Progress Report

March 5, 2007

PROPOSAL TO THE FEDERAL HIGHWAY ADMINISTRATION

TASK ORDER DTFH61-06-T-70006

FOR THE DEVELOPMENT OF GUIDE SPECIFICATIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS AND HANDBOOK OF RETROFIT OPTIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS

LIMITED USE DOCUMENT

This document shall be used and disclosed for evaluation purposes only, and a copy of this Government notice shall be applied to any reproduction or abstract thereof. Any authorized restrictive notices that the submitter places on this document shall also be strictly complied with.

by

Modjeski and Masters, Inc.

with

Moffatt and Nichol, Inc. Ocean Engineering Associates, Inc. D'Appolonia, Inc. Dr. Dennis R. Mertz

INTRODUCTION

We received Notice to Proceed on this Work Order on August 14, 2006.

This report covers work done in February, 2007. During this month the team held one conference call (Feb 16). Progress of the work on different tasks and internal team assignments were discussed during the meeting.

TASK 1 – MEETINGS

No new meetings with the BWTF took place in this reporting period.

We are requesting that the Task Force call a meeting between our team and either the full Task Force or the Task Force members with hydraulics/waves interests and those from the FHWA in early to mid April. (we are proposing that those of the following whose schedules allow them to attend be invited: Rick Renna, David R. Henderson, Tom Everett, Joseph Krolak, Dr. Kornel Kerenyi, Dr. Firas Ibrahim, Dr. Robert A. (Tony) Dalrymple, Dr. David L. Kriebel). If the face-to-face meeting will include the full task force, we are suggesting canceling the telephone conference call between the research team and the task force (currently scheduled for March 20th). If the face to face meeting will not include the full task force, we are suggesting that the conference call be postponed and be held after the face-to-face meeting.

Our team's work to-date on determining and comparing different methods of calculating wave forces will be presented in the meeting. A recommendation of selecting the method of calculations to be incorporated in the specifications and discussing this recommendation may also be included in the meeting.

TASK 2 - REVIEW, SUMMARIZE, AND AUGMENT LITERATURE

A request for information was sent to all of the coastal states and to a variety of other agencies identified by the Project Team. We received a report on Oregon's efforts to prepare for Tsunamis. Other than this report, no new responses were received in the last two months. We are proceeding on the assumption that it is unlikely that additional significant information responses will be received.

Relevant information identified in the literature have been reviewed and summarized by the project team. The summary of the articles identified in the literature is included in Attachment A.

Bridge damage observed after costal storms was reviewed and the pattern of observed damage was catalogued. This information was delivered to the project BWTF during the December, 2006, kick-off meeting. After the December meeting, a minor additions to this document was incorporated. A copy of the updated catalogue of past observed damage is included in Attachment A.

The project team performed some calculations to determine the resistance of the

Memorandum

components which failure may have caused the collapse of spans in both I-10 Escambia Bay and I-10 Lake Ponchartrian bridges. These resistances will be used to compare to the calculated wave forces in these bridges. A copy of these calculations is also included in Attachment A.

Attachment A represents the product of the work under Task 2. This document is a feeder document to other tasks of the project and will be included in the final deliverables of other tasks. We regard the work on Task 2 as complete and we are requesting permission to invoice for this task. The information in Attachment A may be updated as warranted as part of the work on later tasks (work on later tasks will require incorporating this information, or parts of it in the project final deliverables).

TASK 3 – REVIEW AND SUPPLEMENT ONGOING FORCE STUDIES

The work on wave force calculations and comparisons continued. Attachments B, C, and D include the following force calculations:

Attachment B (Prepared by OEA): The results of the wave force calculations for one span of Escambia Bay Bridge under different wave conditions are presented. The parameters considered include:

- Depth of water
- Significant wave height
- Maximum wave height
- Wave period
- Wave length
- Wave crest height above storm water level
- Distance from storm water level to bottom of girder

Plots for maximum forces are included for Kaplan, New Wallingford and Douglas methods. Kaplan's method consistently produced lower forces. Wallingford method produced higher forces than Douglas method in some cases and lower forces in other cases.

Also of interest are the observations regarding the dependence of the forces and moments on wave period (or more accurately on wave steepness). As the waves become more steep [increased (wave height)/(wave length)] the drag, inertia and change in added mass forces increase but the slamming forces decrease. The increase in the magnitude of the slamming force as the water surface becomes flatter is reasonable since it is contact of the water surface with the underside of the span that causes this impulsive force. This means that accurate predictions of not only the design wave heights but also the associated periods will be required to obtain accurate calculated wave forces.

Attachment C (Prepared by OEA):

The analysis results for one span of I-10 Escambia Bay Bridge under varying storm

water levels and different wave periods for both 8 ft. and 12 ft. wave heights are presented in this attachment. The calculations were made for Modified Kaplan, Wallingford and Douglas methods. As indicated above in the comments on Attachment B, Kaplan method gives significantly lower forces compared to the other two methods.

For Kaplan Method, the following observations are based on the information in the tables:

- The vertical force continues to increase when the bridge is inundated and the wave period is short (4 sec.). For wave periods of 6 and 8 sec., the vertical force increase when Y_c decreased from 3 ft to 0.0 ft., i.e. from water level 3 ft below the bottom of the beams to water level at the bottom of the beam. The force decrease as the water level rose from the bottom of the beam to 9 ft above the bottom of the beam(inundated condition)
- For all wave periods considered, the moment about the trailing and leading edges increased as the water rose from 3 ft below the bottom of beams to 9 ft above the bottom of beams. However, the increase was much higher for wave periods of 4 sec. than for wave periods of 6 and 8 sec.

These observations reinforce the earlier comments on the dependence of the forces and moments on wave period.

Attachment D (Prepared by OEA and Moffatt Nichol): Wave force calculations for all spans of I-10 Escambia Bay Bridge for both the Modified Kaplan and Wallingford methods are included. The bottom of the solid concrete diaphragms on this bridge is higher than the bottom of the girders. For slowly rising water, the volume of the entrapped air is 74% of that would be entrapped if the diaphragms were extended to the bottom of girders. The calculations were conducted for the cases of no air entrapment and maximum, i.e. 74%, air entrapment. The actual air entrapment is expected to be in between the two values and, thus, these two cases bound all possibilities.

The predicted wave forces were compared to the resistance provided by friction and the weight of the span. The calculation results were compared to the actual observed failure of the bridge spans to determine if the calculations can accurately predict the failure.

Intermittent failure was observed in the field (i.e. some spans did not collapse but were preceded and followed by collapsed spans). This intermittent damage is attributed to:

- Differences in the maximum waves that hit those spans (the calculations used the most likely maximum wave heights), and;
- Differences in the resistance (reduced strength due to corrosion, etc., bolt anchor strength being less than the specified bolt strength, etc.).

Wallingford Method produced higher forces than the Modified Kaplan Method. This means that the "coefficient" applied to the base pressure is higher than its optimum value for this bridge. Wallingford's work was based on tests conducted using generally longer wave lengths compared to the structure width. This resulted in having uplift pressures along the entire width of structure; thus producing a relatively high uplift force. (note that the tests in the University of Florida where shorter wave lengths are used,

there are some areas of uplift and some downward forces. Thus, the net force is much lower)

Due to the extensive amount of calculations involved, only the graphs showing the comparisons are included in the attachments.

Attachment E (Prepared by OEA) with review and input from M&M: A document entitled:" A Method for Estimating Bridge Span Resistance to Storm Surge and Wave Loading for Girder Type Bridge Superstructures" was prepared by OEA's members of our team. The calculations used to determine whether a span subjected to wave forces of a given magnitude will fail. A numerical example is included in the document.

TASK 4 – COMPILE AND CATALOG RETROFIT OPTIONS

A preliminary catalog was submitted to the BWTF during the kick off meeting. We have not received any comments on the submission beyond those received during the meeting.

More concepts were added to the catalog after the kick-off meeting and the proposed concepts were organized in groups based on the common features of the concepts. Concepts for substructure and foundation strengthening were also added. Attachment F includes the catalogue of retrofit option.

The catalog of retrofit options is a feeder document for later tasks. It will form the basis for the retrofit options to be included in the retrofit manual. As the work on the retrofit manual progresses, the most feasible retrofit concepts will be selected and, if needed, will be updated. <u>We regard the work on Task 4 as complete and are requesting permission to invoice for this task</u>.

TASK 5 – PERFORM ANALYTICAL STUDY OF RETROFIT OPTIONS

No progress to-date.

TASK 6 – DEVELOP A GUIDE SPECIFICATION AND A RETROFIT HANDBOOK FOR ADOPTION BY AASHTO

TASK 6A - GUIDE SPECIFICATION

A strawman of the proposed specifications has been updated. This document does not include all important wave force calculation procedures; which will be added later. This document will be attached to next month's progress report.

Mr. Shelden prepared a memorandum on the selection of the coefficient of variation (COV) to be used in probability-based specifications. This memorandum is attached as Attachment G.

TASK 6B - RETROFIT HANDBOOK

See above.

TASK 7 – DEVELOP FINAL REPORT AND RECOMMENDATIONS FOR FURTHER STUDIES

No progress

TASK 8 – PREPARE EXECUTIVE SUMMARY AND PRESENTATION MATERIALS

No progress

FUTURE WORK – NEXT MONTH

- 1. Formulate a recommendation on wave force calculation process.
- 3. Continue working on the strawman for design specifications to which was started in the month (January) as a way to organize thoughts and focus efforts.
- 4. Continue to research the reliability and recurrence issues.

<u>SCHEDULE</u>

The schedule previously agreed to is shown below as "Proposed Completion Dates".

Task 2 – We regard this task as complete

Task 3 – The comparative studies of four wave force prediction method was completed and appended hereto. The decision as to which method to recommend and development of any possible design aids will take longer than the February 28th completion date; probably until Late March.

Task 4 – We regard this task as complete

Task 5 - We need a decision on the wave force method before starting this task so we are proposing extending the deadline for this task from April 15 to April 30 as shown in the revised schedule below.

At the moment no other dates are in jeopardy.

				Date shown in Work Plan	PROPOSED COMPLETION	
TASK					DATES	
Notice to	Proceed	ł		September 1, 2006		
Kickoff M	leeting			December 4,5,6, 2006		
Task 2				December 15, 2006	January 15, 2007	
Task 3				December 15, 2006	February 28, 2007	
Task 4				January 26, 2007	March 31, 2007	
Task 5				March 2, 2007	April 30, 2007	
Task 6						
50%	Draft	Specification	and	February 15, 2007	April 30, 2007	
Manual				May 31, 2007	July 31, 2007	
90%	Draft	Specification	and	August 15, 2007	October 15, 2007	
Manual				-		
100%	Draft	Specification	and	July 15, 2007	September 15, 2007	
Manual						
	Interim Report Tasks 2 to 6					
Task 7	Task 7					
Draft				June 30, 2007	August 31, 2007	
Final				September 15, 2007	November 15, 2007	
Task 8 – Executive Summary						
Draft 4 to 6 page summary				June 30, 2007	August 31, 2007	
Final 4 to 6 page summary				August 31, 2007	October 31, 2007	
Task 8 –	Task 8 – 13 hour slides					
Draft	Draft			November 30, 2007	January 31, 2008	
Final	Final			January 31, 2008	March 31, 2008	

WAGDY G. WASSEF

Attachment A

Task 2 Submission

TASK ORDER DTFH61-06-T-70006

FOR THE DEVELOPMENT OF GUIDE SPECIFICATIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS AND HANDBOOK OF RETROFIT OPTIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS

TASK 2 – REVIEW, SUMMARIZE AND AUGMENT LITERATURE

LITERATURE SURVEY

TASK ORDER DTFH61-06-T-70006

FOR THE DEVELOPMENT OF GUIDE SPECIFICATIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS AND HANDBOOK OF RETROFIT OPTIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS

TASK 2 – REVIEW, SUMMARIZE AND AUGMENT LITERATURE

Literature Survey

Updated: March 1, 2007

ASCE

<u>Title</u>: "Hurricane Katrina, Performance of Transportation Systems" <u>Authors</u>: Reginald DesRoches (ed.) <u>http://www.asce.org/bookstore/book.cfm?book=6281</u> <u>Date</u>: April 2006

<u>Comments</u>: Good summary of post Katrina damage observations. Lists 44 highway bridges with varying amounts of damage. The list includes 34 movable bridges or movable spans in a series of fixed spans. The response of several railroad bridges are also discussed as is nonstructural aspects such as roadways and traffic rerouting issues. The report contains numerous photographs and detailed narratives describing damage to bridges. In some cases the reconstruction process is described. The action of buoyancy and wave forces are presented as the apparent cause for the destruction of most of the bridges that were lost. For example, the report states that the weight of each span of the I-10 across Lake Pontchartrain Bridge weighed 500 kips and the hydrodynamic uplift was 900 kips. The report states that raising bridge grades to clear storm surges (and presumably waves) is a good approach when it can be accommodated. Otherwise, venting to reduce buoyancy and tie downs to restrain the superstructure are possibilities.

<u>Title:</u> "ASCE 7-02, Minimum Design Loads for Buildings and Other Structures" (2005 ed now available) <u>Authors</u>: ASCE <u>Date</u>: 2002

<u>Comments</u>: Provides minimum load requirements for the design of buildings and other structures that are subject to building code requirements. Loads and appropriate load combinations are set forth for strength design and allowable stress design. Load combinations include load factors for Flood Loads. Methods are provided for calculating flood loads for hydrostatic loads (caused by a depth of water to the level of the design

flood); hydrodynamic loads (dynamic effects of moving water); wave loads (water waves propagating over the water surface and striking a building or other structure); and breaking wave loads on vertical pilings, columns and vertical and non-vertical walls.

ENR Construction Articles

<u>Title</u>: "A 24-Mi Bridge Across Louisiana's Lake Ponchartrain" Engineering News-Record Vol. 157 No. 9 Pages 30-33 <u>Authors</u>: Unknown <u>Date</u>: August 30, 1956

Comments: This article summarizes several aspects of the construction of the Lake Ponchartrain Causeway. The economics, geometry, construction methods, construction time table, and traffic capacity of the causeway are discussed. The discussion of construction methods is of particular interest. Specifically addressed are the precasting and prestressing methods used in manufacturing the 54 inch diameter post-tensioned concrete cylinder piles and the monolithic pre-tensioned concrete bridge spans used to construct the causeway. Concrete strengths, wire/strand types and tensions, grouting methods, and construction sequences are discussed. It has been found that these details are not always given on the contract drawings for similar bridges built around this time. These items are critical for the forensic investigation of bridges impacted by coastal storms. Without these details, forensic analyses must use assumptions, which may lead to inaccurate estimates of failure loads. The builder of the bridge, Louisiana Bridge Co. (a joint venture of Brown & Root Inc. and T.L. James & Co.) constructed other bridges (including the 1960 Pensacola Bay Bridge and the 1963 I-10 Lake Ponchartrain Bridge) using the same or similar methods. Therefore, this article provides a good starting point when details of construction must be assumed during the forensic investigation of similar bridges.

<u>Title</u>: "Florida Spans: Made in Louisiana" Engineering News-Record Vol. 165 No. 3 Pages 45-47 <u>Authors</u>: William E. Dean <u>Date</u>: July 21, 1960

<u>Comments</u>: This article summarizes several aspects of the construction of the Pensacola Bay Bridge in Florida. The economics, geometry, construction methods, construction time table, and design considerations of the bridge are discussed. The bridge was built by the same companies that constructed the Lake Ponchartrain Causeway using similar construction methods (the August 30, 1956 ENR article is referenced). The discussion of construction methods provides additional information beyond that provided in the 1956 article. Specifically addressed are the connection between the cylinder piles and the pile caps, camber considerations for the monolithic span units, and additional information on wire/strand types and tensions. Pictures and drawings of the pile to pier cap connection are provided. This (or a similar) detail, which uses a cast in place pile plug poured through a hole in the precast pile cap, was used on the Escambia Bay Bridge in Florida. The pile-to-pier cap connections of the Escambia Bay Bridge were damaged during Hurricane Ivan. Details of construction

given in this article will provide a good starting point when details of construction must be assumed during the forensic investigation of similar bridges.

<u>Title</u>: "Slidell Bridge Nears Completion" Engineering News-Record Vol. 170 No. 14 Page 14 <u>Authors</u>: Unknown <u>Date</u>: April 4, 1963

<u>Comments</u>: This brief article summarizes several aspects of the construction of the I-10 Lake Ponchartrain Bridge. A limited amount of information regarding construction is given. It is stated that the construction of the I-10 Slidell Bridge is similar to that of both the Ponchartrain Causeway and Pensacola Bay Bridge. The builder of the bridge is listed as Brown & Root Inc.

Florida Department of Transportation (William N. Nickas) – 8/30/06 – On CD

<u>Title</u>: White paper on the "Upcoming FDOT Modeling of Wave Forces on Bridges" <u>Authors</u>: ???? <u>Date</u>: ???

<u>Comments</u>: A description of Florida Department of Transportation (FDOT) funded wave-loading research for analyzing bridge superstructures. The research is composed of three components. The first is a series of laboratory tests to measure wave loads on a model bridge span subjected to varying wave conditions. The objective of the first component is to relate wave forces to the structure configuration and sea conditions. The second component develops a numerical model to predict the wave induced forces using the laboratory tests as calibration data. The last component is the development of a risk-based bridge design procedure.

<u>Title</u>: Scope of Service – "Wave Loading on Bridge Decks" <u>Authors</u>: D. Max Sheppard <u>Date</u>: June 2005

<u>Comments</u>: As the title states, this document describes the scope of the University of Florida's (UF) laboratory model tests of wave loading on bridge decks. The document details the forces that UF will measure as well as the model setup and the experiments. planned. The research will attempt, through a complex array of instruments, to delineate the wave and water induced forces into their components. The three components — hydrostatic, dynamic, and shear — are described in detail along with their relative importance. A listing of the tasks provides a sense of the range of experiments planned. The scope also includes a schedule.

<u>Title</u>: Progress Report on "Wave Loading on Bridge Decks" <u>Authors</u>: D. Max Sheppard and Justin Marin <u>Date</u>: March 2006

<u>Comments</u>: This document describes the progress of the FDOT/UF Wave Loading on Bridge Decks Study (described in Scope of Services – "Wave Loading on Bridge Decks") up to March 2006. At that point in time, most of the bridge model and instrumentation were constructed. The researchers found that additional instrumentation was required to isolate all the components. Construction of the additional instrumentation may delay the project schedule.

<u>Title</u>: Draft – "Storm Surge and Wave Force Vulnerability Pilot Study in Tampa Area Phase I"

<u>Authors</u>: Ocean Engineering Associates, Inc. <u>Date</u>: March 2006

<u>Comments</u>: The report provides a well thought out wave vulnerability screening process for bridges. It describes phase I of a two-phase pilot study to evaluate bridge vulnerability to storm surge and wave attack. This first phase describes a procedure to screen bridges using readily available data and simple empirical equations. The report includes a method to calculate a vulnerability index based on physical parameters. Those parameters include buoyancy, wind/fetch alignment probability, location of the bridge in the water column, structure type, and importance. The methodology is then applied to evaluate Florida DOT District 7 (Tampa area) bridges. The study identified 50 state and 2 county bridges in the District of which the screening algorithm eliminated 17. Appendices give data sources and example applications for determining wave conditions.

