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FOREWORD 

Microsimulation modeling is a commonly used approach for analyzing transportation 
alternatives, designing traffic control strategies, predicting future congestion problems, and 
evaluating advanced vehicle technology impacts. But adequate model calibration and validation 
continue to be among the greatest challenges to the proper application of microsimulation in the 
decisionmaking process. Thanks to recent advancements in data collection and processing 
technologies, there is significant interest in collecting trajectory-level data and using these data to 
calibrate driver behavior within microsimulation models.  

The purpose of this report is to document the development of a novel methodology for 
calibrating microsimulation models using vehicle trajectory data. Given that vehicle trajectory 
data are not readily available, the research team collected large trajectory level datasets by 
mining video data collected via drones and helicopters at four sites around the United States. The 
team conducted four case studies comparing state-of-the-practice (traditional) calibration to the 
trajectory calibration method, to demonstrate the value added by using trajectory-level data for 
model development and calibration. This final report will be of interest to State and local 
departments of transportation interested in improving the state of practice for microsimulation 
model calibration and validation applied within their jurisdictions. 
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T short tons (2,000 lb) 0.907 megagrams (or “metric ton”) Mg (or “t”) 

TEMPERATURE (exact degrees) 
°F Fahrenheit 5 (F-32)/9 Celsius °C or (F-32)/1.8 
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EXECUTIVE SUMMARY 

Traffic simulation is a commonly used approach for analyzing transportation alternatives, 
designing traffic control strategies, predicting future congestion problems, and evaluating 
advanced vehicle technology impacts. Traffic analysts value microscopic traffic simulation, also 
known as microsimulation, for its ability to replicate driver behavior in great detail (e.g., car-
following and lane-changing). Indeed, complex facilities (e.g., advanced signal timings, freeway 
interchanges) cannot be evaluated carefully without this microscopic level of detail. 

Traffic simulation results are generally unreliable unless the model is calibrated for local 
conditions. Traffic engineers and analysts calibrate microsimulation models based on 
macroscopic inputs (e.g., aggregated travel speed, traffic throughput) instead of microscopic 
inputs (e.g., intervehicle spacing, acceleration rate, time gap) because of challenges associated 
with collecting trajectory-level data. This has led to concerns that the microscopic driver 
behaviors simulated by these models are inaccurate, despite the apparent macroscopic 
performance measures goodness of fit. 

Given the recent improvements to data collection and data processing technologies, particularly 
with unmanned aerial vehicle technologies and cost reductions, there is renewed interest in 
trajectory-based calibration for microsimulation models. Researchers behind this project 
developed a new methodology for trajectory-based calibration, and they tested this methodology 
against traditional calibration at real-world urban freeway locations. The proposed calibration 
methodology is highly customizable and allows users to find the right balance between 
practicality and calibration robustness. 

This project had three primary goals: collect and process data (both traditional traffic data and 
trajectory data), develop a trajectory-based calibration methodology, and test this methodology 
by calibration microsimulation models to demonstrate the value of calibrating models with 
trajectories.  

First, this project collected both trajectory data and more traditional traffic data, such as speed 
and throughput from infrastructure-based radar data, at four, real-world congested freeway sites. 
Data were collected using a helicopter above I–75 in Florida, and other data were collected using 
drones above I–270 in Maryland, I–15 in California, and I–95 in Virginia during the spring of 
2019. The research team considered the data collection process successful because of the volume 
of obtained trajectories and the small number of mechanical failures. During the remainder of 
2019 the team post-processed the trajectory data. Data were cleaned, converted from videos to a 
specified numeric format, validated, and corrected. Although the team initially identified many 
errors in the data, these errors were systematically corrected, and the resulting datasets passed 
validation tests by wide margins. Lessons learned from the data collection and data processing 
phases, as well as instructions for identifying and fixing post-processed trajectory errors, are 
discussed in chapter 3 of this report.  

Next, the trajectory data were used to inform the development of a new trajectory-based 
calibration methodology. This trajectory-based method is model and simulation-software 
agnostic and consists of seven steps. The first four steps—inputs, heuristic, outputs, points—



2 

consist of choices made by the analyst, while the last three steps—binning, pairing, and root-
mean-squared error (RMSE)—are iterative processes that can be automated through scripting. 
The scripts developed as part of this project are discussed in the appendices of this document and 
are available for download (Github, n.d.-b). 

Motivated by initial research results, the team also explored the idea of a hybrid-calibration 
methodology, for which both traditional traffic data and vehicle trajectories are used in the 
calibration process. This methodology is discussed in chapter 4 of this report. 

Finally, the team tested the trajectory-based, hybrid, and traditional calibration methodologies 
using two separate microsimulation software platforms. The test results from the experiments 
provided evidence that traditional calibration methods are unreliable in producing realistic 
vehicle trajectories. But the explicit integration of trajectories into the calibration process can 
remedy this shortcoming. The test results also demonstrated the importance of validation. The 
initial set of validation results revealed errors in the calibration process, but after the research 
team made some adjustments, the calibrated models passed their validation tests.  

Trajectory-based calibration achieved the best results at the I–75 site in Florida. This is likely 
because it was the only site where full-length trajectories approximately 1.2 m in length were 
collected by helicopter. By contrast, the research team deployed drones at the other three sites, 
where only 800-ft-long trajectories could be collected because of deployment-height limitations. 
To compensate for this limitation, the research team deployed multiple drones at different key 
network locations to obtain multiple 800-ft trajectory snippets for the same site. Given the 
results, it is possible the 800-ft trajectories may be too short to support robust model calibration. 

As mentioned above, this seven-step process did require external scripting to enable calibration 
with trajectories. Thus, there is room for improvement in the efficiency and user-friendliness of 
trajectory-based calibration. Given the promising results obtained by applying the developed 
calibration method, the authors hope vendors will develop improved data collection and data 
processing technologies, which can collect longer vehicle trajectories at reasonable prices. The 
authors also hope software developers will provide user-friendly apps to streamline the proposed 
method, facilitating widespread improvements in microsimulation model accuracy and 
robustness.
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CHAPTER 1. INTRODUCTION 

Traffic simulation is an indispensable tool for transportation professionals. It provides a cost-
effective method for predicting the impact of various changes to the transportation system on 
traffic flow and performance, such as travel time, speed, and capacity. These variables include 
land use changes, geometric design alternatives, cooperative automated vehicle (CAV) 
penetration rates, active traffic management strategies, nonrecurring events, and growing traffic 
demands.  

Microscopic simulation, or microsimulation, provides detailed representations of car-following 
and lane-changing behaviors for analyses that focus on urban freeway interchanges and 
corridors. When conducted properly, the outputs of microsimulation, which include a 
combination of lane-specific results, static graphics, moving vehicle animation, and statistical 
outputs, supply valuable information to decisionmakers. In comparison with macroscopic and 
mesoscopic simulation, microsimulation offers the most fine-grained and detailed understanding 
of congestion formation, propagation, and dissipation on freeways. To ensure analyses are 
conducted properly, analysts must perform proper model calibration, which is the process of 
estimating model parameters to represent local conditions more realistically. 

Conventional calibration practices, which include calibrating to traditional aggregate 
performance measures, such as speed and volume, may not produce the robust outcomes and 
accurate models that engineers expect. In one example, a study of six microsimulation models 
that were well calibrated to aggregate measures produced wildly divergent predictions for future 
conditions (Bloomberg, Swenson, and Haldors 2003). There are several possible explanations for 
this phenomenon. First, although these models were developed with best practices in mind, the 
iterative changes made to the driver behavior parameters to best match current conditions’ 
aggregate measures may have resulted in unintended impacts to models with different underlying 
assumptions, such as future demand, making those estimates of future conditions unreliable. 
Conversely, this may also suggest that the calibrated driver behavior models were overfit to 
current traffic conditions and were not generalizable for other conditions, such as future demand 
of the same modeled area. Regardless of the explanation, the results of Bloomberg, Swenson, 
and Haldors (2003) imply that practitioners may have been focusing on traditional measures at 
the expense of underlying driver behaviors and vehicle dynamics, possibly leading to less 
reliable predictions of traffic flow performance and driver behavior.  

Moreover, the authors are unaware of research conducted to evaluate the accuracy of individual 
trajectories based on models calibrated using segment-level aggregate performance measures. 
Thus, it may be possible to demonstrate that simulated vehicle trajectories from microsimulation 
models calibrated by traditional methods are quite unrealistic, even for current conditions. 

Despite these legitimate concerns and uncertainties, the modeling status quo has remained 
relatively unchanged because of challenges with collecting data. Rarely, if ever, do projects 
collect before and after data to allow modelers to understand and investigate how well their 
future condition models captured the “after” conditions. Additionally, capturing individual 
vehicle trajectories is expensive, computationally intensive, and creates challenges related to 
personally identifiable information. 
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Recent advancements in computing power and drone data collection capabilities have made the 
collection of full-length vehicle trajectories more appealing to State agencies and their consulting 
companies. Indeed, interest from State transportation agencies in using drones has rapidly 
increased in recent years (Banks et al. 2018). These advancements, together with longstanding 
concerns about calibrating microsimulation models via macroscopic measures, motivated this 
project. The project, titled Trajectory Investigation for Enhanced Calibration of Microsimulation 
Models, was sponsored by the Traffic Analysis and Simulation Pooled Fund Study (TAS PFS) 
and included the following objectives: 

• Collecting and processing multiple sources of full-set, trajectory-level data at four 
congested freeway sites. 

• Developing a methodology to calibrate driver behavior components (i.e., car-following 
and lane-changing) of traffic simulation software using the trajectory-level data.  

• Applying this methodology to fully calibrate a traffic simulation model (e.g., driver 
behavior, demand, route choice).  

• Validating the developed calibration procedure. 
• Comparing the accuracy of models, as well as the level of effort required to calibrate 

those models, using the new methodology against more traditional methods. 
• Demonstrating the new methodology using two microsimulation software tools.  

The objective of this report is to describe all the procedural and substantive components of the 
trajectory investigation project. The research team sought to facilitate practical implementation 
of a calibration and validation methodology that exploits collected trajectory data. The team 
began the project by synthesizing relevant literature (chapter 2). The team then selected data 
collection sites and data collection mechanisms (chapter 3). In the next phase, the team collected 
data from drones, helicopters, and through traditional methods (chapter 3). After data collection, 
the team employed a data processing procedure to convert traffic video footage into numeric 
trajectory data and validate the trajectories (chapter 3). Next, the team used calibration and 
validation experiments for microsimulation models. The team developed a trajectory-based 
calibration procedure (chapter 4) and then used it to calibrate four microsimulation models 
representing congested freeways across four States (chapter 5). The team also conducted 
traditional calibration for the same four microsimulation networks (chapter 5). The report 
concludes with a discussion of additional research questions and suggested next steps to move 
this calibration procedure into practice.
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CHAPTER 2. SYNTHESIS OF LITERATURE 

This critical review of literature examines existing studies related to trajectory-level data 
collection, data cleaning and processing, commonly encountered errors within trajectory data, 
and applications of trajectory-level data in the calibration of traffic microscopic simulation 
models. It attempts to demonstrate the significance and relevance of each one to the project at 
hand. The synthesis also includes detailed summaries of the challenges of microscopic 
simulation calibration, such as overfitting, limited computer speeds, unreliable heuristics, as well 
as validation or reporting metrics efforts. This chapter concludes by discussing the implications 
of the literature on this research project. 

TRAJECTORY-LEVEL DATA COLLECTION 

The review of trajectory-level data collection methods provided information for the team to 
develop its data collection plan. It helped to inform the team both in terms of providing insight 
into the data types that this project would need to collect and in determining an appropriate 
spatial coverage of full-set trajectories. 

Ossen and Hoogendoorn (2008) wrote that errors in collected data, such as vehicle trajectories, 
could affect outputs derived from a simulation tool as well as parameter values estimated from a 
calibration process. This implies a benefit to double-checking and verifying model inputs before 
the calibration of model parameters. 

Daamen, Buisson, and Hoogendoorn (2014) classified the data used in traffic simulation studies 
into the following six groups: 

• Local detector data. 
• Section data (vehicle reidentification). 
• Vehicle-based trajectory data. 
• Video-based trajectory data. 
• Behavior and driving simulation. 
• Stated and revealed preferences. 

The first and second—local detector data and section data—reveal primarily macroscopic 
properties of the system. Behavior and driving simulation as well as state and revealed 
preferences address individual behavior, typically at the microscopic level. Vehicle-based and 
video-based trajectory data can be used for both microscopic and macroscopic studies. But 
vehicle-based trajectory data are limited by coverage—vehicles must be equipped with tracking 
devices. Also, video-based trajectory data are limited by spatial coverage—the cameras can see 
only so far. Emerging technologies in the vehicle connectivity area, both in the vehicle-to-
vehicle and vehicle-to-infrastructure communication, could address these limitations. 

The research team drew multiple conclusions from this literature. The first was that the 
aforementioned data categories could inform the team’s data collection plan. For example, to 
define the limitations of the proposed calibration method, the plan could specify data categories 
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to be collected. This was useful information during discussions with the data collection company 
because it helped to ensure the right types of data would be collected. 

Second, the limited spatial coverage motivated the team to employ some data collection plan 
decisions to balance practicality and robustness of calibration. On the practical level, although 
practitioners and researchers may prefer as much spatial coverage as possible, the team 
recognized the calibration methodology should incorporate existing drone data collection 
technologies. It should also be fairly easy to use and thus more appealing to transportation 
agencies for their own projects. Also, the preference for robust data led the team to seek longer 
vehicle trajectories because they help to capture the true nature of driver behavior, including 
phenomena such as intradriver heterogeneity (Taylor et al. 2015). To balance practicality and 
robustness, the team decided to deploy a small number of drones to sample different stages of 
space-time congestion propagation. The team also adopted high-definition video collection 
technology from a helicopter.  

TRAJECTORY DATA FORMATS 

The research team identified four types of real-world trajectory datasets: 

• Global positioning system (GPS) based. 
• LiDAR based. 
• Radar based. 
• Video based. 

The team employed video-based trajectory data formats given the interest in developing a 
trajectory-based calibration methodology to exploit drone data collection technologies. These 
formats included Next Generation Simulation (NGSIM), developed by the U.S. Department of 
Transportation Intelligent Transportation Systems Joint Program Office (ITS-JPO), and the 
Trajectory Clustering Dataset (University of California at San Diego 2014; Morris and Trivedi 
2009). 

The University of California at San Diego (UCSD) Trajectory Clustering Dataset provides 
trajectory data obtained by a simple visual tracker. The dataset format includes truck 
identification (ID), location, and time. NGSIM data provide the precise location of each vehicle 
within the study area every tenth of a second, resulting in detailed lane positions and locations 
relative to other vehicles. The NGSIM dataset format is listed in table 1.  
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Table 1. Next generation simulation data format (USDOT 2019). 

Column Name Description Type 
Vehicle_ID Vehicle identification number (ascending by time 

of entry into section) 
Number 

Frame_ID Frame identification number (ascending by start 
time) 

Number 

Total_Frames Total number of frames in which the vehicle 
appears in this dataset 

Number 

Global_Time Elapsed time in milliseconds since January 1, 1970 Number 
Local_X Lateral (X) coordinate of the front-center of the 

vehicle, in feet, with respect to the left-most edge 
of the section in the direction of travel 

Number 

Local_Y Longitudinal (Y) coordinate of the front-center of 
the vehicle, in feet, with respect to the entry edge 
of the section in the direction of travel 

Number 

Global_X X coordinate of the front-center of the vehicle in 
feet 

Number 

Global_Y Y coordinate of the front-center of the vehicle in 
feet 

Number 

v_Length Length of the vehicle in feet Number 
v_Width Width of the vehicle in feet Number 
v_Class Vehicle type: 1, motorcycle; 2, auto; 3, truck Number 
v_Vel Instantaneous velocity of the vehicle in feet per 

second 
Number 

v_Acc Instantaneous acceleration of the vehicle in feet 
per second squared 

Number 

Lane_ID Current lane position of the vehicle. Lane 1 is the 
farthest-left lane; lane 5 is the farthest-right lane. 
Lane 6 is an auxiliary lane between an on-ramp 
and an off-ramp. Lane 7 is an on-ramp; lane 8 is 
an off-ramp 

Number 

O_Zone Origin zones of the vehicles (i.e., the place where 
vehicles enter the tracking system) 

Plain text 

D_Zone Destination zones of the vehicles (i.e., the place 
where vehicles exit the tracking system) 

Plain text 

Int_ID Intersection in which the vehicle is traveling. 
Value of 0 means the vehicle was not in the 
immediate vicinity of an intersection 

Plain text 

Section_ID Section in which the vehicle is traveling. Value of 
0 means the vehicle was in the immediate vicinity 
of an intersection (Int_ID) 

Plain text 

Direction Moving direction of the vehicle: 1, eastbound; 2, 
northbound; 3, westbound; 4, southbound 

Plain text 

Movement Movement of the vehicle: 1, through; 2, left turn; 
3, right turn 

Plain text 
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Column Name Description Type 
Preceding Vehicle ID of the lead vehicle in the same lane. A 

value of 0 represents no preceding vehicle 
Number 

Following Vehicle ID of the vehicle following the subject 
vehicle in the same lane. A value of 0 represents 
no following vehicle 

Number 

Space_Headway Space Headway in feet. Spacing provides the 
distance between the front-center of a vehicle to 
the front-center of the preceding vehicle 

Number 

Time_Headway Time Headway in s. Time Headway provides the 
time to travel from the front-center of a vehicle (at 
the speed of the vehicle) to the front-center of the 
preceding vehicle 

Number 

Location Name of street or freeway Plain text 

DATA CLEANING AND PROCESSING 

Daamen, Buisson, and Hoogendoorn (2014) suggested several methods of filtering, aggregating, 
and correcting data before calibration and validation (e.g., particle filters, Bayesian methods, 
inference methods). They also noted two types of errors (i.e., random and systematic) that might 
occur in raw trajectory data. The research team planned to mitigate these error risks by collecting 
radar data that could corroborate the accuracy of the trajectory data. The team also planned to 
perform manual spot-check calculations of speed, acceleration, and travel distance (figure 3 and 
figure 4). This check would confirm that the data preserved fundamentally valid kinematic 
relationships (Daamen, Buisson, and Hoogendoorn 2014). 

To extract trajectory data for future use, Wei et al. (2005) developed a computer-based tool to 
extract trajectories from videos; but, to produce a trajectory, users were required to manually 
click on points traversed by the same vehicle. The tool lacked post-processing and data cleaning 
logic. Xu and Sun (2013) proposed another video-based, vehicle-trajectory processing approach. 
In the model, a model-based background subtraction algorithm extracted the vehicle trajectories. 
A numerical study showed that 97 percent of trajectories could be accurately detected. The 
model lacked a data cleaning module, however, which allowed for the possibility of speed and 
acceleration errors. Muthurajan, Amrutsamanvar, and Vanajakshi (2017) proposed a model to 
extract trajectory data by using a discriminative correlation filter. The object of the model was to 
map coordinates of a two-dimensional (2D) digital image onto three-dimensional (3D) real-
world coordinates to reduce errors. 

Many researchers have proposed algorithms to process and clean trajectory data. Michalopoulos 
(2008) proposed a post-processing algorithm to eliminate measurement and inconsistency errors 
from the extracted trajectories. First, Michalopoulos (2008) extracted trajectories by using Next 
Generation Vehicle Interaction and Detection Environment for Operations (NG-VIDEO). Then 
Michalopoulos (2008) applied a two-step optimization to clean the data. The upper-level 
optimization seeks to minimize the inconsistency errors by looking for the optimal number of 
polynomial pieces. The lower level seeks to minimize suitable measures of roughness subject to 
interpolation constraints. A case study in Minnesota (i.e., Michalopoulos 2008) showed that the 
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method generates more accurate and reliable trajectories than traditional approaches (e.g., locally 
weighted regression). 

Montanino and Punzo (2013) proposed a multistep filtering procedure that removes outliers and 
cuts off residual random disturbances from the signal with low-pass or average moving filters. 
The driving dynamics are clear and unbiased. The procedure proposed here, however, does not 
guarantee the platoon consistency of the trajectories. Platoon consistency refers to the physical 
consistency of intervehicle spacing resulting from the individual trajectories of two following 
vehicles. This consistency is important because it can help to identify and fix errors in the data, 
such as a following vehicle overtaking a leader vehicle in the same lane (Punzo, Borzacchiello, 
and Ciuffo 2009). 

To improve the platoon consistency, Montanino and Punzo (2015) proposed a “traffic-informed” 
methodology to restore physical and platoon integrity of trajectories in a finite, time-space 
domain. Montanino built a simulation-based validation framework to verify the efficacy of the 
reconstruction methodology. The procedure operates on positional data and requires four steps. 
The first step aims to remove extreme positional errors. In this way, the method further processes 
the resulting signal without allowing the results to be biased by the presence of such outliers. In 
the second step, the method smooths the random noise in the trajectory via a traditional low-pass 
digital filter. The first two steps preprocess the raw measurement signal; this is necessary to 
guarantee that the presence of extreme errors does not bias successive filtering steps. In the third 
step, the method exploits the information on vehicle kinematics and traffic dynamics to restore a 
physically consistent trajectory by performing a local reconstruction of trajectories. Through 
local reconstruction, the method substitutes the physically infeasible vehicle positional data with 
synthetic points that meet the following criteria: 

• Are physically compatible (i.e., returning physical speeds and accelerations). 
• Are consistent with the space traveled in the reconstruction window (i.e., internal 

consistent). 
• Preserve physical intervehicle spacing (i.e., platoon consistent). 

In the fourth step, the method removes residual noise through an additional application of a 
digital low-pass filter. The research applies the method on both aggregate and disaggregate data 
to obtain results, which are indirect confirmation that data filtering was necessary and that the 
proposed reconstruction methodology is effective. 

