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Summary of work performed on Task 9- Screening Criteria for Liquefaction-induced Lateral
Spread as part of Development of Next Generation Liquefaction (NGL) Database

for Liquefaction-Induced Lateral Spread

Introduction

Greetings to all UDOT Technical Advisory Members for the NGL Lateral Spread Development Project.
Massoud Hosseinali and | would like to forward your review and comments on the approach we have
developed regarding Task 9 — Lateral Spread Screening Criteria for the subject contract with the Utah
Department of Transportation.

In this study, we sought to develop a probabilistic framework for determining the likelihood of generating
liguefaction-induced lateral spread as a function of soil and subsurface conditions from the dataset we

have compiled.

Finished Products

1. We have created a probabilistic framework by expanding the conventional probability chain for
predicting the amount of lateral spread displacement.

a.

Conventional Approach: P(Dy > y) = P(L)P(Dy > y|L) where P(L) is the probability
of triggering liquefaction, and P(Dy > y|L) is the probability the horizontal
displacement, Dy, exceeds some threshold value (e.g., 0.1, 0.3 and 1.0 m) given
liguefaction.

Revised Approach: P(Dy >7y) = P(L)P(LS|L)P(Dy > y|LS). We extended the
probability chain above by adding a term to predict the probability of lateral spread
susceptibility given liquefaction (i.e., P(LS|L)). The probability is essentially a
probabilistic approach to develop “screening criteria.” It allows a multivariate analysis of
the factors that contribute to causing lateral when liquefaction has been triggered and
to express the probability of lateral spread given these factors.

We postulated that P(LS|L) could be expanded to: P[L, | F, PI, SI, T, D, Z, G. R, M,,, X,]
where the independent variables in this equation are fines content, F, plasticity index,
PI, soil index, SI, layer thickness, T, soil density D, depth of critical layer, Z, relative
geological susceptibility, G, seismic source distance, R, and earthquake magnitude, M,,
and represent other possible evaluated as part of the research, X,

2. To solve the multivariate problem discussed in 1c, we applied conventional neural networks (CNN).

a.

Because the development of a lateral spread susceptibility model requires spatial context
(i.e., continuity and thickness of the critical layer are essential in causing lateral spread),
we chose the following scheme to capture these effects. Fig. 1 shows the lateral spread
that developed in Heber road during the 1979 Imperial Valley earthquake. This figure
shows the location of SPT boreholes and the zone of lateral spread displacement. From
examples like this, we classified three types of borehole pairs: (1) pairs with both
boreholes found inside the lateral spread zone (e.g., borehole 4 paired with 5 and
borehole 5 paired with 6), (2) pairs with both boreholes located outside the lateral spread
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zone (e.g., borehole 1 paired with 2), and (3) boundary pairs of boreholes that cross the
margin of the lateral spread zone (e.g., borehole 11 paired with 4(,
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Figure 1 SPT boreholes and lateral spread in Heber road at 1979 Imperial Valley case history

b. We built a “classifier” model using CNNs to compute the newly added probability of
lateral spread given liquefaction. Approximately 620 standard penetration testing (SPT)
boreholes were collected from 11 earthquakes to train the CNN model (Table 1). The
proposed CNN-based screening criteria required a pair of SPT boreholes.

c. The results of the CNN model can be used not only as a binary classifier to predict the
probability of lateral spread triggering given liquefaction but also to classify the
boreholes pair type as one of within, on the boundary, or outside a potential lateral
spread zone. The “out of fold” model accuracy for triggering and multiclass classifiers
were 81.4% and 90.5%, respectively. The 81.4% success rate means that a candidate
borehole pair during the cross-validation was classified correctly as either inside, outside,
or a boundary pair 81.4 percent of the time. The 90.5% success rate that if only inside
and outside pairs are considered (i.e., binary classification with marginal pairs dropped),
then CNN correctly classifies these pairs 90.5% of the time.

d. The CNN model was trained on independent variables that included: (1) distance
between borehole pairs, (2) SPT N1eo values versus depth at 0.5-m intervals in borehole,
(3) soil index values versus depth in the borehole (Gillins and Bartlett, 2013) (Table 2),
and (4) saturation of SPT interval (i.e., was soil below the recorded groundwater table).




Table 1 Count of pair types per earthquake

Earthquake Boreho | Pair type Pairs count Reference(s)
les
count
1964 Alaska boundary
. Bartlett and Youd
20 outside
— 1992b; Ross et al. 1973
within
1964 Niigata, Japan boundary 38
145 outside 33 Hamada et al. 1986
within 169
1971 San Fernando, boundary 12 '
California 39 outside 4 Bennett 1989; O'Rourke
— et al. 1992; Youd 1973
within 44
1979 Imperial boundary 12
valley, California 11 outside ) Youd and Bennett 1983;
— Bennett et al. 1984
within 6
|1d98h3 Borah peak, boundary 11 Youd et al. 1985; Andrus
ano 9 outside 3 1991; Andrus and Youd
within 4 1987
1983 Noshiro, Japan outside 17
187 e Hamada et al. 1986
within 8
1987 Superst'ltlon ) within 1 Holzier et al. 1989
hills, California
1989 Loma Prieta, boundary 15
California 15 outside 3 Robertson et al. 1999
within 7
19_99 Ll_’mn' 13 outside Tokimatsu et al. 1994;
Philippines within 1 Ishihara et al. 1993
1995 Kobe, Japan 156 within 32
1999 ChiChi, Taiwan 53 boundary Chu et al. 2004
within

e. The uncertainty associated with a stratified k-fold cross-validation strategy was also
studied. The reported accuracy for classification has a normal distribution with a mean
of 81.4% and a standard deviation of 1.6%. Finally, as part of this study, a new
mathematical representation of soil types was presented. These latent vectors are
trained in the context of liquefaction and lateral spread and resulted in 2% boost in model
accuracy. Soil type latent vectors could be used in conjunction with or as a substitute for
soil index in developing predictive models for liquefaction or its consequences.



Table 2 Soil Index Values used by Gillins and Bartlett, 2013

Typical soil descriptions General USCS  Soil Index, SI
symbol

Silty gravel with sand, silty gravel, fine gravel GM 1
Very coarse sand, sand, and gravel, gravelly sand GM-SP 2
Coarse sand, sand with some gravel SP 2
Sand, medium to fine sand, sand with some silt SP-SM 3
Fine sand, sand with silt SM 4
Very fine sand, silty sand, dirty sand, silty/clayey SM-ML 4
sand

Sandy silt, silt with sand ML 5
Silty clay, lean clay CL 6

Implementation

We are seeking feedback on the approach and how to implement it for Departments of Transportation.
We propose to develop a webpage graphical user interface (GUI) that can be used by transportation
projects to help determine the potential for lateral spread and delineate the potential lateral spread
zone.