<u>Title</u>: Work Proposal – "Wave Loading Vulnerability of Florida's Coastal Bridges Phase II"

<u>Authors</u>: Ocean Engineering Associates, Inc. <u>Date</u>: April 2006

<u>Comments</u>: This document is a proposal for a second phase of the investigation on Wave Loading Vulnerability of Florida's Coastal Bridge project. The first phase of the project lead to a screening algorithm. The primary object of this phase is to verify that the algorithm identifies the most vulnerable bridges. Florida DOT District 7, which contains Tampa Bay, was selected as the testbed. There are 50 states and 2 county bridges in the District of which only 17 were eliminated by the screening algorithm. One bridge in District 1 was also in the study group. This project is to evaluate the vulnerability of bridges by refining the variables used in the screening algorithm and also calculate wave forces on selected structures using a variation of the Kaplan method, and then apply those loads to structures and determine if they can survive. Improvements to fetch using actual hurricane paths in NOAA's database, surge values from Florida DEP compared to FEMA, wave models from SWAN instead of the USCOE empirical equations will be incorporated. The results of these investigations will be used to refine the screening algorithm. This work is in progress as of this writing.

<u>Title</u>: Scope of Service – "Development of Probabilistic Bridge Design Procedures for Wave Forces" <u>Authors</u>: D. Max Sheppard <u>Date</u>: July 2006

<u>Comments</u>: This reference contains the problem statement, objectives, tasks and deliverables for research proposed to the Florida DOT to develop procedures to assess the vulnerability of existing bridges to wave forces and to design new highway bridges for wave forces. Three objectives are listed: 1) Produce guidelines for addressing the joint probability of surge and wave in Florida coastal waters. 2) Produce plots of nondimensional parameters involving the horizontal and vertical forces, wave and surge parameters and bridge parameters using a combination of theoretical equations, wave task test results, and observations. 3) Produce Design Guidelines for Florida DOT structures staff to address wave loads. This work is underway at this writing.

<u>Title</u>: Final Report – "Design Storm Surge Hydrographs for the Florida Coast" <u>Authors</u>: D. Max Sheppard and William Miller, Jr. <u>Date</u>: September 2003

Comments: The objective of this study is to recommend hydrographs for 50, 100 and 500 year return period and storm surge peaks for the entire coastline of Florida. Peak storm surge results tabulated by the Florida Department of Environmental Protection (FDEP), the Federal Emergency Management Agency (FEMA), The National Atmospheric and Oceanic Administration (NOAA) and results obtained by the U.S. Army Corps of Engineers' ADCIRC model are compared for various sites for 50, 100 and 500 year return periods. The recommended agency whose peak surge data are thought to be best is shown for each location considered. The values presented by FDEP are recommended at sites covered in their study and are the most often recommended. Hydrographs prepared for low tide and high tide using the FDEP model and the results of using synthetic hydrographs developed by a pooled fund study entitled "Development of Hydraulic Computer Models to Analyze Tidal and Coastal Stream Hydraulic Conditions at Highway Structures" are compared for a 100 year event, presented graphically and discussed. Recommended hydrographs with rising and falling limbs are presented for various locations for 50, 100 and 500 year events. A companion plot shows the 100 year hydrograph along with the hyprographs which would have occurred if the time line was reduced to 70% or increased to 160% of the basic value.

Indian Institute of Technology

<u>Title</u>: "Storm Surge" presented at Fifth International Workshop on Tropical Cyclones, Cairns, Australia <u>Authors</u>: S. K. Dube <u>Date</u>: December, 2002

<u>Comments</u>: This report describes progress and improvements of the storm surge models (including inland inundation).

Louisiana Department of Transportation and Development (Artur D'Andrea) – 10/7/06

<u>Title</u>: "Design Criteria I-10 Bridge Over Lake Pontchartrain S.P. 450-17-0025" <u>Authors</u>: Louisiana Department of Transportation and Development <u>Date</u>: March 21, 2006

<u>Comments</u>: Presents a table of Load Combinations and Load Factors used by LADOTD for the Design of the I-10 Bridge over Lake Pontchartrain. Includes two storm surge combinations based on a strength case and an extreme case. Load factors are provided for quasi-static storm surge / wave forces and dynamic or impact storm surge / wave forces.

Louisiana Department of Transportation and Development

<u>Title</u>: "Hurricane Katrina Damage Assessment" <u>Authors</u>: Volkert & Associates, Inc. <u>Date</u>: September 2-4, 2005

Comments: This report was prepared for the Louisiana Department of Transportation and Development and constitutes a span-by-span summary of major findings on the I-10 Lake Pontchartrain Bridge. Tables are provided which contain areas for remarks, deck repair quantities, curb repair quantities, railing repair or retrofit, issues of beam slab misalignment, beam slab relocation, removal and disposal of slabs, removal and disposal of bents, and so on. A brief narrative describes a summary of findings indicating that there were 26 westbound and 38 eastbound spans in the water, 303 westbound, and 170 eastbound spans shifted, 13,910 lineal feet of barrier railing missing westbound, and 130 lineal feet eastbound, and one bent missing on the westbound structure. It was pointed out that shear studs used to connect bearings to girders had appeared to have been corroded prior to the storm, and this may have been a contributing factor in allowing spans to shift without associated damage to anchor bolts or bearing assemblies, i.e., the beams slid relative to the sole plates. It was observed that in many cases the misalignment of spans was limited to 5 feet, at which time Girder 1 made contact with the pedestal for Girder 2 preventing further dislodgement of the superstructure. Nine pages of photographs further document the types of damage noted.

<u>Title</u>: "Hurricane Storm Surge, Waves and Hydrodynamic Loads Design Report I-10 Bridge Replacement" <u>Authors</u>: Moffatt & Nichol <u>Date</u>: September 21, 2006

<u>Comments</u>: Report documents storm surge modeling, wave hindcasting, statistical analyses and wave force determination performed for the replacement of the I-10 Bridge over Lake Pontchartrain.

Mississippi Department of Transportation

<u>Title</u>: "Repair of Hurricane Camille Damage to U. S. 90 Bridges" <u>Authors</u>: Julian R. Barksdale <u>Date</u>: 1970

<u>Comments</u>: This document is an internal memorandum that describes the Mississippi Department of Transportation's response to the August 17, 1969, storm known as Hurricane Camille. This storm resulted in winds reportedly exceeding 200 mph and tide 6.5 feet higher than any other recorded tide in the Biloxi Bay and Bay St. Louis areas. Both of these structures were severely damaged, and after initial inspection the Department took steps to have repair contracts underway within 11 days. At that time the Bay St. Louis Bridge has been reported to have been a toll facility.

The Bay St. Louis structure is reported as a series of monolithically cast reinforced concrete girders of 41-foot span, except for the bascule bridge which was longer and of steel construction. The 41 ft. spans had been cast as single units and each monolithic unit weighed approximately 130 tons. It had been raised sufficiently for rocker bearings to wash out after the spans to be displaced landward as much as 4 feet. Curb and barrier railings sections were missing or layed over in place held by reinforcing steel. Damage to the substructure was reported as fairly light consisting of spalled corners and surfaces where the superstructure spans had been raised and dropped on exposed concrete bent caps. There were some cases where spalling was evident around the piles which was seen as an indication of large bending moments present at the top of the piles during the storm. Many girder ends were heavily damaged with some crack and spall beyond repair. Some girders were cracked their entire length. Many of these spans were repaired and repositioned on the original substructure. Eight exterior girders on the south side of the bridge had to be replaced entirely.

The Biloxi Bay structure had prestressed concrete beam sections, many of which were displaced laterally to the north as much as 6 feet. Thirty-two of the sections were overlapped in the median indicating that the south structure had been lifted and deposited on the companion north structure. Mid-span diaphragm rods were broken and many diaphragms were cracked and spalled. These units are reported to have weighed 175 tons.

The report concludes that buoyancy was a major factor due to the entrapment of air between end diaphragms and the concrete girders. In the Bay St. Louis Bridge, it was estimated that 520 cubic feet of air resulted in 71,000 lbs. of buoyancy and that at Biloxi Bay there was 197,000 lbs. of buoyancy per span (these values were not verified). The report indicated that the tendency to float could have been negated by venting diaphragms below the deck level. A difference in response of the two structures due to the position of the fascia girder was also noted. At Bay St. Louis the fascia girder was set inward from the edge of the structure, i.e., there was an overhang, and it was believed that this allowed vertical wave forces to crack the overhangs. The fascia beam on the Biloxi Bay Bridge was located beneath the railing, and the curb and rail sections were reported as not having experienced the large upward forces that damaged those on the Bay St. Louis Bridge.

South Carolina Department of Transportation (M. R. Sanders) - 9/28/06

<u>Title</u>: "Development of Hydraulic Computer Models to Analyze Tidal and Coastal Stream Hydraulic Conditions at Highway Structures", Phases I, II, III <u>Authors</u>: E. V. Richardson, et al (Phase I); L. W. Zevenbergen, et al (Phase II); L. W. Zevenbergen, et al (Phase III)

Date: September 1994 (Phase I); December 1997 (Phase II); March 2002 (Phase III)

Comments: This is a series of three papers intended to provide guidance to engineers performing hydraulic and scour analysis at bridges crossing tidally influenced waterways. The first report, Phase I, identifies through a literature review a list of 21 hydraulic models that are then reduced through a screening process to four (two 1dimensional models and twp 2-dimensional models) that are tested, compared, and recommended for use for hydraulic analysis of bridges crossing tidally influenced waterways. The report also provides a discussion of storm surge boundary conditions and sources of storm surge data such as FEMA, NOAA, and USACE. Appendices provide a review of each of the 21 models including advantages and disadvantages for the application to hydraulic analysis of bridges crossing tidally influenced waterways. The second report, Phase II, tests two (UNET and FESWMS) of the four models recommended in Phase I, presents a method for computing storm surge hydrographs for model boundary conditions, and describes a users manual on tidal modeling for bridge applications to supplement existing model users manuals. Appendices present maps and tables of peak storm surge elevations along the east and gulf coasts and within Chesapeake Bay. The third report, Phase III, adds enhancements to the two selected models UNET and FESWMS, test the enhanced models using case studies, introduces an alternative to the synthetic surge hydrograph developed in Phase II, compares hurricane peak stage frequency with hurricane category, describes guidance on the inclusion of upland runoff into storm surge simulations, presents recommended methods for estimating wave heights at bridges, and guidance for incorporating wind into tidal simulations. Although the reports focus on tidal hydraulics for estimating scour, there are two topics in the third report Phase III that pertain to this project - estimating wave heights and wind.

University of Florida

<u>Title</u>: Progress Report - "Development of Probabilistic Bridge Design Procedures for Wave Forces" <u>Authors</u>: D. Max Sheppard <u>Date</u>: September 2006

Comments: DRM

Virginia Department of Transportation

<u>Title</u>: Hurricane Damage Assessment for Major Structures in Hampton Roads <u>Authors</u>: Suffolk District Structure and Bridge Section <u>Date</u>: July 30, 1997

<u>Comments</u>: The report was developed to assess the type of damage that might occur for hurricanes of Category 1 through 4 for bridge structures, approach roadways, and incidental structures in the Suffolk District of the Virginia Department of Transportation. Seven bridge structures were studied. The force effects resulting from wind, wave, stream flow, buoyancy and flooding, and collision damage were considered. It was determined based on numerous engineering assumptions that sign, signal and lighting structures were adequate for wind speeds from 86 to 120 mph, depending on the type of structure. Major structural failures of this type of engineered construction was not anticipated. The analysis of the bridge structures indicated that wave loads would far exceed forces exerted by winds.

A detailed analysis was made of Pier 23 of the I-64 High Rise Bridge over the southern branch of the Elizabeth River using wave impact forces based on a Category 4 hurricane. The results indicated that these loads would exceed the design stresses, but not to the extent that failure would be anticipated. However, resistance of bridge structures to wave impact are four of the most exposed structures indicated a probable failure for a Category 3 or 4 hurricanes for two of the four bridges and a probable failure in a Category 4 hurricane for a third bridge. These results are based on use of the COE Shore Protection Manual's empirical formulas for wave height and period, nondimensional plots for force coefficients for cylindrical piles, corrected for overtopping forces for walls and for stream flow in a channel below the superstructure. Figures were provided showing the expected surge elevation for Categories 1 through 4 related to mean high tide and low high tide for these four bridges. The source of the surge height did not appear to be listed.

The response of bridges to stream flow was also evaluated and it as determined that the four most exposed structures were adequate for stream flows far in excess of that which was projected for the James River Basin.

The subject of allision between a vessel and a structure was also evaluated, but since it was not possible to predict the joint probability of hurricane and vessel collision, only a general appraisal of damage was provided.

A bullet list of general types of damage to be expected from the four hurricane categories was also provided. Recommendations were made regarding the protection of facilities that concentrated on several movable bridges. These involve protection for diesel-generated oil storages and electrical transformers.

General

<u>Title</u>: "An Investigation of Wave Forces for Design of a Cruise Ship Pier Bridgetown, Barbados" presented at "Wave Kinematics, Dynamics and Loads on Structures", Symposium, Huston, Texas <u>Authors</u>: Mark Mattila, et al <u>Date</u>: 1998

<u>Comments</u>: Paper discusses the design of a pile supported pier in the Barbados. Through literature review, numerical analysis and physical modeling the effects and forces of waves were assessed for the design of the structure. Of particular significance for the design was the wave induced vertical pressure on the platform and access trestle decks. This pressure consisted of three components: (i) an initial large upward impact pressure of short duration acting over a small area followed by (ii) a slowly varying uplift pressure and (iii) a subsequent slowly varying suction pressure, the latter two which act over a broad area. The vertical wave forces on the deck were an order of magnitude larger than horizontal wav forces on the deck or supporting piles. It was also clearly apparent that the local wave pressures greatly exceeded those averaged over a larger area of the deck.

<u>Title:</u> "An Investigation of Load Factors for Flood and Combined Wind and Flood" <u>Authors</u>: David L. Kriebel and Kishor C. Mehta <u>Date</u>: June 1998

<u>Comments</u>: This report discusses the development of load factors for flood and combined wind and flood loads for incorporation into ASCE – 7. The project utilized numerical simulation of hurricane storms striking coastal areas due to the fact that recorded hurricane data at any coastal location are insufficient to yield good statistical results. Eleven sites were chosen from New England to the Texas-Mexico border to develop wind speed and hurricane storm tide data for statistical analysis. Monte Carlo simulation techniques were used to simulate 999 hurricanes at each of the eleven sites. Results of these simulations include the maximum wind speed and wind direction at the shoreline for each storm, with the associated storm tide levels (storm surge plus astronomical tide) as well as the peak storm tide and associated wind speed and direction. Combined load factors were determined for two scenarios, the structure subjected to: a) Maximum wind and an associated (correlated) storm tide; and b) Maximum flood and an associated (correlated) wind. A target reliability index of 2.5 was used throughout this work.

<u>Title:</u> "Analysis of Rubble Mound Breakwaters", Supplement to Bulletin No. 78/79 (1992) <u>Authors</u>: PIANC, Report of Working Group 12 <u>Date</u>: 1992

<u>Comments</u>: Working Group 12 was set up to consider the analysis of rubble mound breakwaters with a view to achieving a better understanding of safety aspects. The working group decided to develop the practical application of risk analysis in the design of rubble mound breakwaters by using partial coefficients. Six subgroups, A-F, were established to carry out different aspects of the study. This main report summarizes the subgroup reports and presents the overall view of the results of the working group.

<u>Title:</u> "Analysis of Rubble Mound Breakwaters", Supplement to Bulletin No. 78/79 <u>Authors</u>: PIANC, Report of Working Group 12 – Sub-Group A – Formulae for Rubble Mound Breakwater Failure Modes Date: 1993

<u>Comments</u>: The objective of this subgroup was to identify functional relationships between the main environmental / structural parameters, and the structure response for as many types of rubble mound breakwaters as possible.

<u>Title:</u> "Analysis of Rubble Mound Breakwaters", Supplement to Bulletin No. 78/79 <u>Authors</u>: PIANC, Report of Working Group 12 – Sub-Group B – Uncertainty Related to Environmental Data and Estimated Extreme Events <u>Date</u>: 1992

<u>Comments</u>: The objective of this subgroup was to evaluate uncertainty related to environmental data and uncertainty related to extreme events. This report discusses uncertainties related to parameters in short-term sea state statistics (extreme value distribution for individual wave heights in a record, sampling variability, variability due to different algorithms, instrument response and location of measurement, imperfection of numerical hindcast models and quality of wind input, shallow water wave propagation models). Estimates on over uncertainties are presented along with their coefficient of variation. Uncertainties related to the estimation of extreme events are also discussed with respect to return period, encounter probability, and extreme value analysis of wave heights (long term).

<u>Title:</u> "Analysis of Rubble Mound Breakwaters", Supplement to Bulletin No. 78/79 <u>Authors</u>: PIANC, Report of Working Group 12 – Sub-Group C – Risk Analysis in Breakwater Design Date: 1989

<u>Comments</u>: This report provides an overview of risk analysis calculation procedures at three different levels and an example of calculation and comparison of available methods at the three levels.

<u>Title:</u> "Analysis of Rubble Mound Breakwaters", Supplement to Bulletin No. 78/79 <u>Authors</u>: PIANC, Report of Working Group 12 – Sub-Group E – Investigation of Selected Cases <u>Date</u>: 1992

<u>Comments</u>: This subgroup was tasked to make a selection of existing breakwater structures of different types for which reliable data on environmental conditions, structural parameters and structural response would be readily available or could be made available. Using the findings of Subgroup F, in which a formulation for partial coefficients was developed, the selected cases were analyzed by applying partial coefficients and comparing the results with deterministic design and actual performance.

<u>Title:</u> "Analysis of Rubble Mound Breakwaters", Supplement to Bulletin No. 78/79 <u>Authors</u>: PIANC, Report of Working Group 12 – Sub-Group F – Development of a Partial Coefficient System for the Design of Rubble Mound Breakwaters. <u>Date</u>: 1991

<u>Comments</u>: This subgroup was tasked with proposing safety guidelines for rubble mound breakwaters including evaluation of the safety levels inherent in conventionally designed existing structures. The work of the other subgroups provides the basis for the development of guidelines presented in this report. These safety guidelines are based on the partial coefficient system which is simple to apply and well known from other fields of civil engineering. Examples of the use of the guidelines are provided and compared to conventional design practice.

<u>Title:</u> "Design of Jetty Decks for Extreme Vertical Wave Loads" <u>Authors</u>: Jeroen Overbeek <u>Date</u>: 2001

<u>Comments</u>: This paper discusses the use of published results of earlier investigations into the phenomenon of wave slamming and wave entrapment under decks and the development of a practical design approach that was used in the design of two jetty platforms. Both structures were subsequently hit by hurricane induced waves and survived with only minor structural damage. Two formulae are presented; one for the impact pressure assumed over the first meter of the wave front and the second for the slow varying pressure, assumed over the immersed part of the deck. Of note is that the jetty was designed with beams in only one direction to avoid air entrapment in a beam grid. Also, the deck has gaps in the transverse direction which are covered with timber, T-shaped strips that have no fixing and can blow-out during wave attack.

<u>Title</u>: "Design Wave Height Related to Structure Lifetime", Proceedings, International Conference Coastal Engineering, Orlando, Florida <u>Authors</u>: Z. Liu and H. F. Burcharth <u>Date</u>: 1996

<u>Comments</u>: This paper discusses the following sources of uncertainty that contribute to the uncertainty of the design wave height. 1) Statistical vagrancy of nature, i.e. the extreme wave height is a random variable; 2) Sample variability due to limited sample size, and 3) Error related to measurement, visual observation or hindcast.