Fard, Mohaymany, and Shahri (2017) proposed a simple, two-step technique based on wavelet 
analysis for filtering errors and reconstructing trajectory data. The main process identifies and 
modifies outliers using wavelet transform (WT) and eliminates noise by applying the wavelet-
based filter. In the first step, the method identifies and modifies outliers using WT. After 
transforming the data with WT, the method modifies outliers through locally fitting an 
appropriate curve. The detected outliers are replaced by values resulting from applying Gaussian 
kernel-based weighted regression on the vehicle trajectory. This operation extensively improves 
the frequency response of the acceleration profile. In the second step, the method removes noise 
in the dataset. The main idea in this step is to classify wavelet coefficients with thresholding 
function at each level as soft or hard. While under hard conditions, the method preserves the 
coefficients with amplitudes higher than the selected threshold; under soft conditions, the 
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coefficients are decreased by the value of the selected threshold. The proposed method shows 
better performance in a case study with NGSIM data compared with the multistep method (Fard, 
Mohaymany, and Shahri 2017). 

Many methods have been proposed to remove trajectory noise, including moving average 
algorithms (Duret, Buisson, and Chiabaut 2008; Hamdar and Mahmassani 2008; Thiemann, 
Treiber, and Kesting 2008); smoothing algorithms (Punzo, Formisano, and Torrieri 2005; Lu and 
Skabardonis 2007; Toledo, Koutsopoulos, and Ahmed 2007); and Kalman filtering (Ervin et al. 
1991; Ma and Andréasson 2005; Punzo, Formisano, and Torrieri 2005). Ossen and Hoogendoorn 
(2008) investigated the effect of measurement errors on calibration results. These researchers 
concluded that smoothing the data by the moving average method could be the best way to 
alleviate these issues. 

Marczak and Buisson (2012) proposed an I-spline method to reduce noises and smooth 
trajectories. In the model, instead of using one single polynomial for the whole trajectory, it 
filtered the positions by dividing the total time interval into smaller intervals and used lower 
degree polynomials in each of these subintervals. This research suggests that a basis of 
nonnegative and monotone splines, termed I-splines, be used for good continuity characteristics. 
Once the smoothed trajectories are calculated, they can be represented as the linear combination 
of a set of the I-splines basis. Smoothed positions are differentiated to calculate smoothed 
velocities and accelerations. The results showed that the method can reduce the spikes in the 
velocity distribution and percentage of jerk values and increase the acceleration variability of 
smoothed trajectories. 

Pal and Chunchu (2018) proposed another new smoothing method based on complete ensemble 
empirical mode decomposition with adaptive noise. The smoothed trajectory data were further 
differentiated using WT to estimate the instantaneous speed of the vehicle. The WT technique 
led to more accurate speeds. Internal consistency analysis of the position and speed also 
supported the suitability of the proposed method for speed correction. Results showed that 
trajectory data corrections have a significant effect on the flow-occupancy relationship, 
specifically at higher flow levels. The researchers did not apply this method to real-world data to 
test the efficiency of the model, however. 

In conclusion, Fard, Mohaymany, and Shahri (2017) give the best model to remove noise and 
maintain platoon consistency in the dataset. Because of the unknown values of actual vehicle 
trajectories, however, it is unfeasible to determine directly whether the reconstructed data are 
near to the actual ones. Therefore, the research team cleaned data according to the proposed 
methods in Fard, Mohaymany, and Shahri (2017) and Pal and Chunchu (2018). 

COMMON ERRORS WITHIN VIDEO-BASED TRAJECTORY DATA 

Some errors may still exist in the data even after a data cleaning process. To inspect trajectory 
accuracy, Punzo, Borzacchiello, and Ciuffo (2011) proposed a method to analyze trajectory data. 
The first step is to examine the jerk values from trajectory data to check acceleration feasibility. 
Then, platoons and internal data consistency are verified. The last step is to examine spectral 
frequencies on speed, acceleration, and jerk. The research team applied the model to NGSIM 



11 

data. Results showed the method is useful for analyzing trajectory data to confirm that the data 
are physically valid before carrying out a study using those data. 

Challenges with the identification of vehicles in each frame of raw-trajectory videos cause most 
of the errors in video-based trajectory datasets. A common method to locate vehicles is to extract 
backgrounds to find contours of vehicles, but contour errors will cause vehicle position errors. 
Inexact vehicle contours will cause inaccurate speed and acceleration readings. The research 
team desired improved contour extraction algorithms in the trajectory extraction process to 
reduce these errors. The research team proposed a video-based trajectory post-processing tool 
called Video-Based Intelligent Road Traffic Universal Analysis Tool (VIRTUAL®) (Zhao and 
Li 2019), which contains such algorithms.  

According to Coifman and Li (2017), video image processing brings challenges in detecting 
projection errors, occlusions, shadows, non-rectilinear shapes of real vehicles, and vehicles with 
colors similar to the pavement. The 2D image plane seen by the camera is projected into the 2D 
ground plane of the roadway, with the implicit assumption that all objects are in the ground 
plane. But 3D vehicles violate the ground plane assumption and thus generate projection errors. 
These errors are like shadows; the higher off the ground a feature is, the farther away it projects 
from its true ground coordinates. Projection errors also increase as the vehicle moves farther 
away from the camera. Thus, the projection of the top-front of the vehicle should seemingly 
move faster over the ground than the actual vehicle.  

Also, if the video is of low resolution, the projection will be cast onto the ground plane, leading 
to further distortion. The projection expands the small number of pixels occupied by the distant 
vehicles in the raw video, making them comparable in size to the same vehicles in the near field; 
this gives false confidence and masks the discretization errors of the original downsampling. It 
will cause small, instantaneous positioning errors because of the relatively low resolution of the 
video. Errors will be amplified when taking the position difference in two successive frames and 
will degrade the quality of conventional speed calculations if neglected. Further, it will cause 
accelerations to exhibit unrealistically large magnitudes. Using high-resolution videos to extract 
trajectories may reduce these errors.  

Montanino and Punzo (2015) mentioned that motorcycles often “split lanes,” or drove between 
the standard lanes of travel. The legality of motorcycle lane splitting varies between States. 
When extracting vehicle trajectories from video, the model assigns all vehicles to a discrete lane. 
Thus, motorcycles that overtake other vehicles by splitting the lane appear to coexist with other 
vehicles in a given lane and longitudinal location.  

APPLICATIONS OF TRAJECTORY-LEVEL DATA IN THE CALIBRATION OF 
MICROSCOPIC SIMULATION MODELS 

Vehicle trajectory data, which potentially reveal the exact positions of all vehicles at all times, 
provide an excellent degree of specificity with which to calibrate driver behaviors. Research 
results have shown that trajectory data can be quite effective for calibrating both car-following 
behavior (e.g., Hamdar and Mahmassani 2009) and lane-changing behavior (e.g., Talebpour 
Talebpour, Mahmassani, and Hamdar 2015). Trajectory data are increasingly available to State 
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transportation agencies through the use of drones and possibly through probe data providers 
(Banks et al. 2018). 

Kim et al. (2013) proposed a calibration framework in which exogenous and endogenous sources 
of travel time variation could be examined. Under this framework, numerous simulation 
scenarios involving different combinations of traffic demand, weather, incidents, and special 
events were generated through random sampling techniques (e.g., Monte Carlo sampling). Then, 
representative travel time distributions could be obtained by post-processing trajectory data from 
the various scenarios. Kim and Mahmassani (2011) also studied the effect of ignoring 
correlations among parameters when calibrating a car-following model. Results of the models 
that preserved the correlation effect were closer to the field data. 

Researchers have noted the strong correlation between driver behavior and traffic congestion 
(Geng et al. 2016; Ye and Zhang 2009)1. This implies that fundamental relationships between 
driver behavior and congestion regimes (e.g., below, near, at, or over capacity) could be 
developed under existing conditions and then applied to future models on a link-specific basis 
(i.e., based on the new congestion regime for each link under new traffic demands or traffic 
control strategies). 

In the literature, many researchers formulated calibration approaches as optimization problems 
consisting of two fundamental components: a searching algorithm, and an objective function. 
Generally, if the objective function is analytically or numerically differentiable and unimodal, 
then the optimal solution can be obtained with several deterministic approaches, such as 
Newton’s method, the Gauss-Newton algorithm, gradient descent, and the Levenberg-Marquardt 
algorithm (Treiber and Kesting 2013b). But many calibration/validation problems have no 
differentiable or unimodal objectives. In such cases, one may consider a heuristic or 
metaheuristic approach as a solution method. Note that these approaches do not necessarily 
obtain the global minima. Thus, many analysts choose to apply the heuristic multiple times 
(i.e., multistart), where each time the heuristic starts from a different set of initial conditions. 

Downhill simplex is commonly applied in microscopic calibration and validation problems 
(Brockfeld, Kühne, and Wagner 2004; Kim and Mahmassani 2011). This method can be applied 
to problems for which the derivatives are unknown. But it requires the objective function to be 
unimodal. Indeed, many of the calibration/validation problems—particularly those with 
stop-and-go traffic—have no unique minimum or are multimodal (Treiber and Kesting 2013b). 
Researchers may apply stochastic solution methods to avoid getting stuck in local minima. 
Treiber and Kesting and Treiber (2013a) further found optimization-based estimation to be more 
effective than maximum likelihood estimation for calibrating car-following models. 

A popular stochastic metaheuristic method applied by researchers in calibration/validation 
problems is the genetic algorithm (Kesting and Treiber 2008, 2009; Ranjitkar, Nakatsuji, and 
Asano 2004; Ranjitkar, Nakatsuji, and Kawamura 2005; Vasconcelos et al. 2014; James 2019). 
Inspired by the natural selection process in evolutionary biology, the algorithm typically includes 
three operators: mutation, crossover, and selection. A model with a set of parameters represents 
an “individual,” and a “population” refers to several individuals. The algorithm begins with a 

 
1 Mahmassani et al. forthcoming. 
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randomly generated population of individuals, and then it calculates the objective or fitness 
function for all individuals of the population. Based on these values, a portion of the population 
is selected in pairs of individuals, called “parents,” to breed a new generation by crossover and 
mutation operators. The method repeats this population generation until it reaches a termination 
condition. 

Researchers have implemented several other nonlinear optimization solution methods to solve 
microscopic calibration/validation problems. Some of these methods include sequential quadratic 
programming (Wang et al. 2010), cross-entropy (Zhong et al. 2016), artificial neural networks 
(Colombaroni and Fusco 2014), and a dynamic time warping algorithm (Taylor, Zhou, and 
Rouphail 2012; Taylor et al. 2015). 

Punzo, Formisano, and Torrieri (2005) provided a robust method to simplify car-following 
models, namely, to reduce the number of calibration parameters without sensibly affecting the 
capability of reproducing reality. First, calibration input parameter values are drawn by quasi-
random sampling, and the traffic model is executed using those values. Then the agreement 
between observed and simulated trajectories is calculated in terms of the root-mean-square error 
(RMSE) of the instantaneous speeds or spacings. The method iterates this process until the 
number of evaluations is sufficient for the calculated indices to be stable. The method was 
applied to the intelligent driver model (IDM) using reconstructed NGSIM dataset. The analysis 
unveiled that the leader’s trajectory is considerably more important than the parameters in 
affecting the variability of model performances. Sensitivity analysis also returned the importance 
ranking of the IDM parameters. As a result, this paper proposes a simplified model version with 
three (out of six) parameters. After calibrations, the full model and the simplified model show 
comparable performances; however, the simplified model converges to a solution more quickly. 

In other objective function research, Punzo, Formisano, and Torrieri (2005) and Treiber and 
Kesting (2013a) concluded that following distance is a more robust measure of performance than 
vehicle speed because speed errors do not adequately propagate through the trajectory. Yu and 
Fan (2017) cited five goodness-of-fit formulas previously used by researchers to calibrate 
simulation models. James (2019) similarly cited four formulas previously used to calibrate 
simulation models, only one of which—the Geoffrey E. Havers (GEH) formula—was listed on 
Yu’s list. Ciuffo, Punzo, and Montanino (2012) found that RMSE, also on James’ list, worked 
best for calibrating the Gipps’ car-following model. Montanino, Ciuffo, and Punzo (2012) and 
Punzo, Formisano, and Torrieri (2005) also selected RMSE as their goodness-of-fit formula. 

The team also selected RMSE as the goodness-of-fit measure for use on this project for a few 
reasons. First, although the team knew that older informational documents, such as Traffic 
Analysis Toolbox Volume III, and out-of-print State departments of transportation simulation 
guidelines demonstrate and suggest the use of GEH, the newer “Methods and tools for 
supporting the Use, caLibration and validaTIon of Traffic simUlations moDEls” (MULTITUDE) 
report specifically discouraged using GEH to calibrate traffic simulations (Antoniou et al. 2014). 
Second, RMSE is an intuitive calculation that penalizes outliers in the simulated results.  

For example, consider the following hypothetical, predicted travel speeds from two 
microsimulation models. An analyst executes each of the two models five times with five 
different random number seeds and examines the predicted average vehicle speeds on a key 
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freeway segment (table 2). The field-measured average vehicle speed is 55 mph for the same 
freeway segment. 

Table 2. Comparison of average segment speeds from five replications of microsimulation. 

Model 
Number 

Run 1 
Average 

Speed (mph) 

Run 2 
Average 

Speed (mph) 

Run 3 
Average 

Speed (mph) 

Run 4 
Average 

Speed (mph) 

Run 5 
Average 

Speed (mph) 
Model 1 56 56 56 56 56 
Model 2 55 55 55 55 60 

In this example, if a simple percentage were used to quantify goodness of fit, both models would 
be viewed as equally good. In both cases their margin of error is 1 mph, on average. According 
to RMSE, however, Model 1 would have the lower RMSE and be recommended as the better 
calibrated model because its results are more consistently reasonable. 

SUMMARY 

Table 3 illustrates the primary takeaways from the literature for the research team. 

Table 3. Primary literature review outcomes. 

Category Source Finding Impact 
Data Collection Daamen, Buisson, and 

Hoogendoorn (2014) 
The data used in traffic 
simulation studies can 
be divided into six 
groups. 

The team had awareness 
to ensure the right types 
of data would be 
collected. 

Data Collection Daamen, Buisson, and 
Hoogendoorn (2014) 

The main limitation of 
video-based trajectory 
data is limited spatial 
coverage. 

The team planned to 
deploy a small number 
of drones with 
overlapping spatial 
coverage to emulate 
longer trajectories. 

Data Formats UCSD (2014), USDOT 
(2019) 

These were the only 
video-based trajectory 
data formats located. 

The team used similar 
concepts when 
developing its own 
format for this project. 

Data Cleaning Daamen, Buisson, and 
Hoogendoorn (2014) 

Daamen recommended 
specific data cleaning 
methods to avoid 
specific data errors. 

The team planned to 
collect corroborative 
radar data and check 
kinematic relationships. 

Data Cleaning Fard, Mohaymany, and 
Shahri (2017), Pal and 
Chunchu (2018) 

Numerous methods 
have been proposed to 
reduce noise and errors 
within trajectory data. 

The team identified Fard 
and Pal as the most 
effective for this study. 
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Category Source Finding Impact 
Data Errors Punzo, Borzacchiello, 

and Ciuffo (2011), 
Coifman and Li (2017) 

Researchers noted 
errors related to 
projection, and 
kinematic validity. 

The team implemented 
error prevention 
algorithms into their 
postprocessing tool. 

Calibration Treiber and Kesting 
(2013a) 

Optimization-based 
estimation was 
effective for calibrating 
car-following models. 

The team planned to 
develop an optimization-
based approach. 

Calibration (Numerous papers) Many heuristic 
methods have been 
successfully used to 
calibrate simulation 
models. 

The team planned to 
develop a flexible 
approach that could 
employ any heuristic 
method. 

Calibration Punzo, Formisano, and 
Torrieri (2005), Treiber 
and Kesting (2013a) 

Following distance is a 
more robust measure of 
performance than 
vehicle speed. 

The team planned to 
incorporate headways 
within the overall 
calibration method. 

Calibration Ciuffo, Punzo, and 
Montanino (2012), 
Punzo, Formisano, and 
Torrieri (2005), James 
(2019), Montanino, 
Ciuffo, and Punzo 
(2012) 

RMSE has been an 
effective goodness-of-
fit measure for 
objective functions. 

The team planned to 
incorporate RMSE 
within the overall 
calibration method. 

UCSD = University of California at San Diego; USDOT = U.S. Department of Transportation.
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CHAPTER 3. DATA COLLECTION AND PROCESSING 

To perform the trajectory-based calibration research, the research team needed real-world data 
from four sites. This chapter describes the four-stage process of selecting the sites, selecting a 
data collection method, collecting the data, and processing the data. 

SITE SELECTION AND TOOL SELECTION 

This section provides a short list of candidate sites experiencing recurring congestion for further 
study. The research team prioritized sites having calibrated and documented microscopic models 
available, in addition to readily available traditional data sources (e.g., travel times, throughput 
counts, traffic density).  

Site Selection Considerations 

The research team decided to hire an external team to conduct the data collection rather than 
collect the data in house. The team also considered the following factors associated with the 
external data collection company during site selection: 

• Proximity to the data collection company’s offices—relocating the company’s inventory 
and personnel would add significant costs in shipping alone. As such, the Washington, 
DC, metropolitan area, the Carolinas, and Florida were considered the most accessible. 

• Airspace restrictions—once corridors were selected, the team prioritized unrestricted 
airspace for consideration. Drone data collection companies have tools at their disposal to 
investigate airspace restrictions. Changing the Federal Aviation Administration (FAA) 
license to an FAA part 107 certification revealed areas where drones cannot fly legally 
and which airspace requires low-altitude authorization and notification capability. Even 
around airports where drone surveys could be approved, drones might be permitted to fly 
at altitudes of only approximately 100 ft. This would limit the detection range for full-set 
vehicle trajectories. 

• Corridor geometry—the data collection plan prioritized straight corridors because of less 
occlusion from trees and buildings. 

• Deployment options—the data collection company desired deployment options, which 
could include frontage roads and fields clear of trees and power lines. 

Tools Selection Consideration 

The project scope required the team to apply two microsimulation tools to demonstrate the newly 
developed calibration procedure, which needed to be software agnostic. The team used a series 
of factors to inform the selection of microsimulation software packages, including license fees, 
perceived ease of use, availability of simulation datasets and networks, team experience with 
each tool, and feedback from pooled fund study (PFS) members.  
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Stakeholder Input 

Project stakeholders were continually updated and consulted at bimonthly intervals, which 
allowed them to influence key project decisions. For this project, stakeholders were divided into 
two groups: PFS partners and subject matter experts. At this stage of the project, it was the PFS 
partners who provided some key opinions to influence the final decisions. The stakeholders 
ultimately expressed their opinion on two of the team’s decisions, although they were invited to 
comment on other decisions as well. 

The first decision influenced by stakeholders involved the choice of microsimulation platforms. 
The stakeholders expressed clear interest in three candidate microsimulation tools. However, the 
project was scoped and budgeted for only two microsimulation tools. 

The second decision influenced by stakeholders involved the spatio-temporal analysis limits. The 
research team had originally proposed to obtain analysis limits with GPS mapping apps, which 
graphically display historical congestion patterns. Stakeholders were skeptical about the 
precision of congestion endpoints reported by these apps and suggested independent probe data 
analysis as a supplement. The team thus decided to analyze National Performance Management 
Research Data Set (NPMRDS) data (FHWA 2019) with GPS app data to corroborate the results 
and to ensure that the chosen analysis limits would fully capture the congestion. 

Final Selections 

After receiving these comments, the research team considered three microsimulation tools across 
seven sites. A significant obstacle perceived was the need to develop data-mapping tools to 
compare simulated trajectories against field-measured trajectories. The research team confirmed 
such tools were already available for two common microsimulation tools. This led to the 
selection of PTV Vissim® and Aimsun® to conduct the case studies. Moreover, the team 
selected I–270 in Maryland, I–15 in California, I–75 in Florida, and I–95 in Virginia as the data 
collection sites. 

DATA COLLECTION 

This section describes the selection of a primary mechanism for collecting and processing full-
set trajectory level data at all sites during the various stages of congestion (e.g., bottleneck 
formation, full breakdown, bottleneck dissipation). It also describes the corroborative data 
collection mechanisms performed at all four sites.  

Generalized Plan 

The general data collection plan uses videos as the primary data source, probe vehicles with 
high-resolution GPS devices as corroborative data, and infrastructure-based radar to obtain 
traditional data (e.g., throughput and speed). Both drones and helicopters were used to collect the 
aerial videos. The drones can capture approximately 800 ft of continuous trajectories, while the 
helicopter can capture 6,336 ft (i.e., 1.2 mi) of continuous trajectories. The differences in data 
collection ability stem from the heights at which the drones and helicopters can be operated. For 
example, the flight altitude of the helicopter is significantly higher than the drone, enabling it to 
capture longer trajectories. 
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If project resources were unconstrained, the research team would have preferred to collect data 
using helicopters at all four sites. Unfortunately, project resources limited the team to helicopter 
data collection at only one site, as the helicopter data collection was significantly more expensive 
than the drone data collection. The research team ultimately decided to use helicopter data 
collection at the I–75 site and drone data collection at the other three sites. The team decided to 
use helicopters to collect aerial data at the I–75 site because it presented a unique opportunity. 
That location experienced less traffic congestion, with no more than two miles of queueing. A 
single helicopter could fully capture that queue both spatially and temporally. The team could 
deploy the helicopter to capture these flow dynamics in the greatest detail while applying the 
more economical drone approach at the other sites. The team procured the services of a second 
data collection company to manage the helicopter survey. 

