

0o
0o
00
00
00
o0
o0
o0
o0

o0
o0
o0
00
00
00
00
00
00

00
00
o0
o0
o0
o0
o0
o0
o0

00
00
00
00
00
00
00
00
00

L8571
.0000
L1423
L2857
L4288
L5714
L7143
L8571
.0000
L1423
L2837
L4286
.5T714
L7143
L8571
.0000
L1429
L2857
L4288
.5714
L7143
L8571
.0000
14235
L2857
L4288
.0T14
L7143
L8571
. 0000
L1425
L2857
L4288
.5714
L7143
L8571
.0000
14238
L2857
L2857

[ ¥ I Ve R T T o R V' RV B T Y ]

I T I T T T o B B N = I e = T T B T T B o e R R
e R O I O O R R O O e A N N N O T = = T R

Maximuam

.0311
.028%9
.0268
0243
0231
.0214
.01393
.0184
L0171
.0158
.0147
.0136
0126
L0117
.010%9
.0101
.0093
.0086
.0080
.0074
.006%
0064
.005%
.0055
.0051
.0047
0044
. 0040
L0037
.0035
.0032
.0030
.0027
.0025
.0024
.0022
.0020
.001%
.0017
.0017

.02a7
.0248
.0230
.0214
.01588
.0184
L0171
.0158
.0147
0136
0126
L0117
.0103
.0101
.00593
0086
.0080
.0074
0063
0064
.0059
.0055
0051
.0047
0044
. 0040
L0037
.0035
L0032
. 0030
.0028
.0025
.0024
L0022
.0020
.0018
L0017
.001a
.0015
.0015

Cupmularive Values

Hode

1a9.
234.
239,
364.

Layhwvg

. 6887
8630
. 8451
.8156
.T622
.5174
L1127
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. 0000
. 0000
. 0000
.0000
.0000
.0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
L0000
.0000
.0000
. 0000
. 0000
. 0000
.0000
.0000
.0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
L0000
.0000
.0000
L0000
. 0000
. 0000
.0000
.0000
.0000

Dephwvg

.9288
.9087
.8555
.8336%9
. 7938
. 7546
L2794

L1873
L1873
L1873
L1873
L1873
L1873
L1873
1874
1874
1874
1874
1874
L1874
L1874
.1874
.1874
.1874
.1874
.1874
.1874
1874
1874
1874
1874
1874
1874
1874
1874
1874
L1874
L1874
.1874
.1874
.1874
.1874
.1874
.1874
1874
1874
1874

Ra B3 B3 R) ORY R) OB ORI ORI ORY R) ORY ORI ORI ORI ORI ORY OR) ORI ORI ORI ORY ORY KR BRI ORI ORI ORY OR)ORY ORI ORI ORI ORI ORY OR) ORI ORI ORI R

L3124
L3125
L3128
L3127
.3128
L3128
L3130
L3130
L3131
L3132
L3132
L3133
L3133
L3133
L3134
L3134
L3134
L3135
L3135
L3135
L3135
L3138
L3138
L3136
L3136
L3136
L3136
L3136
L3137
L3137
L3137
L3137
L3137
L3137
L3137
L3137
L3137
L3137
L3137
L3137

L0271
L0272
L0272
0272
0272
L0273
0273
0273
0273
0273
0274
0274
0274
0274
0274
0274
0274
.0274
.0274
L0275
0275
0275
0275
0275
0275
0275
0275
0275
0275
0275
0275
.0275
.0275
.0275
.0275
L0275
L0275
0275
0275
0275



APPENDIX C. PARENT STUDY Ru PLOTS

These plots of applied acceleration and measured excess pore pressure ratio come from
the laminar shear box testing done by Oakes (2015), and are the foundation of this modeling

effort. The figures are presented in chronological order of when testing occurred.
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APPENDIX D. SOIL COMPRESSIBILITY