<u>Title:</u> "Estimating Uncertainty in the Extreme Value Analysis of Data Generated by a Hurricane Simulation Model" <u>Authors</u>: Stuart Coles <u>Date</u>: 2003

<u>Comments</u>: This paper proposes a technique for uncertainty quantification in the inference of extreme return levels base on simulated hurricane series. Simulated series of 999 hurricane events were generated for each of around 50 mileposts along the eastern United States coastline. The aim of this paper is to calculate reasonable approximations to the uncertainty of extreme value estimates due to the hurricane model itself.

<u>Title</u>: "Hurricane Impact Analysis and Development of Design Criteria for the I-10 Bridges over Escambia Bay, Escambia County, Florida" <u>Authors</u>: Ocean Engineering Associates, Inc. <u>Date</u>: January 2005

Comments: This report describes Ocean Engineering Associates, Inc.'s investigation into the failure of I-10 over Escambia Bay during the passing of Hurricane Ivan. The study first presents hindcast wind and pressure fields for Hurricane Ivan. By comparing these data with a statistical analysis of wind speed and pressure from the NOAA HURDAT database for Hurricanes striking the coast near Escambia Bay, the investigators determined the landfall return period of Hurricane Ivan (approximately 200years). The hindcast wind and pressure fields from Hurricane Ivan also provided the boundary conditions to drive two-dimensional wave (WAM and SWAN) and a tidal circulation (ADCIRC) models. High water marks recorded near Escambia Bay and NDBC wave buoy in the Gulf of Mexico provided calibration data for the ADCIRC and WAM models. The report presents a plot of the peak water surface elevation and wave crest envelope, low member elevations of the bridge, and damage reports along the bridge. In the figure most of the damage occurs when the wave crest envelope exceeds the low member elevation. This provides good evidence of the importance of raising the bridge low member elevation above the anticipated design wave crest elevation. With that in mind the authors develop design parameters for the replacement bridge. To do this they scaled the Hurricane Ivan wind and pressure fields to create the 100- and 500year return period wind and pressure fields to drive the models for designing the replacement bridge.

<u>Title</u>: "Introduction to Coastal Engineering and Management" <u>Authors</u>: J. William Kamphuis <u>Date</u>: 2002

<u>Comments</u>: This textbook discusses the basic concepts of the coastal engineering and management field. It includes a chapter on the risk based analysis of coastal structures including how to determine the probability of failure for a design condition during the lifetime of a project.

<u>Title</u>: "Lessons Learned from Hurricane Katrina Storm Surge on Engineered Structures" <u>Authors</u>: Ian N. Robertson, et al <u>Date</u>: ???

<u>Comments</u>: The document is a report of a survey of damage to a variety civil engineering structures along the Gulf Coast primarily in Mississippi. It covers observed damage to residential construction, engineered buildings, bridges, and roadways. Uplift characteristics on bridges are divided into two pieces: hydrostatic uplift or buoyancy, including the effect of entrapped air below the structure, and hydrodynamic uplift which is a result of wave action. The report identifies hydrostatic uplift (buoyancy) as a major factor in the damage to and loss of many structures. The universal gas law is used in associated calculations to adjust the volume of the entrapped air for the pressure head above the entrapped air. Buoyancy calculations are provided for one structure and a table is provided for buoyancy calculations for a total of seven structures. That table is reproduced below.

Bridge	Concrete	Self-weight*	Air volume	Buoyancy**	Net self-weight	Percent of
-	volume	kN/m	m³/m	kN/m	kN/m	self-weight
	m³/m	(lb/ft)	(ft ³ /ft)	(lb/ft)	(lb/ft)	(%)
	(ft ³ /ft)					
US 90-Biloxi Bay [†]	3.94	92.76	5.27	91.55	1.21	1.3
	(42.4)	(6360)	(56.7)	(6277)	(83)	
Old Bridge-Biloxi	2.42	56.98	2.22	45.56	11.52	20.2
Bay [†]	(26.1)	(3915)	(23.9)	(3115)	(800)	
Railroad Bridge-	3.60	84.76	1.50	51.28	33.48	39.5
Biloxi Bay	(38.8)	(5820)	(16.1)	(3514)	(2306)	
US 90-Bay St. Louis [†]	3.91	92.06	3.21	70.57	21.49	23.3
-	(42.1)	(6315)	(34.5)	(4836)	(1479)	
Railroad Bridge- Bay	3.05	71.81	2.46	55.37	16.44	22.9
St. Louis [‡]	(32.8)	(4920)	(26.5)	(3794)	(1126)	
US-90 approach	7.55	177.8	17.5	248.4	-70.6	-39.7
span	(81.3)	(12195)	(188.2)	(17019)	(-4824)	
Pass Christian [†]		. ,	. ,	. ,	. ,	
I-10 Onramp-Mobile [†]	2.97	69.93	2.44	50.46	19.47	27.8
	(32.0)	(4800)	(26.28)	(3458)	(1342)	
*Self-weight based on 2 **Buoyancy based on 2				ete		

Table 1:	Buovancy	calculations f	or bridges	investigated	in this study
	, ,				,

*Buoyancy based on 1025 kg/m³ (64 lb/ft³) density of seawater

[†]Assuming guardrails are not submerged

[‡]Assuming box girder stems and base slab are 12 inches thick

The data in the table above was said to not include the weight of bulk heads, diaphragms or other elements of the cross-section other than beams and decks. The general lack of vertical uplift capacity in bridge bearings is cited indicating that once the self-weight was overcome by the combination of buoyancy and wave forces, bridge superstructures were able to float free and move off their supports.

The railroad bridge from Biloxi to Ocean Springs is cited as an example of a bridge that had very good performance. As in the case of the Lake Pontchartrain Bridge, the tracks, ties and ballast were removed, but the superstructure remained intact. The cross-section for this bridge had very little room for entrapped air. There were four closely spaced prestressed concrete I-beams supporting the railway deck with substantial overhangs compared to many railroad bridges. Additionally, there were 15-inch high shear blocks on both ends of each pier cap which provided much greater restraint that was true in most highway bridges. This bridge is identified in the table reproduced above. It is reported to have a net dead weight when submerged equal to almost 40% of the in-air-weight.

Precast parking garage floor systems involving highly optimized double-T construction generally did poorly. Of significance is the combination of entrapped air and wave action, similar to that found in bridges. In some cases, the double-T floor systems were found to have broken in negative bending from the combination of these loads, particularly where they were somewhat restrained by spandrel beam connections.

The report indicates that extensive scour was observed around bridge abutments, piers and building foundations, as well as highway structures. It was not clear if the piers were wharf-type piers or bridge piers. Two mechanisms of scour were identified: 1) sediment transport due to flowing water and debris, and 2) liquefaction.

With respect of impact from floating debris, this report recommends use of the ASCE/SCI7-05 formula based on impulse momentum considerations. The calculation of the force requires a time period of the impulse and ASCE recommends .03 seconds, although the FEMA Coastal Construction Manual is reported as recommending .3

seconds. The formula is $F = \frac{\pi WV}{2g\Delta t}$ where: W = weight, V = impact velocity, g = gravity,

 Δt = impact duration. In the conclusions and recommendations, it is suggested that bridge segments of low lying bridges be restrained against uplift and provided with shear keys to resist all lateral loads ignoring any friction due to gravity loads.

<u>Title:</u> "Marketing Uncertainty" in proceedings COPEDEC '99, Capetown <u>Authors</u>: J. William Kamphuis <u>Date</u>: 1997

<u>Comments</u>: This paper looks at some realities of coastal engineering and describes the uncertainties inherent in basic coastal data and in derived data such as sediment transport rates. Physical and numerical modeling are shown to contain their own uncertainties. When combined with uncertainties in the data, the paper states that models produce essentially qualitative results and interpretation of model results requires coastal engineering expertise and must be done very carefully.

<u>Title:</u> "Tsunami and Storm Surge Hydrodynamic Loads on Coastal Bridge Structures" presented at 21st US-Japan Bridge Engineering Workshop, Tsukuba, Japan <u>Authors</u>: Solomon Yim <u>Date</u>: 2005

<u>Comments:</u> This paper briefly describes the physical phenomena of tsunami and hurricane induced water elevation change and inundation at coastal areas; discusses tsunami and storm surge hydrodynamic loads on coastal bridge structures; and summarizes the physical experimental facilities at the Oregon State Wave Research Laboratory and selected models at OSU for coupled fluid-structure interaction modeling, testing and simulation; and provides a discussion on the development of comprehensive experimental studies and some challenges in experimental and numerical simulations of large-scale fluid-structure interaction with applications to coastal bridge structures.

<u>Title</u>: NCHRP Report 489, "Design of Highway Bridges for Extreme Events" <u>Authors</u>: M. Ghosn, F. Moses and J. Wang <u>Date</u>: 2003

<u>Comments</u>: This report contains the findings of a study to develop a design procedure for application of extreme event loads and extreme event loading combinations to highway bridges. The report describes the research effort leading to the recommended procedure and discusses the application of reliability analysis to bridge design.

<u>Title</u>: "New Guidance for Wave Forces on Jetties in Exposed Locations" <u>Authors</u>: K. J. McConnell, et al <u>Date</u>: 2003 <u>Title</u>: "Experimental Study of Wave-in-Deck Loads on Exposed Jetties" <u>Authors</u>: Giovanni Cuomo, et al <u>Date</u>: 2004

<u>Title</u>: "Physical Model Studies of Wave-Induced Loading on Exposed Jetties: Towards New Prediction Formulae" <u>Authors</u>: Matteo Tirindelli, et al <u>Date</u>: 2003 <u>Title</u>: "Exposed Jetties: Inconsistencies and Gaps in Design Methods for Wave-Induce Forces" <u>Authors</u>: Tirindelli, et al <u>Date</u>: 2002 <u>Title</u>: "Piers, Jetties and Related Structures Exposed to Waves – Guidelines for Hydraulic Loadings" <u>Authors</u>: McConnell, et al (HR Wallingford) <u>Date</u>: 2004

<u>Comments</u>: The first four titles are papers that present the background for the final title, which is a comprehensive report discussing guidelines for the design of nearshore structures exposed to waves. The project to develop these guidelines was undertaken by HR Wallingford with an extensive Steering Committee that directed the technical content of the project. The report discusses the various aspects of design such as the

hydraulic and related loads; acceptable risk issues, approaches to design; and determining design wave conditions. The results of physical model tests are presented and compared to other previously published design equations. New design equations for horizontal and vertical quasi-static and impact forces are then presented based on the physical model test results.

<u>Title</u>: "New Prediction Method for Wave-in-Deck Loads on Exposed Piers/Jetties" – PowerPoint presentation <u>Authors</u>: William Allsop, et al <u>Date</u>: 2006

<u>Comments</u>: Introduces a new method of predicting forces using the Wallingford procedure but with a linear equation for the dimensionless force F_{qs}^{*} . This potentially supplants the exponential equation in earlier papers.

<u>Title</u>: "New Prediction Method for Wave-in-Deck Loads on Exposed Piers/Jetties" – Full document <u>Authors</u>: William Allsop, et al <u>Date</u>: 2006 <u>Title</u>: "Wave-in-Deck Loads on Exposed Jetties" <u>Authors</u>: Giovanni Cuomo, Matteo Tirindelli, William Allsop Date: 2006

<u>Comments</u>: These papers are further exposition of similarly titled Powerpoint presentation above and more fully document data analysis and contains work example of applying the new method. Presents revised tables of coefficients based on a new linear equation with different dimensionless parameters that presented in earlier papers. These new equations result from a re-analysis of the physical model tests based on a wavelet transform to filter out corruption in some of the recorded signals from dynamic responses of the measuring instruments.

<u>Title:</u> "Random Seas and Design in Maritime Structures" <u>Authors</u>: Goda <u>Date</u>: 2000

<u>Comments</u>: This textbook provides design tools to deal with random seas and discusses random wave theory. It includes a chapter on wave loads on vertical breakwaters and another chapter on the statistical analysis of extreme waves.

<u>Title</u>: "Recommended Practice for Planning, Design and Constructing Fixed Offshore Platforms – Load and Resistance Factor Design", First Edition, 224 pages <u>Authors</u>: American Petroleum Institute <u>http://www.techstreet.com/cgi-bin/detail?product_id=1819</u> <u>Date</u>: July 1, 1993

<u>Comments</u>: This specification contains the engineering design principles and good practices that have been the basis of the API RP2A working strength design (WSD) recommended practice. These LRFD provisions have been developed from the WSD

provisions using reliability based calibration. Load factors and load combinations are presented for extreme and operating wind, wave and current loads. Methods for calculating these loads are discussed extensively. Also, it contains an interesting commentary on three possibilities for defining the 100-year combined extreme wind, wave and current load. They are: 1) the 100-year return period wave height with "associated" wind and "associated" current; 2) Any "reasonable combination of wind speed, wave height, and current speed that results in the 100-year return period combined platform load; and 3) 100-year return period wave height combined with the 100-year return period wind speed and the 100-year return period current speed. After considering the technical and practical merits of each of the three definitions, Definition 1 was selected.

<u>Title</u>: "Synthesis of Wave Load Design Methods for Coastal Bridges" (???) <u>Authors</u>: Francisco Aguiniga, et al <u>Date</u>: August 2006

<u>Comments</u>: This report presents an introduction to weather and hurricanes, fundamental concepts of water waves, and a compilation of available source of information that contain information related to forces produced by waves acting on engineering structures such as sea walls, suspended walls and bridge decks. A section on the parameters most relevant to the design of bridge superstructures against hurricane waves is included. It also provides a synthesis of data found in several historical databases and databases maintained regularly by government organizations and research laboratories.

<u>Title</u>: "Theoretical Analysis of Wave Impact Forces on Platform Deck Structures" <u>Authors</u>: P. Kaplan, et al <u>Date</u>: 1995

<u>Comments</u>: This report presents an update to the mathematical wave force model presented by Kaplan in his 1992 "Wave Impact Forces on Offshore Structures: Reexamination and New Interpretations" paper. In this paper, Kaplan focuses on the flat plate deck elements and adds terms to account for different superstructure aspect ratios. The paper presents new equations for forces in both the vertical and horizontal plan, which include the aspect ratio terms. The equations, based on the classical Morison equation, include inertia, added mass, and drag terms. The author also discusses the importance of accurately predicting the wave kinematics used to drive the mathematical model. He includes a discussion of velocity blocking and shielding, which accounts for processes during the wave structure interaction such as the separation of the wave as it encounters the deck. There is a description of experimental data used for comparisons that includes a discussion of the difficulty of measuring impact forces. Comparisons between the theory presented in the paper and experimental data show good overall agreement. The authors attribute differences to the variability associated with the experimental measurements of waves and forces. <u>Title:</u> "Unified Facilities Criteria – Design: Piers and Wharves" <u>Authors</u>: Department of Defense <u>Date</u>: July 2005

<u>Comments:</u> This contains descriptions and design criteria for pier and wharf construction, including subsidiary, contiguous and auxiliary structures. Load factors and load combinations are provided for such structures. They are primarily based on ASCE 7-02.

<u>Title:</u> "USCOE Coastal Engineering Manual – Chapter 6 – Reliability Based Design of Coastal Structures" <u>Authors</u>: USCOE <u>Date</u>: 2003

<u>Comments</u>: Advance probabilistic methods are presented where the uncertainties of the involved loading and strength variables for coastal structures are considered. The partial coefficient system is described which takes into account the stochastic properties of the variables and makes it possible to design a structure for a specific failure probability level.

<u>Title:</u> "USCOE TR CHL-97-9 Reliability Assessment of Breakwaters" <u>Authors</u>: Jeffrey Melby <u>Date</u>: 1997 <u>Comments</u>: This report is essentially the same as Chapter 6 of the CEM described above.

<u>Title</u>: "Wave Forces on Bridge Decks" <u>Authors</u>: Scott L. Douglass, et al <u>Date</u>: April 2006

<u>Comments</u>: This report is a synthesis of existing knowledge related to wave forces on highway bridge decks. The literature review includes research from the transportation engineering community as well as some research on related issues in the coastal and ocean engineering community. Also, included are results of some original, focused research on the topic including a new, recommended approach for estimating these forces. The study recommends FHWA apply the new method as interim guidance in this area. The study states that the new method does a good job of explaining damage to bridges in Hurricanes Katrina and Ivan. Estimated wave loads are sufficient to overcome the weight and connection resistance for the spans at lower elevations that failed (moved) at three bridges; the I-10 Bridge across Escambia Bay, FL; the I-10 on-ramp near Mobile, AL; and the U.S. 90 Bridge across Biloxi Bay, MS. Estimated wave loads are not sufficient, however, to overcome the weight and connection resistance for the spans at higher elevations that did not fail.

<u>Title</u>: "Wave Forces on Causeway-Type Coastal Bridges" <u>Authors</u>: Keith H. Denson <u>Date</u>: October 1978

<u>Comments</u>: This report presents the results of an experimental study on a model bridge, patterned very closely after the Bay St. Louis Bridge which was severely damaged by Hurricane Camille in 1969 as reported in another reference reviewed in this project. The effective wave forces were determined separately on the seaward and landward cross-sections. This bridge was a dual cross-section separated by a 1 inch construction joint. Data on lift, drag and rolling moments are reported in a dimensionless form. It is reported that damage was apparently caused by wave action overcoming the dead weight of the concrete structure resulting in failures of anchors between the girders and pile caps. It is stated that this type of damage was most likely produced by the rolling moments.

A 1:24 scale model made of wood and Plexiglas was used. The end diaphragms used in the prototype were not included in this model. It was attached to an instrumentation platform that used electrical resistance strain gages to separately measure lift, drag and rolling moments. Output from strain gages was recorded on an oscillograph as a function of time. It was not clear whether any effort was made to separate slamming forces from other types of forces nor was the number of readings per second reported.

The wave type was trochoidal with a period of 3 seconds. Wave direction was perpendicular to the bridge longitudinal axis. Lift, drag and rolling moment were measured for a minimum of five independent waves for each fixed value of bridge clearance, water depth and wave height. The following nomenclature is used: $h = height of the top of the slab from the bay bottom, w = out-to-out width of the cross-section, D = still water depth, H = wave height, <math>\gamma =$ specific weight of water, $F_L =$ lift force per unit length, $F_D =$ drag force per unit length, M = rolling moment. Each of the variables h/W, h/D and H/D were varied in five increments for both the seaward and landward cross-sections. Results are reported in terms of moment, lift and drag for h/W = 0.636, 0.572, 0.509, 0.445 and 0.381. Each graph contains five curves for different values of h/D. The figures are for the forces and moments produced only by the fluid motion. The effects of the dead weight of the structure in buoyancy at storm water elevations would still have to be accounted for separately.

The report concludes that the type of damage was similar to that caused by Hurricane Camille. It is concluded that relatively small anchorage forces would have prevented the types of failure observed at both Bay St. Louis and Biloxi Bay Bridge. The report contains caveats that significantly different geometries would give different results. The results of the study were scaled at prototype dimensions.

<u>Title</u>: "Wave Forces on Causeway-Type Coastal Bridges: Effects of Angle of Wave Incidence and Cross-Section Shape" <u>Authors</u>: Keith H. Denson <u>Date</u>: 1980

<u>Comments</u>: This report presents an extension of the study Professor Denson reported in 1978. In this study two different types of bridges are considered: 1-24 scale model of a beam-slab bridge patterned after the Bay St. Louis Bridge and a trapezoidal box girder bridge with 10% superelevation to seaward. Each of the bridges are dual roadway, but since the trapezoidal box girder bridge has significant overhangs, the distance between the beam elements are much different. This study involves waves impinging on the structure from different angles and, therefore, it is a three-dimensional presentation rather than the two-dimensional presentation used in the earlier study.