The research team developed a list of launch parameters for the data collection companies  
(table 5). The team developed congestion maps from NPMRDS data and used GPS mapping 
apps to corroborate the spatial and temporal limits of the bottlenecks. These parameters served as 
a starting point; during project execution, the data collection company reserved the right to tune 
some of the more detailed settings, such as coverage duration and locations, and lengths and 
device configurations. Specifications were also provided for collecting the traditional 
corroborative data (e.g., GPS locations for each radar collection device, on-ramp and off-ramp 
locations for floating car studies).  

There are several data processing companies in the marketplace. The research team decided to 
use the university-maintained VIRTUAL tool to extract trajectory data from the videos (Zhao 
and Li 2019). Technical details of the video data collection (e.g., drones or helicopters, camera 
specs, coverage time periods, and locations) are based on site characteristics including 
geometries, flight restrictions, and congestion patterns (e.g., maximum queue length). The team 
sought to capture different phases of congestion (e.g., formation, development, and dissipation) 
and different queue locations (e.g., at the bottleneck where the queue starts, in the middle of the 
queue, and at the end of the queue where free-flow traffic transitions to queued traffic). 

This project required the collection of corroborative data to validate numerical trajectories 
extracted from the aerially collected videos. The research team decided to use GPS-equipped 
probe vehicles to collect corroborative trajectory data synchronized with the video data. These 
probe vehicle data can cover longer distance ranges (e.g., possibly going through the entire 
queue). The team deployed probe vehicles simultaneously with the video data collection 
equipment such that the probe vehicle trajectories would overlap with the aerially collected 
trajectories.  

In addition to collecting probe vehicle data to validate the trajectories, the research team used 
radar to collect count and speed data. These traditional datasets were necessary for the team to 
calibrate microsimulation models using standard, state-of-practice methods. This allows the team 
to compare model calibration results using proposed trajectory-based methods against traditional 
fixed detector data-based methods. 

The team used traffic congestion patterns to determine where, when, and how to collect data. The 
main goal was to capture trajectories around and upstream of the bottleneck to learn how queues 
formed and propagated.  
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Figure 1 is a time-space queuing diagram that illustrates the relevant information and the type of 
data collected at typical freeway bottlenecks. 

 
Source: FHWA. 

Figure 1. Illustration. Drone data collection considerations and parameters. 

The critical time-space points include bottleneck location m1, maximum queue location m2; and 
queue starting, queue maximization, and queue ending time t1, t2, t3. Daily variations of critical 
space and time points m1, m2, t1, t2, and t3 were considered to make sure the drone deployments 
did not miss the queuing process of interest to this project. 

The research team identified the critical time-space points using both the NPMRDS data and 
corroborative GPS mapping apps. From the apps, the team identified traffic congestion states for 
any segment and time within a typical day. From probe data analytics sites, the team generated 
heat maps either directly on the sites or offline after downloading the data. Analysts may use 
heat maps to visually assess the congestion and determine critical analysis limits. They could 
alternatively use downloaded data to obtain the triangular congestion map around a bottleneck, 
or the starting and ending times of a bottleneck (if the ending state is unclear, or blends with 
another bottleneck) (figure 1). If only point measurements are available, an analyst could use 
interpolation methods to construct the triangular congestion map (Treiber, Kesting, and Wilson 
2011). 

The research team viewed NPMRDS heat maps within the Regional Integrated Transportation 
Information System using a cutoff speed of 45 mph to illustrate congested locations. From these 
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heat maps, the team visually identified the critical space and time points shown in figure 1 for 
each of the four study sites. The resulting analysis limits were a bit more conservative (i.e., more 
time-space coverage) than those obtained from the GPS mapping apps. 

Agencies interested in collecting aerial data can determine drone coverage priorities with this 
time-space queuing diagram based on their available resources and budgets. For example, drones 
deployed around the bottleneck location m1 around starting time t1 and ending time t3 (e.g., 
drones 1 and 2) should be prioritized for understanding queue formation and propagation. Next, 
agencies may prioritize drone deployments at the end of the queue, around location m2 and time 
t2, to capture queue dissipation (e.g., drone 3). If resources allow, agencies may consider 
deploying drones to collect data in the middle of the queue, with time coverage preferably 
around the start and end of the queue (e.g., drones 4 and 5). If the agency desires to collect 
corroborative data sources, such as probe vehicles, the data collection can be synchronized. For 
example, probe vehicles can circulate on the same segment of roadway while the drones collect 
video information before, during, and after the congestion (e.g., as the curves show for drone 1’s 
coverage range). 

Example Detailed Plan 

This section provides some of the detailed data collection plans and specifications for one of the 
four sites (i.e., I–95 in Virginia). The other three sites were analyzed through a similar process. 

Data Analysis 

The research team identified two bottlenecks in the study area. According to the NPMRDS data 
and GPS apps, there was no significant difference in typical traffic between Tuesday and 
Thursday. For bottleneck 1, the worst congestion happens at 9:50 a.m. (location 156.0), with a 
maximum queue length of 4.5 mi. The maximum queue lasts until 9:55 a.m. Regarding 
bottleneck 2, the worst congestion happens at 7:45 a.m. (location 161.9), with a maximum queue 
length of 2.9 mi. The maximum queue lasts until 8:10 a.m. Bottleneck 1 was prioritized over 
bottleneck 2 because the bottleneck 2 back-of-queue reaches an interchange, which may 
complicate the extraction of accurate trajectories. The critical queuing pattern parameters are 
summarized in table 4. 

Table 4. Queueing pattern for the example data collection plan. 

Bottleneck 

Queue 
start 

time t1 

Bottleneck 
location m1 

(mile marker) 

Maximum 
queue 

length time 
t2 

Back-of-
bottleneck 

location m2 
(mile marker) 

Maximu
m queue 
length  

(m1–m2) 

Maximum 
queue end 

time t3 
Bottleneck 1 
Wednesday 

5:35 
a.m. 

Mile 160.5 9:50 a.m. Mile 156.0 4.5 mi 9:55 a.m. 

Bottleneck 1 
Thursday 

5:30 
a.m. 

Mile 160.5 9:55 a.m. Mile 156.0 4.5 mi 10:10 a.m. 

Bottleneck 2 
Thursday 

6:15 
a.m. 

Mile 164.8 7:45 a.m. Mile 161.9 2.9 mi 8:10 a.m. 

 



22 

Final Plan 

For each bottleneck, the team planned to deploy drones around the starting, ending, and 
maximum space-time patches of the queue. These parameters are specified in table 4. 
Bottleneck 1 had relatively simple geometry at both the bottleneck and maximum queue 
locations, which facilitated trajectory data analysis and simulation calibration.  

The data collection plan parameters are detailed in table 5. It was impossible to extract 
trajectories from videos taken during darkness, so it was futile to collect data before sunrise. 
Thus, although congestion began around 5:30 a.m., the plan did not call for deploying drones 
until 6:10 a.m., because sunrise in Virginia is around 6:00 a.m. in May. To capture more 
trajectories at the beginning of the bottleneck, drone 1 was deployed at mile marker 160.7, which 
was slightly downstream of the beginning point of the bottleneck (160.5). From this analysis, the 
team developed detailed deployment parameters for the data collection company, as shown in 
table 5. Figure 2 illustrates the corresponding drone coverage. 

Table 5. Parameter values for the example detailed plan. 

Parameter Drone 1 Drone 2 Drone 3 
Location 38°40'12.1"N 

77°15'15.6"W 
(Location 160.7) 

38°40'10.5"N 
77°15'27.0"W 
(Location 160.5) 

38°37'06.2"N 
77°17'51.0"W 
(Location 156.0) 

Time Wednesday, Thursday 
6:10–6:30 a.m., 9:35–
9:55 a.m., 9:55–10:15 
a.m. 

Wednesday, Thursday 
6:10–6:30 a.m., 9:35–
9:55 a.m., 9:55–10:15 
a.m. 

Wednesday, Thursday 
9:40–10:00 a.m. 

Coverage 400 ft, covering 850 ft 400 ft, covering 850 ft 400 ft, covering 850 ft 
Camera Pitch angle: −49.1, 

bottom of camera 
perpendicular with the 
road. 

Pitch angle: −49.1, 
bottom of camera 
perpendicular with the 
road. 

Pitch angle: −49.1, 
bottom of camera 
perpendicular with the 
road. 
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Source: FHWA. 

Figure 2. Illustration. Drone coverage for the example data collection plan. 

Outcomes and Lessons Learned 

The team successfully completed data collection for this project in accordance with the 
aforementioned plan during the summer of 2019. The third-party data collection vendors viewed 
the data collection effort as successful because of the minimal number of device failures and the 
good weather on the scheduled days of data collection. The data collection vendors delivered 
nearly 3 TB of helicopter video footage data and approximately 75 GB of collected drone data. 
The traditional corroborative data were much smaller in size compared with the drone video 
footage data. 

Both data collection companies documented their lessons learned for future reference. The drone 
data collection company provided the following insights. 

First, pilot activities may benefit from clear communication before collection and during 
recording periods. Attempting to sync recording start times among multiple drone pilots along a 
corridor is a demanding task. It is helpful for each pilot to receive clear instructions for each 
operation from takeoff, through recording, and during landing. As each task is accompanied by 
some reduction in the battery life of the drone, pilots flying out of sync will reduce the amount of 
usable trajectory data. Furthermore, collection segments may be provided in the form of precise 
landmarks the pilots are to observe at the top and bottom of their respective frames. Sample 
snapshots of the observation area may be collected ahead of deployment for verification with the 
project manager.  

Next, traffic flow observations may take place ahead of collection. When reviewing drone 
footage, some researchers noted that segments might fail to display the anticipated levels of 
queuing. As such, it may help to verify bottleneck propagation (including start and end of 
queues) through casual aerial observation, from the start to the end of the morning or the 
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afternoon peak periods. Finally, consider marking GPS-probe vehicles with strobe lights or other 
identifiers so they are easily observable from aerial footage. 

The helicopter data collection company neglected to account for perspective distortion with 
varying focal lengths of the lenses when looking straight down. Additionally, as the focal lengths 
were different and the cameras were on a constant plane, it was challenging to keep a curved 
section of the highway properly framed across all three cameras to ensure adequate data capture. 
Wider focal length lenses should be used when focusing on roads with curves.  

Two other insights were related to the weather. As summer weather in Florida varies 
considerably in the afternoon, it was nearly impossible to accurately predict the cloud ceilings 
and precise thunderstorm locations more than 24 h in advance. In the future, a larger time 
window will help alleviate weather concerns. This will increase costs, however, as the aircraft 
may have to wait on the ground for multiple days. Second, wind at the proper altitude made it 
challenging to keep the aircraft over a precise latitude-longitude location. Pilots can manually 
operate filming and production aircraft to hover over the ground if they are not equipped with 
autopilot. At altitudes of 4,000 ft or more, it is difficult to visually see aircraft drift. Multiple 
GPS receivers and displays minimize that issue, but human factors are still involved. The data 
collection vendor and agencies can explore potential solutions or define an acceptable tolerance 
range of location variability. 

DATA PROCESSING 

This section describes how the aerial videos were processed to obtain numerical vehicle 
trajectories. A transportation agency may lack the expertise necessary to process video data into 
numerical trajectories themselves. They may decide to have this process completed by a third-
party data processing company or university. It may be helpful, however, for the transportation 
agency and its simulation analysts to understand the data processing procedure at a high level, 
especially regarding identifying errors in the processed trajectory data. This section provides a 
high-level overview of the process used to extract numerical trajectories from video and how 
errors were identified and corrected in the processed data.  

The first step of data processing is to determine GPS coordinates for the roadway to be modeled. 
The second step is to apply an automated process that will generate the numeric trajectory data. 
The automated process will generate data that correspond with the GPS roadway coordinates. 
The third step is to check the data for errors and to fix any errors identified. Step three is unique 
to that process used to complete steps one and two, and it will vary across data collection sites 
and data extraction solutions. This section, however, describes some errors believed to be 
common, which were found and fixed by the research team during their experiments. 

Creation of Numeric Trajectory Data 

The research team developed scripts with programming code to determine GPS coordinates for 
the roadway to be modeled. These scripts will be made available to practitioners and researchers 
through various avenues (GitHub, n.d.-b). The research team used the university-maintained 
VIRTUAL tool as their automated process to generate numeric trajectory data. This tool contains 
several built-in data cleaning and validation functions. However, the process might include 
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specific knowledge and terminology in the video processing field that are unfamiliar to 
transportation stakeholders. Thus, to help transportation stakeholders communicate with video 
processing third parties, this section briefly summarizes the steps within VIRTUAL at a high 
level. 

General Terminology 

A video is composed of a series of consecutive frames. Each frame is a picture that consists of a 
matrix of pixels shot at the corresponding specific time. Each frame also contains a global time 
stamp. The foreground is the vehicles located in the area of interest (e.g., the segment of the road 
where vehicle trajectories can be extracted). The rest of the picture is the background that can be 
removed from the analysis. Certain background feature information that helps determine vehicle 
location and lane number can be preserved. Features are certain objects of particular shapes 
(e.g., rectangle, circle) on the frame that are easily detected by general video processing 
methods.  

Background Normalization 

The original background of each frame may vary because of vibrations and rotations of the video 
shooting devices (e.g., drones or helicopters). To match different frames, VIRTUAL identified 
certain distinctive features (e.g., lane markings, road lamp bases) that appear in consecutive 
frames. With these features, VIRTUAL determines real-world physical coordinates for each 
pixel in each frame, and thus it normalizes the area of interest in each frame to a static area in the 
physical coordinate system. With the GPS locations of these features (e.g., obtained with GPS 
mapping apps), the GPS coordinates of each pixel in the area of interest can be calculated. A 
Matlab® script with detailed explanations of the GPS coordinate conversion is available for 
reference. 

Deep Learning Training 

With the normalized background in each frame, the VIRTUAL team trained a deep-learning 
neural network to track the vehicles in each video frame by cropping numerous individual 
vehicle images from a set of representative frames. The team tried to crop at least one image for 
each vehicle that appeared in the I–75 video dataset. They experimented using different numbers 
of cropped vehicle images for training and found that the trained neural network performance 
improved as the number of covered vehicles increased. They fed cropped vehicle images into the 
standard training process to calibrate the neural network to identify vehicles effectively in the 
foreground for each study video. More details on this process are available through a repository 
on GitHub (Redmon and Farhadi 2018; GitHub, n.d.-a). 

Vehicle Identification 

The VIRTUAL team then applied the trained neural network to each video to extract the 
contours (e.g., in a rectangle shape) of vehicles in the foreground. The contour of a vehicle in 
each frame provided a vehicle reference location and size information in the real-world physical 
coordinate system. The team used vehicle size information to classify the vehicles.  
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Trajectory Extraction 

Because each video was available at a high frequency (e.g., 24 Hz), the contour of a vehicle, if 
properly detected, moved little and largely overlapped in two consecutive frames. Therefore, the 
reference locations of the same vehicle across consecutive frames could be easily connected 
based on the contour overlapping relationship to form a vehicle trajectory (provided that the 
contour was properly detected). 

Trajectory Processing 

With physical coordinates of the features obtained from Background Normalization, the 
VIRTUAL team developed an algorithm to identify a lane number and corresponding 
longitudinal location for each point along each trajectory. The team calculated speed and 
acceleration by differentiating the longitudinal locations of a trajectory. 

Trajectory Data Format 

Table 6 presents the trajectory-level data variables extracted for each vehicle at each timestep. 
This format is similar to the NGSIM format presented in chapter 2. This data format will allow 
the research team to compare directly full-set vehicle trajectories from simulation to those 
obtained from the field. 

Table 6. Data format for full-set vehicle trajectories. 

Column Name Explanation Note 
Vehicle ID ID number for each vehicle. ID may not be continuous, 

but it is unique for each 
vehicle in each dataset. 

Global Time 
(seconds) 

Time in s referenced to 12:00:00 a.m. — 

Frame ID Frame number in the corresponding video. The beginning portion of the 
video with severe vibrations 
might be cut until the frame 
becomes stable. 

Local X (feet) Position in the cross-section direction. The reference point is this 
vehicle’s front bumper 
location. 

Local Y (feet) Position in the direction along the road. The reference point is this 
vehicle’s front bumper 
location. 

Global X 
(Longitude) 

Vehicle’s GPS longitude location. — 

Global Y 
(Latitude) 

Vehicle’s GPS latitude location. — 

Width (feet) Vehicle width. — 
Length (feet) Vehicle length. — 
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Column Name Explanation Note 
Class Vehicle class. Can take three values: one 

motorcycle; two light-duty 
vehicle; three heavy-duty 
vehicle. 

Speed (ft/s) Vehicle speed. Calculated by the moving 
average method (2-s interval). 

Acceleration 
(ft/s2) 

Vehicle acceleration. Calculated by the moving 
average method (2-s interval). 

Lane Number Lane number. From right to left; 1, 2, 3, 
4…, n 

Space Headway 
(ft) 

Distance between this vehicle’s front 
bumper to its following vehicle’s front 
bumper. 

−1 when there is no leading 
vehicle or the leading vehicle 
is out of scope. 

— = No data; n = number of lanes.   

Identifying Data Errors 

After the video was converted into the data variables in Table 6, the data were checked for 
errors. The researchers noticed a few issues with the trajectories produced by the VIRTUAL tool. 
This section describes the issues observed and the resolutions used to fix the data. This process 
will be unique to each individual data collect effort. With this project, there were five issues 
identified: misalignment of trajectories because of roadway curvature, broken trajectories, 
infeasible kinematic relationships, timestep errors, and lane number ID. This section discusses 
how these errors were identified and resolved. 

Roadway Curvature 

One way to check the trajectory data for errors is to plot these data on a map. Once the numeric 
trajectory data are available for review, part of that data will include the global latitude and 
longitude (X and Y) positions of vehicles at each timestep. The research team used an online 
GPS visualizer tool to import these X and Y positions from a comma-delimited text file, also 
known as a comma-separated values (CSV) file. The team saved the GPS data into a CSV file 
with two columns of latitude and longitude (in this order). The file-size limit was 10 MB, so each 
file was only a subset of the trajectory data. The team thus performed spot checks from the top, 
middle, and bottom portions of the dataset. In doing so, they noticed that some GPS coordinates 
were slowly straying off the road while moving further downstream, when viewing the 
trajectories superimposed on a map. The data processing team ultimately extracted more GPS 
coordinates so that the trajectories would better fit the roadway curvature. 

Crossing Trajectories and Short Trajectories 

A second way to check the trajectory data for errors is to plot vehicles’ road positions 
(i.e., Local Y) over time (i.e., Global Time). For this, any software, such as Excel®, can be used. 
The research team wrote code in Matlab to clean the data. 
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One problem the researchers observed was crossing trajectories. This implied either a crash or 
one vehicle passing another without changing lanes. However, the researchers observed no 
crashes in the videos and passing without lane-changing is physically impossible. The issue in 
this case was caused by a camera rotation problem, which made identifying the current vehicle 
lane number more challenging. The data processing team developed a dynamic curve-fitting 
algorithm to resolve this issue. 

A second problem researchers identified was that tracking was lost for a small portion of 
detected vehicles, which caused broken trajectories. This occurred when the automated tools 
temporarily lost track of one or more vehicles because of issues with video quality (e.g., shaking 
camera). This resulted in trajectories that appeared to have occasional gaps (or were broken) 
when plotted as described earlier in this section. The team developed a trajectory connection 
algorithm to overcome this problem. 

Kinematic Relationships 

The research team noticed that some speed and acceleration values were unrealistically high. The 
developers of VIRTUAL further observed that the integral of acceleration over time was 
sometimes inconsistent with the change of speed over time, and the integral of speed was 
sometimes inconsistent with the change of location over time. These kinematic anomalies were 
caused by the nature of the video processing method used in vehicle trajectory extraction. The 
developers of VIRTUAL ultimately developed an algorithm to reconcile the connected 
trajectories extracted from videos with their kinematic characteristics. 

Timestamps 

For one of the time periods at one of the data-collection sites, the team noticed the timestamps 
associated with vehicle trajectories were clearly several hours different from the time when data 
were collected. The data processing team fixed this problem and regenerated that set of numeric 
trajectories. 

Verification of Data Accuracy 

The team verified the accuracy of extracted trajectory data before using them for the calibration 
experiments. One method involved plotting the speeds and accelerations, as proposed by 
Coifman and Li (2017), to visually observe whether the speeds and accelerations looked 
reasonable. These results are illustrated in figure 3 and figure 4. The research team viewed 
accelerations as being unrealistic whenever their absolute value exceeded 10 ft/s2. In the NGSIM 
dataset, approximately 10 percent of the vehicle trajectories indicated such unrealistic 
acceleration values. In the data collected for this project, the portion of unrealistic acceleration 
values was close to 0 percent. In figure 3, a non-negligible number of stopped vehicles were 
extracted by VIRTUAL. The team used the video data to confirm that these vehicles were 
stopped on the shoulder waiting for a tow truck while data was collected.  
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Source: FHWA. 

Figure 3. Graph. Distribution of speeds from trajectory data at all four sites. 

 
Source: FHWA. 

Figure 4. Graph. Distribution of accelerations from trajectory data at all four sites. 

A second verification method involved the corroborative probe vehicle data. The data processing 
team compared the GPS location of probe vehicles and the extracted trajectories by calculating a 
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correlation coefficient between these two datasets. Based on the calculation, the team 
successfully identified probe vehicles within the I–95, I–270, and I–15 networks. However, the 
team could not identify probe vehicles within the I–75 network, because the probe vehicles were 
deployed outside the time window of the aerial video shooting period. 

Lessons Learned 

The research team documented lessons learned. These may prove useful for agencies when 
planning their own trajectory-data post-processing efforts. 

