Period Covered: April 1, 2008 through June 30, 2008 KSDOT Progress Report for the ## **State Planning and Research Program** | PROJECT TITLE: Implementation Of The 2002 AASHTO Design Guide For Pavement Structures | | | | | |---|--------------------------------------|--------------|--|--| | PROJECT MANAGER: | Project No: TPF-5(079)
RE-0361-01 | Project is: | | | | Richard L. McReynolds, P.E., Admin. Contact | | PLANNING | | | | Dr. Mustaque Hossain, KSU, PI | | X RESEARCH & | | | | DI. Mustaque Hossaili, KSO, FI | | DEVELOPMENT | | | | | | | | | | Annual Budget (active projects) | Multi Year Project Budget | | | | | | \$521,963 | | | | | | | | | | <u>Progress:</u> The objective of this research is to develop the calibration procedure for the NCHRP design guide (M-E PDG) models for both flexible and rigid pavement structures for this region and to assist the state highway agencies in region in the implementation of the new Guide for pavement design and surface selection practices. The research efforts to date were concentrated on the development of the library of material characterization data for typical pavement materials and the identification of pavement test sections for which performance data may be available. The survey of literature has been conducted to identify existing material characterization data and pavement performance data collected already by the highway agencies and reported in internal documents. The testing program for measuring the dynamic resilient modulus of typical asphalt concrete mixes and the binder shear modulus and phase angle has commenced. Testing has been performed on more than 15 HMA mixes. For all mixes tested, the measured dynamic moduli were compared with the moduli predicted by the Witczak equation and by the Hirsch model. The comparison revealed that, for all mixes, the measured moduli were 50 to 100 percents higher than the moduli predicted by the Witczak Equation. The Hirsh model severely under-predicted the dynamic modulus. Two databases of needed input data for the M-E PDG model were created in Access format for flexible and rigid pavement structures, to ease the assembly of pavement construction and performance data for both rigid and flexible pavements. The data collected will allow runs of the M-EPDG software to calibrate the model to local conditions when sufficient performance data will be available. The TrafLoad software has been used for axle load spectra extraction for the weight and classification stations that continuously recorded data for at least twelve continuous months, seven consecutive days in each month. The traffic data collected in 2004, 2005, 2006 and 2007 has been processed for all stations that had sufficient data. More data is needed for some of the stations. A new Pavement Performance Program was initiated. Five pavement sections, constructed in 2005, will be included initially in the program. More sections will be added in the years to come. The work conducted in the last quarter focused on the determination of the dynamic complex modulus of the HMA mixes and the resilient modulus of unbound materials used in the construction of the experimental test sections on I-495 in Long Island. Laboratory testing (dynamic modulus, Hamburg wheel loading, Tensile Strength Ratio (TSR)) was also performed for a WMA – HMA (warm mix vs. hot mix asphalt) comparison study. There was no major progress in the last quarter. Dr. Mustaque Hossain is the new P.I. on the project; Dr. Stefan Romanoschi moved to the University of Texas at Arlington (UTA). Part of the work on this project has been subcontracted with UTA. ## SUMMARY OF ACTIVITIES EXPECTED TO BE PERFORMED NEXT QUARTER: The work to be conducted in this quarter includes the evaluation of the reduction in pavement distresses for the flexible and rigid pavement structures for NYSDOT due to the usage of new truck/semi-trainer configurations and the development of recommendations for the appropriate legal limits for the new vehicle configuration. To achieve the objectives, finite element modeling with the general purpose FEM software ABAQUS will be performed. The FEM modeling was selected since it allows the modeling of moving loads and of the viscoelastic behavior of asphalt concrete | STATUS AND COMPLETION DATE | | | | |---|--------------------|--|--| | Percentage of work completed to date for total proje | ect is: <u>75%</u> | | | | X on schedule behind schedule, explain | 1 | | | | Expected Completion Date: December 31, 20 | 008 | | | | | | | | | Percentage of work completed to date for total proje X on schedule behind schedule, explain Expected Completion Date: December 31, 20 | ı | | |