In the introduction the author indicates that in 1978 a questionnaire was sent to 22 states. Twenty states replied and six indicated that they had observed some damage on coastal bridges and 17 reported bridges located where they could be subject to wave action. Between 1978 when the questionnaire was sent and 1980 when the report was finished, there were two additional structures lost to wave action, the Hood Canal floating bridge in Washington and the Dolphin Island Causeway in Alabama. The Dolphin Island Causeway Bridge was destroyed by Hurricane Frederick in 1979. It was a two-lane bridge with simple spans and it was reported as being swept from the supporting pile bents.

In the current study, end diaphragms were added to the model of the Bay St. Louis Bridge used in the 1978 study. It is reported that results for normal incident waves were not exactly the same because of these additional diaphragms. The diaphragms did exist in the prototype.

The models were tested in a three-dimensional wave basin 40 ft. long and 16 ft. wide with waves generated at a constant period of three seconds. Waves were trochoidal as this was reported to be the shallow water wave. For such waves, the author indicated that the wave length and period are not significant and that the wave celerity is a function only of the water depth and the gravitational constant, i.e., $c = \sqrt{gd}$.

The construction of the Bay St. Louis Bridge was reported in the 1978 study; the horizontal box girder model was made of laminated wood planed to the shape of the prototype, scaled, and the piers were hexagonal, cut from solid wood. A photograph of the Bay St. Louis model indicates ten spans of the structure and the pile bents were actually modeled.

Measurements were taken at one section of each model, which consisted of a complete span between centerline of supporting bents or piers. The active span was suspended from a platform which measured three forces and three moments. There were two drag forces measured in the transverse and longitudinal direction, a lift force and yawing moments about the vertical access. Rolling and pitching moments were reported as not interacting with the other variables. As in the 1978 study, electric resistance strain gages were used and they were reported to have been foil backed epoxy gages.

Results were recorded using a six channel switch and balance unit and a two channel oscillograph. As in the case of the 1978 study, there is no indication of the number of readings per second that were taken, although a sample oscillograph trace is presented. It was reported that for the shallow water waves, wave period and wave length do not significantly effect wave forces in moments. (This may not be the same as reported in other references.) Wave lengths varied from 13.9 ft. at a water depth of 8 in. to 17.7 ft at a water depth of 13 in. The wave length scale is the same 1:24 as a structural model. Three forces and three moments were measured in the experimental studies. Forces were normalized by dividing by the unit weight of water and the overall width of the structure cubed; moments were normalized by dividing by the unit weight of water and the width raised to the fourth power. In the 1978 study, these parameters were normalized to the square of the width for force and the cube of the width for moment-cubed.

Water depth, wave height and angle of incident were all varied. This was reported as requiring 250 experimental setups with six sets of force and moment data obtained for each setup. The results are reported in 191 graphs with information for each of the two bridge cross-sections reported in terms of whether they were seaward or landward, the angle of incidence and whether a result was positive or negative. An example is presented showing the use of the graphs to generate prototype forces and moments. The example refers to the Bay St. Louis Bridge with a 45° wave incidence on the seaward pair of lanes. The height of the slab above the bottom of the bay is taken as 22 ft., the width of the structure is 31.46 ft., the depth of the water expected during the hurricane surge is 22 ft., and the maximum wave height anticipated is 8.8 ft. For this set of results in prototype scale, the longitudinal force is reported as +37.9 kips and -47.8 kips. The transverse force is reported as 61.8 kips and -69.8 kips. The vertical force is reported as +335 kips and -213 kips. The moment about the longitudinal axis is + 2510 kip/ft and zero, the moment about the vertical axis is reported as +1820 kip/ft and -1690 kip/ft and the moment about the vertical axis is reported as +207 kip/ft and -116 kip/ft. All these forces are for one complete span of 48 ft. Any additional forces due to dead weight or buoyancy have to be added to these numbers. The results with and without the end diaphragms are also reported for a 90° incident so that the results from the 1978 study can be compared to the 1980 study as shown below.

	Seaward	Lanes	Landward Lanes		
	Without	With	Without	With	
	Diaphragms	Diaphragms	Diaphragms	Diaphragms	
Fy	10 x 10 ⁻³	70 x 10⁻³	9 x 10 ⁻³	35 x 10 ⁻³	
Fz	60 x 10⁻³	250 x 10 ⁻³	45 x 10 ⁻³	105 x 10 ⁻³	
M _x	70 x 10⁻³	50 x 10 ⁻³	105 x 10 ⁻³	40 x 10 ⁻³	

It is concluded that the end diaphragms increase the transverse drag and lift forces significantly whereas the moments decrease slightly or significantly. This is attributed to the entrapped air caused by the end diaphragms.

Some results are reported for the trapezoidal cross-section. It was reported that for the beam slab bridge a slight but definite trends with increasing angle of incident was evident for the upward vertical force while everything else remained essentially constant

and the same was true generally for the box girder bridge. The general conclusion is that there is very little difference in the seaward lane force coefficients between the box girder and the beam slab bridges on the seaward structure. There was more difference in the landward structures and this was attributed to the wider spacing of the box girders.

<u>Title</u>: "Wave Forces on a Horizontal Plate" International Journal of Offshore and Polar Engineering, Vol. 6, No. 1, March 1996 ISSN No. 1053-5381 <u>Authors</u>: Michael Isaacson and Shankar Bhat <u>Date</u>: March 1996

Comments: This paper presents an experimental study of the non-breaking wave forces on a thin horizontal plate. The study focused on un-submerged horizontal plates subjected to intermittent submergence. The paper presents two similar theoretical equations based on the work of Paul Kaplan. In both equations terms accounting for, inertia, added mass, change in added mass, drag, and buoyancy are included. The paper describes the experimental setup, a free vibration test to determine the dynamic characteristics of the model and load cells, and the post-processing data filtering. In all the investigators ran 69 tests with varying wave heights, periods, and plate elevations above the still water level. The data was processed through a low pass filter (20 Hz) thus removing much of the slamming force component. The authors point out that their theoretical equations do not cover the impulsive slamming force. The paper examines the influence of plate clearance and wave height and period. Their calibrated equations do a good job of predicting the upward portion of the so called quasi-stationary force (force without slamming) but are not as good for predicting the downward component of the vertical force. The measured results are presented in terms of dimensionless groups as a function of plate clearance height over wave height.

<u>Title</u>: "Wave Impact Forces on Offshore Structures—Reexamination and New Interpretations" 24th Annual Offshore Technology Conference, Houston, TX, May 4-7, 1992 (6814) <u>Authors</u>: P Kaplan <u>Date</u>: 1992

<u>Comments</u>: This report presents a mathematical model for estimating the time histories of wave forces on horizontal structures. The mathematical model is an extension of the theory describing ship bottom slamming. The model is first applied to a horizontal cylinder followed by a flat plate deck. In both cases, the mathematical model takes the form of the Morison equation and includes buoyancy, drag, and inertia terms. Comparisons are presented between the mathematical model and measured data for both vertical and horizontal forces. Although the results show good agreement, the author focuses on the model's ability to reproduce the trends. This was due to the author's concerns regarding extraneous force effects in the data used for comparisons. As such, the report includes a long discussion on errors in measuring wave forces. Here the author discusses the need to account for inertial forces due to the acceleration of the structure, improper data sampling rates and data filtering, and errors introduced by the natural frequency of the model.

Bridge Plans Acquired

- U.S. 90 at Biloxi, MS
- U.S. 90 Bay St. Louis, MS
- I-10 across Escambia Bay, FL
- I-10 across Lake Pontchartrain, LA
- New I-10 across Lake Pontchartrain, LA, Excerpts

PowerPoint Presentations from FHWA Force Symposium, December 5-7, 2005

Summary of the Presentations of The FHWA Wave Force Symposium Held in December 2005

<u>Coastal Storm Events Overview of FHWA Plan of Action</u> Joe Korlak, P.E. Hydraulic Engineer, Federal highway Administration

This presentation gave a brief description of the FHWA's plan of action to minimize the susceptibility of bridges to damage from coastal storms. The goal of the action plan was defined as: "A proposed set of studies and technology transfer activities to fully achieve a rational approach that addresses wave force, storm surge, and scour vulnerabilities in existing and new structures"

Specific items and the FHWA's lead person for each item were included in the presentation.

<u>Coastal Storm Events, Coastal Bridges and Storm Frequency, Interim Criteria</u> Joe Korlak, P.E. Hydraulic Engineer, Federal highway Administration

The presentation covered the interim criteria to be followed in determining the suitability of a bridge for the high water flow associated with coastal storms. It also covered the basics of coastal hydraulics and the definition of basic terms used in coastal hydraulics. The main sections of the presentation included:

- Background
 - Intent of Interim Criteria
 - Riverine & Coastal Hydraulics
- Bridge Design Frequencies
 - Typical State DOT practices
 - FHWA regulatory criteria
 - Applicability to coastal flood frequencies
- Bridge Hydraulics
 - Freeboard
 - Scour
 - Bridge approaches & touchdown locations
- Summary & Recommendations

FDOT Sponsored Wave Loading on Bridge Decks Research Rick Renna, Max Sheppard and Don Slinn

An introduction to the wave parameters and wave forces was provided in this presentation. The presentation also covered the then-ongoing research on bridge decks in the University of Florida, Gainesville.

TXDOT Sponsored Wave Load Design Research - Background, Goals and Current Status

Jon Holt / Hector Estrada / Francisco Aguiniga

This presentation offered an overview of the research funded by Texas DOT. It also presented the provisions for calculating stream and/or wave forces in several design specifications (ASSHTO, Caltrans, ASCE-7) and a review of the required bridge parameters needed to determine the forces.

<u>Design Problem - Extreme Event Design in Coastal Areas - Doyle Drive South</u> <u>of the Golden Gate Bridge</u> Steve Ng, CALTRANS

This presentation utilized the Doyle Drive South of the Golden Gate Bridge as a case study of the parameters to consider in design.

Hurricane Wave Forces on Bridge Decks

Nobu Kobayashi, University of Delaware

A brief description of contemplated research work was given.

Physical Modeling of Wave Forces Steve Hughes, US Army COE

The capabilities of the US Army Corps of Engineers' laboratory are covered in this presentation. It also included coverage of similitude requirements and results of testing of a bridge model under different wave conditions. The model was not instrumented and did not have end diaphragms.

Investigations of Wave Forces on Bridge Decks Billy Edge, Texas A&M

The results of testing an un-instrumented bridge model were included. Preliminary parameters for a contemplated, more comprehensive test were also presented.

How to Determine Surge and Wave Conditions near Coastal Bridges (30 min), Qin Chen, University of South Alabama

This presentation covered analytical modeling results for surge and waves. It also included a comparison between the analytical results and actual conditions during past storms.

<u>Post Hurricane Katrina & Rita Bridge Issues,</u> Ray A. Mumphrey, LA DOTD

A series of photos documenting bridge damage in Louisiana is included in this presentation.

Estimating Wave Loads on Pile-Supported Bridges and Piers: Practical Aspects

John Headland, Moffatt & Nichol Consultant

This presentation covered many of the basics of coastal engineering. The presentation was divided into the following areas:

- Introduction
- Design Conditions including design parameters and selection of design return period
- Lateral Loads (drag, pressure calculations)
- Uplift Loads (quasi-static, impulse)
- Importance of Wave Phase/Profile &Varying Water Level
- Structural Application of Loads
- Scour
- Conclusions and Research Needs

The presentation included some photos of models tested as part of studying new structures that were built recently.

Pacific Northwest Experience with Unusual Hydraulic Events Matt Witecki, WA DOT

Photos of past bridge collapses from extreme hydraulic effects were presented.

<u>A Method for Screening Existing Bridges for Wave Loading Vulnerability</u> Rick Renna, FL DOT, and Max Sheppard, OEA, Inc.

The outline of the screening process developed for Florida DOT was presented. The process outline is as follows:

- Identify Bridges Susceptible to Wave Impacts During a 100-Year Hurricane Event
- Determine Which Bridges Need Further Analysis
- Using USGS quad maps, NOAA charts, etc. identify bridges with possible problems (large fetch lengths)
- Obtain bathymetry over fetch lengths and in vicinity of bridges (quads, charts, other)
- Obtain 100 year wind speeds (or wind speed of maximum storm of record)
- Using best information available (FEMA, etc.) obtain 100 year storm surge elevations at bridge sites
- Using empirical equations for estimating Significant Wave Height, Hs, and Peak Period, Tp, in USACOE Shore Protection Manual, estimate these parameters at the bridge sites.

- Estimate peak wave crest height (adjust for uncertainty in prediction methods)
- Add crest height to storm surge elevation to obtain peak water elevation
- Obtain bride plans (member elevations)
- Determine bridge importance
 - Evacuation route, Interstate
 - Local (high traffic volume)
 - County (low traffic volume)
 - Rural (alternate route available)
- Determine the relative priority for the bridge based on its vulnerability and importance

Bridges that have high priority are then subjected to further analysis.

<u>Vulnerability Screening and Retrofitting -- Ideas from other Extreme Events</u> Ian Friedland, FHWA / Jean Louis Briaud, Texas A&M

The results of an analytical study on bridge piles were presented. The study concluded that the piles will be subjected to ratcheting failure that will cause the surrounding soil to fail under the horizontal force acting on the piles. The study also concluded that, for the case studied, piles pull-out is unlikely. The authors recommended using few larger piles rather than many small piles and to install sheet pile wall around the pile group.

Vulnerability Screening and Retrofitting – Ideas from Other Hazards Ian M. Friedland, FHWA

This presentation included several retrofit options suitable for improving the performance of coastal bridges under wave forces. Most of the ideas were originally developed for seismic retrofit.

<u>HR Wallingford Wave Force Prediction Methodology</u> William Allsop, HR Wallingford / Giovanni Cuomo, University of Rome

This presentation covered test results of analytical and experimental wave force studies on vertical walls and jetties. The studies included measurements and predictions of the magnitude and duration of the impact forces. The experimental results were compared to analytical predictions made using an exponential formula.

<u>University of South Alabama's Wave Force Synthesis Study</u> Scott Douglass, University of South Alabama (USA)

The outline of a then-contemplated study on the wave forces on bridge deck was presented. The study has been completed and published in 2006. The presentation also covered the research needed to determine wave forces and the design requirements for coastal transportation facilities.

<u>Field and Experimental Calibration of Wave Forces on Bridge Structures</u> Solomon Yim, Oregon State University, Ian Robertson and Ron Riggs, University of Hawaii, and Julie Young, Princeton University

This presentation covered the following three areas:

- Photos from an extensive reconnaissance trip that included 110 sites. Several calculations of the buoyancy forces are included in the presentation. Most of these calculations indicated that the superstructure will "float" if air is entrapped between the girders.
- The three-dimensional and two-dimensional wave tank capabilities in Oregon State University.
- Results from finite element analysis of wave forces on a bridge structure.

<u>HR Wallingford UK Wave Force Prediction Methodology</u> William Allsop, HR Wallingford / Giovanni Cuomo, University of Rome

Samples of static, impact and time history analysis were included in this presentation. The results were compared to experimental results.

<u>A Quick-and-Dirty Estimate of Wave Loads on Bridge Decks by Adapting an</u> <u>Existing Approach from the Oil Industry</u> Scott Douglass, USA

The application of the approach used in the design of off-shore platforms to bridge is structures was presented. An overview of the wave parameters and a numerical example design were included in the presentation. The author concluded that better methods for estimating wave loads on bridge decks are needed. He also concluded that laboratory and prototype studies are also needed and are justified by cost considerations.

<u>Vertical Wave Forces on an I-10-Escambia Bay Bridge Span Using Kaplan's</u> <u>Method</u> Max Sheppard, OEA, Inc.

A numerical example of using the Kaplan method to estimate the wave force was presented.

TASK SUBMISSION

<u>TASK 2 – REVIEW, SUMMARIZE, AND AUGMENT</u> <u>LITERATURE</u>

CATALOG OF OBSERVED DAMAGE FROM PAST STORMS

Table of Contents

Table of Contents	
Introduction	3
US 90 Henderson Point	3
US 90 Biloxi Bay / Biloxi-Ocean Springs	6
US 90 Bay St. Louis	8
Popps Ferry Bridge	12
I-10 Twin Spans	
I-10 Escambia Bay	26
I-10 On-ramp at Midbay Crossing of US-90/98	30
Pontchartrain Causeway	31
US-11 over Lake Pontchartrain	
LA-1 over Camanda Bay	31
David V. LaRosa Bridge	32
Precast Bridge at Bayou La Batre	32
Dauphin Island Bridge	22
Cochrane-Africatown USA Bridge	32
Biloxi Back Bay Bridge	33
Ocean Springs Pascagula	33

Introduction

A portion of Task 2 of this project involves cataloging bridge damage experienced in past events. The purpose of cataloging damage is to determine failure modes that have actually occurred in bridges during storm events. Knowledge gained from cataloging damage will be used in later tasks, especially Task 4, which involves the development of retrofit concepts for bridges that are susceptible to coastal storms. The concepts developed will correspond to the observed failure patterns. The following information was gained by examining the sources listed at the beginning of each section. In many cases possible causes of observed damage are listed, these causes should be interpreted as ideas, not as facts.

US 90 Henderson Point

No Vertical Restraint (if bond breaker used on dowels)

Information sources: Mississippi DOT pictures and bridge plans

General Information:

- Side by side chorded multi-span prestressed bulb-T girder bridges
- Bridge Drawings dated 1996
- Elastomeric bearing pads at free end
- Full depth doweled diaphragms at fixed ends
- One span of bridge dislodged completely, others shifted
- Dislodged span was where bridge met grade (lowest elevation/most submersion)
- Dislodged span was about 123' long and 48' wide

Information on full depth diaphragms with dowel bars:

- Dowel bars still intact (not sheared)
- Some dowels bent (from beams landing on them)
- Others still upright (at edge, where span moved away from them)
- Dowels in fixed diaphragm are double leg #5's at 12" (See bridge plan sheets 16 to 19, and 23)

- Some States use bond breakers between the steel dowel bars and the diaphragm concrete to enable jacking of the beams for bearing replacement and other maintenance
- No bond breaker details given in plans
- Did dowel bars provide any vertical restraint for this bridge?

• Concrete in end diaphragm is damaged (due to rotation of span about fixed end or dropping of the span?)

Information on entrapped air:

- At least some cavities had drains through the deck that would have allowed air to escape from between the beams (roughly 8" by 3" openings spaced at 8' 10")
- Not all spans have the same drain layout
- The dislodged span had deck drains that would vent air from only one of the 5 airspaces between girders (six beam cross section)
- The dislodged span was sloped longitudinally, so the amount of air trapped between beams and diaphragms is less than would be trapped had the section not been sloped, assuming water rises uniformly
- Change in elevation along the length of the dislodged span was about 2.85', or about 1' of elevation change between successive diaphragms
- Higher end has about 5'6" average airspace height, two other air pockets have about 5'0" average air space height. (full depth end diaphragm allows more air to be trapped than intermediate diaphragms, which were not full depth)

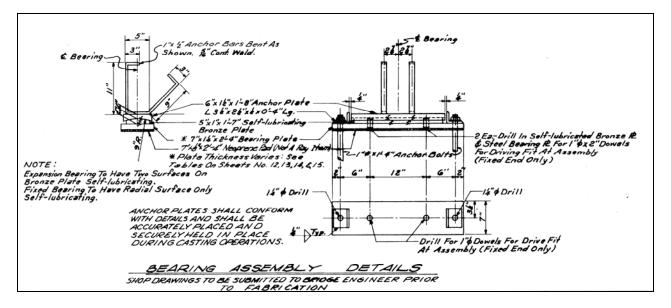
Failure Considerations:

• Because there was no vertical restraint (assuming dowels ineffective) it is likely that the superstructure was lifted up and off of the dowels then was pushed laterally by waves, current, and/or wind.