The team recommends careful consideration and selection of data collection locations and times. 
For constructing a congestion map, it may help to analyze multiple days of data to ensure traffic 
conditions are close to what was expected. This will also help to understand congestion pattern 
variabilities. Because of uncertainties in the congestion pattern across different days, teams may 
wish to keep separation between data collection operations (i.e., keeping small time intervals 
when flying drones and helicopters to collect data). Teams may also consider increasing their 
data coverage range and time periods (e.g., flying more drones and helicopters) to ensure the 
formation and disappearance of traffic congestion is captured successfully. 

When the video data are being collected via drones or helicopters, severe vibrations tend to 
produce errors in the trajectory data. Although some data collection companies might be aware 
of this, it might help to discuss ways to improve stability of the collected aerial video in advance. 

It is difficult to identify vehicles during nighttime because light conditions at night significantly 
differ from those during the day. Thus, it is a possibility that only partial vehicle trajectories can 
be extracted from nighttime videos unless otherwise specified by one’s data extraction software 
vendor. Procedures to identify and track vehicles during nighttime hours may be discussed 
before the data collection process. 

Signage may block vehicles within the areas of interest. Vehicles fully occluded by signs are 
impossible to identify and track automatically. When developing a data collection plan, analysts 
may wish to identify launch parameters (e.g., location, angle) that avoid or minimize vehicle 
occlusion by signs, overpasses, or other objects. 

It may help to deploy some easy-to-detect artificial landmarks in the video, such as construction 
cones or colored signs, to help mark coordinates of the study area. 

The time and effort needed to detect vehicles and process trajectories may depend on the length 
and quality of the videos. If videos are shot in similar roadway segments in a stable position and 
from a consistent angle, the time and effort to process videos and extract trajectories will be less. 
Video processing is significantly more challenging in cases where video quality is not as 
expected (e.g., unstable or shaky video footage). In such cases, extensive coding and cross-
validation may be needed.
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CHAPTER 4. CALIBRATION AND VALIDATION METHODOLOGY 

This chapter describes vehicle-trajectory-based, traditional, and hybrid calibration methodologies 
for microsimulation models developed during this project. This chapter also describes 
corresponding validation methodologies that could help to ensure robustness of the calibrated 
models.  

Regardless of the driver behavior calibration method used (e.g., trajectory, traditional, or hybrid), 
each of the methodologies makes two assumptions: 

• The analyst previously developed and debugged a microsimulation model using 
available input data. 

• The analyst calibrated the model demands using available count data.  

With respect to assumption 1, the research team worked with State agencies and explored 
repositories of previously developed models to locate functional microsimulation models of the 
four data collection sites. The development of the base model is outside of the scope of this 
project, and the authors of this paper refer the reader to Traffic Analysis Toolbox Volume III 
(Wunderlich, Vasudevan, and Wang 2019), Transportation Systems Simulation Manual 
(TSSM)2, State departments of transportation (DOT) guidelines, or various software user guides 
for additional resources on base model development. 

With respect to assumption 2, the authors adopted a sequential form of calibration, calibrating 
local segment phenomena before proceeding to system-scale issues (e.g., Chu et al. 2004, Toledo 
et al. 2003). For this project, the team calibrated traffic demands (step zero) before adjusting any 
driver behavior parameters according to the trajectory-based, traditional, or hybrid calibration 
methodologies. 

STEP ZERO: OBTAINING A BENCHMARK MODEL 

The research team believed that driver behaviors are more sensitive to traffic congestion levels 
than vice-versa. This motivated a calibration sequence that could attain more accurate congestion 
levels prior to driver behavior calibration. Among the different variables, the number of roadway 
lanes and traffic demand volumes may have the greatest effects on congestion levels. Therefore, 
the team quickly gravitated toward a sequence where the traffic demands are calibrated manually 
first to achieve the best possible matching of simulated and field-measured throughputs 
(i.e., vehicle trips or discharge rates) for key locations in the network, prior to any trajectory-
based calibrations.  

Demands are difficult to measure and are thus often calibrated by traffic modelers (Creasey and 
Sampson 2020; Barceló 2010). The team’s approach to calibrating demands was traditional: 
input demands were modified manually, in an ad-hoc fashion, without software assistance. 
Following each iteration of modifying input demands, the researcher inspected the simulated 
throughput at a few key network locations. Although the researcher attempted to achieve better 
agreement of simulated and field-measured throughput at the key locations over numerous 

 
2 List et al. forthcoming. 
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iterations, there was no formal goodness-of-fit measure or acceptable level of error. This process 
was much more art than science. 

Eventually, upon deciding that little additional improvement was possible or likely, the 
researcher identified and preserved the set of input demands achieving the best possible 
agreement between simulated and field-measured throughputs. The researcher entered this best 
set of input demands into one simulation dataset as the benchmark starting point for subsequent 
trajectory-based calibrations of driver behavior. The benchmark dataset had car-following and 
lane-changing parameters set to their default values. This was the starting point for both the 
trajectory-based, traditional, and hybrid calibration methodologies.  

TRAJECTORY-BASED CALIBRATION METHODOLOGY 

Researchers designed the trajectory-based calibration methodology to provide a balance between 
robustness and practicality for State agencies. The developed methodology has seven discrete 
steps. Please note that the preliminary step of calibrating demands to improve the agreement of 
simulated and measured throughput (previous section) should be completed and finalized before 
starting this seven-step calibration procedure. 

The first four steps are preliminary choices made by the user, while the last three steps involve 
automated data processing. The overall methodology assumes that trajectory data have been 
collected and archived in the format previously described in the “Trajectory Data Format” 
section. The overall methodology is illustrated in figure 5. 

Prior to beginning the calibration process, the analyst should set assign sufficient data to validate 
the calibrated driver behaviors. This process is discussed in the “Trajectory-Based Validation 
Method” section later in this chapter.  

 
Source: FHWA. 
B.P.R. = Binning, Pairing, RMSE; I.H.O.P. = Inputs, Heuristic, Outputs, Points. 

Figure 5. Flowchart. Proposed seven-step trajectory-based calibration method. 
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Step 1: Inputs 

As with many calibration methodologies for traffic microsimulation, the first step is to choose 
which input parameters to calibrate and which candidate values to consider for each parameter. 
Car-following and lane-changing parameters are the most natural choices for trajectory-based 
calibration on urban freeways. Every microsimulation tool contains a car-following model and a 
lane-changing model with inputs that can be calibrated. For example, the Wiedemann car-
following model has 10 input parameters that can be calibrated. The Gipps car-following model 
has maximum acceleration, maximum deceleration, reaction time, and minimum following 
distance, all of which can be calibrated. Calibration of lane-changing input parameters may also 
be considered. 

There are tradeoffs between practicality and robustness when choosing which input parameters 
to calibrate. If a user chooses to calibrate only one car-following parameter, the task is relatively 
easier than calibrating all of the car-following parameters. However, the resultant calibrated 
model might not be robust enough to be trustworthy under various conditions. By contrast, if a 
user chose to calibrate five car-following and five lane-changing parameters for a total of 10 
input parameters, this would likely produce a more robust model, but it might be impractical to 
evaluate the resulting billions of combinations of values. Indeed, if all 10 parameters have 10 
possible numeric values, this would produce 10 billion possible combinations of parameter 
values. Although automated parameter search space algorithms exist, evaluating 10 billion 
possible parameter sets is likely to be a time consuming and computationally expensive 
endeavor. 

The developed methodology places no restriction on the inputs that can be chosen. As such, the 
analyst may compromise between practicality and robustness when choosing which input 
parameters to calibrate. This choice may become easier over time as the analyst gains experience 
with more microsimulation projects. Over time, the analyst might notice which simulation 
models lack sufficient accuracy and which projects produce excessive levels of effort.  

Moreover, some agency manuals have recommendations and requirements as to what inputs 
should be calibrated and what acceptable parameter ranges should be considered (e.g., VDOT 
Traffic Engineering Division 2020, Colorado Department of Transportation 2018). Additionally, 
some simulation researchers have published product-specific information on which inputs have 
more impact than others, making them higher priorities for calibration. Armed with this 
information, an analyst could choose to leave less impactful inputs at default values, possibly 
making the calibration process more efficient. 

This procedure is software and model agnostic, leaving the choice of which model to calibrate to 
the analyst. For the purposes of the case study, the research team selected a subset of the 
available car-following and lane-changing parameters in both Aimsun and Vissim for its 
calibration experiments. The team also selected a few candidate values for each parameter to 
limit the number of overall candidate solutions. The team used its experience with the 
microsimulation tools, along with available tool-specific guidance in the literature, to determine 
which input parameters and candidate values to use in the experiments. These selections led to 
162 candidate solutions for the Vissim case study and 156 candidate solutions for the Aimsun 
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case study. Chapter 5 provides more specificity and details on the car-following and lane-
changing parameters selected and the parameter search space. 

Step 2: Heuristics 

The second step in the proposed method is to choose which search method to use for identifying 
the best set of calibration parameter coefficients. The search methods considered may be some 
form of an exhaustive search algorithm or heuristic method. Heuristic methods contain special 
logic to automatically eliminate many combinations of values unlikely to be optimal (e.g., 
genetic algorithm). Heuristics may be valuable when the number of calibration parameters and 
the size of search spaces are larger, resulting in a higher number of possible solutions. Without 
heuristics, it is necessary to explicitly evaluate all input parameter value combinations through 
exhaustive enumeration or brute-force searching (Hale et al. 2015). Like step 1, the proposed 
trajectory calibration method places no restriction on the search method, as no one-size-fits-all 
search method exists.  

As discussed in step 1, the research team decided to limit the number of calibrated parameters 
and the search spaces such that there were only 162 candidate solutions for VISSIM and 156 
candidate solutions for Aimsun. Given the limited number of possible solutions for the case 
studies presented in this paper, the authors chose to use directed brute force (DBF) searching.  

The above discussion illustrates a potential interdependence between step 1 and step 2 of the 
proposed calibration process. In other words, a user’s choice of inputs to calibrate (step 1) might 
be influenced by which search methods the user wishes to implement (step 2). Conversely, a 
user’s choice of search method (step 2) might be influenced by what input parameters the user 
needs or wants to calibrate (step 1) because many inputs usually cannot be calibrated by 
exhaustive enumeration. These choices might be affected by other considerations such as the size 
of the traffic network, the number of time periods to simulate, the speed of the computer, and the 
speed of the simulation product. These factors affect the amount of time needed per simulation 
run, which in turn affects the amount of time needed for calibration. As an example, suppose the 
user has selected a car-following and lane-changing model with six total parameters; assume that 
the user has identified five candidate values for each of the six parameters. In this case, the 
number of possible solutions is 56 = 15,625. As such, a heuristic search method will be necessary 
to limit the search space to the most likely optimal values, unless the analyst can produce 15,625 
simulation runs in a reasonable period of time. By contrast, suppose the user is willing to restrict 
calibration to the two most sensitive parameters, with five candidate values for each parameter. 
In this case, the search space is 52 = 25 possible parameter sets. In this scenario, the analyst may 
consider an exhaustive search method or a heuristic. 

Although the proposed calibration methodology places no restriction on the search method that 
can be used, the research team selected the DBF search method in step 2; this was motivated by 
the limited number of input parameters and candidate values chosen in step 1. 

Step 3: Outputs 

The third step of the proposed method is to choose output performance measures on which the 
analyst will evaluate effectiveness of the calibration procedure by comparing the simulated 
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output performance measures against observed output performance measures. The analyst may 
select one or more performance measures for comparison. The output performance measure 
selection could be motivated by literature, State simulation modeling guidance, sensitivity 
analysis, or engineering judgment.  

For a traditional calibration of a freeway microsimulation model, these outputs are typically 
aggregate performance measures such as segment or lane-by-lane speed, throughput, density, and 
bottleneck duration (Wunderlich, Vasudevan, and Wang 2019). 

For a purely trajectory-based calibration, the authors suggest using headways for car-following 
dynamics, and lane identification (ID) numbers for lane-changing dynamics, throughout the 
entire trajectory. This decision was motivated by the literature review, where several papers 
noted that the use of headways more effectively captures car-following dynamics throughout a 
trajectory (Punzo, Formisano, and Torrieri 2005; Treiber and Kesting 2013a). In the absence of 
similar literature on how to capture lane-changing effects, the team hypothesized that lane ID 
numbers could be effective. Additionally, both headways and lane IDs were also readily 
available within the proposed trajectory data format 

If multiple performance measures of interest are identified, the user can specify the relative 
weighting of these performance measures to the optimization problem (e.g., are car-following 
and lane-changing equally important or is one performance measure more important than the 
other?). Step 7 of the method will demonstrate how these output measures and relative 
weightings affect calculations within the calibration process. 

Step 4: Points 

The fourth step in the proposed method enables the analyst to decide how many times the 
procedure compares the predicted performance measure to the performance measure observed in 
the field. The could be based on a desired number of points (e.g., figure 6 has 27 points), time 
(e.g., every 2 s) or space (e.g., every 50 ft). There is a tradeoff with this decision. More 
frequently comparing the trajectories (i.e., a higher number of points) will likely improve model 
robustness, but at the expense of increased run times for analyses. Conversely, if trajectories are 
compared less frequently, this will reduce the required run time, but may also reduce the 
effectiveness of the calibration process. The analyst is free to choose the number of times they 
wish for observed and simulated performance measures to be compared. This decision may be 
informed by the literature, early sensitivity analysis, or engineering judgment. 

 
Source: FHWA. 

Figure 6. Diagram. Comparison of full-set trajectories. 

The spatial and temporal scope of the available data may affect the number of points. For 
example, if vehicles were traveling at approximately 55 mph (81 ft/s), they would traverse an 
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800-ft drone coverage area within 10 s. If the analyst selects one comparison point every 2 s, 
then there would be only five comparison points per full trajectory.  

As with steps 1 and 2, this choice can be targeted to achieve the best possible compromise 
between robustness and practicality.  The methodology is flexible and leaves this decision up to 
the analyst. The proposed methodology neither adopts nor requires a specific number of points. 
Moreover, the analyst may choose to use time-based or space-based points. To demonstrate this 
flexibility, the research team used 2-s (for Vissim) and 164-ft (for Aimsun) intervals between 
points for its own case study experiments. In the absence of guidance in the literature, the 
researchers hypothesized that interval durations near average driver reaction times might 
appropriately balance the tradeoff decision in step 4. 

Summary of Decisions 

The previous four steps allow the analyst to make decisions that impact the practicality and 
robustness of the adopted trajectory calibration method. These decisions and their tradeoffs are 
summarized below: 

• Inputs—what car-following and lane-changing calibration parameters does the analyst 
wish to calibrate? Choosing more parameters will likely result in a model more 
representative of the drivers in the sample but significantly increase the time and 
resources required to complete calibration.  

• Heuristic—which heuristic method should the analyst choose to solve their calibration 
problem? Exact solution methods will guarantee that they are using the best parameter 
set, but heuristics have a much more reasonable run time.  

• Outputs—which performance measures does the analyst wish to use to determine the 
accuracy of their calibration procedure? The analyst will compare their simulated and 
observed performance measures to determine how close their model is matching field 
results. Traditional performance measures include throughput, speed, and density, while 
the recommended trajectory performance measures include headway and lane ID. 

• Points—how many times does the analyst want to compare the predicted performance 
measure to the performance measure observed in the field? The more frequently the two 
values are compared, the better their results are likely to be. This significantly increases 
the complexity of the problem and will likely require more resources to complete 
calibration.  

Next, this section will discuss the data processing steps. Steps 5–7 may require automation 
through software or scripts because these steps involve iterations, once for each candidate 
combination of input parameter values. The researchers developed scripts to assist with this 
process as described in the appendices (Github, n.d.-b). 

Step 5: Binning 

There is significant evidence in the literature of inter- and intra-driver heterogeneity in trajectory 
level data as a function of driver attributes, driver aggression, level of congestion, operational 
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condition, weather conditions, lane type, and leading vehicle type. Thus, one of the challenges 
with the trajectory calibration process is ensuring that sufficiently similar trajectories are 
compared (e.g., it would be inappropriate to compare an aggressive driver’s trajectory to a 
defensive driver’s trajectory, just as it would be inappropriate to compare a trajectory collected 
in congested conditions to a trajectory collected in uncongested conditions). 

Thus, the fifth step in the proposed method involves the binning of trajectories (both simulated 
and field-observed) into specific groups to enable the method to compare sufficiently similar 
trajectories. The binning process seeks to identify groups of drivers that are likely to behave 
similarly, minimizing the heterogeneity within the group (James and Hammit 2019). 

This step may be the most important and sensitive of the proposed seven-step calibration 
procedure. Step 5 is critical because within any given bin, the analyst needs to have a reasonable 
expectation that the comparison between simulated and field-measured trajectories is 
appropriate. 

Step 5 is another decision with tradeoffs for the analyst to consider: increasing the number of 
bins for the data will likely reduce the heterogeneity within the binned data, but will increase the 
computational time of the calibration procedure. The analyst is free to choose the types of bins 
for their data, but must ensure that at the end of the binning process there are enough trajectories 
for sampling during the pairing step (step 6). The analyst is encouraged to conduct a literature 
review and an early sensitivity analysis to determine the best bins for their unique dataset. The 
following subsections describe some suggested bins, but an analyst must be sure to select bins 
that make the most sense for their unique data sample. 

Origin and Destination Lanes 

Proper treatment of origin and destination bins, as shown in figure 7, may improve both the 
efficiency and the robustness of calibration. For example, suppose two trajectories are being 
compared as shown in figure 6. If a simulated vehicle enters on a different origin lane than the 
field-observed vehicle, any subsequent differences in their trajectories would not imply an 
inaccuracy in the simulation. Therefore, on a segment such as the one shown in figure 7, the 
analyst could separate trajectories into four separate bins according to their origin lane.  

 
Source: FHWA. 

Figure 7. Illustration. Origin and destination bins. 



38 

However, the research team handled the destination bins differently. The motivation behind this 
decision was that if pairs of vehicles (one simulated, one field-observed) entering on origin lane 
1 frequently exit on different downstream mainline lanes, this could help to expose more 
deficiencies in the car-following and lane-changing models. As such, the analyst may choose to 
include all downstream mainline lane numbers within the same destination bin to capture (and 
reconcile) these driver behavior discrepancies. However, vehicles exiting at the off-ramp may 
appropriately follow different trajectories than vehicles exiting on the mainline. For this reason, 
the analyst may define the off-ramp as a second destination bin. 

Vehicle Type 

The vehicle type bin could be relatively simple (e.g., passenger car, heavy vehicle) or more 
complex (one bin for each of the 15 vehicle types defined by FHWA (Hallenbeck, Selezneva, 
and Quinley, 2014). The proposed trajectory data format (shown earlier in the “Trajectory Data 
Format” section) explicitly provides a numeric code to indicate the vehicle classification. In this 
data sample, only passenger cars and heavy vehicles were observed. However, the sample of 
heavy vehicles collected was too small to inform statistically significant analyses of driver 
behavior. Thus, heavy vehicles were removed from the data sample.  

Driver Type 

Drivers can be categorized in many different ways, and it is up to the analyst to select the 
segmentation that makes the most sense for the data available. The simplest approach could 
simply be two bins: aggressive drivers and cautious drivers. The proposed trajectory data format 
does not explicitly provide driver aggressiveness. Thus, the research team suggests a simple 
calculation to infer driver aggressiveness: Time headway is equal to space headway divided by 
speed, both of which are included in the trajectory data format. The analyst may use a simple 
rule to divide the drivers into two halves: above average time headways and below average time 
headways. These are then assumed to be the cautious and aggressive driver bins, respectively. 
This approach is demonstrated in chapter 5. 

For datasets in which attributes are known about the driver, as in the second Strategic Highway 
Research Program (SHRP2) Naturalistic Driving Study (NDS) dataset, it may make more sense 
to divide the trajectories by driver attributes such as age, gender, or driving experience (James 
and Hammit 2019).  

Weather 

Research has demonstrated that weather affects drivers’ car-following and lane-changing 
behaviors (Hammit, Ghasemzadeh, James, Ahmed, and Young 2018; Wunderlich, Vasudevan, 
and Wang 2019). However, it is sometimes difficult to collect accurate trajectory data during 
periods of poor weather. For example, drones may be flown only under ideal conditions, or 
automated video processing algorithms may struggle with extracting trajectories in adverse 
weather conditions such as rain, snow, and fog, in which the views of vehicles are limited. If the 
analyst has access to trajectories in poor weather conditions, they will want to separate 
trajectories by weather condition. These trajectories may be collected by instrumented vehicle, as 
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was done in the SHRP2 NDS (Calida et. al 2016). For this project, however, trajectories were 
collected only during clear weather conditions because of limitations with aerial data collection.  

Operational Conditions 

The operational condition of a facility has been shown to impact traffic flow (Berthaume, James, 
Hammit, Foreman, and Melson 2018; Kondyli et. al 2019). Examples of operational conditions 
include levels of congestion, lane width, and work zones, among others. Previous research has 
demonstrated that in addition to impacting traffic flow, operational conditions are a source of 
intradriver heterogeneity that influence driver behavior. In the team’s dataset, diverse operational 
conditions were not collected. However, depending on the nature of one’s data, an analyst may 
want to consider creating bins for different operational conditions.  

Summary 

Given the datasets available for this research, the selected bins included origin and destination 
lanes, vehicle type, and driver type. The team divided each origin lane and on-ramp into separate 
bins, producing four separate bins (three general purpose lanes and one on-ramp). Within each of 
these bins, the team further divided the data by destination lane type: either general purpose lane 
or off-ramp. This produced eight total bins. The team next binned the data by driver type: 
aggressive or conservative. Within each of the eight bins (separated by origin and destination 
lane), drivers maintaining a below median time headways were classified into an aggressive 
driver bin, while above the median time headways were classified into a conservative driver bin. 
Finally, given the low number of heavy vehicles and motorcycles in the underlying data, those 
vehicle types were filtered out of each of the bins such that only passenger cars were included. 
This resulted in 16 total bins for the case studies documented in this paper. It should be noted 
that some freeway segments were assigned a different number of origin bins because they had 
different numbers of mainline lanes. 