Hyoiigs (iN) 0.0167344
Red in these columns indicate 101546‘?
potential outliers.
fu Volumetric Strain )
Round  Depth (ft) (see (see_Fig.38, (Ag) (see Prior Settlement Hyoias (in) €hew Ysatnew (PCF) Drnew
Fig.38,39,40) 39,40) Fig.59,60,61) (in) (see Table.9) (portion of Hyu) (from e ew) (from e ew) Ac' m, = Ag/Ac'
1.05 2.5 1 1.45 Prior 150.2 0.0097
4.5 1 1.45 0 72.5 0714 122.5 0.45 270.4 0.0054
7.5 0.9 1.1 405.6 0.0027
10 0.48 0.5 This round 288.4 0.0017
12.5 0.2 0.3 1.89 150.2 0.0020
1.1 2.5 1 0.8 Prior 151.9 0.0053
4.5 0.78 1.1 1.89 70.6  0.695 123.1 0.55 213.2 0.0052
7.5 0.57 1.1 259.7 0.0042
10 0.67 1.8 This round 407.0 0.0044
12.5 0.27 14 2.03 205.0 0.0068
1.2 2.5 1 1.75 Prior 153.7 0.0114
4.5 0.83 1.9 3.92 68.5 0.675 123.9 0.65 229.6 0.0083
7.5 0.94 1.6 433.4 0.0037
10 0.91 1.45 This round 559.4 0.0026
12.5 0.56 1.4 2.64 430.3 0.0033
2.05 2.5 1 0.75 Prior 156.1 0.0048
4.5 1 0.5 6.56 65.9 0.6489 124.8 0.79 281.0 0.0018
7.5 0.96 0.75 449.6 0.0017
10 0.55 0.4 This round 343.4 0.0012
12.5 0.25 0.2 0.9 195.1 0.0010
2.1 2.5 1 1.05 Prior 156.9 0.0067
4.5 1 0.85 7.46 65.0 0.64 125.2 0.83 282.5 0.0030
7.5 0.98 1.3 461.4 0.0028
10 0.65 0.2 This round 408.1 0.0005
12.5 0.45 0.22 1.22 353.1 0.0006
2.2 2.5 1 0.2 Prior 158.1 0.0013
4.5 1 0.4 8.68 63.8 0.628 125.6 0.90 284.6 0.0014
7.5 1 0.25 474.3 0.0005
10 0.97 1.25 This round 613.5 0.0020
12.5 0.94 3.4 1.39 743.1 0.0046
3.05 2.5 0.96 0.4 Prior 153.1 0.0026
4.5 0.55 0.1 10.07 62.4 0.614 126.2 0.97 157.9 0.0006
7.5 0.42 0.2 200.9 0.0010
10 0.43 0.1 This round 274.2 0.0004
12.5 0.27 0.45 0.46 215.3 0.0021
3.1 2.5 0.94 0.28 Prior 150.3 0.0019
4.5 0.69 0.2 10.53 619 0.610 126.4 0.99 198.6 0.0010
7.5 0.58 0.35 278.2 0.0013
10 0.52 0.4 " This round 332.6 0.0012
12.5 0.29 0.25 0.67 231.8 0.0011
3.2 2.5 1 0.6 Prior 160.6 0.0037
4.5 0.94 0.5 11.2 61.3 0.603 126.6 1.02 271.7 0.0018
7.5 0.83 0.7 399.8 0.0018
10 0.69 0.9 This round 443.1 0.0020
12.5 0.61 0.95 1.19 489.7 0.0019
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Duplicate from leftside

Round Depth (ft)

a=5(15-D) b=3(4"" y=a*r m, (see Fig.38)
5.25 0.0010 1.05 2.5
5.247 1.607 5.25 0.0006 4.5 0.0000 0.0010 0.0020 0.0038/“/O 0.0040 0.0050 0.0060 0.0070
4.43 0.0005 7.5 0
1.61 0.0014 10 5
0.40 0.0020 12.5
4.76 0.0008 11 25 4 —e—145
4.763 1.405 3.36 0.0018 4.5 ——14
2.16 0.0027 75 g °® 12
2.71 0.0022 10 3 g
0.76 0.0065 12.5
4.24 0.0023 1.2 2.5 10
4.242 1216 3.38 0.0028 45 "
3.93 0.0009 7.5 »
3.78 0.0007 10 "
2.10 0.0021 12.5
3.57 DB 2.05 2.5 0.0000 0.0010 0.0020 o.ooaonoo.oo4o 0.0050 0.0060 0.0070
3.565 1.008 3.57 0.0005 4.5 0
3.42 0.0006 7.5
1.95 0.0008 10 2
0.88 0.0010 12.5 /
3.33 0.0024 21 25 4 g Py
3.334 0.945 3.33 0.0011 4.5 s o4
3.27 0.0010 7.5 4
2.22 0.0003 10 3 g 2t
1.57 0.0005 12.5 \
3.02 0.0005 2.2 2.5 10
3.021 0.867 3.02 0.0006 45 5 \
3.02 0.0002 7.5
2.94 0.0009 10 14
2.86 0.0021 12.5
2.8 0.0014 3.05 2.5 0.0000 0.0010 0.0020 0.003OMV00.0040 0.0050 0.0060 0.0070
2.665 0.785 1.67 0.0005 4.5 0
1.35 0.0008 7.5
1.37 0.0003 10 2
0.95 0.0019 12.5
2.43 0.0010 3.1 2.5 4 30
2.547 0.760 1.92 0.0007 4.5 ] a1
1.68 0.0010 7.5 £ b
1.55 0.0010 10 S, '
0.99 0.0010 12.5
2.38 0.0022 3.2 2.5 10
2.375 0.724  2.27 0.0011 45
2.08 0.0011 7.5 12
1.82 0.0015 10 »
1.66 0.0015 12.5
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