US 90 Biloxi Bay / Biloxi-Ocean Springs

No Vertical Restraint

Information sources: Mississippi DOT Pictures and Bridge Plans


General information:

- Bridge contained concrete girder spans, steel girder spans, and a bascule span
- Bridge plans dated 1959
- Concrete girder spans
 - o Prestressed girders
 - 52' typical span length
 - 33' 5" typical span width
 - Used on lower elevation spans
 - Majority of bridge was concrete spans
- Steel girder spans
 - Wide flange sections
 - 76' typical span length
 - Used on higher elevation spans adjacent to bascule
- Low elevation spans were lost, while higher spans were left intact

Information on bearings for 52' prestressed girder spans:

- Bronze bearings used (Bridge plans, sheet 19)
- No positive connection between beams and pier cap (uplift not resisted)
- Small angles used to restrain transverse movement of bronze bearings (2 ¹/₂" high)
- Stepped beam seats, but no shear blocks

Information on entrapped air for 52' concrete spans:

- Deck had 4" inside diameter drains through the deck spaced at 11' center to center.
- These drains would have allowed air to escape from only one of the 5 air-spaces between girders (six girder cross section)
- Solid end and intermediate diaphragms were present (diaphragms terminated 6" from bottom of beam)
- Neglecting weight of pipe railings, light standards, etc, but accounting for diaphragms and concrete rails, assuming air escaped from one airspace due to vents, and assuming the water level to be at the top of the sidewalk, the weight of a typical 52' prestressed span was
 - Un-submerged
 - Submerged, air not compressed (ignore ideal gas law) 31.9k

347.2k

- \circ Submerged, air compressed using ideal gas law, 1st iteration on h 49.4k
- Submerged, air compressed using ideal gas law, iterated h 48.4k
- Where h is the height of the compressed air
- Sections nearly buoyant when submerged in static water

Failure Considerations:

- Conditions that failed the bridge obviously did not involve static water
- Is it possible that the sections were displaced prior to complete submersion? (i.e. wave forces failed the bridge before the above-mentioned buoyancy calculations materialized)
- Likely superstructure was lifted (above the small angles or other features, such as stepped beam seats, that might have provided lateral or longitudinal restraint), then lateral and or longitudinal forces due to waves, tides, and/or wind pushed sections off of piers

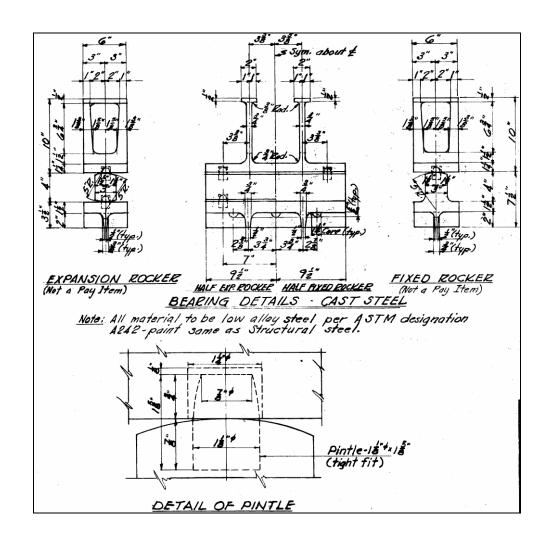
US 90 Bay St. Louis

No Vertical Restraint (for concrete spans)

Information sources: Mississippi DOT Pictures, bridge plans, AASHTO slideshow, and pictures taken from paper by Robertson et al

General Information:

- Bridge contained concrete girder spans, steel girder spans, and a bascule span
- Concrete girder spans
 - Reinforced concrete T-Beams
 - 41' typical span length
 - Majority of bridge was concrete spans
 - Almost all dislodged
- Steel girder spans (two)
 - Wide flange sections
 - 75' span length
 - Used as approach span on both sides of bascule
 - Concrete deck appears to have been non-composite (no shear studs)
 - o One steel span dislodged
 - One steel span remained on piers, but the deck was missing
- Bascule span damaged, but not examined herein
 - Movement of bascule may provide an estimate of wave loads
- Storm surge elevation 24.9', storm surge plus wave 40.2' (AASHTO slideshow)
- Dislodged spans found as far as 220' from their original location (AASHTO slideshow)
- Bridge plans dated 1951



Information on bearings for 41' concrete spans

- Bearings provide no positive connection that would resist uplift
- Bearing details shown below are from sheet 12 of the bridge plans
- Pintles should project $\frac{3}{4}$ " from the rocker or sole plate

• The picture below from Robertson et al shows Pintles that appear to be undamaged

Information on entrapped air for 41' concrete spans

- 3" diameter drains through deck at 10' increments
- Drains would permit air to escape from one of the three air-spaces between girders
- Diaphragms were only slightly more than half of the beam depth below the deck
- Comparatively small volume of trapped air

Information on steel spans:

- Bearings of steel spans provided vertical restraint in the form of bolts at both the expansion and fixed ends.
- It appears that the deck was not composite with the girders

Failure Considerations:

- Likely the concrete spans were lifted (above the Pintles or other features that might provide lateral or longitudinal restraint), then lateral and or longitudinal forces due to waves, tides, and/or wind pushed sections off of piers
- Steel spans had connections capable of resisting at least some uplift
- For the steel span that remained on the piers, it is likely that the non-composite slab was lifted away from the beams by wave forces while the beams remained in place because of the provided connections between the beams and pier
- It is unclear if the steel span that was dislodged was knocked off of the pier before or after the non-composite deck was separated from the girders.

Popps Ferry Bridge

Information Source: Mississippi DOT Pictures (no plans available)

General Information:

- Prestressed bulb T girder spans
- Four beam cross section, bents have 4 columns with a cap beam
- It appears that the bridge was designed so that the beams would sit directly over the bent columns
- The spans were shifted, but not lost
- Details of bearings unavailable
- Shifting of the spans caused damage to the pier cap
- Prestressed beams show cracking in the bottom flange near an intermediate external diaphragm (it is unknown how many beams exhibited this behavior or if is was an isolated occurrence)
- Damage to end of beams in area of sole plate
- Failure of deck/sidewalk

Damage resulting from shifted spans

- Cracked pier cap ends
 - Beams came to rest at the end of pier caps
 - The pier cap of pier 52 looks like it sheared where reinforcement started (i.e. beam came to rest with 2" or 3" of bearing on end of pier cap and the cap failed in direct vertical shear along the plane where the first tie/stirrup was)
 - Shallow member beam theory is not applicable to the pier cap overhang due to the large depth to length ratio.

- Pier cap beam cracked between columns
 - Superstructure beams came to rest midway between columns
 - Pier cap beam shows inclined shear crack from face of column
 - Flexure cracks observed directly below some of the shifted superstructure beams.
 - Spalling under superstructure beam, insufficient bearing / bearing on corner???
 - Pier cap beam likely not designed to take superstructure reactions at these locations beams supposed to sit directly over the columns

Cracked p/s beam in span / away from end -- Bottom flange at external diaphragm

- The overall context of the picture is not clear
- Other pictures indicate that there are intermediate diaphragms at midspan only
- Positive bending (tension cracks) when span picked up and dropped (or slammed)???
- Does not appear to be crushing from compression (negative bending from uplift or removal of the selfweight that counteracts the prestress force)
- Cracks appear to be located only in close proximity to the diaphragm, this is likely not a coincidence. The diaphragms may create a stiffer section of the structure which attracts load.

Deck/sidewalk failed

• Context of the picture is unclear

- Cantilevered section?
- Failed due to uplift on cantilever?

- Cracked beam end in area of sole plate
 - Due to shortened bearing length after span shifted?
 - Due to dropping of the span?

Failure Considerations:

- Damage to pier cap is due to movement of spans prevent spans from moving to solve this problem
- Cracked beam near midspan diaphragm more information needed, may be potential future specification issue

- Failed sidewalk more information needed, may be a potential future specification issue (see also I-10 Twin Spans)
- Damage to beam near sole plate prevent spans from moving to solve this problem

I-10 Twin Spans

Broken Connections

Information sources: "Hurricane Katrina, Performance of Transportation Systems" by ASCE, Bridge Plans, Survey of damage performed by Volkert and Associates

General Information:

- Bridge consisted of concrete spans and steels spans
- Concrete spans
 - Precast prestressed monolithic concrete girder/deck units
 - Typical span length 65 ft
 - Used steel and bronze bearings
- Steel Spans
 - Used at higher elevation, not impacted by surge
- Low lying spans impacted by surge while higher elevation spans largely undamaged
- Some spans completely dislodged while others shifted laterally

Information on bearings for concrete spans:

- Steel and bronze bearings used (details from bridge plans not included due to poor image quality)
- Only fixed end exterior girders had vertical restraint (two connections per span)
- Uplift load path from beam to pier is as follows
 - Two straps transfer force from the beam into the bronze plate (photos of damage do not agree with this detail which is shown in the bridge plans)
 - The straps each have two legs, which are hooked and embedded into the beam
 - The straps are attached to the bronze plate through an unknown connection (shop drawings not available)
 - Two bolts transfer the force from the bronze plate into to the pier
 - The anchor bolts are embedded in the pier cap

- Area of steel for bolts and straps are about the same
 - \circ Two 1" diameter bolts = 1.57 square inches
 - Four legs of 1" x 3/8" bar = 1.50 square inches
- Bearings not having vertical restraint had lateral restraint in the form of small angles

Fixed bearing at an exterior beam - Bronze plate still attached to pier Straps holding the bronze plate to the beam failed while the anchor bolts remain intact

Fixed bearing at an exterior beam - (Bronze plate is still attached to pier, not shown) Straps holding the bronze plate to the beam failed while the anchor bolts remain intact

Fixed bearing at an exterior beam - (Bronze plate is still attached to pier, not shown) Straps holding the bronze plate to the beam failed while the anchor bolts remain intact

Fixed bearing at an exterior beam - Bronze plate is still attached to the beam Straps holding the bronze plate to the beam are intact while the anchor bolts failed

Free end any beam or fixed end interior beam (locations where plate not bolted to pier) Bronze plates remain attached to the beam through the straps (expected behavior) Cracks and spalls at beam ends

- Could some of this damage be repairs to damage from previous events?
- Beams banging on pier?
- Shifted beams being supported with insufficient bearing area/surface?
- At locations where the bronze plates were anchored to both the beam and the pier, the beam to plate connection may have caused damage to the concrete?

Cracking/spalling/missing concrete in top of girders/deck

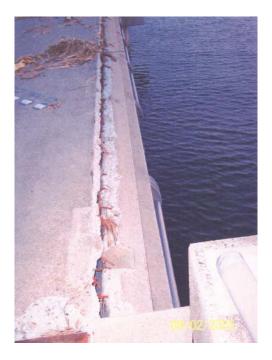
- Context of pictures unclear
- Negative bending--tension?
- Positive bending—compression—picking up and dropping (or slamming) of span?
- Due to railing breaking away (note deck drains in photos, these are present at the edge of the deck)

Damage to end of decks, ends of parapets, and ends of curbs

- Longitudinal movement caused banging?
- Spans become misaligned as they move sideways and get pinched between spans on either end (free end moves first)?

- 45 degree cracks at ends of decks
 - Initiated through end diaphragms

- Beams gets caught on a stepped bearing seat as it moves sideways, halts sideways movement, tension transferred through diaphragm, cracks initiate and propagate into deck??
- Span shifts so that fascia beam is no longer supported by pier, weight of unsupported beam is now transferred through diaphragm which develops an inclined shear crack that propagates through the deck??

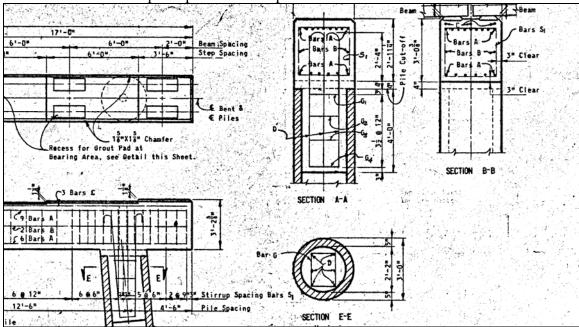

Spalls on pier, cracking at ends

- Insufficient bearing area when girder shifted??
- Dropping or banging of spans??
- Bending or direct shear on cantilevered bent cap

Missing barrier railCause of top of girder damage listed above?

Failure considerations:

- Connections inadequate to prevent uplift of spans
 - Vertical restraint provided only at one end of each span
 - In some cases bolts connecting bronze plate to pier broke while in other cases the straps connecting the bronze plate to the beam broke
 - Area of bolts and straps about the same (steel strengths unknown)
 - About 3 square inches of steel to anchor each span
 - Provided area of steel reduced by corrosion?
 - $\circ~$ It is unclear if the connections failed in shear, tension, or a combination of shear or tension
- Once spans were lifted (above any existing features that might provide lateral or longitudinal restraint), they moved laterally or longitudinally causing most of the damage pictured above, if spans could be anchored most damage would be avoided.
- 45 degree cracks in ends of decks which were initiated through the diaphragms are a potential future specification issue
 - If superstructure is restrained vertically by some adequate connection and shear blocks are used to restrain the superstructure laterally, will the diaphragms crack and lead to damage of the deck?
 - Are diaphragms an adequate way to anchor the superstructure?
 - Would different reinforcing details solve this problem?
- Damage to barrier rail is a potential future specification issue
 - Use of open rails
 - Use of more robust reinforcement
 - Consideration of uplift on cantilevered section of deck for quantity and development of reinforcement
 - How does the reinforcement used in this bridge compare to current design standards?
 - Are modern designs still susceptible to this type of failure?
 - See also Popps Ferry Bridge
- Cracking/spalling/missing concrete in top of girders/deck is a potential future specification issue
 - What caused this?


I-10 Escambia Bay

Broken connections, damaged piers

Information sources: Bridge Plans, Hurricane Ivan Damage Inspection by FDOT

General Information:

- Bridge consisted of concrete spans and steels spans
- Concrete spans
 - Precast prestressed monolithic concrete girder/deck units
 - Typical span length 60 ft
 - Used neoprene bearings
- Steel Spans
 - Used over main channel
 - The higher elevation of these spans prevented them from being impacted by waves
- Typical "intermediate" bents were constructed using:
 - Three 36" diameter post-tensioned concrete cylinder piles.
 - Precast bent cap
 - Cast in place pile to bent cap connection

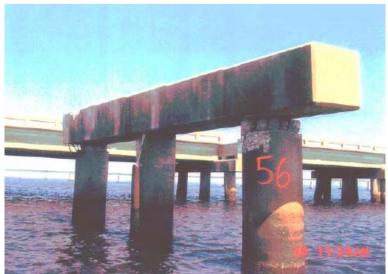
Details of pile to bent cap connection from bridge plans

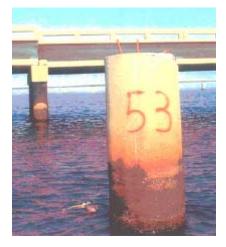
- Reinforcing shown in pile to bent cap connection was cast into the precast pile cap
- Pile cap was placed in position above the piles, which were cut at a specified elevation after driving
 - Reinforcing extending into the hollow cylinder pile

- There was a space several inches high between the bottom of the cap and the top of the pile
- Grout was pumped into the pile so that the top 4' of the pile was filled
- The short distance between the pile cutoff and the bottom of the bent cap was somehow formed so that grout would fill the space
- Grout was pumped through a 6" diameter hole in the precast bent cap
- o See pictures below
- Some spans completely dislodged while others shifted laterally and/or longitudinally
- Bents damage included
 - Pile to bent cap connection damaged
 - Piles broken at splices (according to FDOT report)
 - Bents pushed over longitudinally
 - o Completely and partially missing bents

Information on bearings for concrete spans:

- Bridge plans show that spans on flat grade used two bearing configurations
- Interior girders used beams resting directly on neoprene pads
 - No positive restraint at interior bearing locations
- Fascia girders had a steel sole plate that was fastened to the beam and the bent
 - Fascia girder bearings had restraint against uplift, lateral, and longitudinal shifting.
- Although many spans were displaced, spans were anchored sufficiently to cause bent damage at some locations.


Span displaced laterally and longitudinally


Bent deformed longitudinally

Bent failed longitudinally

Bent with damaged pile to bent cap connection

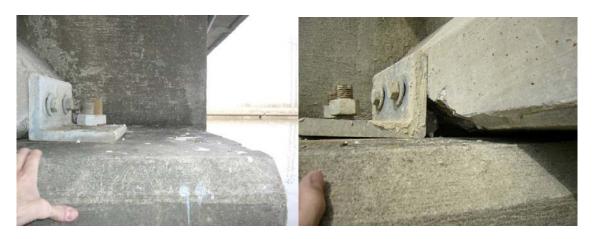
As built reinforcement?

Failure considerations:

- Bent damage indicates that securing the superstructure to the substructure may lead to destruction of the substructure. This is a serious limitation on retrofits.
- It is unknown if the as-built conditions of the pile to bent cap connections were in agreement with the bridge plans shown above.
- Pile to bent cap connection used on this bridge was also used on other bridges of this era including I-10 Lake Ponchartrain, the Ponchartrain Causeway, and possibly the Pensacola Bay Bridge. These bridges were constructed using precast elements such as monolithic superstructure units and post tensioned Raymond piles. The I-10 Lake Ponchartrain Bridge, the Ponchartrain Causeway, and the Pensacola Bridge are known to have been manufactured at the Mandeville plant on Lake Ponchartrain. It is suspected, but has not been verified, that the Escambia Bay Bridge was also manufactured at this plant.
- I-10 Lake Ponchartrain did not exhibit this type of damage, possibly because:
 - o Larger diameter piles were used
 - Bearings provided positive restraint only at one end, so forces actually reacted by the bents may not have been large enough to cause damage
- Broken pile splices that were reported in the FDOT damage inspection are another potential problem with respect to substructure capacity. Pictures of broken splices were not included in the report, possibly because the breaks were underwater. A brochure on Raymond piles from this era (i.e. the 1960's) indicates that piles were cast in segments, then placed end to end and post tensioned. The brochure states that:

"A plastic compound having a greater ultimate strength than the concrete is placed on the face of each section. This provides a perfect joint when stressing is complete."

It is believed, but not verified, that these joints are the "splices" referred to in the FDOT damage inspection.


I-10 On-ramp at Midbay Crossing of US-90/98

Broken Connections

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE and pictures in "Wave forces on Bridge Decks" by Douglass

General information

- Prestressed concrete simple spans 45' in length
- Built in 1970's
- Beams anchored using 1" diameter anchor bolts and 6" x 9" x 1" steel angles (ASCE)
- Concrete around bolts broke (Douglass et al.)
- Broken anchor bolts (ASCE)
- Some spans on curve were pushed toward center of the curve, so this may have prevented them from being fully dislodged

Pontchartrain Causeway

Limited Information

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- Construction generally similar to the I-10 Twin Spans
- Most of spans above surge level, thus undamaged
- The "turnaround" spans were at a lower elevation and 17 were lost, no specifics given

US-11 over Lake Pontchartrain

Largely Undamaged—Limited Information

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE and Bridge Plans

- Largely undamaged
- Haunched continuous girders (according to ASCE report)
- Bridge plans appear to show that the spans were not continuous. Reinforcement was not continued from span to span at expansion or articulated joints.
- Air vents in diaphragms
 - Bridge plans indicate that these were provided for utilities (bridge lighting etc)
 - Where did these go, to an expansion joint??
 - How far did air have to travel to escape??
- Bridge plans show the following with respect to bearings and fixity:
 - Articulated joints were doweled
 - Expansion joints???