Finally, once the bins are finalized, the data should be separated into calibration and validation 
data. The team then set aside 20 percent of the trajectories in each bin for subsequent validation 
experiments. This allowed the team to validate the robustness of the calibration process on 
similar data, but on data that were not used for calibration. 

The project team developed scripts to accomplish steps 5, 6, and 7. These details and source 
codes are provided in the appendices and are available online (GitHub, n.d.-b).   

Step 6: Pairing 

After the analyst bins the trajectories, the calibration method pairs a simulated trajectory to an 
observed trajectory within the same data bin from step 5 (e.g., origin lane 1, general purpose lane 
destination, aggressive driver, passenger car). Pairing vehicles that entered at similar times may 
help calibration effectiveness, because driver behaviors are sensitive to traffic congestion levels, 
which change over time (Geng et al. 2016; Ye and Zhang 2009)3. 

 
3 Mahmassani et al. forthcoming. 
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The research team used timestamp-based pairing for the case study experiments featured in 
chapter 5. The team paired a field-observed vehicle with any simulated vehicle entering the study 
area within 4 s of one another. In the case that multiple trajectories qualified for pairing, one 
trajectory was randomly selected. It is important to note that this threshold may be dataset 
specific. The 4 s threshold was found to work well on the data available to the team, but may 
need to be identified through sensitivity analysis or engineering judgment for different datasets.  

To limit the amount of time required for calibration, the analyst may choose a maximum number 
of paired trajectories for each bin, keeping in mind that each full trajectory pair may have several 
points to compare (see step 4). The research team applied a maximum of 25 paired trajectories 
per bin for its own experiments. It should be noted that the selection of 25 paired trajectories for 
these case studies was arbitrary and would benefit from sensitivity analyses in future studies. 

Pseudocode for trajectory pairing logic is given below:  

Repeat for all 32 bins: 

Repeat for all 25 paired trajectories: 

Determine which of the 25 simulated vehicles entered the study area at the earliest time. 

If a field-observed vehicle entered the study area within 4 s of the simulated vehicle’s 
entry time, pair these two trajectories and remove them from the pool of unpaired 
trajectories. 

For the team’s case studies, at the end of this process there could be 800 trajectory pairs (32 bins 
multiplied by 25 maximum trajectories pairs within each bin) and 4,000 comparison points 
(8,000 trajectory pairs multiplied by 5 comparison points per trajectory) per trial simulation run. 
This is highly unique to the team’s specific case study and will be different for other studies.  

Step 7: RMSE 

After the analyst pairs the trajectories, step 7 quantifies the similarity between the observed and 
simulated trajectories. The objective of the calibration process is to minimize the difference 
between the observed and simulated trajectories based on the performance measure identified in 
step 3. 

An objective function value of 0 indicates a perfectly calibrated model, whereas an objective 
function value of infinity indicates an infinitely worthless model. As discussed in chapter 2, 
RMSE was found to work well as the goodness-of-fit function for driver behavior calibration 
(Ciuffo, Punzo, and Montanino 2012; Punzo, Formisano, and Torrieri 2005; James 2019; 
Montanino, Ciuffo, and Punzo 2012) and was adopted as part of this methodology.  

For the vehicle trajectory-based calibration, the RMSE needed to reflect the similarity of the 
trajectories for both car-following (i.e., headways) and lane-changing (i.e., lane ID). Thus, the 
team needed to normalize both performance measures such that they could be combined into a 
single dimensionless value, even though they possess fundamentally different units of 
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measurement. Normalizing is a multistep calculation. The calculations are relatively simple, 
especially if they are implemented within macros, scripts, or software. 

During the normalization process, the analyst first chooses the relative importance of car-
following versus lane-changing. For example, a relative weighting of 50–50 would mean the 
analyst wants car-following and lane-changing to be equally influential within the calibration 
process. Similarly, a weighting of 75–25 would mean the analyst wants car-following to be three 
times as influential as lane-changing. To demonstrate the normalization calculation later in this 
section, a 67–33 weighting will be assumed, indicating that car-following is twice as important 
as lane-changing. This may be expressed as a relative weighting for headways (i.e., rwH = 0.67), 
and a relative weighting for lanes (i.e., rwL = 0.33). These relative weights should always sum 
to 1.0. 

Second, the analyst may define the acceptable minimum and maximum range limits for 
headways and lane numbers. The team did not explicitly research the most appropriate range 
limits for headways. Within the drone-collected trajectory data, it was intuitive that headway 
values far below 1.0 s could indicate either an invalid headway, an unusual headway, or an 
unsafe headway. Similarly, headway values far above 5.0 s could indicate that the “following” 
vehicle is actually in a free-flow mode, as opposed to engaging in any significant following 
behavior. Therefore, to demonstrate the normalization calculation, a headway range of 0.5 to  
5.0 s is assumed (i.e., Hmin = 0.5; Hmax = 5.0). By contrast, the lane number range has a physical 
limit. The minimum lane number value is 1, and the maximum value can be equal to the number 
of lanes on the roadway whose trajectories are being calibrated (e.g., Lmin = 1.0, Lmax = 4.0 for a 
4-lane roadway).

Third, the analyst may define the normalized maximum value of a variable called delta (Δnmax). 
The word or variable “delta” is used in some models and contexts to indicate the difference 
between two values. In the trajectory-based calibration method, ΔH represents the difference 
between simulated and field-observed headway, and ΔL represents the difference between the 
simulated and field-observed lane number. Although any value can be used here, a Δnmax of 10 
will be assumed for the sake of demonstration. In other words, a Δnmax value of 0 would indicate 
a perfectly calibrated paired trajectory point, whereas a Δnmax of 10 would indicate a maximally 
unrealistic trajectory point. 

Next, total delta (Δtot) for a single paired trajectory point is computed as the sum of ΔH and ΔL. 
The formula to compute ΔH is given in figure 8. The formula for ΔL takes the same functional 
form, but with lane-based variables substituted in for headway-based variables. Note that 
headways outside the allowable range are not allowed in the calculation of total delta or RMSE. 

Figure 8. Equation. Normalized delta headway calculation formula. 

Where: 
ΔH = delta headway. 
Δnmax = normalized maximum delta value. 
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rwH = relative weighting for headways. 
Hobs = field-observed headway (s). 
Hsim = headway in simulation (s). 
Hmax = acceptable maximum headway (s). 
Hmin = acceptable minimum headway (s). 

In this hypothetical example, let us assume that at one of the comparison points (step 4) the 
observed headway is 1.8 s and the simulated headway is 2.8 s. Additionally, assume the vehicle 
is observed to be in lane 4 in the field and lane 1 in the simulation. The sample calculation is as 
follows: 

ΔH = (10 × 0.67) × │1.8 – 2.8│ ÷ (5.0 – 0.5) = 1.49 
ΔL = (10 × 0.33) × │4.0 – 1.0│ ÷ (4.0 – 1.0) = 3.30 
Δtot = 1.49 + 3.30 = 4.79 

The net effect is a total delta value between 0 and 10 for each paired trajectory point where delta 
headway ranges between 0 and 6.7 and delta lanes ranges between 0 and 3.3. A total delta value 
of 0 implies that the paired trajectory point exhibits the same headway and same lane number in 
the field as in simulation. A total delta value of 10 indicates the maximum possible discrepancy 
between a trajectory point in the field and in simulation. 

Fifth and finally, after obtaining the normalized total delta values for all points and trajectory 
pairs in each bin, the normalized RMSE calculation is finally possible, as shown in figure 9. 

Figure 9. Equation. Final RMSE for a candidate simulation run. 

Where: 
T = total number of trajectory pairs across all bins. 
Δtot = delta total for one paired trajectory point. 

After this step, there is a singular RMSE value for each candidate combination of input 
parameter values simulated. The lowest RMSE value then indicates which input parameter 
values allow the simulation to best replicate field conditions. Because Δnmax was set equal to 10, 
an RMSE value of 0 would indicate a perfectly calibrated model, whereas an RMSE of 10 would 
indicate a completely unrealistic model. Ideally, multiple random number seed replications could 
be executed to obtain a more statistically reliable RMSE for each combination of input values. 

It should be noted that the case studies in chapter 5 assumed a 50–50 relative weighting between 
headways and lane IDs, indicating that car-following and lane-changing behavior were equally 
important.  
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Summary of Trajectory-Based Calibration Method 

In the proposed seven-step trajectory calibration procedure, a single RMSE is computed for each 
combination of input parameter values. The combination of values producing the lowest RMSE 
is then considered the best solution. The process is divided into four user choices and three data 
processing steps. The seven steps are illustrated previously in figure 5. The preliminary user 
choice steps (inputs, heuristic, outputs, points) are abbreviated as I.H.O.P. The subsequent data 
processing steps (binning, pairing, RMSE) are abbreviated as B.P.R. Below is a summary of the 
questions that an analyst wishing to use this methodology should ask themselves at each step: 

• Inputs—what car-following and lane-changing calibration parameters do I wish to 
calibrate? A higher number of parameters will likely result in a model more 
representative of the drivers in my sample, but it would significantly increase the time 
and resources required to complete calibration.  

• Heuristic—what heuristic method should I choose to solve my calibration problem? 
Exact solution methods will guarantee that I am using the best parameter set I can find, 
but heuristics have a much more reasonable run time.  

• Outputs—which performance measures do I wish to use to determine the accuracy of my 
calibration procedure? I will compare my simulated and observed performance measures 
to determine how close my model is matching field results. Traditional performance 
measures include throughput, speed, and density, while the recommended trajectory 
performance measures include headway and lane ID. 

• Points—how many times do I want to compare my predicted performance measure to the 
performance measure I observed in the field? The more frequently I compare, the better 
my results are likely to be; however, this significantly increases the complexity of the 
problem and will likely require more resources to complete calibration.  

• Binning—how should I divide my data to allow me to make comparisons between 
simulated and observed trajectories? These bins should have minimal interdriver 
heterogeneity within the clustered trajectories. If I create more bins, I am likely to have 
smaller clusters of drivers that are more similar. The more bins I use, however, the more 
computationally taxing my calibration procedure becomes. 

• Pairing—within each bin, how do I identify which simulated trajectory to compare to 
which observed trajectory?  

• RMSE—which set of parameter values should I use to calibrate the model? The one with 
the minimum RMSE. I have multiple performance measures, however. How do all of my 
performance measures contribute to my overall assessment of the accuracy of the model? 
What do I consider to be the relative importance of all of my selected performance 
measures, comparatively?  
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TRAJECTORY-BASED VALIDATION METHOD 

In the proposed method, the calibrated simulation model produces the lowest RMSE value. This 
value conveys the degree of agreement between the simulated trajectories and the field-collected 
trajectories. It further conveys a best-case scenario in terms of how much improvement may be 
possible in the modeling of trajectories. However, an unbiased data source is necessary to assess 
the expected predictive ability of the calibrated model. As such, one fundamental approach to 
validating the calibrated model is to set aside a portion of the collected data as holdout data for 
validation, which is excluded from the calibration process. The process of converting aerial 
video clips into post-processed numeric trajectory datasets produces thousands of candidate 
vehicle trajectories for possible inclusion in the calibration process. As such, the analyst can set 
aside one portion of the field-collected trajectories for validation purposes prior to performing 
trajectory-based calibration. 

Dividing the Data 

For the validation to be as unbiased as possible, the analyst should ensure the validation and 
calibration datasets have the same fundamental composition. For example, the validation and 
calibration datasets could have the same proportion of trajectories from each bin defined in  
step 5. The validation and calibration datasets could also have similar profiles or distribution of 
departure times as discussed in step 6. To achieve the similar and unbiased compositions 
described in this paragraph, the analyst could randomly sample trajectories from the available 
bins and time periods and then assign a portion of them to each bucket (e.g., 80 percent of 
trajectories to the calibration dataset, and 20 percent of trajectories to the calibration dataset). For 
a rigorous approach, the analyst could apply statistical tests such as Kolmogorov–Smirnov (KS) 
(Massey 1951) to confirm that the validation and calibration datasets have similar compositions. 

There are many different schools of thought for how to split a data sample into calibration and 
validation data. The size of the underlying dataset will inform this decision. Ideally, even after 
splitting the data into two groups (one for calibration and one for validation), each bin 
established in step 5 must have enough trajectories (e.g., the research team wanted 25 trajectories 
per bin in step 6). One common method for splitting the data into calibration-validation datasets 
is the “holdout” method, whereby a predetermined amount of the data are used for calibration 
and the remaining data are used exclusively for validation. This predetermined amount of 
holdout data could be determined arbitrarily or by using sensitivity analysis. A more rigorous 
approach known as k-fold validation allows 100 percent of the data to be applied toward 
calibration (Anguita et al. 2012; James, Hammit, and Boyles 2019). 

The research team used sensitivity analysis to inform the selection of calibration-validation data 
split. The team observed that more realistic trajectories are obtained using an 80–20 split of the 
data sample. In other words, the team calibrated a model using 80 percent of the real-world 
trajectories, and then compared simulated trajectories from that model to the remaining 
20 percent of the real-world trajectories.  
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Assessing the Results 

Suppose an analyst has successfully applied the proposed trajectory-based calibration method 
and now has a calibrated model producing the lowest possible trajectory RMSE value. The 
analyst can now take their calibrated model using the parameter set that produced the lowest 
trajectory RMSE value and compare the simulated trajectories against the observed trajectories 
in the validation dataset. A well-fit, predictive model specification will produce a trajectory 
RMSE value that is acceptably low, defined by the analyst, even using data that was not used to 
fit the model.  

If the trajectory RMSE calculated by comparing the simulated trajectories against the observed 
trajectories in the validation dataset is too high, this could imply some sort of inconsistency or 
bias in the original calibration process. It could also indicate overfitting to the data that were 
sampled for calibration. Because trajectory-based calibration is relatively new, there is no 
specific procedure for resolving such discrepancies. However, some options could include: 

• Ensuring that the calibration and validation datasets (e.g., 80 and 20 percent of 
trajectories collected from the field, respectively) have a similar proportion of vehicles in 
each bin compared with typical traffic (i.e., 100 percent of trajectories from the field). 

• Ensuring that the trajectories in the calibration and validation datasets are sufficiently 
similar (e.g., using KS statistical tests).  

• Executing more random number replications for each candidate solution defined in step 1 
of I.H.O.P. B.P.R. 

• Reviewing optimal calibrated model parameters as judged by the calibration and 
validation datasets to better understand differences and biases between those datasets. 

• Fixing more errors in the trajectory data (described in chapter 3). 
• Changing the bins defined in step 5 of I.H.O.P. B.P.R. 
• Applying k-fold validation to allow more trajectories to be applied toward calibration. 

TRADITIONAL CALIBRATION METHOD 

The project scope of work required calibrating four microsimulation models according to both 
traditional and trajectory-based methods to assess advantages and disadvantages of the newly 
developed trajectory method. For this purpose, the researchers endeavored to perform traditional 
calibration in a similar manner as trajectory-based calibration. Thus, the research team followed 
a procedure analogous to the trajectory-based procedure, updating the seven-step procedure as 
needed. The motivation for this was to facilitate comparisons of driver behavior calibration, 
which was a key project objective. Moreover, applying certain aspects of the trajectory 
methodology toward traditional calibration could produce better outcomes than can be achieved 
in practice, during which input parameters may be modified in a trial-and-error fashion. 

The first step was to complete the same “step zero” as required by the trajectory-based 
calibration methodology. Specifically, step zero for both traditional and trajectory-based methods 
involve calibration of input volume demands to improve the agreement of simulated and field-
measured throughputs at key network locations. After step zero, researchers followed the seven-
step I.H.O.P. B.P.R methodology as closely as possible for traditional calibration to avoid 
introducing unnecessary bias into the comparison experiments. Although steps 4 through 6 are 
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irrelevant to traditional calibration, the researchers applied steps 1, 2, 3, and 7 in much the same 
manner for both traditional and trajectory-based calibration.  

Specifically, step 1 (inputs) of the traditional calibration methodology was identical to the 
trajectory-based calibration methodology. That is, the traditional calibration method selected the 
same input parameters and parameter search spaces as those selected for the trajectory-based 
methodology. The motivation behind this decision was that the car-following and lane-changing 
models that are calibrated are the same, whether one is using traditional data (and calibration 
methods) to calibrate the model or trajectory data (and calibration methods). The parameters and 
the parameter search spaces used in calibration are unique to each case study and described in 
chapter 5.  

Step 2 (heuristic) of the traditional calibration methodology was also identical to the trajectory-
based calibration method. The traditional calibration methodology used the DBF search method 
to simulate exhaustively each possible combination of input values. The decision to keep step 1 
and step 2 of the traditional calibration methodology consistent with the trajectory calibration 
methodology significantly reduced the computation time for the case studies because the same 
162 candidate solutions for Vissim and 156 candidate solutions for Aimsun were used for 
traditional calibration without the need for additional simulations or datasets. 

The methodologies were most different during step 3 (outputs) of the traditional calibration. The 
team used traditional performance measures of average segment speeds and throughput as the 
output variables to compare between the simulation and observed data (instead of headways and 
lane numbers, which were used for trajectory calibration). 

As mentioned above, steps 4, 5, and 6 are unique to the trajectory-based method and were not 
used as part of the macroscopic calibration method. 

For step 7, the RMSE goodness-of-fit calculation for traditional calibration was similar in 
application. For normalization, the team used the highest and lowest observed speeds and 
throughputs as the ranges. Additionally, the team assumed a 50–50 weighting for throughputs 
and speeds, meaning that throughput and speed were considered equally important by the 
calibration objective function. 

This approach to steps 1, 2, 3, and 7 meant that for every unique combination of input parameter 
values both a traditional RMSE and a trajectory-based RMSE could be calculated. The team 
identified the parameter set corresponding with the lowest traditional RMSE value as the optimal 
set of calibration parameters for the traditionally calibrated model; analogously, the parameter 
set corresponding with the lowest trajectory-based RMSE value was identified as the optimal set 
of calibration parameters for the trajectory-based calibrated model.  

This approach allowed the research team to assess the impact of traditional calibration on the 
realism of both traditional performance measures and vehicle trajectories. Similarly, it allowed 
the team to assess the impact of trajectory-based calibration on the realism both trajectories and 
traditional performance measures. 

Calculation of traditional RMSEs involved extensive, automated comparisons of simulated 
throughputs to field-observed throughputs and of simulated speeds to field-observed speeds. The 
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data collection company obtained these field-observed throughputs and speeds through 
traditional methods, such as radar and floating car runs, at the same times and locations as the 
aerial drone data collections. Thus, the field-observed throughputs, speeds, headways, and lane 
numbers represent the same traffic conditions, facilitating direct comparison of traditional and 
trajectory-based calibration. 

The team acknowledged that the adopted traditional methodology is inconsistent with the 
methodologies used in practice, such as those described in Traffic Analysis Toolbox Volume III 
(Wunderlich, Vasudevan, and Wang 2019). The adoption of this specific calibration process 
enabled the team to compare more directly the new methodology with the traditional 
methodology. Future research is encouraged to compare the new trajectory-based calibration 
methodology against traditional calibration methodologies that are considered state-of-practice. 

TRADITIONAL VALIDATION METHOD 

For traditional validation, researchers compared speed-flow scatterplots from simulation to field-
observed values at radar sensor locations in the network. Radar data from the data collection 
company included 5-min traffic counts for each lane, broken down into 10 mph speed intervals. 
Table 7 shows two records of the radar data spreadsheet.  

Table 7. Speed-flow readings from radar data. 

Date 
Start 
time 

<10 
mph 

10 to 
<20 
mph 

20 to 
<30 
mph 

30 to 
<40 
mph 

40 to 
<50 
mph 

50 to 
<60 
mph 

60 to 
<70 
mph 

70 to 
<80 
mph 

80 to 
<90 
mph 

Total 
Count 
(veh) 

5/2/19 05:30 0 0 2 31 97 44 4 1 0 179 
5/2/19 05:35 0 1 1 14 118 47 3 0 0 184 

veh = vehicle. 

Each point in the speed-flow scatterplots represents a throughput and speed value in a 5-min 
interval of a specific highway segment. To obtain segment-based throughput values, the team 
summed up the lane-based throughput numbers for each time-interval and converted it to an 
hourly based value (see figure 10 for calculation). Next, the team aggregated speed values 
through all lanes for each time interval. This aggregation was a weighted average of the mean 
speed of each column, with the corresponding vehicle counts used as weights. For example, the 
segment-based throughput and speed for the first data record in table 7 is calculated as an 
example and shown in figure 10 and figure 11. 

Figure 10. Equation. Calculation of throughput for traditional validation. 

Where: 
throughput = throughput in units of vehicles per hour 
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Figure 11. Equation. Calculation of speed for traditional validation. 

Where: 
speed = vehicle speed in units of miles per hour 

This validation effort considered results only from the model parameter settings associated with 
purely traditional calibration. The researchers calculated segment-based throughput and speed 
values for all 5-min intervals, for each highway segment having radar data, and for both 
simulation and field-observed results. Finally, the team plotted speed-flow scatterplots for the 
highway segments and checked for reasonable correlation between observed and simulated 
traffic flow conditions. 

HYBRID CALIBRATION METHOD 

A hybrid calibration objective function that involves both trajectories and traditional measures is 
also possible, and was explored as part of this project. The method enables an analyst to calibrate 
a model with trajectories and aggregate traffic data (e.g., throughput and speed) considering both 
traditional and trajectory performance measures.  