LA-1 over Camanda Bay

Limited Information

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- Simply supported reinforced concrete
- 13 shifted spans
- Spalling and exposed rebar from debris
 - Would a sacrificial barrier to protect the structure be practical?
- No mention of bearing types

David V. LaRosa Bridge

Limited information

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- No specifics given
- A few shifted spans

Precast Bridge at Bayou La Batre

Banging of Adjacent Boxes

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- Single span precast girder bridge
- Prestressed adjacent box beams
- No cast in place deck or diaphragms
- Spalling between beams caused by them banging into one another
- No cast in place shear keys, or cast in place deck, or post tensioning of the beams transversely to prevent rattling or banging of beams??

Dauphin Island Bridge

New Bridge Undamaged – Limited information

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- First bridge destroyed by hurricane Fredrick in 1979
- New bridge built using precast segmental construction
- Minimal damage to bridge (was this bridge above the surge?)
- Damage to approaches and fenders

Cochrane-Africatown USA Bridge

Vessel Impact

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- Cable stayed bridge
- Damaged cable when bridge was struck by oil platform

Biloxi Back Bay Bridge

Vessel Impact

Information source: "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- High-span bridge (remained above surge?)
- Impacted by barge, which damaged a pile/bent
- Superstructure intact

Ocean Springs Pascagula

Vessel Impact

Information source: Mississippi DOT pictures and "Hurricane Katrina, Performance of Transportation Systems" by ASCE

- 13 to 18 feet of storm surge
- Repeatedly impacted by barges
 - One barge carried large cranes
 - One or more smaller barges
 - Also a tugboat
- Damaged piers (lateral forces failed rigid frame)
- A continuous span section (six spans) shifted 45 inches
- Damaged fascia girders
 - Spalling
 - Exposed strands
 - One completely destroyed

Seems to be undamaged by storm surge, possibly because of continuity of girders

TASK SUBMISSION

<u>TASK 2 – REVIEW, SUMMARIZE, AND AUGMENT</u> <u>LITERATURE</u>

Resistance Calculations of Failed Components

Table of Contents

1.0 Introd	luction	
2.0 I-10 I	Lake Ponchartrain Bridge	
2.1 Str	ength of Bearings	
2.1.1	Fixed End Exterior Bearings	
2.1.2	Fixed End Interior Bearings	
2.1.3	Expansion End Bearings	
2.2 Re	sistance of Spans to Displacement	7
2.2.1	Uplift Resistance of Spans	
2.2.2	Lateral Resistance of Spans	
2.2.3	Longitudinal Resistance of Spans	
2.3 Re	sistance of Girders	
2.4 Str	uctural Resistance of Bents	
2.4.1	Lateral Resistance of Bents	
2.4.2	Longitudinal Resistance of Bents	
2.5 Su	mmary of Force Estimates for I-10 Lake Ponchartrain Bridge	
3.0 I-10 I	Escambia Bay Bridge	
3.1 Str	ength of Bearings	
3.1.1	Fascia Girder Bearings	
3.1.2	Interior Girder Bearings	
3.2 Re	sistance of Spans to Displacement	
3.2.1	Uplift Resistance of Spans	
3.2.2	Lateral Resistance of Spans	
3.2.3	Longitudinal Resistance of Spans	
3.3 Re	sistance of Girders	
3.4 Str	uctural Resistance of Bents	
3.4.1	Lateral Resistance of Bents	
3.4.2	Longitudinal Resistance of Bents	
3.5 Su	mmary of Force Estimates for I-10 Escambia Bay Bridge	

1.0 Introduction

A portion of Task 2 of this project involves back calculating forces experienced in past events. The purpose is to determine the resistance of the components that failed during past hurricanes. This resistance will be compared to the wave forces calculated in later tasks of the project. The comparison will be used to determine whether the wave force calculation methods are yielding force magnitudes that reflect the observed damage. This will be accomplished by answering two questions:

(1) Is the estimated wave force sufficient to have done the observed damage?

(2) Should more damage have been evident?

An investigation of two bridges that experienced damage during coastal storms was performed. Estimates of the loads required to cause several different failure mechanisms were determined. The actual damage sustained was then examined and compared to the predicted failure mechanisms. Based on the occurrence or non-occurrence of failure mechanisms, maximum and minimum wave loads were estimated when possible. It should be emphasized that all forces contained herein represent loads developed from structural inference, not wave force equations or analysis of the seastate.

Typical 65' spans of the I-10 Lake Ponchartrain Bridge and typical 60' spans on flat grade of the I-10 Escambia Bay Bridge were investigated by considering the following failure modes:

- Displacement of spans due to insufficient anchorage to the substructure. This considered the strength of individual bearing components, friction and selfweight. Resistance to uplift, lateral, and longitudinal loads was investigated.
- Resistance of spans to negative bending due to uplift assuming the spans were sufficiently anchored at each end. This considered the cracking and ultimate capacity of the beams.
- Structural capacity of typical 3 pile bents to resist lateral and longitudinal loads applied at the top of the piles. This investigation focused on the formation of plastic hinges in the piles. Geotechnical capacity was not considered.

2.0 I-10 Lake Ponchartrain Bridge

The first structure examined was the I-10 Bridge over Lake Ponchartrain. The 5.5 mile bridge, which was built in 1963, consisted of two side by side spans each carrying three lanes of traffic. The majority of the bridge was constructed using 65' precast spans supported on three-pile bents. The exception to this was around the shipping channel where longer spans and higher bents with more piles were used. The 65' spans consisted of six girders and a deck which were cast monolithically at a casting yard on the lake. The three-pile bents were constructed using 54'' diameter post-tensioned cylinder piles and reinforced concrete bent caps. The majority of the bridge was at a profile grade elevation of 15.25' above mean sea level. The design drawings give the mean high water elevation at the bridge site as 3.52' above mean sea level. According to a damage report by Volkert and Associates, 537 spans were displaced during Hurricane Katrina: 473

remained on the bents while 64 ended up in the lake. Figure 2.1 shows spans of the I-10 Lake Ponchartrain Bridge that were displaced longitudinally.

Figure 2.1 – I-10 Lake Ponchartrain Bridge after Hurricane Katrina Source: Volkert and Associates Damage Assessment

2.1 Strength of Bearings

Typical 65' spans of the I-10 Lake Ponchartrain Bridge used bronze bearings. Three different configurations were used. Each configuration provided different resistances to wave loads and is discussed separately. The figures shown below were redrawn from the design drawings. However, the design drawings do not necessarily represent the as-built structure. Pictures of damage sustained by the I-10 Lake Ponchartrain Bridge indicate that end welded studs were used to connect the beam to the corresponding plate, not straps as shown in the plans. In bearings that used a strap connection, calculations suggest that the bolts would control. However, in bearings that used studs, pictures of the damaged bridge show that failure of both the studs and the bolts occurred. Figure 2.2 shows a beam with the bronze plate missing, indicating the plate to beam connection failed. This picture also indicates that end welded studs were used because the strap or a void left by the strap is not present in the bottom of the beam. Figure 2.3 shows a beam with the bronze plate intact, indicating bolt failure. Observed failure of both connections suggests that either the bolt and stud capacity were similar, or that the controlling component depended on which failure mode occurred (i.e. failure under lateral load or uplift load). No information on the type of studs that were used was available. Because accurate information about the plate to beam connections was unavailable and because the capacity of the plate to beam connection was not expected to be dramatically different than the bolt capacity, bolt capacities were used in the evaluation of the resistance of spans to displacement. Resistances given below assume no over/under strength of fasteners and no interaction of shear and tension on bolt strength. The resistances shown do not include friction, which will be added to the structural resistance in Section 2.2.

Figure 2.2 – Beams with Missing Bearing Plates on I-10 Lake Ponchartrain Bridge Source: Volkert and Associates Damage Assessment

Figure 2.3 – Beam with Intact Bearing Plate on I-10 Lake Ponchartrain Bridge Source: Volkert and Associates Damage Assessment

2.1.1 Fixed End Exterior Bearings

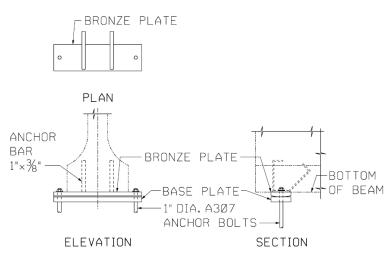


Figure 2.4 – Bearings at Fixed End Exterior Girders

Bearings at fixed end exterior girder (2)

- Resistance to uplift provided between beam and pier cap
 - Uplift capacity controlled by tension in bolts
 - \circ Uplift capacity = 33.5 k per bolt
 - Two bolts per bearing
- Resistance to lateral loads provided between beam and pier cap
 - Lateral capacity controlled by shear in bolts (assume threads excluded)
 - \circ Lateral capacity = 20.7 k per bolt
 - Two bolts per bearing
- Resistance to longitudinal loads provided between beam and pier cap
 - Longitudinal capacity controlled by shear in bolts (assume threads excluded)
 - \circ Longitudinal capacity = 20.7 k per bolt
 - Two bolts per bearing

2.1.2 Fixed End Interior Bearings

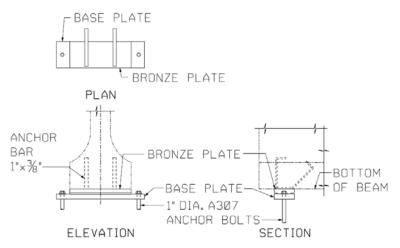


Figure 2.5 – Bearings at Fixed End Interior Girders

Bearings at fixed end interior girder (4)

- No resistance to uplift provided between beam and pier cap
 - \circ Uplift capacity = 0 k
- No resistance to lateral loads provided between beam and pier cap
 Lateral capacity = 0 k
- No resistance to longitudinal loads provided between beam and pier cap
 - \circ Longitudinal capacity = 0 k

2.1.3 Expansion End Bearings

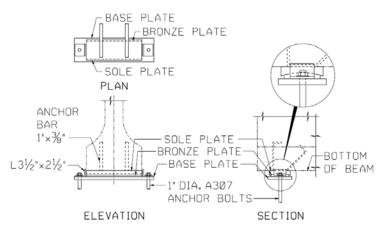


Figure 2.6 – Bearings at Expansion End All Girders

Bearings at expansion end (6)

- No resistance to uplift provided between beam and pier cap
 Uplift capacity = 0 k
- Resistance to lateral loads provided between beam and pier cap
 - Angles resist lateral load, but under uplift section may lift above the angles
 - Lateral capacity controlled by shear in bolts (assume threads excluded)
 - Lateral capacity = 20.7 k per bolt (if section not lifted)
 - One bolt per bearing
 - Lateral capacity = 0 k (if section lifted)
- No resistance to longitudinal loads provided between beam and pier cap a_{1} Longitudinal conscitut = 0 k
 - \circ Longitudinal capacity = 0 k

2.2 Resistance of Spans to Displacement

The spans on the I-10 Lake Ponchartrain Bridge were restrained by the bearings described above. Uplift was resisted at the fixed end by four bolts. Lateral movement was restrained by four bolts at the fixed end and by six bolts at the expansion end if the span was not lifted. If a span was lifted, lateral restraint would only be provided by four bolts at the fixed end. Longitudinal movement was restrained at the fixed end by four bolts. The extent to which the fasteners were simultaneously engaged is not known. The calculations that follow assume that the fasteners acted simultaneously, allowing their capacities to be additive. In addition to mechanical fasteners, friction and selfweight were considered.

Friction was assumed to contribute to the lateral and longitudinal capacity of the spans. The frictional resistance is a function of the normal force and coefficient of friction between contact surfaces. Because the normal force affects the frictional resistance, the lateral resistance of the span is dependent on the applied uplift load. The bearings used on the I-10 Lake Ponchartrain Bridge had more than one interface where sliding could have occurred. Sliding between steel and concrete, steel and bronze, and bronze and concrete was possible. Unrestrained bearings were designed to slide on the bronze to steel interface, and this behavior would be expected under wave loading. The sliding interface of restrained bearings depends on where failure occurs. Assuming bolt failure, as was done in the analysis of bearing capacities, sliding of bronze on steel would be expected at restrained bearings. Because steel on bronze sliding was expected, the coefficient of friction between these two materials was considered appropriate for use in resistance calculations. However, an appropriate coefficient was not able to be determined. The AASHTO LRFD specification indicates that a coefficient of friction between 0.07 and 0.10 may be expected during the life of lubricated bronze bearings, and that a coefficient of friction of 0.4 may be conservatively used for the design of unlubricated bronze bearings. The bearings of the I-10 Lake Ponchartrain Bridge were lubricated bronze, however, after more than 40 years in service the bearings exhibited signs of corrosion as seen in Figure 2.3. Therefore, the frictional resistance was bracketed by using coefficient of friction values of 0.10 and 0.40.

The self weight of the span provided the majority of the resistance to uplift and contributed to the lateral resistance of the span through friction when uplift loads were small. The self weight of the span was calculated to be 535 kips.

Binding or pinching of adjacent spans was not considered, although it is possible that this occurred.

2.2.1 Uplift Resistance of Spans

- The maximum uplift resistance would be obtained if the fixed end exterior bearings were assumed effective. However, restraining the span vertically at one end only could lead to rigid body rotation about the restrained end.
 - Maximum uplift resistance = selfweight + fixed end exterior bearings
 - Maximum uplift resistance = 535 k + 4 * 33.5 k = 669 k
- The lower bound on uplift resistance would be obtained by accounting for only the dead load of the span. Because the span is restrained vertically only at one end, the provided bolts may be ineffective, and are not accounted for in this calculation.
 - Minimum uplift resistance = selfweight
 - \circ Minimum uplift resistance = 535k

2.2.2 Lateral Resistance of Spans

- Lateral resistance of spans with no simultaneous uplift loading:
 - Lateral resistance provided by fasteners was obtained by assuming that the total reactions at each bent were equal, i.e. the expansion bearings are

capable of providing a larger reaction than the fixed bearings, so the capacity of the fixed bearings was assumed at each bent.

- o Frictional resistance was based on the full dead load of the span
- Lateral resistance = fastener capacity + frictional resistance.
- Lateral resistance = 8 * 20.7k + (0.10 to 0.40) * 535k
- Lateral resistance = 166k + friction = 219 k to 380 k
- Lateral resistance of spans with simultaneous uplift loading less than the dead load:
 - Lateral resistance provided by fasteners is the same as when no uplift loads are present
 - Frictional resistance is based on the net vertical load of the span
 - Lateral resistance = fastener capacity + frictional resistance.
 - Lateral resistance = 8 * 20.7 k + (0.10 to 0.40) * (535 k uplift)
 - \circ Lateral resistance = 166k + friction
- Lateral resistance of spans with simultaneous uplift loading greater than the dead load:
 - o If the uplift load exceeds the dead load, there is no frictional resistance
 - If the uplift load exceeds the dead load of the span, the beams may be lifted above the angles in the expansion bearings, and lateral restraint at the expansion end will be lost.
 - Once frictional restraint and lateral restraint at the expansion bearings is lost, the bearings at the fixed end exterior beams will provide the only lateral restraint. Because the span will be restrained only at one end, the bearings will be subjected to forces in both the longitudinal and transverse directions as shown in Figure 2.7.
 - Lateral resistance = fastener capacity
 - Lateral resistance = 41 k

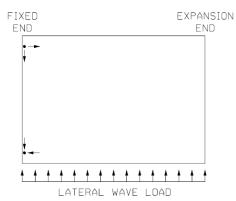


Figure 2.7 - Unsymmetric Restraint of Span Subjected to Lateral Load

Figure 2.8 shows the expected lateral resistance of the span as a function of the uplift load on the span. The coefficients of friction used represent the expected upper and lower bounds for the bearings on the I-10 Lake Ponchartrain Bridge.

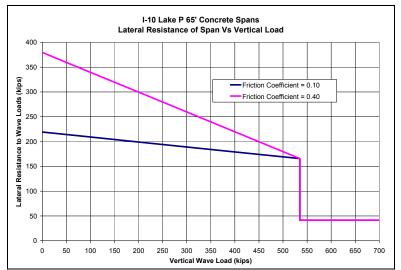


Figure 2.8 - Lateral Resistance of I-10 Lake Ponchartrain Spans vs. Uplift Loads

2.2.3 Longitudinal Resistance of Spans

- Longitudinal resistance of spans with no simultaneous uplift loading:
 - o Longitudinal fastener resistance was due to four bolts at the fixed end
 - o Frictional resistance was based on the full dead load of the span
 - Longitudinal resistance = fastener capacity + frictional resistance
 - Longitudinal resistance = 4 * 20.7k + (0.10 to 0.40) * 535k = 136k to 297k
- Longitudinal resistance of spans with simultaneous uplift loading less than the dead load:
 - Longitudinal resistance provided by fasteners is the same as when no uplift loads are present
 - Frictional resistance is based on the net vertical load of the span
 - Longitudinal resistance = fastener capacity + frictional resistance
 - Longitudinal resistance = 4 * 20.7 k + (0.10 to 0.40) * (535 k uplift)
- Longitudinal resistance of spans with simultaneous uplift loading greater than the dead load:
 - Longitudinal resistance provided by fasteners is the same as when no uplift loads are present
 - If the uplift load exceeds the dead load, there is no frictional resistance
 - Lateral resistance = fastener capacity
 - Lateral resistance = 4 * 20.7 k = 83 k

Figure 2.9 shows the expected longitudinal resistance of the span as a function of the uplift load on the span. The coefficients of friction used represent the expected upper and lower bounds for the bearings on the I-10 Lake Ponchartrain Bridge.

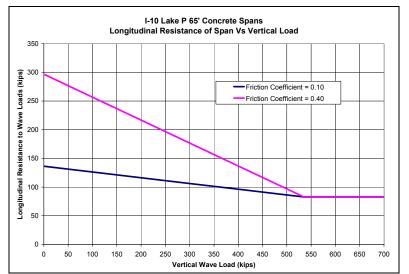


Figure 2.9 - Longitudinal Resistance of I-10 Lake Ponchartrain Spans vs. Uplift Loads

2.3 Resistance of Girders

Uplift loads due to waves, surge, and buoyancy act in a direction that was likely not considered in design of the girders. Damage to the girders due to uplift loads was investigated to determine if these loads were a factor in the failure of the bridge, or if they could have been a factor if the spans were sufficiently anchored to the substructure. Specifically, negative bending of the girders was investigated. The spans of the I-10 Lake Ponchartrain Bridge were monolithic prestressed beam/deck segments. Thus, the distribution of stress in the section due to prestress and bending was continuous. A typical interior girder was analyzed assuming the effective deck width to be one half of the girder spacing. Transformed section properties were used in stress calculations and strain compatibility was used in ultimate strength calculations.

The cracking moment (M_{cr}) of the beam was determined using stress calculations. The calculated cracking moment was the moment required to change the stress in the top of the section from the stress under dead load to a tensile stress of 7.5 sqrt(f'c). Because the cracking moment of an interior girder is not readily comparable to an uplift force on a span, a conversion from moments to forces was made. This was done by assuming that all girders in the cross section had the same moment capacity and that the uplift load was uniformly distributed both transversely and longitudinally. The length of the span was taken as the center to center distance between the bearings. The uplift force (P_{cr}) is equivalent to the applied force required to cause the cracking moment at midspan in all girders in the cross section.

- $M_{cr} = 1,132$ k-ft for a typical interior girder
- $P_{cr} = 858$ k per span (uniformly distributed)

The ultimate moment capacity (M_n) of a typical interior girder was calculated using strain compatibility. Unlike stress calculations, where dead load is already accounted for, the dead load of the span must be overcome in addition to M_n to cause failure. Therefore, the

total applied moment (M_a) to cause an ultimate type failure is the sum of M_n and the selfweight moment (M_{sw}) . The uplift force (P_a) is equivalent to the total force from a uniformly distributed load that would cause ultimate failure in negative bending at midspan in all girders in the cross section.

- $M_n = 492$ k-ft for a typical interior girder
- M_{sw} = 551k-ft for a typical interior girder
- $M_a = 1,043$ k-ft for a typical interior girder
- Note: $Ma = 1,043 \text{ k-ft} < M_{cr} = 1,132 \text{ k-ft}$
- $P_a = 790$ k per span assuming a uniformly distributed load.

Assuming that the deck has not been cracked transversely in service, or by previous events, an interior girder may be loaded to 1,132 k-ft at midspan. At this loading, the beam/deck will crack. Once the beam is cracked the section will only be capable of resisting a moment of 1,043 k-ft.

2.4 Structural Resistance of Bents

The typical bent supporting 65' spans on the I-10 Lake Ponchartrain bridge consisted of three 54" diameter post-tensioned cylinder piles and a 3' deep reinforced concrete bent cap. The top 4' of the piles were filled with concrete and reinforced to facilitate continuity between the piles and the pier cap. The top of the piles were about 18' above the mud line for typical bents. The plastic moment capacity of each pile was determined to be about 1,825 k-ft using strain compatibility.

An investigation of the horizontal load required to cause plastic moments to form in the piles was conducted using COM624P. Investigations were conducted with two different assumed soils. The first soil was soft clay with a soil modulus of 30 lb/in³, unit weight of 100 lb/ft³, cohesion of 110 lb/ft², and strain at 50 percent stress of 0.02. The second soil was sand with a soil modulus of 60 lb/in³, unit weight of 120 lb/ft³, and an angle of internal friction of 32°. The assumed soils were based on soil properties from the site of the I-10 Escambia Bay Bridge because specific information about soils at the Lake Ponchartrain Bridge was not available. Single piles were modeled in COM624P and the forces required to form plastic moments were multiplied by three to determine the bent capacity. The uncracked moment of inertia was used in COM624P calculations.

2.4.1 Lateral Resistance of Bents

The maximum lateral resistance of the bents was determined by applying a horizontal load to a fixed head pile until a plastic moment formed. The first plastic moment formed at the head of the pile for both clay and sand. At this point the model was changed to a free head pile with an applied moment equal to the plastic moment. The new model was then loaded until a plastic moment formed below the mud line. This treatment of the bent neglects the possibility of plastic moments forming in the bent cap as well as the possibility that the pile to bent cap connection will fail. Both of these would reduce the

capacity of the bent. However, the lateral capacity would still be greater than the longitudinal capacity discussed below. The possible increase in strength due to the 4' plug at the top of the pile was also ignored.

- Lateral capacity in clay
 - Mp forms at pile head at a horizontal load of 61 k
 - Mp forms 27' below the mud line at a horizontal load of 113 k
 - Bent capacity = 3 * 113 k = 339 k per bent
- Lateral capacity in sand
 - Mp forms at pile head at a horizontal load of 106 k
 - \circ Mp forms 10' below the mud line at a horizontal load of 150 k
 - Bent capacity = 3 * 150 k = 450 k per bent

Because bents support two spans, the maximum load that may be applied to a span before bent failure occurs is a function of both the bent resistance and the loading applied to adjacent spans. For example, assume a span were subjected to a symmetrically applied lateral load of 100k, the reaction at each bent would be 50k. If adjacent spans are not loaded simultaneously, each bent resists a total lateral load of 50k. However, if an adjacent span is loaded simultaneously with a similar load, the bent between two loaded spans will be required to support 100 k of lateral load (50k/span * 2 spans). The degree to which adjacent spans are simultaneously laterally loaded by waves is not clear. If a bridge were impacted by a wide wave traveling perpendicular to the bridge, it seems possible that simultaneous lateral loading of adjacent spans could occur. However, detailed evaluation of the seastate would likely be required to determine the likelihood of such an occurrence. The possibility of simultaneous lateral loading of adjacent spans will be considered in addition to lateral loading of a single span.

- Lateral capacity in clay
 - One span loaded = 678 k per span
 - Two spans loaded = 339 k per span
- Lateral capacity in sand
 - One span loaded = 900 k per span
 - Two spans loaded = 450 k per span

2.4.2 Longitudinal Resistance of Bents

The maximum longitudinal resistance of the bents was determined by applying a horizontal load to a free head pile until a plastic moment formed. The plastic moment formed below the mud line as would be expected for a cantilevered structure.

- Longitudinal capacity in clay
 - \circ Mp forms 19' below the mud line at a horizontal load of 65 k
 - Bent capacity = 3 * 65 k = 195 k per bent
- Longitudinal capacity in sand
 - Mp forms 7' below the mud line at a horizontal load of 80 k

• Bent capacity = 3 * 80 k = 240 k per bent

The simultaneous loading of adjacent spans may also be relevant to longitudinal loading. On the I-10 Lake Ponchartrain Bridge, mechanical resistance to longitudinal loading was only provided at fixed bearings, thus longitudinal restraint provided by bolts is not shared by the two bents supporting a span. However, the frictional restraint at each bent supporting a span may be assumed to be equal. When one span is loaded, the expansion end bent will be subjected to friction and the fixed end bent will be subjected to friction and the restraint provided by the bolts. For simplicity, when one span is loaded longitudinally, it will be assumed that each bent takes one half of the load applied to the span. This is a reasonable, practical expediency because the maximum force transferred through the bolts is small compared to the force that may be transferred through friction. The bearings on the I-10 Lake Ponchartrain Bridge appear to have been laid out such that a bent would support one fixed and one expansion bearing. If simultaneous and equal loading of adjacent spans occurred, the bents would be subjected to a load equal to the load on one span.

- Lateral capacity in clay
 - \circ Two spans loaded = 195 k per span
 - \circ One span loaded = 390 k per span
- Lateral capacity in sand
 - Two span loaded = 240 k per span
 - \circ One span loaded = 480 k per span

2.5 Summary of Force Estimates for I-10 Lake Ponchartrain Bridge

The uplift resistance of the spans was:

535 k to 669 k based on span dislodgment

790 k to 858 k based on negative bending of the beams

Using the predicted capacities above, it would be expected that the spans would dislodge before they were failed in negative bending.

Lateral resistance of the bridge was:

41 k to 380 k based on span dislodgment

339 k to 900 k per span based on bent resistance

The wide range of resistance for span dislodgment under lateral loads is due to frictional resistance and disengagement of expansion end bearings under uplift. The wide range of values for bent resistance is due to uncertainty regarding the simultaneous loading of adjacent spans and soil conditions at the site.

Longitudinal resistance of the bridge was:

83 k to 297 k based on dislodgment 195 k to 480 k based on bent resistance The wide range of resistance for span dislodgment under lateral loads is due to friction. The range in bent resistance is due to uncertainty regarding the simultaneous loading of adjacent spans and soil conditions at the site.

With respect to lateral and longitudinal loading, strictly comparing the capacity values above does not allow a failure mode to be easily determined. This is due to the dependency of span dislodgment resistance on vertical load, uncertainty relating to simultaneous loading of adjacent spans, and uncertainty in soil conditions at the site. To better asses the ranges above, a linear programming approach was selected. The approach seeks to examine known boundary conditions to find a range of acceptable solutions. Figure 2.10 is a plot of the examined lateral and longitudinal failure mechanisms. Horizontal lines represent lateral load resistances that are relatively independent of uplift loads, vertical lines represent vertical resistances that are relatively independent of lateral loads, and sloped lines represent lateral resistances that are dependent on vertical loads.

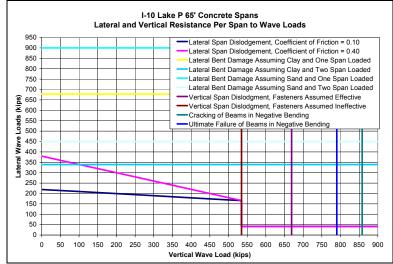


Figure 2.10 - Plot of Lateral and Vertical Resistances for I-10 Lake Ponchartrain Bridge

Examination of the chart reveals that several failure modes may be removed completely from consideration because other failure modes would occur first. For example, negative bending damage to the beams would be preceded by span dislodgment. Three of the four bent damage scenarios would also be preceded by span dislodgment. Other failure modes may be seen to control over only a small range of loads. For example, "Lateral Bent Damage Assuming Clay and Two Spans Loaded" will control over "Lateral Span Dislodgement, Coefficient of Friction = 0.40" when vertical loads are less than about 100 kips. Removal of failure modes that will not occur (because other failure modes occur first) in the above graph will lead to Figure 2.11.

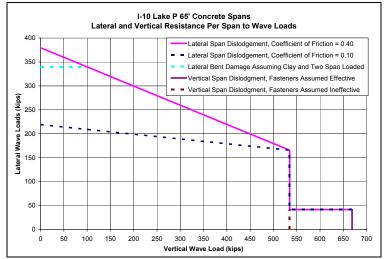


Figure 2.11 – Failure Envelope for Lateral and Vertical Loads

In Figure 2.11, it may be noted that "Lateral Span Dislodgement, Coefficient of Friction = 0.10" will control over "Lateral Span Dislodgement, Coefficient of Friction = 0.40." This is true, however, the actual coefficient of friction is not known, 0.40 represents an upper bound while the 0.10 represents a lower bound. Both lines were retained to represent this uncertainty. A similar situation exists with vertical span dislodgment. Because of the unsymmetric restraint of the span, it is unclear how effective provided fasteners would be at restraining the span vertically. Thus, both lines were retained. The line showing "Lateral Bent Damage Assuming Clay and Two Spans Loaded" was not selected as the cut off point for lateral span dislodgment because of uncertainty relating to soil conditions and the simultaneous loading of the spans. Solid lines in Figure 2.11 represent values that are relatively certain. Points outside of the solid lines will cause failure of the bridge. Dashed lines represent failure boundaries with more uncertainty. Points outside of dashed lines represent possible failure or possible non-failure. depending on conditions. For example, consider a vertical load of 25 k in combination with a lateral load of 350 k. This load will not cause span dislodgment if the true coefficient of friction is 0.40. However, if the true coefficient of friction is 0.10, span dislodgment would occur. The load also has the potential to cause pier damage. If the actual soil conditions at the site are represented by the assumed sand, the piers should not fail. If the actual soils at the site are represented by the clay, the condition of simultaneous loading will determine failure: if adjacent spans are simultaneously loaded failure may be expected, but if only one span were loaded, failure would not be expected.

A similar linear programming process was conducted for lateral and vertical loads. The results are shown in Figure 2.12. In this figure horizontal lines are longitudinal load resistances that are relatively independent of uplift loads, vertical lines are vertical resistances that are relatively independent of longitudinal loads, and sloped lines are longitudinal resistances that are dependent on vertical loads

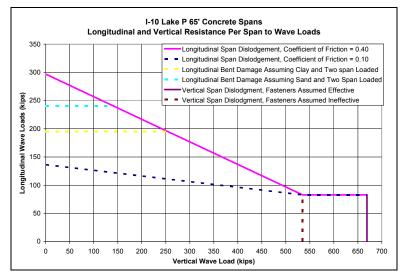


Figure 2.12 - Failure Envelope for Longitudinal and Vertical Loads

With respect to wave loads actually reacted by the spans, estimation of horizontal wave forces is not practical because the effect of vertical load on horizontal resistance of the spans creates a significant amount of uncertainty. Failure of bents, which have a capacity that is relatively independent of vertical loads, was not seen. The non-occurrence of bent failure does not exclude the possibility that the seastate could cause lateral wave loads in excess of the bent capacity because, if/when these loads occurred, the spans were no longer in place. It is possible that the spans were completely lifted by large vertical forces. If this occurred, there would be no resistance to horizontal loads and the spans could be displaced by small lateral or longitudinal forces.

The minimum magnitude of vertical wave loads may be estimated as 535 k to 669 k. This estimate is based on the displacement of spans. Although the spans could have been displaced by lateral loads, several bents appeared to have had damage from beams being dropped or slammed onto the bent cap, suggesting the girders were lifted. Also, as shown in Figure 2.13, some bents had obstacles such as stepped beam seats or anchor bolts, which would exhibit damage if the spans were pushed across the bent cap without being lifted. Evidence indicates that many spans were lifted by vertical forces. The nonoccurrence of negative bending failures does not exclude the possibility that the seastate could cause vertical loads in excess of the negative bending capacity of the beams. This is because the beams were not vertically restrained at both ends, thus span dislodgment would occur before sufficient negative bending could not have occurred. When comparing the linear programming results to bound a solution, it should be recognized that the direction of the waves that caused the damage is not entirely known. It is likely that the actual direction of waves was not perpendicular to or parallel to the bridge, but somewhere in between. This may be confirmed by the fact that both longitudinal and lateral span displacement occurred.

Figure 2.13 – Undamaged Bolt where Beam was Displaced Laterally Source: Volkert and Associates Damage Assessment

3.0 I-10 Escambia Bay Bridge

The second structure examined was the I-10 Bridge over Escambia Bay. The 2.6 mile bridge, which was built in the mid 1960's, consisted of two side by side spans, each carrying two lanes of traffic. The majority of the bridge was constructed using 60' precast spans supported on intermediate or tower bents. Intermediate bents used a single row of three piles, while tower bents used two rows of three piles. Tower bents were used every seventh bent. The exception to this was around the shipping channel where longer spans and higher bents with more or larger piles were used. The 60' spans consisted of six girders and a deck which were cast monolithically. The intermediate and tower bents were constructed using 36'' diameter post-tensioned cylinder piles and reinforced concrete bent caps. The majority of the bridge was at a profile grade elevation of 16.0'. The FDOT damage report performed after Hurricane Ivan lists 46 spans as "gone" and photographs contained in the report showed that numerous spans were shifted. The damage report also lists 8 bents as "gone", "destroyed", or "1 pile remaining." Less severe damage to 11 other bents is also listed. Figure 3.1 shows lost and shifted spans as well as damaged and missing bents of the I-10 Escambia Bay Bridge.

Figure 3.1 – I-10 Escambia Bay Bridge after Hurricane Ivan Source: FDOT

3.1 Strength of Bearings

Typical 60' spans of the I-10 Escambia Bay Bridge used neoprene bearings. The design drawings indicate that spans on flat grade would utilize one bearing configuration on the fascia girders and a second bearing configuration on all interior girders. The two configurations provided different resistances to wave loads and are discussed separately below. The figures showing each bearing type were redrawn from the design drawings. Design drawings for the exterior girder bearings indicate that either end welded studs or welded straps were permissible for attaching the bearing plates to the beams. It is not known which detail was used. Because of this uncertainty, the bolts were assumed to control the capacity of the bearings. Information was also obtained that suggested 7/8" diameter bolts were used instead of the 1" diameter bolts shown in the plans. The following calculations assume that 7/8" diameter bolts were used. Pictures of the damaged Escambia Bay Bridge show that failure of both the bearing-plate-to-beam and bearing-plate-to-bent-cap connections occurred. Figure 3.2 shows displaced girders with the bearing plates still attached, suggesting bolt failure occurred. Figure 3.3 shows displaced girders where the bearing plate is still partially attached to the bent cap, suggesting stud/strap failure. The fact that failures of both connections were observed suggests that either the bolt and stud/strap capacities were similar, or that the controlling component depended on which failure mode occurred (i.e. failure under lateral load or uplift load). Resistances given below assume no over/under strength of fasteners and no interaction of shear and tension on bolt strength. Because of the factors listed above, the calculated capacities are likely an upper bound for the actual capacities of the bearings. The resistances shown do not include friction, which will be added to the structural resistance in Section 3.2.

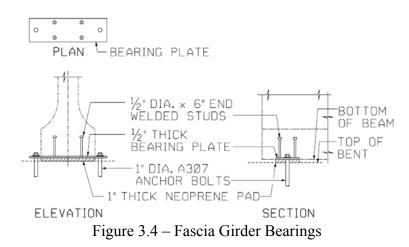
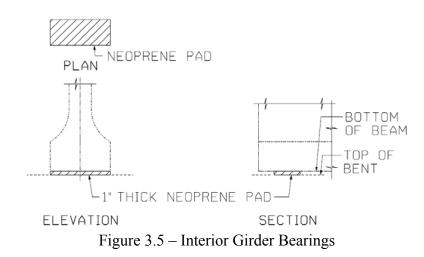


Figure 3.2 – Girders with Bearing Plates Intact on Escambia Bay Bridge Source: FDOT Damage Report

Figure 3.3 – Bent Cap with Bearing Plate Partially Attached on Escambia Bay Bridge Source: FDOT Damage Report

3.1.1 Fascia Girder Bearings



Fascia girder bearings (4)

- Resistance to uplift provided between beam and pier cap
 - Uplift capacity assumed to be controlled by tension in bolts
 - \circ Uplift capacity = 25.4 k per bolt
 - Two bolts per bearing
- Resistance to lateral loads provided between beam and pier cap
 - Lateral capacity assumed to be controlled by shear in bolts (assume threads excluded)
 - Absence of a well defined shear plane in the bearing was not considered in the calculation of shear capacity
 - \circ Lateral capacity = 15.9 k per bolt
 - Two bolts per bearing
- Resistance to longitudinal loads provided between beam and pier cap
 - Longitudinal capacity assumed to be controlled by shear in bolts (assume threads excluded)

- Absence of a well defined shear plane in the bearing was not considered in the calculation of shear capacity
- \circ Longitudinal capacity = 15.9 k per bolt
- Two bolts per bearing

3.1.2 Interior Girder Bearings

Bearings at interior girders (8)

- No resistance to uplift provided between beam and pier cap
 Uplift capacity = 0 k
- No resistance to lateral loads provided between beam and pier cap
 Lateral capacity = 0 k
- No resistance to longitudinal loads provided between beam and pier cap
 - \circ Longitudinal capacity = 0 k

3.2 Resistance of Spans to Displacement

The spans on the I-10 Escambia Bay Bridge were restrained by the bearings described above. Uplift, lateral, and longitudinal loads were resisted by eight bolts, four at each end of the bridge. The extent to which the fasteners were simultaneously engaged is not known. The calculations that follow assume that the fasteners acted simultaneously for resisting uplift and lateral loads. However, this assumption was not used for longitudinal loads. This is because bearing plates at the expansion end had slots to permit thermal movement. Because slots were provided at the expansion end, simultaneous engagement of all 8 bolts was unlikely. Therefore, only the four bolts at the fixed end were assumed effective at resisting longitudinal loads. In addition to mechanical fasteners, friction and selfweight were considered.

Friction was assumed to contribute to the lateral and longitudinal capacity of the spans. The frictional resistance is a function of the normal force and coefficient of friction between contact surfaces. Because the normal force affects the frictional resistance, the lateral resistance of the span is dependant on the applied uplift load. The bearings used on the I-10 Escambia Bay Bridge had more than one interface where sliding could occur. Assuming failure of bolts in the fascia girder bearings, sliding between neoprene and concrete or neoprene and steel would occur. For interior girder bearings, sliding would occur between neoprene and concrete. Detailed information about the coefficient of friction between neoprene and steel or neoprene and concrete was not located. Available information indicated that the potential exists for the coefficient of friction to be significantly greater than unity. Because of the uncertainty involved, a coefficient of friction of 1.0 was assumed for both neoprene on concrete and neoprene on steel.