To conduct a hybrid calibration, the user may either choose another relative weighting (i.e., the 
relative importance of trajectories versus traditional measures) or perform multiple sequential 
calibrations (i.e., trajectory calibration after traditional calibration). For the case studies detailed 
in chapter 5, the authors chose the former option. To conduct hybrid calibration using the relative 
weighting method, the analyst must have previously completed a fully trajectory-based and 
traditional calibration procedure. The RMSEs obtained using both of those methods will be used 
in the hybrid calibration process. 

To complete a hybrid calibration, the analyst should first independently calculate the normalized 
trajectory and traditional RMSE using the same defined normalized maximum value of a 
variable (Δnmax). Next, the analyst chooses the relative importance of trajectory versus traditional 
performance measures. For example, a relative weighting of 67-33 would mean the analyst wants 
trajectory measures to be twice as influential as traditional (macroscopic) measures within the 
calibration process. This may be expressed as a relative weighting for trajectory measures (i.e., 
rwTRAJ = 0.67) and a relative weighting for traditional measures (i.e., rwTRAD = 0.33). These 
relative weights should sum to 1.0. In the final step, the analyst obtains a hybrid RMSE. The 
hybrid RMSE is the sum of the traditional RMSE and trajectory RMSE, which were previously 
obtained by completing the traditional and trajectory-based calibration procedures, adjusted by 
the relative weights. To obtain the adjusted trajectory RMSE for a set of calibration parameters, 
the analyst multiplies the trajectory RMSE by rwTRAJ. Similarly, to obtain the adjusted traditional 
RMSE, the analyst multiplies the traditional RMSE by rwTRAD. After this step, there is a singular 
RMSE value for each candidate combination of input parameter values simulated. The lowest 
hybrid RMSE value then indicates the input parameter value set that allows the simulation to 
best replicate field conditions in a way that reflects the chosen relative weightings. 
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By implementing this approach, the team hoped to identify which relative weighting of 
traditional and trajectory measures might produce the best overall solution, according to both 
traditional and trajectory measures. 

CONCLUSIONS 

This chapter described a vehicle trajectory-based calibration methodology for microsimulation 
models developed during this project. This chapter also described the corresponding validation 
method that ensures robustness of the calibrated models. This chapter also described the 
traditional calibration and validation methodology adopted by this research project. The 
traditional results serve as a baseline from which to assess the valued added by the trajectory 
calibration methodology. Chapter 5 details four case studies that allowed the team to compare 
the results of the developed methodology against results from a traditional calibration procedure.
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CHAPTER 5. CALIBRATION AND VALIDATION EXPERIMENTS 

This chapter describes the calibration and validation experimental results for the four chosen 
highway sites: I–270, I–15, I–75, and I–95. In these experiments, calibration and validation were 
performed using both traditional and trajectory-based methodologies, as described in chapter 4, 
to compare and assess the newly developed methodology. To develop and validate the proposed 
microsimulation procedure, the team conducted extensive field data collection efforts at the four 
sites as described in chapter 3. Video data were collected by drones at all sites except I–75, 
where video data were obtained by helicopter. At each of the sites using drones for data 
collection, 3 or 4 point-locations were selected to capture traffic conditions for about 1 hour 
during rush hours on weekdays; the temporal and spatial section of these points were informed 
by the queue accumulation polygon discussed in chapter 3. Next, the video data were processed, 
and vehicle trajectories were extracted by the post-processing tool described in chapter 3. The 
extracted trajectory data format was described previously in table 6. Post-processed trajectory 
data were then verified and corrected as described in chapter 3. 

I–95, I–75, AND I–270 CASE STUDIES 

The research team used Vissim to test the proposed methodology at the I–95, I–75, and I–270 
sites. The team coded the I–75 and I–95 models from scratch. The Maryland Department of 
Transportation State Highway Administration (MDOT SHA) provided the I–270 model, but the 
team reset driver behavior input parameters to their default values. To identify the most 
important space and time sections of roadway to capture, the team analyzed three  
800-ft sections—the maximum drone coverage length—of I–95 and I–270 using the methods 
described in chapter 3 (figure 1). For I–75, the team captured a continuous 1.2-mi section by 
relying on helicopter coverage instead. Warm-up periods, also known as simulation fill time or 
initialization time, were 15 min for all calibration and validation runs4. Before calibrating driver 
behavior, the team first calibrated input demands to achieve better matching of field-measured 
and simulated segment throughput, described as “step zero” in chapter 4. The team then executed 
the I.H.O.P. B.P.R. procedure as follows. 

Step 1: Inputs 

The research team selected a subset of the available car-following and lane-changing parameters 
for calibration and selected a small number of candidate values for each parameter to limit the 
number of overall candidate solutions. The team used prior experience working with the software 
along with available guidance in the literature (Habtemichael and Picado-Santos 2013; Lownes 
and Machemehl 2006; MDOT SHA 2017) to determine which input parameters and candidate 
values to use in the experiments. The team decided to calibrate three car-following and four lane-
changing parameters: CC1 (spacing time), CC4 (negative following threshold), CC5 (positive 
following threshold), deceleration reduction distance (own), deceleration reduction distance 
(trailing), accepted deceleration (trailing vehicle), and safety distance reduction factor. The 
literature recommended calibrating CC0 (jam spacing). However, the dataset collected for this 
project lacked sufficient stop-and-go traffic conditions to allow the team to calibrate this 

 
4Analysts may consider using a simulation warm-up time of at least twice the estimated travel time at free-flow 

conditions to traverse the length of the network (Dowling, Skabardonis, and Alexiadis 2004). 
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parameter. To make the problem more practical, the team identified ranges of values to consider 
for each calibration parameter. The values considered for the Wiedemann 99 car-following 
model are as follows: 

• CC1: 0.7, 0.8, and 0.9 s. 
• CC4: −0.25 and −0.35. 
• CC5 was set equal to −CC4 (e.g., if CC4 = −0.25, then CC5 = 0.25). 

The following lane-change model parameters and candidate values were selected for calibration: 

• Deceleration reduction distance (own): 50, 100, and 200 ft.  
• Deceleration reduction distance (trailing) was set equal to the value above.  
• Accepted deceleration (trailing vehicle): −1.64, −3.28, and −6.27 ft/s2. 
• Safety distance reduction factor: 0.2, 0.4, and 0.6. 

The remaining parameter values were kept at their default values. The number of combinations 
was determined as follows: 

• Number of combinations = 3 (CC1) × 2 (CC4 and CC5) × 3 (deceleration reduction 
distance) × 3 (accepted deceleration of trailing vehicle) × 3 (deceleration reduction 
distance (own and trailing)) = 162 

These selections led to 162 candidate solutions for the I–95, I–75, and I–270 case studies. 

Step 2: Heuristics 

Chapter 4 recommended several viable options for the heuristic step. For this case study, the 
research team selected the directed brute force (DBF) search method in step 2 to limit the amount 
of time needed for its own calibration experiments. The team hypothesized that DBF search 
would perform faster than heuristics given the limited number of calibration parameters and the 
small search spaces for each parameter. However, for case studies with more parameters and 
larger search spaces (e.g., hundreds or thousands of possible combinations) heuristic methods 
will likely be much faster and should be considered. 

Experienced modelers typically know that the results of a microsimulation run based on only one 
random number seed replication tend to be less reliable (Hale 1997). Ideally, multiple random 
number seed replications will be executed to obtain more statistically reliable output for each 
combination of input values. Therefore, the team performed 10 random number seed replications 
for each of the 162 combinations, which resulted in 1,620 microsimulation runs. For real 
projects, analysts could consider saving time and resources by avoiding multiple random number 
seed replications for combinations that lack promise. 

Step 3: Outputs 

Chapter 4 addressed the rationale for selecting output measures. For trajectory-based calibration, 
the team chose headways and lane numbers and selected a 50–50 relative importance weighting. 
For traditional calibration, the team chose average segment speed and throughput and selected a 
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50–50 relative importance weighting. The selections of 50–50 relative importance weightings 
were arbitrary for these case studies; future research could include sensitivity analysis of relative 
importance weighting to determine the best selection for traditional and trajectory-based 
calibration. 

Step 4: Points 

The fourth step in the proposed methodology is to choose the number of comparison points per 
full-set trajectory. The methodology neither adopts nor requires a specific number of points. The 
research team used 2-s intervals between points for these case study experiments, with no 
specific rationale other than estimating what might achieve the right balance between practicality 
(e.g., computer run time) and robustness. Again, future research could include sensitivity 
analysis to determine the optimal number of comparison points per trajectory. 

Step 5: Binning 

The fifth step in the proposed methodology involves binning trajectories into specific groups to 
enable point-by-point comparisons of vehicle headways and lane numbers of sufficiently similar 
simulated and observed trajectories. The team wished to select enough bins to allow robust 
calibration results, but also wanted the number of bins to be small enough to make the 
experiments efficient and practical. The team defined 16 bins: two driver types (aggressive and 
conservative), one vehicle type (passenger car), four mainline origin lanes, two destinations 
(off-ramp and mainline).5 The team read vehicle type and lane number information directly from 
the trajectory data file format described in table 6.  

To characterize driver aggressiveness, researchers used time headways as described in chapter 4. 
Time headway is equal to space headway divided by speed, both of which are provided by the 
data in table 6. The team used simple coding logic to divide the trajectories into two halves: 
above average (aggressive drivers) and below average (cautious drivers) time headways. The 
team then sorted these trajectories into the cautious and aggressive driver bins, respectively. 
figure 14 illustrates that half of the I–95 drivers exhibited time headways above 2.25 s. 

 
5 The I–75 case had only 8 bins instead of 16 bins because no off-ramps were present. 
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Source: FHWA. 
The red dashed line denotes the mean (50th percentile) time headway (2.25 s); 
x = time headway; F(x) = cumulative distribution of time headways.  

Figure 12. Graph. Cumulative distribution of time headways (I–95 study area). 

Step 6: Pairing 

The team developed scripts to automate the trajectory pairing process. The team believed that 
pairing simulated and field-observed trajectories entering the study area at approximately the 
same time could produce robust calibration results. The team chose a 4-s and 200-ft threshold. 
Any simulated vehicle entering the study area within 4 s and 200 ft of a field-observed vehicle 
could be paired with that vehicle. To limit the amount of time required for calibration, the team 
limited the number of paired trajectories per bin to a maximum of 25. 

The thresholds for pairing (e.g., space and time window) and the maximum number of paired 
trajectories per bin were decided based on engineering judgment. In the future, an analyst may 
want to consider conducting sensitivity analysis on these three parameters to determine the best 
selections for their data sample. 

Step 7: RMSE 

The team’s literature review (chapter 2) indicated that RMSE is an effective goodness-of-fit 
measure for calibrating traffic simulation models and driver behavior models. For the trajectory-
based RMSE, the team used a 50–50 relative weighting of headways and lane numbers to blend 
them into a single value. This allowed the RMSE value to reflect both car-following and lane-
changing effects. For the traditional RMSE, the team used a 50–50 relative weighting of 
throughputs and speeds to blend them into a single value. The calculations to accomplish this are 
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described in chapter 4. The team further obtained hybrid calibration via relative weightings of 
traditional and trajectory RMSE, as described in chapter 4. 

The team developed a script to compute both a trajectory-based RMSE and a traditional RMSE 
for all 162 simulation runs. Figure 13, figure 14, and figure 15 illustrate the trajectory-based 
RMSE values for I–95, I–75, and I–270, respectively.  

The team selected a maximum normalized delta value of 1.0 for these experiments, such that the 
RMSEs in these figures were effectively constrained to a range of 0.0 to 1.0. The benchmark 
RMSE value in these figures represents step zero of the proposed method. In step zero, traffic 
throughput volumes were calibrated to achieve more accurate simulated throughputs. The driver 
behavior parameters were left at default values for the benchmark model. This simulation model 
was then used as the starting point for subsequent calibration of driver behavior. 

 
Source: FHWA. 

Figure 13. Scatterplot. I–95 trajectory RMSE. 

 
Source: FHWA. 

Figure 14. Scatterplot. I–75 trajectory RMSE. 
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Source: FHWA. 

Figure 15. Scatterplot. I–270 trajectory RMSE. 

Calibration Results 

This section includes both model-specific calibration results and overall model calibration 
implications. 

Model Specific Calibration Results 

The results appeared to confirm suspicions held by the research team: if trajectories are excluded 
from the calibration process, simulated trajectories may be unrealistic in terms of headway and 
lane ID, even if aggregate measures have good agreement with those observed in the field. 
Figure 16, figure 17, and figure 18 provide results for the I–95, I–75, and I–270 networks, 
respectively.  

To help with interpreting these graphs, please note that traditional calibration is indicated in 
these figures as “weight = 0,” while a pure trajectory-based calibration of driver behavior is 
indicated in these figures as “weight = 1.” The step zero model with calibrated throughputs and 
default driver behavior parameters is labeled “Benchmark.” “Weight = 0.25,” “weight = 0.5,” 
and “weight = 0.75” are all hybrid calibration model results, where the relative importance of 
traditional performance measures (e.g., throughput and speed) and trajectory performance 
measures (e.g., lane ID and headway) varied. In weight = 0.5, traditional and trajectory 
performance measures were considered equally important. For weight = 0.25, the traditional 
performance measures were considered to be three times as important as the trajectory measures. 
Conversely, for weight = 0.75, trajectory performance measures were considered to be three 
times as important as the traditional performance measures. Hybrid RMSEs calculations are 
discussed in chapter 4. 

In these bar charts, only the best solution (i.e., with the lowest RMSE out of 162 candidates) is 
shown for each weight, with a box-and-whisker notation to indicate the range of random number 
seed outcomes. 

For the I–95 network shown in figure 16, the traditional calibration methodology (weight = 0) 
improves the estimate of traditional RMSE (i.e., average lane speed and throughput) compared 
with the benchmark model, in which the driver behavior parameters were not calibrated. 
However, the trajectories produced using the traditional calibration methodology are less 
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accurate than the trajectories produced using the default driver behavior parameters. The 
trajectory-based calibration methodology (weight = 1) improves the trajectory RMSE compared 
with the benchmark model and the traditional calibration model, indicating that the individual 
vehicle's lane assignment and headways better match what was observed in the real-world data. 
However, this methodology produces worse traditional RMSE than the benchmark and 
traditional calibration model, indicating that the lane-specific speed and throughput do not match 
the field data as well. 

 
Source: FHWA.  
Weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 16. Bar Chart. I–95 calibration results. 

For the I–75 network shown in figure 17, the traditional calibration methodology (weight = 0) 
improves the traditional RMSE and the trajectory RMSE compared with the benchmark model, 
where the driver behavior parameters are not calibrated. This indicates that following the 
traditional calibration methodology produces simulated headways, lane numbers, average lane 
speed, and throughput that better match the observed data compared with the model where the 
driver behavior are held at default values. The trajectory-based calibration methodology (weight 
= 1) improves the trajectory RMSE significantly compared with the benchmark model and the 
traditionally calibrated model. Moreover, this model performed equivalently well at producing 
lane-specific speed and throughputs (traditional RMSE) compared with the traditionally 
calibrated model. The team hypothesized that the longer trajectories extracted from the 
helicopter data contributed to the improvement in modeling results. 
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Source: FHWA.  
Weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 17. Bar Chart. I–75 calibration results. 

For the I–270 network results shown in figure 18, the traditional calibration methodology 
(weight = 0) improves the estimate of traditional RMSE (i.e., average lane speed and throughput) 
and trajectory RMSE (i.e., lane number and headways) compared with the benchmark model, 
where driver behavior parameters were not calibrated. The trajectory-based calibration 
methodology (weight = 1) improves the trajectory RMSE compared with the benchmark model 
and the traditional calibration model, indicating that the individual vehicle’s lane assignment and 
headways better match what was observed in the real-world data. However, this methodology 
produces worse traditional RMSE than the benchmark and traditional calibration model, 
indicating that the average lane speed and throughput do not match the field data as well. The 
authors hypothesize that this may have been due to I–270 network complexities that made the 
pairing process more difficult (e.g., managed lanes, overpasses, lots of on-ramps and off-ramps). 
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Source: FHWA.  
Weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 18. Bar Chart. I–270 calibration results. 

Model Calibration Implications 

The effect of pure trajectory calibration on the traditional measures was inconsistent across the 
different sites. At the I–75 site, trajectory-based calibration (weight = 1) made the traditional 
measures more accurate than those obtained with the benchmark and traditionally calibrated 
models. At the other two sites, however, trajectory-based calibration made the traditional 
measures less accurate. That is, by calibrating the models only considering headways and lane 
IDs, the observed and measured throughputs and speeds were somewhat less accurate compared 
to the benchmark model and model calibrated using traditional data. These results suggest that it 
may be important to consider both macroscopic properties of traffic flow (e.g., throughput and 
speed) and vehicle trajectories (e.g., headways and lane IDs) in the calibration process, to 
achieve a model whose outputs are realistic. Moreover, these results suggest that future research 
is necessary to determine if the limited spatial and temporal scope of trajectories collected via 
drones (i.e., 800 ft) is sufficient to capture data for calibration, as the calibration performed with 
longer trajectories performed much better. If longer trajectories are indeed a requirement, future 
data collection efforts could explore the impact of flying multiple drones in tandem and stitching 
together videos, in lieu of using helicopters for data collection.  

Additionally, the results suggest there exists an opportunity to calibrate a model considering both 
trajectory and traditional data and performance measures. This is the hybrid calibration method 
discussed in chapter 4 and noted on figure 16 through figure 18 by intermediate weights (e.g., 
0.25, 0.5, and 0.75). Figure 16 through figure 18 demonstrate that the hybrid calibration method 
does not typically identify the best (i.e., lowest) trajectory or traditional RMSE. However, the 
hybrid calibration method does a much better job of balancing the need for accurate trajectories 
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(i.e., headways, lane numbers) and macroscopic traffic performance measures (i.e., average lane 
speed, throughput) than either methodology that excludes the other data type (i.e., purely 
trajectory-based or purely traditional calibration). The methodology is flexible and allows any 
relative weighting between 0 and 1. If time and resources exist, analysts could consider 
conducting sensitivity analysis on this parameter by producing bar charts such as this before 
choosing which calibrated model (at which relative RMSE weighting) to use for future 
predictions or alternatives analysis. 

Traditional Validation Results 

Following the calibration experiment, the research team performed validation by both traditional 
methods and trajectory-based methods. Chapter 4 provided details for the team’s approach to 
both. Regarding traditional validation, the team constructed speed-flow diagrams for two radar 
locations. The I–95 model validation results are illustrated in figure 19 and figure 20. The model 
validation results for I–270 are shown in figure 21 and figure 22. For I–75, the team created 
speed-flow diagrams for three locations (figure 23, figure 24, and figure 25). 

The similarity between simulation and field-data patterns, as shown by the points in the 
scatterplot, indicate a reasonable correlation between observed and simulated traffic flow 
conditions, albeit with clear room for improvement. In other words, these results imply that the 
calibrated models meet minimum validity standards but could be more robust if other samples of 
field data could be applied toward traditional calibration. 

 
Source: FHWA.  

Figure 19. Scatterplot. I–95 speed-flow diagram north of Gordon Boulevard. 
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Source: FHWA.  

Figure 20. Scatterplot. I–95 speed-flow diagram south of Gordon Boulevard. 

 
Source: FHWA.  

Figure 21. Scatterplot. I–270 speed-flow diagram north of Middlebrook Road. 
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Source: FHWA.  

Figure 22. Scatterplot. I–270 speed-flow diagram north of Montgomery Avenue. 

 
Source: FHWA.  

Figure 23. Scatterplot. I–75 speed-flow diagram south of New Tampa Boulevard. 
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Source: FHWA.  

Figure 24. Scatterplot. I–75 speed-flow diagram north of New Tampa Boulevard. 

 
Source: FHWA.  

Figure 25. Scatterplot. I–75 speed-flow diagram south of I–275 Crossover. 

Trajectory Validation Results 

As described in chapter 4, for trajectory-based validation, the datasets were divided into two 
separate groups: calibration data and validation data. Following calibration, the calibrated model 
was evaluated according to validation (holdout) data. Deciding how to proportion the data into 
calibration and validation bins was more art than science, as no hard and fast rule exists in the 
literature. The team decided to apply 80 percent of the trajectories toward calibration and 
20 percent toward validation primarily to achieve enough trajectories in each bin for calibration. 
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This section discusses model specific validation results, validation challenges and solutions, and 
model calibration implications. 

Model Specific Validation Results 

The following validation exercise tested five calibrated models. These five weights represent the 
hybrid calibration at three different relative weights, the model calibrated considering only 
traditional data, and the model calibrated considering only trajectory data. The resulting RMSE 
values are graphed within figure 26 for I–95, in figure 27 for I–75, and in figure 28 for I–270. 
Traditional RMSE values are unchanged from the calibration results because traditional 
validation was performed using the speed-flow diagrams instead of a separate validation dataset. 
These results provide further evidence that the trajectory-calibrated models provide more 
realistic trajectories than the benchmark or traditionally calibrated models.  

For the I–95 network, the traditional calibration methodology (weight = 0) improves the estimate 
of traditional RMSE (average lane speed and throughput) compared with the benchmark model, 
in which the driver behavior parameters were not calibrated. However, the trajectories produced 
using the traditional calibration methodology are less accurate than the trajectories produced 
using the default driver behavior parameters. The trajectory-based calibration methodology 
(weight = 1) improves the trajectory RMSE compared with the benchmark model and the 
traditional calibration model, indicating that the individual vehicle’s lane assignment and 
headways better match what was observed in the real-world data. However, this methodology 
produces worse traditional RMSE than the benchmark and traditional calibration model, 
indicating that the average lane speed and throughput do not match the field data as well. 

For the I–75 network, the traditional calibration methodology (weight = 0) improves the 
traditional RMSE and the trajectory RMSE compared with the benchmark model, in which the 
driver behavior parameters were not calibrated. This indicates that following the traditional 
calibration methodology produces simulated headways, lane numbers, average lane speed, and 
throughput that better match the observed data compared with the model where the driver 
behavior are held at default values. The trajectory-based calibration methodology (weight = 1) 
improves the trajectory RMSE compared with the benchmark model and the traditionally 
calibrated model. Moreover, this model performed equivalently well at producing lane-specific 
speed and throughputs (traditional RMSE) compared with the traditionally calibrated model. The 
team hypothesizes that the longer trajectories extracted from the helicopter data contributed to 
the improvement in modeling results.  

For the I–270 network, the traditional calibration methodology (weight = 0) improves the 
estimate of traditional RMSE (average lane speed and throughput) and trajectory RMSE (lane 
number and headways) compared with the benchmark model, where driver behavior parameters 
were not calibrated. The trajectory-based calibration methodology (weight = 1) improves the 
trajectory RMSE compared with the benchmark model and the traditional calibration model, 
indicating that the individual vehicle's lane assignment and headways better match what was 
observed in the real-world data. However, this methodology produces worse traditional RMSE 
than the benchmark and traditional calibration model, indicating that the average lane speed and 
throughput do not match the field data as well. 
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In the I–75 results, it is notable that the hybrid calibration (weight = 0.25) model predicted 
trajectories more accurately than the purely trajectory-based (weight = 1) model. This may be 
due to having only 10 random number seed replications or having only 20 percent of the 
trajectory data applied toward validation. Moreover, the error bar for the purely trajectory-based 
calibration shows that the distribution of the modeling results obtained with 10 random number 
seeds has a high variance; this may skew the average trajectory RMSE for the purely trajectory-
based calibration on the higher side. The authors believe that if they had applied more random 
number seed replications or if they had used a more rigorous validation approach, such as k-fold 
validation, such anomalies would be less likely. 

 
Source: FHWA.  
Weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 26. Graph. I–95 validation results. 
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Source: FHWA.  
Weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 27. Graph. I–75 validation results. 

 
Source: FHWA.  
Weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 28. Graph. I–270 validation results. 
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Validation Challenges and Solutions 

Although the above validation results look fairly promising, the team’s initial validation 
experiment was a failure. Initial results showed that the trajectory-calibrated models failed to 
provide more realistic trajectories than the benchmark or traditionally calibrated models. This led 
the team to find and fix bugs in their scripting code for processing the trajectory data. It also led 
the team to perform 10 random number seed replications per candidate solution and revise the 
proportion of vehicles in each bin. 

Originally, the calibration and validation datasets were created by sorting trajectories randomly, 
such that the bins were not at all considered. The improved sorting logic performed random 
sorting of trajectories within each bin, instead of random sorting throughout the entire set of 
collected trajectory data. This ensured that the calibration and validation datasets would better 
reflect typical traffic and the distribution of the other dataset, as discussed in chapter 4.  

The team believes this adjustment, to account for binning when creating the calibration and 
validation datasets, was the most important correction that allowed the validation experiment to 
be successful. Ultimately the validation exercise, which led to the three key changes in the way 
validation was performed (i.e., fixed bug in the scripting code, 10 random number seed 
replications, consistent proportion of vehicles in each bin), correspondingly led to revisions in 
the calibrated models, which allowed those models to become more robust and trustworthy. 
Other possible solutions to failed validations are discussed at the end of the “Trajectory-Based 
Validation Method” section of chapter 4. 

Model Calibration Implications 

Overall, the trends of traditional RMSE versus trajectory RMSE are consistent across the 
calibration data (figure 16 through figure 18) and the validation data (figure 26 through figure 
28). This indicates that the trajectory calibration method can capture generalizable trends in 
driver behavior without overfitting to the calibration data sample.  

Additionally, the results provide further evidence that the trajectory-calibrated models provide 
more realistic trajectories than the benchmark or traditionally-calibrated models. This suggests 
that trajectories should be considered during calibration to ensure simulated trajectories are 
realistic. Indeed, these results suggest that there is no one size fits all approach to calibration: 
models calibrated with macroscopic performance measures generally produce results that more 
accurately depict the macroscopic characteristics of traffic flow (e.g., throughput, speed), while 
models calibrated with trajectories more accurately capture individual vehicle movement (e.g., 
headways, lane ID). The exception to this trend occurred with the I–75 model, where the model 
calibrated purely with trajectory data could capture the macroscopic traffic flow characteristics 
almost as well as the model calibrated purely with traditional performance measures like 
throughput and speed. The team hypothesizes that with longer trajectories, reliable calibration of 
traffic flow (throughput and speed) and trajectories (headway, lane IDs) considering a purely 
trajectory-based calibration procedure is possible. 

Until longer trajectories are more ubiquitously available to transportation agencies, there exists a 
hybrid approach to modeling, which uses both macroscopic performance measures and vehicle 
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trajectories in the calibration process. This approach balances the tradeoff between accurately 
capturing the vehicle trajectories and the characteristics of traffic flow, regardless of the length 
of the available trajectory data. 

I–15 CASE STUDIES 

The team conducted calibration and validation experiments for I–15 using Aimsun. The team 
performed data collection and modeling on four discrete sections of the highway. The lengths of 
these sections were 1,250 ft, 1,045 ft, 545 ft, and 440 ft. Warmup periods were 15 min for all 
calibration and validation runs, which satisfied warmup period recommendations discussed in 
Dowling, Skabardonis, and Alexiadis (2004). One should note that analysts may want to consider 
using a simulation warm-up time of at least twice the estimated travel time at free-flow 
conditions to traverse the length of the network. Prior to the calibration of driver behavior, the 
team first calibrated the simulation input demands to achieve a better matching of field-measured 
versus simulated throughput at key segments, described as “step zero” in chapter 4. The I.H.O.P. 
B.P.R. procedure was then executed as follows. 

Step 1: Inputs 

The team did not directly calibrate parameters in the Gipps model. Instead, they used parameters 
that affect headway and lane-changing directly, which were the chosen performance measures in 
this study. They decided to calibrate three car-following and two lane-changing parameters: 
reaction time, car-following aggressiveness, sensitivity factor deviation, lane-changing 
cooperation, and lane-changing aggressiveness. To make the problem more practical, the team 
identified ranges of values to consider for each calibration parameter based on their previous 
modeling experience. The values considered for the Gipps car-following model (Vasconcelos et 
al. 2014) are as follows: 

• Reaction time: 0.85, 0.90, 0.95, 1.00, 1.05, and 1.10 s. 
• Car-following aggressiveness: 0.0, −0.1, −0.2, −0.3, −0.4, −0.5. 
• Sensitivity factor deviation: 0.00, 0.05, and 0.10. 

The following lane-change model parameters and candidate values were selected for calibration: 

• Lane-changing cooperation: 50, 60, 70, 80, 90, and 100. 
• Lane-changing aggressiveness: 0, 10, 20, and 30. 

The remaining parameter values were kept at their default values. These selections led to 156 
candidate solutions. 

Step 2: Heuristics 

Chapter 4 recommended several viable options for the heuristic step. For this case study, the 
research team selected the DBF search method in step 2 to limit the amount of time needed for 
the calibration experiments. The team hypothesized that DBF search would perform faster than 
heuristics given the limited number of calibration parameters and the small parameter search 
spaces.  
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To limit the experiment to 156 candidate solutions, the team did not evaluate all possible 
combinations of the above values through simulation. Instead, the team first simulated all 108 
possible combinations of car-following values while preserving the default lane-changing values. 
The team then retained the best car-following values, namely, reaction time 0.95 s, car-following 
aggressiveness −0.5, and sensitivity factor deviation 0, while testing all 24 combinations of lane-
changing values. Because car-following aggressiveness = −0.4 also performed well during the 
first 108 simulations, the team again retested all 24 combinations of lane-changing values at a 
car-following aggressiveness of −0.4. The team performed 10 random number seed replications 
for each of the 156 combinations. 

Step 3: Outputs 

Chapter 4 addressed the rationale for selecting output measures. For trajectory-based calibration, 
the team used headways and lane numbers with a 50–50 relative importance weighting. For 
traditional calibration, the team used speed and throughput with a 50–50 weighting. The 
selection of 50–50 relative importance weightings was arbitrary for these case studies; future 
research could include sensitivity analysis of relative importance weighting to determine the best 
selection for traditional and trajectory-based calibration. 

Step 4: Points 

The fourth step in the proposed methodology is to choose the number of comparison points per 
full-set trajectory. The methodology does not adopt or require a specific number of points. The 
research team used 164 feet intervals between points for these case study experiments, with no 
specific rationale other than estimating what might achieve the right balance between practicality 
(e.g., computer run time) and robustness. Again, future research could include sensitivity 
analysis to determine the optimal number of comparison points per trajectory. 

Step 5: Binning 

The fifth step in the proposed methodology involves binning trajectories into specific groups to 
enable point-by-point comparisons of vehicle headways and lane numbers of sufficiently similar 
simulated and observed trajectories. The team wished to select enough bins to allow robust 
calibration results, but also wanted the number of bins to be small enough to make the 
experiments efficient and practical. The team defined 28 bins for the I–15 case study: 

• One driver type. 
• Two vehicle types (light-duty and heavy). 
• Seven origins (on-ramp and six mainline lanes). 
• Two destinations (off-ramp and mainline). 

Step 6: Pairing 

The team developed scripts to automate the trajectory pairing process. The team believed that 
pairing simulated and field-observed trajectories entering the study area at approximately the 
same time could produce robust calibration results. The team chose a 4-s and 200-ft threshold. 
Any simulated vehicle entering the study area within 4 s and 200 ft of a field-observed vehicle 
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could be paired with that vehicle. To limit the amount of time required for calibration, the team 
limited the number of paired trajectories per bin to a maximum of 25. 

The thresholds for pairing (e.g., space and time window) and the maximum number of paired 
trajectories per bin were decided based on engineering judgement. In the future, an analyst may 
want to consider conducting sensitivity analysis on these three parameters to determine the best 
selections for their data sample. 

Step 7: RMSE 

The team’s literature review (chapter 2) indicated that RMSE is an effective goodness-of-fit 
measure for calibrating traffic simulation models and driver behavior models. For the trajectory-
based RMSE, the team used a 50–50 relative weighting of headways and lane numbers to blend 
them into a single value. This allowed the RMSE value to reflect both car-following and lane-
changing effects. For the traditional RMSE, the team used a 50–50 relative weighting of 
throughputs and speeds to blend them into a single value. The calculations to accomplish this are 
described in chapter 4. The team further obtained hybrid calibration via relative weightings of 
traditional and trajectory RMSE as described in chapter 4. 

Figure 29 illustrates the trajectory-based RMSE values for I–15. The team selected a maximum 
normalized delta value of 1.0 for these experiments, such that the RMSEs in figure 29 were 
effectively constrained to a range of 0.0 to 1.0. The horizontal dashed line in figure 29 represents 
the benchmark RMSE value obtained after step zero of the proposed method. In step zero, traffic 
demand volumes were calibrated to achieve more accurate simulated throughputs. This 
simulation model was then used as the starting point for subsequent calibration of driver 
behavior. 
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Source: FHWA.  

Figure 29. Scatterplot. I–15 trajectory RMSE. 

Calibration Results 

Figure 30 provides results for the I–15 network. To help with interpreting these graphs, please 
note that traditional calibration is indicated in these figures as “weight = 0,” while a pure 
trajectory-based calibration of driver behavior is indicated in these figures as “weight = 1.” The 
step zero model with calibrated throughputs and default driver behavior parameters is labeled 
“Benchmark.” “Weight = 0.25,” “weight = 0.5,” and “weight = 0.75” are all hybrid calibration 
model results, where the relative importance of traditional performance measures (e.g., 
throughput and speed) and trajectory performance measures (e.g., lane ID and headway) varied. 
In weight = 0.5, traditional and trajectory performance measures were considered equally 
important. For weight = 0.25, the traditional performance measures were considered to be three 
times as important as the trajectory measures. Conversely, for weight = 0.75, trajectory 
performance measures were considered to be three times as important as the traditional 
performance measures. Hybrid RMSEs calculations are discussed in chapter 4. Only the best 
solution—that with the lowest RMSE out of 156 candidates—is shown for each weight, based on 
10 random number seed replications. In this particular bar chart, the box-and-whisker notation 
shows the range of all 10 random number seed replications.  

The overall results for the I–15 network showed that if trajectories are excluded from the 
calibration process, simulated car-following and lane-changing behaviors may not accurately 
reflect trajectories observed in the field data. This holds true even if aggregate measures have 
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good agreement with those observed in the field. The purely traditional calibration made 
trajectories less realistic than those obtained with default driving behavior parameters at I–15, 
even though the calibration process improved the traditional RMSE. 

Like the previous case studies, the trajectory-based calibration (weight = 1) improves the 
accuracy of the trajectories—specifically, lane number and headway—compared with the 
benchmark model and the traditionally calibrated model (weight = 0). The traditional RMSE 
performance is lower, however, indicating that the average lane speed and throughput are 
reflective of what was observed in the data. 

The symmetry of these results on a second microsimulation software platform again forces us to 
question which data collection effort produces a better representation of ground truth. In 
addition, these results imply that a hybrid calibration might produce the most reliable results for 
all types of measures. 

 
 

Source: FHWA.  
Weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 30. Bar Chart. I–15 calibration results. 

Traditional Validation Results 

Following the calibration experiment, the research team performed validation by both traditional 
methods and trajectory-based methods. For traditional validation, the team constructed speed-
flow diagrams for four detector locations, as seen in figure 31 through figure 34 for I–15. The 
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similarity of simulation and field data patterns, as shown by the points in the scatterplot, indicate 
a reasonable correlation between observed and simulated traffic flow conditions. 

 
Source: FHWA.  
RDS = real dataset. 

Figure 31. Scatterplot. I–15 speed-flow diagram at detector 1. 
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Source: FHWA.  
RDS = real dataset. 

Figure 32. Scatterplot. I–15 speed-flow diagram at detector 2. 

 
Source: FHWA.  
RDS = real dataset. 

Figure 33. Scatterplot. I–15 speed-flow diagram at detector 3. 
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Source: FHWA.  
RDS = real dataset. 

Figure 34. Scatterplot. I–15 speed-flow diagram at detector 4. 

Trajectory Validation Results 

As described in chapter 4, for trajectory-based validation, the datasets were divided into two 
separate groups: calibration data and validation data. Following calibration, the calibrated model 
was evaluated according to validation (holdout) data. The decision of how to proportion data into 
calibration and validation bins was more art than science, as no hard and fast rule exists in the 
literature. The team decided to apply 80 percent of the trajectories toward calibration and 20 
percent toward validation primarily to achieve a sufficient number of trajectories in each bin for 
calibration. 

The following validation exercise tested five calibrated models. These five weights represent the 
hybrid calibration at three different relative weights, the model calibrated considering only 
traditional data, and the model calibrated considering only trajectory data. The resulting RMSE 
values. The team intended to demonstrate that the calibrated simulation models could effectively 
predict field-observed trajectories from the validation dataset. The resulting RMSE values are 
graphed within figure 35 for I–15. 
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Source: FHWA.  
Note: weight is the relative weighting of trajectory-to-traditional calibration. 

Figure 35. Graph. I–15 RMSEs from the validation data. 

Figure 35 shows the same trend of traditional and trajectory RMSE exhibited earlier by figure 
30, which verifies that using trajectory performance measures in the calibration process improves 
the accuracy of the trajectories without overfitting to the calibration data. The purely trajectory-
based calibration methodology produced trajectories that were most reflective of what was 
observed in the data with respect to lane numbers and headways. The improvement in trajectory 
RMSE from the benchmark model to purely trajectory-based calibration (weight = 1) using the 
validation dataset is 14 percent, which is the same improvement from the calibration dataset. The 
trajectory calibration methodology produced the highest observed traditional RMSE, however, 
indicating that the model’s average lane speed and throughputs were less similar to what was 
observed in the collected dataset. 

As with the other case studies, the first validation attempt failed. In the first attempt at validation, 
the change in trajectory RMSE from the benchmark model to the purely trajectory-based 
calibrated model was −7 percent. After this initial failed validation, the team observed that the 
proportion of trajectories in each bin was highly unequal between the calibration and validation 
datasets. This highlights the importance of ensuring that during step 5 of I.H.O.P. B.P.R, the 
proportion of trajectories in each bin is consistent with typical traffic. It ensures that the 
calibrated model can be truly realistic and truly predictive of future conditions. 
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OVERALL RESULTS: PURE TRAJECTORY-BASED CALIBRATION 

To gain further insight, the research team generated some overall summary results accounting for 
all four sites. Table 8 focuses on the potential benefits of a pure trajectory-based calibration (i.e., 
weight = 1), relative to a pure traditional calibration (i.e., weight = 0) or a benchmark model 
(calibrated demands, uncalibrated driver behavior), in terms of trajectory accuracy and realism 
(RMSEtrajectory) using the calibration data as the test data (corresponding with figure 16 through 
figure 18). The first column is the difference between the RMSEtrajectory of the traditional 
calibration (weight = 0) relative to the RMSEtrajectory of the benchmark model. This implies that 
traditional calibration (i.e., minimizing the difference between the simulated and observed lane-
specific throughput and speed) does not reliably improve the realism of vehicle trajectories 
compared to the benchmark model. Interestingly, for two of the four models, the benchmark 
model using uncalibrated driving behavior parameters produced trajectories that better matched 
field data compared to the model calibrated using lane-specific throughput and speed 
measurements. This is a major cause for concern to the research team: using throughput and 
speed as calibration data alone may not produce the robustly calibrated models that engineers 
expect.  
 
The second column represents the difference between RMSEtrajectory of the trajectory calibration 
(weight = 1) relative to the RMSEtrajectory of the benchmark model. The second column implies 
that pure trajectory-based calibration (i.e., minimizing the difference between the observed and 
simulated headways and lane ID) produces large improvements in trajectory accuracy compared 
to the benchmark model.  
 
The third column is the difference between the RMSEtrajectory of the trajectory-based calibration 
method (weight = 1) and the traditional calibration method (weight = 0). The third column 
highlights the sizeable benefit to trajectory accuracy (RMSEtrajectory) when performing trajectory-
based calibration (weight = 1) instead of traditional calibration (weight = 0). 

Table 8. Impacts of calibration on trajectories from the calibration dataset. 

Interstate Traditional (%) Trajectory (%) Benefit (%) 
I–95 −13 +17 +30 
I–75 +20 +59 +39 
I–270 +5 +21 +16 
I–15 −3 +14 +17 

Table 9 reveals a corresponding set of results according to the validation dataset, which is data 
that were not used for calibration (set aside during step 5 of the I.H.O.P. B.P.R procedure). The 
first column of results implies that traditional calibration (i.e., minimizing the difference between 
the simulated and observed throughput and speed) has mixed impact on the realism of vehicle 
trajectories (RMSEtrajectory) relative to the benchmark model. This provides further evidence that 
traditional calibration methods cannot be trusted to produce accurately modeled vehicle 
trajectories.  
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The second column implies that the trajectory-based calibration method consistently produced 
improved simulated trajectory predictions relative to the benchmark model. This observation was 
true across four different case studies conducted in two different microsimulation platforms. 

Finally, the third column highlights the potential benefits of trajectory-based calibration (weight 
= 1) relative to traditional calibration (weight = 0): an increase in trajectory accuracy for every 
case study conducted. These benefits are somewhat smaller than the table 8 benefits. However, 
the research team expected this, because the validation data were not used in the calibration 
process. Thus, table 9 illustrates the more-likely outcomes of using the calibrated models to 
make predictions, because they were evaluated against a separate validation dataset. Although 
the team does not have access to something comparable to a before-and-after (current and future) 
dataset, table 9 demonstrates that the trajectory-based calibration method can capture 
generalizable trends in driver behavior that match validation data (not used in the calibration 
procedure) quite well and should be explored further in future research. 

Table 9. Impacts of calibration on trajectories from the validation dataset. 

Interstate Traditional (%) Trajectory (%) Benefit (%) 
I–95 −12 +9 +21 
I–75 +7 +42 +35 
I–270 +3 +10 +7 
I–15 +1 +14 +15 

 
Table 10 examines the impacts of calibration on traditional measures. The first column is the 
difference between the RMSEtraditional of the traditional calibration (weight = 0) method relative to 
the RMSEtraditional of the benchmark model. The first column of results implies that traditional 
calibration (i.e., minimizing the difference between the simulated and observed lane-specific 
throughput and speed) improves the realism of traditional performance measures, although the 
magnitude of that improvement varies across networks.  
 
The second column is the difference between the RMSEtraditional of the trajectory calibration 
(weight = 1) relative to the RMSEtraditional of the benchmark model. The second column implies 
that pure trajectory-based calibration does not reliably improve the simulated aggregate traffic 
flow performance measures. At two of the four sites, the reduction in accuracy was marginal. 
Moreover, at the site where helicopters were used for trajectory data collection, the accuracy of 
the aggregate traffic flow performance measures increased substantially (relative to the models 
calibrated with drone data), even though traditional measures were not explicitly used by the 
calibration objective function.  
 
The third column highlights the advantage of traditional calibration (i.e., minimizing the 
difference between the simulated and observed throughput and speed) over trajectory-based 
calibration (i.e., minimizing the difference between the simulation and observed headway and 
lane IDs) in terms of aggregate traffic flow performance measure accuracy. As shown in table 
10, the site where helicopters were used for data collection instead of drones (which produced 
significantly longer trajectories), the trajectory calibration method performed nearly as well as 
the traditional calibration method at replicating aggregate traffic flow performance measures, 
even though traditional measures (e.g., throughput, speed) were not considered as part of the 



79 

objective function. At 3 of the 4 sites, the traditional calibration method (where the objective was 
to explicitly match segment-level throughput and speed) produced considerably more accurate 
simulated aggregate traffic flow performance measures. However, as observed in table 8 and 
table 9, this came at the significant expense of accurate individual vehicle trajectories. This 
motivated the study of hybrid calibrated models.  

Table 10. Impacts of calibration on traditional measures. 

Interstate Traditional (%) Trajectory (%) Benefit (%) 
I–95 +10 −7 +17 
I–75 +25 +20 +5 
I–270 +7 −14 +21 
I–15 +9 −5 +14 

OVERALL RESULTS: HYBRID CALIBRATION 

The research team developed the hybrid calibration method to enable analysts to include both 
trajectories and aggregated traffic-flow performance metrics in the calibration process. The 
section discusses the benefits of conducting a hybrid calibration process in microsimulation 
models. In the absence of guidance, this section will analyze the results of the 50-50 hybrid 
calibrated model, which considered trajectories and aggregated traffic-flow performance metrics 
as equally important in the calibration process.  
 
Table 11 details the impact of the hybrid calibration method (weight = 0.5) on the accuracy of 
simulated trajectories (RMSEtraditional) versus the benchmark model and the pure traditional 
calibrated model (weight = 0). The second column indicates that the hybrid calibration method 
more accurately simulated throughput and speed compared to a model using default parameters. 
As shown in column 3, the site where helicopters were used for data collection instead of drones 
(which produced significantly longer trajectories), the trajectory calibration method performed 
nearly as well as the traditional calibration method at replicating aggregate traffic flow 
performance measures, even though traditional measures (e.g., throughput, speed) were not 
considered as part of the objective function. The remaining three sites suggest that the traditional 
calibration method was slightly more accurate in simulating throughput and speed that match 
field data compared to the hybrid calibration method. However, as will be shown in table 12 and 
table 13, this slight reduction in the traditional RMSE is a small price to pay in return for a 
significant increase in trajectory accuracy.  

Table 11. Impacts of trusted hybrid model on traditional measures. 

Interstate Versus Benchmark 
Versus Traditionally 

Calibrated 
Interstate 95 +3% -8% 
Interstate 75 +24% -1% 
Interstate 270 +6% -2% 
Interstate 15 +6% -3% 

 
Table 12 details the impact of the hybrid calibration method (weight = 0.5) on the accuracy of 
simulated trajectories (RMSEtrajectory) versus the benchmark model and the pure trajectory 
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calibrated model (weight = 1) using calibration data as the observed data. As one can see, using 
both trajectories and aggregate traffic flow performance metrics in the calibration process 
through a unique hybrid calibration method produces models that are much more robust, and 
accurately simulate vehicle trajectories that match what was observed in field data. 

Table 12. Impacts of trusted hybrid model on trajectories from the calibration dataset. 

Interstate Versus Benchmark 
Versus Traditionally 

Calibrated 
Interstate 95 +13% +23% 
Interstate 75 +58% +48% 
Interstate 270 +11% +7% 
Interstate 15 +10% +13% 

 
Table 13 details the impact of the hybrid calibration method (weight = 0.5) on the accuracy of 
simulated trajectories (RMSEtrajectory) versus the benchmark model and the pure trajectory 
calibrated model (weight = 1) using the validation data as the observed data. This table provides 
further evidence that a hybrid approach to calibration performs much better at producing 
accurately simulated trajectories compared to models that were not calibrated (benchmark) or 
models that were calibrated only with macroscopic data. Moreover, when comparing table 12 
and table 13, one does not observe a significant decrease in accuracy despite using holdout data 
as the observed data; this strongly suggests that the hybrid calibration method produces models 
that are not overfit to the calibration data, and captures generalizable trends in driver behavior. 

Table 13. Impacts of trusted hybrid model on trajectories from the validation dataset. 

Interstate Versus Benchmark 
Versus Traditionally 

Calibrated 
Interstate 95 +6% +16% 
Interstate 75 +52% +49% 
Interstate 270 +3% +0% 
Interstate 15 +9% +11% 

 
Thus, the authors of this paper believe that a hybrid calibration approach—using both trajectories 
and lane-specific throughput and speed—for the calibration of driver behavior models in 
microsimulation provides a substantial improvement over current best practices. This is because 
the hybrid calibration approach produces models whose simulated trajectories match field 
observations much more accurately, without sacrificing the accuracy of macroscopic traffic flow 
performance metrics.  

MODELING IMPLICATIONS 

Based on the research documented in this chapter, the authors make the following general 
calibration recommendations for calibrating microsimulation models: 

• The driver behavior parameters of microsimulation models should always be calibrated 
based on real-world data. This research adds to a body of literature that recognizes the 
importance of model calibration and suggests that default driver behavior parameters are 
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not sufficient for capturing real-world driver behavior in microsimulation model 
analyses.  

• Moreover, when appropriate data are unavailable, the authors of this paper caution 
practitioners against choosing high-resolution microsimulation models when conducting 
modeling analysis projects. Although the visualizations produced using microsimulation 
models are helpful for communication of project impacts, it is our professional 
responsibility to ensure the models are calibrated appropriately to reflect local conditions 
without being overfit to the data.  

• The authors of this paper believe that a hybrid calibration approach—using both 
trajectories and lane-specific throughput and speed—for the calibration of driver behavior 
models in microsimulation provides a substantial improvement over current best 
practices. The hybrid calibration approach produces models whose simulated trajectories 
more accurately match field observations without sacrificing the accuracy of macroscopic 
traffic flow performance metrics.  

• When calibrating driver behaviors such as car-following and lane-changing, it is 
preferable to incorporate lane-specific measures instead of segment-specific measures. 

• The longer trajectories (collected via helicopter) are more desirable than data collected 
via individual drones. Calibrations completed using longer trajectories (>1.2 mi) 
outperformed the shorter trajectories (800 ft) in terms of both simulated trajectories and 
the simulated lane-specific throughput and speed. Moreover, the model calibrated using 
longer trajectories performed just as well at capturing lane-specific throughput and speed 
as the model calibrated using lane-specific throughput and speed. This may suggest that 
with longer trajectories, a purely trajectory-based calibration method may be sufficiently 
reliable, but future research is needed on the topic. 

• The validation experimental results highlight the importance of validation in identifying 
problems in the calibrated models, fixing those problems, and making the calibrated 
models more robust and predictive.
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CHAPTER 6. CONCLUSION 

Because of recent improvements in data collection and processing technologies for vehicle 
trajectories, trajectory-based calibration of microsimulation models is now a more feasible and 
practical option for transportation agencies to consider. In response, this project produced a 
methodology that explicitly incorporates vehicle trajectories into the calibration process 
(chapter 4). This project accomplished a comprehensive data collection and data processing 
effort at four real-world congested freeway sites (chapter 3). The data collection vendors 
delivered nearly 3 TB of helicopter video footage data and approximately 75 GB of collected 
drone data. The traditional corroborative data were much smaller in size compared with the 
drone video footage data. The project team will provide online public access to the raw video 
footage, post-processed trajectory data, and the traditional corroborative data. The team used this 
inventory to test the new, trajectory-based calibration methodology in two microsimulation 
software programs (chapter 5). The project team developed several scripts to automate the 
trajectory-based calibration methodology; the scripts are available online and are described in the 
appendix of this document (Github, n.d.-b). 

MODEL CALIBRATION IMPLICATIONS 

The research team’s goal was to make this methodology as practical and straightforward as 
possible. The resulting seven-step methodology can be remembered through the acronym 
I.H.O.P. B.P.R. The first four steps—inputs, heuristics, outputs, and points—are user choices, 
whereas the last three steps—binning, pairing, and RMSE—are iterative processes that can be 
automated through scripting. Chapter 4 provides an overview of the developed methodology, and 
chapter 5 presents four case studies applying the methodology for model calibration. 

The foremost practical challenges of the new methodology appear to be in the automated post-
processing, binning, and numeric comparison of trajectory data. The research team developed 
add-on scripts to automate these data processing steps. This project report, coupled with the 
available scripts, may inspire early adopters to try trajectory-based calibration for the first time. 
However, to achieve widespread adoption and cost-effectiveness, the same process may need to 
be streamlined by software developers who can provide user-friendly, interactive apps that 
implement the methodology more efficiently. 

The experimental results from this project imply that data from traditional calibration methods 
(e.g., average lane speed, throughput) cannot be trusted to accurately predict vehicle trajectories 
(e.g., lane number, headway) even though they are replicating traditional performance measures 
well. This has significant implications for how practitioners think about calibrating their models.  

Interestingly, a calibration method that only used vehicle trajectories for calibration (i.e., the 
methodology produced by this research effort) also may not be the best solution. As observed 
through the case studies, the trajectory calibration methodology produced models that better 
match vehicle trajectories, but do not always match macroscopic performance measures as well 
as traditionally calibrated models. The exception to this observation was at the site where 
trajectories were collected by helicopters, instead of drones. The model calibrated using longer 
trajectories performed just as well at capturing lane-specific throughput and speed as the model 
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calibrated using lane-specific throughput and speed. This may suggest that with longer 
trajectories, a purely trajectory-based calibration method may be sufficiently reliable, but future 
research is needed on the topic. 

There exists an opportunity to calibrate a model considering both trajectory and traditional data 
and performance measures. This is the hybrid model discussed in chapter 4. Case studies 
documented in chapter 5 demonstrate that the hybrid model does not typically identify the best 
(i.e., lowest) trajectory or traditional RMSE. However, the hybrid calibration method does a 
much better job of balancing the need for accurate trajectories (i.e., headways, lane numbers) and 
macroscopic traffic performance measures (i.e., average lane speed, throughput) than either 
methodology that excludes the other data type (i.e., purely trajectory-based or purely traditional 
calibration). 

Based on the documented research, the authors of this report make the following general 
recommendations: 

• The driver behavior parameters of microsimulation models should always be calibrated 
based on real-world data. This research adds to a body of literature that recognizes the 
importance of model calibration and suggests that default driver behavior parameters are 
not sufficient for capturing real-world driver behavior in microsimulation model 
analyses.  

• Moreover, when appropriate data are unavailable, the authors of this paper caution 
practitioners against choosing high-resolution microsimulation models when conducting 
modeling analysis projects. Although the visualizations produced using microsimulation 
models are helpful for communication of project impacts, it is our professional 
responsibility to ensure the models are calibrated appropriately to reflect local conditions 
without being overfit to the data.  

• The authors of this paper believe that a hybrid calibration approach—using both 
trajectories and lane-specific throughput and speed—for the calibration of driver behavior 
models in microsimulation provides a substantial improvement over current best 
practices. The hybrid calibration approach produces models whose simulated trajectories 
more accurately match field observations without sacrificing the accuracy of macroscopic 
traffic flow performance metrics.  

• When calibrating driver behaviors such as car-following and lane-changing, it is 
preferable to incorporate lane-specific measures instead of segment-specific measures. 

• The longer trajectories (collected via helicopter) are more desirable than data collected 
via individual drones. Calibrations completed using longer trajectories (>1.2 mi) 
outperformed the shorter trajectories (800 ft) in terms of both simulated trajectories and 
the simulated lane-specific throughput and speed. Moreover, the model calibrated using 
longer trajectories performed just as well at capturing lane-specific throughput and speed 
as the model calibrated using lane-specific throughput and speed. This may suggest that 
with longer trajectories, a purely trajectory-based calibration method may be sufficiently 
reliable, but future research is needed on the topic. 
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• The validation experimental results highlight the importance of validation in identifying 
problems in the calibrated models, fixing those problems, and making the calibrated 
models more robust and predictive. 

COST-EFFECTIVENESS OF THE NEW METHOD 

Over the years, agencies and their consultants have learned how to manage and plan for the level 
of effort associated with traditional calibration methodologies. The same cannot yet be said for 
trajectory-based calibration. The effort to conduct trajectory-based calibration, especially without 
user-friendly apps within popular microsimulation packages, is larger than that required for 
traditional calibration simply because of inexperience with the new methodology. Moreover, 
only four case studies have been conducted using this methodology; thus, the model 
improvement benefits are somewhat uncertain. Therefore, user-friendly apps will be needed to 
lessen the risks of pursuing trajectory-based calibration and achieve wider adoption of trajectory-
based calibration. 

The approach to data collection is another factor in cost-effectiveness. Although helicopter data 
collection is more expensive than drone data collection, trajectory-based calibration at I–75 
produced a simulation model having significantly better predictive ability compared with the 
sites calibrated with drone data, as demonstrated by the validation experiments. The collected 
trajectory data by helicopter at I–75 produced the largest sample size of trajectories of any site 
and the longest length of full-set trajectories (1.2 mi). By contrast, the team deployed multiple 
drones at the other sites to sample different stages of space-time congestion propagation; these 
data samples are much shorter in time and space, only collecting data for about 15 min at a time 
and only capturing 800 ft of each trajectory. Based on this research, the trajectory-based 
calibration methodology may ultimately perform better using longer trajectories than what can 
currently be captured by a single drone. This has a major cost implication for the methodology. 
Some solutions include flying multiple, simultaneous drones that are synced to enable the 
trajectories to be stitched together during post-processing. Another approach may involve 
obtaining trajectories from commercial probe data providers, although probe data may bring its 
own set of challenges (e.g., GPS accuracy, sample size of probe vehicles, availability of 
trajectory data through commercial providers). 

TAKEAWAYS FOR TRANSPORTATION AGENCIES 

Analysts and agencies may consider certain tradeoffs when contemplating their approach to 
calibration. It may be helpful for agencies to migrate toward incorporating finer-grained 
performance measures and gradually adopt such measures for inclusion within the calibration 
process for microsimulation models. This is because improving the realism of driver behavior 
modeling may be one of the best available ways to improve the predictive ability of 
microsimulation models. It stands to reason that fine-grained output performance measures 
(e.g., headway, lane ID), as opposed to coarse segment-based measures (e.g., segment 
throughput and speed), are best suited for determining the best input model parameters to control 
fine-grained driver behaviors (i.e., car-following and lane-changing). A hybrid blend of measures 
may prove to be an excellent compromise, but additional research is necessary. 
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In addition, agencies should strongly consider validation. In the case studies from this project, 
validation helped to find and fix problems in the calibrated models. The separate research teams 
both found problems in their calibrated models despite working independently, working with 
different software, and analyzing different freeway sites. Without the validation effort, these 
problems never would have been discovered. In real-world projects, this could mean using 
problematic models for important future predictions because the calibration results look 
favorable and validation was never completed. Even when calibration results look favorable, 
there could be unknown biases lurking inside the model. After finding and fixing problems 
revealed by validation, the revised calibrated model may be more robust and predictive than 
before. 

Finally, the authors recognize that trajectory data are often not readily available. This report 
strongly suggests that it is time to start exploring methods to collect trajectory data more 
ubiquitously to inform microsimulation model calibration. In the interim, the authors do not want 
to discourage agencies from using traditional calibration methods when trajectory data are 
unavailable. As was documented in the case studies, the traditional calibration method 
significantly outperformed the benchmark model, in terms of replicating traditional performance 
measures from the field. However, all four case studies suggest that traditional calibration 
methods do not appear to produce accurate car-following behaviors, lane-changing behaviors, or 
simulated vehicle trajectories. As a result, the ability of traditionally calibrated microsimulation 
models to predict future conditions, or perform alternatives analyses, may be compromised. 
Additional research is recommended in this area to fully understand the implications of these 
observations. 

In summary, there are additional costs required to collect trajectory-level data and set up the 
automated calibration procedure. The resulting microsimulation models, however, may provide 
more realistic predictions and avoid overfitting to the traditional measures. 

FUTURE RESEARCH AND DEVELOPMENT 

The research documented in this report represent a first step toward maturing methods that use 
trajectories for microsimulation model calibration. As with most exploratory research, the 
experiments in this project raised the following additional issues and questions that future 
research could potentially examine: 

• The extent to which unrealistic driver behaviors are compromising the accuracy of high-
profile performance measures is unclear.  

• In this project’s trajectory-based calibration experiments, the relative importance of car-
following and lane-changing was always set to 50–50. Would the process be more robust 
under a different relative weighting? If so, could the optimal relative weightings be 
predicted based on traffic network conditions? 

• Can lengthy and accurate trajectories be formed by stitching together shorter trajectories 
(collected by multiple drones) in a cost-effective manner? 
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• Alternatively, can lengthy and accurate trajectories be obtained through probe data, and 
can they be successfully applied toward calibrating microsimulation models? 

• In this project’s trajectory-based calibration experiments, the research team achieved 
favorable results by applying 80 percent of the trajectory data toward calibration and 20 
percent of the trajectory data toward validation. Would this distribution of data work well 
for other sites? If not, could the appropriate distribution of data be predicted according to 
site characteristics or traffic characteristics? 

• How reliable are the available data collection and data processing methods for trajectory 
data compared with traditional data? 

• To what extent would it be helpful to calibrate multiple driver behavior models for 
multiple congestion regimes (e.g., below capacity, near capacity, at capacity, above 
capacity)? The benefit is uncertain, because driver behavior may have minimal impact on 
overall mobility at the below-capacity and above-capacity regimes. 
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APPENDIX A. VISSIM SCRIPTS 

The following seven scripts are developed and available online (Github, n.d.-b): 

1. WGS_to_cartesian—this Python® code converts the WGS84 coordinates (longitudes and 
latitudes) to Vissim Cartesian coordinates. This conversion code uses several reference 
points. The WGS84 and Vissim coordinates for these reference points are derived and 
entered in the code manually. 

2. Enumerate—this code enumerates through all parameter settings and calls the 
Vissim_eval code for each parameter set. It also reads the location and time limits of the 
trajectory data and passes it to the Vissim_eval code, so that Vissim_eval collects 
simulated trajectories only within the same location and time limits. Vissim_eval returns 
the macroscopic measures (throughput and speed) and trajectories to Enumerate. 
Enumerate then saves these outcomes. 

3. Vissim_eval—this code is a main simulator component. Inputs to this code are parameter 
set, time, and location limits of trajectory collection, and several other simulation 
parameters. With these inputs, Vissim_eval calls Vissim, sets the Vissim simulation 
parameters, runs the simulation, and collects microscopic and macroscopic measures. 

4. MOE_eval—this code is used to post-process and evaluate the simulation outcomes. 
First, macroscopic RMSEs are calculated by comparing the field and simulation 
throughput and speed data. These RMSEs are then normalized to fit within a range 
between 0 and 1. Second, microscopic RMSEs are derived with the following procedures: 

a. Reads the field-collected trajectories. 
b. Reformats the field data into a structure similar to NGSIM dataset. 
c. Combines all field data zones into one big table and makes vehicle identifications 

(ID) unique.  
d. Calculates time headways for the field data. 
e. Defines a time headway cutoff and categorizes vehicles in the field data into 

“conservative” and “aggressive.” 
f. Gets a sample of vehicles in the simulated trajectory dataset for each bin (using 

“sampling” code). 
g. Finds the corresponding data points in the field data (using “pairing” code). 
h. Calculates the headway and lane number errors for each pair of vehicles at each 

bin. 
i. Calculates microscopic RMSE for each bin and then returns the average of all 

bins as the final microscopic RMSE. 
j. Finally, MOE_eval saves the macroscopic and microscopic RMSE values. 

5. Sampling—this script gets the sample size and headway cutoff values as inputs and 
returns a sample of simulated trajectories for each bin. 

6. Pairing—this script gets the field and simulated trajectories, simulated trajectories sample 
indices (outputs of “sampling” code), and time and location tolerances parameters as 
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inputs and returns the corresponding field trajectories indices (similar to the format of 
simulated trajectories sample indices). The corresponding field trajectories shall fall 
within the temporal and spatial tolerance parameters. 

7. Plots—this code plots the graphics.
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APPENDIX B. AIMSUN SCRIPTS 

• The model is developed in Aimsun version 8.4, and as vehicle headways can be obtained 
using an application programming interface (API), the license should include API as 
well. 

• There is one Aimsun model (.ang) and two databases (sqlite). As mentioned in the report, 
the team ran two sets of trajectory scenarios and the regular Aimsun outputs of these 
scenarios (not vehicle trajectories) are in separate databases. The outputs of scenarios 1-
108 is in “Trajectory_Base_Output_1_108.sqlite” and the outputs of scenarios 109-156 is 
in “Trajectory_Base_Output_109_156.sqlite”. However, for the second set the scenario 
IDs in database starts from 1. Therefore, the IDs of scenarios 109-156 are 1-48 in the 
database Trajectory_Base_Output_109_156.sqlite. To retrieve Aimsun outputs from the 
existing databases the corresponding database should be linked in the “Outputs to 
Generate” tab of scenario.  

• Trajectory outputs are saved as .csv files with the ID of the scenario. This is how the API 
(included in the material) saves the output.  

• To get trajectory outputs when running any new scenario, the “Headway_Output.py” API 
should be linked as an external API in “Aimsun Next APIs” tab of scenario. Also, 
“AAPI.py” library should be saved in the same directory as “Headway_Output.py”. Then 
after running a scenario, a .csv file of trajectory outputs will be saved in the same 
directory.  

• There are two required files to run the model. First, the path_assignment file (included in 
the material), which should be linked in the “Main” tab of scenario. Second, the ramp 
metering input files (saved in SDRMS folder in the material), which should be linked in 
“Aimsun Next APIs” tab of scenario. By double clicking on the existing SDRMS API, 
you can update the directory of the relevant input files.  

• To be able to set up trajectory scenarios easily the team used a script, 
“SensitivityAnalysis” (Aimsun id: 21348132), which is already included in the model. 
This script runs from a replication. Before running the replication, the calibration 
parameters and their ranges, in addition to section IDs (if any section-level calibration 
parameter such as lane-changing cooperation is used), should be updated. Then you can 
right click on the replication and select the script. Depending on the parameters and the 
ranges, several scenarios will be run. 

• The “Trajectory_RMSE.py” script requires the coordinate of the study locations from 
.csv files, which are in folder “Road_Geometry”. 

• To get XY coordinates in vehicle trajectories, the Aimsun model’s unit should be set to 
metric (not English).
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