The self weight of the span provided the majority of the resistance to uplift and contributed to the lateral resistance of the span through friction when uplift loads were small. The self weight of the span was calculated to be 398 kips.

Binding or pinching of adjacent spans was not considered, although it is possible that this occurred.

3.2.1 Uplift Resistance of Spans

- Uplift resistance = selfweight + fasteners
- Uplift resistance = 398 k + 8 * 25.4 k = 601 k

3.2.2 Lateral Resistance of Spans

- Lateral resistance of spans with no simultaneous uplift loading:
 - Frictional resistance based on full dead load of the span
 - Lateral resistance = fastener capacity + frictional resistance
 - Lateral resistance = 8 * 15.9k + 1.0 * 398k = 525 k
- Lateral resistance of spans with simultaneous uplift loading less than the dead load:
 - Frictional resistance based on net vertical load of the span
 - Lateral resistance = fastener capacity + frictional resistance
 - Lateral resistance = 8 * 15.9 k + 1.0 * (535 k uplift)
- Lateral resistance of spans with simultaneous uplift loading greater than the dead load:
 - If the uplift load exceeds the dead load there is no frictional resistance
 - Lateral resistance = fastener capacity
 - Lateral resistance = 8 * 15.9 k = 127 k

Figure 3.6 shows the expected lateral resistance of the span as a function of the uplift load on the span. However, there is uncertainty in the coefficient of friction, so the slope of the line when the applied vertical load is less than the dead load could be modified accordingly.

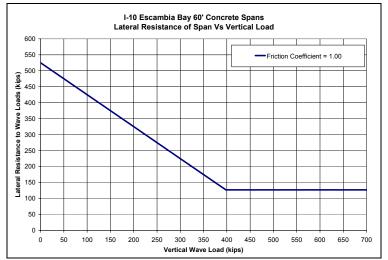


Figure 3.6 - Lateral Resistance of I-10 Escambia Bay Spans vs. Uplift Loads

3.2.3 Longitudinal Resistance of Spans

- Longitudinal resistance of spans with no simultaneous uplift loading:
 - o Frictional resistance based on full dead load of span
 - Longitudinal resistance = fastener capacity + frictional resistance
 - Longitudinal resistance = 4 * 15.9k + 1.0 * 398 k = 462 k
- Longitudinal resistance of spans with simultaneous uplift loading less than the dead load:
 - Frictional resistance based on net vertical load of span
 - Longitudinal resistance = fastener capacity + frictional resistance
 - Longitudinal resistance = 4 * 15.9 k + 1.0 * (535 k uplift)
- Longitudinal resistance of spans with simultaneous uplift loading greater than the dead load:
 - If the uplift load exceeds the dead load there is no frictional resistance
 - Lateral resistance = fastener capacity
 - Lateral resistance = 4 * 15.9 k = 64 k

Similar to the prediction of lateral resistance, the prediction of longitudinal resistance contains uncertainty with respect to the coefficient of friction. The predicted longitudinal resistance of spans to displacement shown in Figure 3.7 could be modified accordingly.

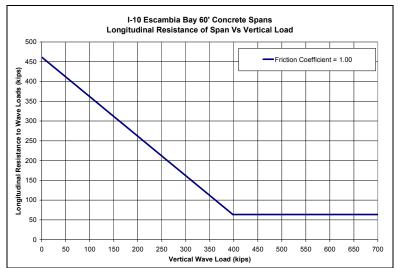


Figure 3.7 – Longitudinal Resistance of I-10 Escambia Bay Spans vs. Uplift Loads

3.3 Resistance of Girders

Negative bending of the girders was investigated to assess if the monolithic prestressed beam/deck segments of the I-10 Escambia Bay Bridge were susceptible to damage from uplift loads. The methods employed for calculating the cracking moment, ultimate moment, and corresponding forces were similar to those described for the I-10 Lake Ponchartrain Bridge.

The cracking moment and corresponding cracking force are:

- $M_{cr} = 1,132$ k-ft for a typical interior girder
- $P_{cr} = 930$ k per span (assuming a uniformly distributed load)

The ultimate moment, selfweight moment, applied ultimate moment, and applied ultimate force are:

- $M_n = 1,166$ k-ft for a typical interior girder
- M_{sw} = 406 k-ft for a typical interior girder
- $M_a = 1,572$ k-ft for a typical interior girder
- Note: $Ma = 1,572 \text{ k-ft} > M_{cr} = 1,132 \text{ k-ft}$
- $P_a = 1292$ k per span (assuming a uniformly distributed load)

3.4 Structural Resistance of Bents

The typical intermediate bent supporting 60' spans on the I-10 Escambia Bay Bridge consisted of three 36" diameter post-tensioned cylinder piles and a 3' deep reinforced concrete pier cap. The two exterior piles were battered at 1 inch per foot and the interior pile was plumb. The top 4' of the piles were filled with concrete and reinforced to facilitate continuity between the piles and the pier cap. The top of the pile was about 17'

above the mud line for typical bents. The plastic moment capacity of each pile was determined to be about 880 k-ft using strain compatibility.

An investigation of the horizontal load required to cause plastic moments to form in the piles was conducted using COM624P. Investigations were conducted using a simplified soil profile considered to be generally representative of conditions at the site. The profile was developed using information from the foundation report for the new I-10 Escambia Bay Bridge. The foundation report contained information on over 100 borings taken along the new alignment as well as suggested soil parameters to be used in FLPIER. Typical borings away from the edge of the bay indicated one or more layers of clay or silt overlying various layers of sand. The assumed soil profile used in COM624P consisted of 40 feet of clay overlying sand. The clay had a soil modulus of 30 lb/in³, unit weight of 100 lb/ft³, cohesion of 110 lb/ft², and strain at 50 percent stress of 0.02. The sand had a soil modulus of 60 lb/in³, unit weight of 120 lb/ft³, and an angle of internal friction of 32°. Single piles were modeled in COM624P and the forces required to form plastic moments were multiplied by three to determine the bent capacity. The uncracked moment of inertia was used in COM624P calculations.

3.4.1 Lateral Resistance of Bents

The maximum lateral resistance of the bents was determined by applying a horizontal load to a fixed head pile until a plastic moment formed. The first plastic moment formed at the head of the pile. At this point the model was changed to a free head pile with an applied moment equal to the plastic moment. The new model was then loaded until a plastic moment formed below the mud line. This treatment of the bent neglects the possibility of plastic moments forming in the bent cap as well as the possibility that the pile to bent cap connection will fail. Both of these would reduce the capacity of the bent. However, the lateral capacity would still be greater than the longitudinal capacity discussed below. The possible increase in strength due to the 4' plug at the top of the pile and the battering of exterior piles was also ignored.

- Lateral capacity
 - Mp forms at pile head at a horizontal load of 37 k
 - \circ Mp forms 30' below the mud line at a horizontal load of 55 k
 - Bent capacity = 3 * 55 k = 165 k per bent

As discussed in Section 2.4.1, because bents support two spans, the maximum load that may be applied to a span before bent failure occurs is a function of both the bent resistance and the loading applied to adjacent spans. Because of the uncertainty in application of wave loads, the possibility of simultaneous lateral loading of adjacent spans will be considered in addition to lateral loading of a single span.

- Lateral capacity
 - One span loaded = 330 k per span
 - Two spans loaded = 165 k per span

3.4.2 Longitudinal Resistance of Bents

The maximum longitudinal resistance of the bents was determined by applying a horizontal load to a free head pile until a plastic moment formed. The plastic moment formed below the mud line as would be expected for a cantilevered structure.

- Longitudinal capacity
 - Mp forms 17' below the mud line at a horizontal load of 33 k
 - Bent capacity = 3 * 33 k = 99 k per bent

As discussed in section 2.4.2, the maximum longitudinal load that a span may be subjected to without causing bent failure is a function of both the bent capacity and the loading of adjacent spans. Similar to the I-10 Lake Ponchartrain Bridge, it will be assumed that bents restrain one half of the longitudinal load applied to a span when a single span is loaded. The I-10 Escambia Bay Bridge, however, is different than the Lake Ponchartrain Bridge in that plans indicate that bents are to support either two fixed bearings or two expansion bearings. When adjacent spans are simultaneously and equally longitudinally loaded, bents supporting fixed bearings on the I-10 Escambia Bay Bridge have the potential to be subjected to a load greater than that applied to one span. However, the capacity of the four bolts restraining each span longitudinally is small when compared to the longitudinal friction force that may be applied to each bent. For simplicity, the total load delivered to a fixed bearing bent when spans are simultaneously loaded in the longitudinally direction will be approximated as the load applied to each span.

- Longitudinal capacity
 - Two spans loaded = 99 k per span
 - One span loaded = 198 k per span

3.5 Summary of Force Estimates for I-10 Escambia Bay Bridge

The uplift resistance of the spans was:

601 k based on span dislodgment

930 k to 1,292 k based on negative bending of the beams

From the calculated loads it would be expected that the spans would dislodge before the girders were damaged in negative bending.

Lateral resistance of the bridge was:

127 k to 525 k based on dislodgment

165 k to 330 k per span based bent capacity

The wide range of resistance for span dislodgment under lateral loads is due to frictional resistance. The range of resistance based on bent capacity is due to uncertainty regarding the simultaneous loading of spans. The possibility for both types of failure will be possible depending on the magnitude of uplift loading.

Longitudinal resistance of the bridge was:

64 k to 462 k based on dislodgment

99 k to 198 k per span based on bent capacity

Similar to lateral loading, the wide range of resistance for span dislodgment is due to friction. The range of resistance based on bent capacity is due to uncertainty regarding the simultaneous loading of spans. The possibility for both types of failure will be possible depending on the magnitude of uplift loading.

Figure 3.8 shows the failure envelope for lateral and vertical loads that was developed using linear programming.

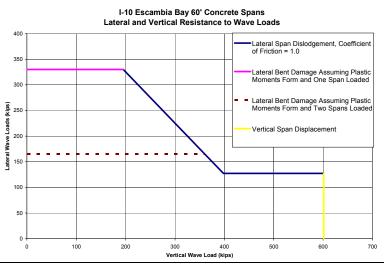


Figure 3.8 – Failure Envelope for Lateral and Vertical Load

Observations of damage reveal that both span dislodgment and bent failure occurred. As seen in Figure 3.9, many failed bents exhibited distress at the pile to bent cap connection in the area where the first plastic moments were expected to form. It is probable that this connection did not develop the full plastic capacity of the piles. If this is true, the horizontal lines in Figure 3.8 would be lower because the calculations, which did not account for this failure mode, overestimated the lateral capacity of the piers.

Figure 3.9 – Damage to a Pile to Bent Cap Connection on Escambia Bay Bridge Source: FDOT Damage Report

Figure 3.10 shows the failure envelope for longitudinal and vertical loads that was developed using linear programming.

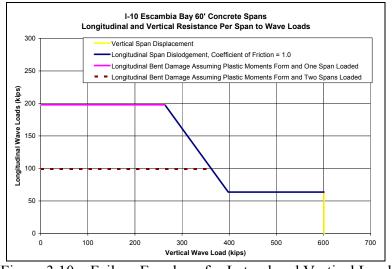


Figure 3.10 - Failure Envelope for Lateral and Vertical Load

Available photographs of damage, such as Figure 3.11 and Figure 3.12, show longitudinal damage to bents and longitudinal displacement of spans. However, it is possible that the observed longitudinal bent damage occurred after the spans were displaced. It is also possible that the fasteners were failed by uplift loading prior to longitudinal displacement of the spans.

Figure 3.11 –Bent Exhibiting Longitudinal Damage on Escambia Bay Bridge Source: FDOT Damage Report

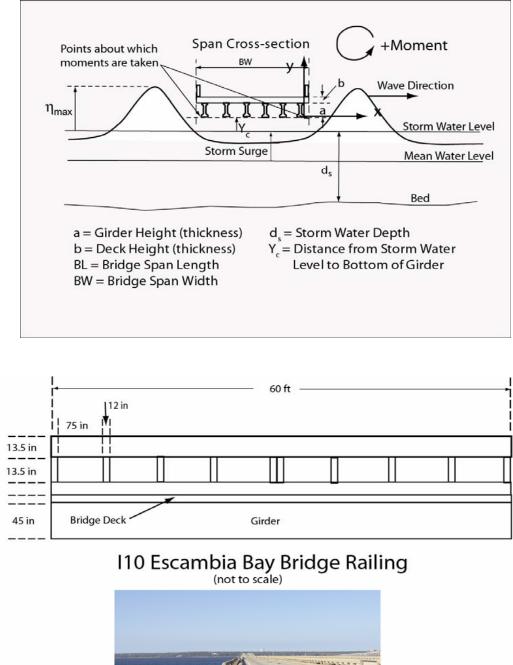
Figure 3.12 – Longitudinally Displaced Span on Escambia Bay Bridge Source: FDOT Damage Report

The predicted failure modes are not inconsistent with the observed damage. It was predicted that uplift loads would cause span dislodgment before girders were damaged in negative bending. Calculations for lateral and longitudinal loads predict possible failure by both span dislodgment and bent failure. Observed damage generally consisted of displaced spans and damaged bents.

Similar to the I-10 Lake Ponchartrain Bridge it is believed that the resistance of the bridge to vertical loads was exceeded. This allows the vertical load actually reacted by the structure to be estimated as 601k. The non-occurrence of negative bending damage was a result of insufficient restraint of the superstructure and does exclude the possibility that the seastate could cause vertical loads in excess of the negative bending capacity of the beams.

Given the occurrence of vertical loads in excess of the resistance of the bridge spans, estimates of lateral or longitudinal loads actually reacted based on span displacement may not be made. If a span were lifted from the bents, i.e. uplift load breaks the fasteners and raises the span off of the bent cap, a relatively small horizontal force could result in the observed displacements.

The occurrence of bent damage does provide some indication of the horizontal forces actually reacted by the structure. However, the following points should be noted:


- Damage to bents may have occurred before or after spans dislodged. The sequence of events leading to bent damage is not known with certainty.
- Longitudinal damage to bents may be a result of spans which were displaced longitudinally causing the loss of bearing at one end. A span with one end resting on the bottom of the bay and the other end resting on a bent may exert significant longitudinal force on the bent. The dynamics involved during the movement of the span immediately after bearing is lost is also uncertain and may involve significant longitudinal forces.
- Failure of the pile to bent cap connections was observed in damage photographs. Failure of piles splices was reported in the FDOT damage report. These failures were not considered when estimating bent capacity. Attempts to quantify these failures is difficult due to the many unknowns.
- Missing bents and bents that are substantially underwater are difficult to evaluate and do not confirm or disprove predicted failure modes.
- Damage to bents due to debris and other causes unrelated to wave loads on the spans cannot be ruled out as a source of damage.

The fact that the pile to bent cap connections were damaged indicates that at some point the bents received significant levels of lateral load. Estimation of the lateral load required to cause the observed damage is difficult. Factors including the actual quantity, length, and placement of rebar, the strength and shrinkage of the cast in place concrete, and deterioration of the pile to pier cap connection prior to Hurricane Ivan are not easily determined. The lateral load required to cause the observed connection damage will, however, be (possibly significantly) less than the computed lateral resistance of the pier.

Attachment B

The Results of the Wave Force Calculations for One Span of Escambia Bay Bridge Under Different Wave Conditions

Comment	Case #	d _s (ft)	Significant Wave Height (ft)	Maximum Wave Height (ft)	Wave Period (sec)	Wave Length (ft)	Wave Crest Height* (ft)	Y _c (ft)	Span Width (ft)	Span Length (ft)	b (ft)	a (ft)	Number of Girders
I10-Escambia Bay Span and Conditions	123	37.1	4.7	8.2	4.1	92.3	4.95	1.6	35.3	60	0.58	3.75	6
I10-Escambia Bay Span and Conditions	131	39.5	4.7	8.2	4.1	92.7	4.94	-0.3	35.3	60	0.58	3.75	6
10 - Lake Pontchartrain	W363	22.1	6.5	12.0	5.1	125.8	8.2	1.2	45.5	65	0.54	3.75	6
10 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-3.8	45.5	65		3.75	6
* Wave crest height above storm				L		-							
10-Escambia Bay Span													
Hypothetical Conditions 10-Escambia Bay Span	1	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	2	40	4.4	8	5	128.3	4.48	3	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	3	40	4.4	8	8	254	4.55	3	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	4	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58	3.8	6
Hypothetical Conditions	5	40	4.4	8	5	128.3	4.48	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	6	40	4.4	8	8	254	4.55	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	7	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	8	40	4.4	8	5	128.3	4.48	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	9	40	4.4	8	8	254	4.55	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	10	25	4.4	8	3.1	58.2	5.38	3	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	11	25	4.4	8	5	118.6	4.77	3	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	12	25	4.4	8	8	217	5.16	3	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	13	25	4.4	8	3.1	58.2	5.38	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	14	25	4.4	8	5	118.6	4.77	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	15	25	4.4	8	8	217	5.16	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	16	25	4.4	8	3.1	58.2	5.38	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	17	25	4.4	8	5	118.6	4.77	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	18	25	4.4	8	8	217	5.16	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	19	40	6.7	12	4	95.1	7.66	3	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	20	40	6.7	12	6	175.1	7.06	3	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	21	40	6.7	12	8	259	7.25	3	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	22	40	6.7	12	4	95.1	7.66	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	23	40	6.7	12	6	175.1	7.06	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	24	40	6.7	12	8	258.6	7.25	0	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	25	40	6.7	12	4	95.1	7.66	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	26	40	6.7	12	6	175.1	7.06	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span Hypothetical Conditions	27	40	6.7	12	8	258.6	7.25	-9	35.3	60	0.58	3.8	6
10-Escambia Bay Span	28	25	5.6	10	4	89.1	6.37	3	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	29	25	5.6	10	6	154.8	6.35	3	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	30	25	5.6	10	8	221.2	6.77	3	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	31	25	5.6	10	4	89.11	6.37	0	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	32	25	5.6	10	6	154.8	6.35	0	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	32	25	5.6	10	8	221.2	6.77	0	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span	33	25	5.6	10	4	89.1	6.37	-9	35.3	60	0.58		6
Hypothetical Conditions 10-Escambia Bay Span			-							60	0.58		6
lypothetical Conditions 10-Escambia Bay Span	35	25	5.6	10	6	154.8	6.35	-9	35.3				
Appothetical Conditions	36	25	5.6	10	8	221.2	6.77	-9	35.3	60	0.58	3.8	6

11 in 7 in

																					w	allingford A	Approach										
																Lateral		Vertical		Vertical		Lateral		Lateral		Vertical	Lateral	Vertical Impact	Lateral Impact	Vertical Impact	Lateral Impact	Lateral	Lateral
Comment	Case #	ds (ft)	Significant Wave Height	Maximum Wave Height	Wave Period	Wave Length (ft)		Y _c (ft)	Span Width (ft)	Span Length (ft)	h b (ft)	a I (ft)	Number of Girders	Vertical Force on Deck	e Upper Limit	Force on Deck	Upper Limit	Force on Seaward	Upper Limit	Force on Internal	Upper Limit	Force on Seaward	Upper Limit	Force on Internal	Upper Limit	Impact Load on	Impact Load on	Load on Seaward	Load on Seaward	Load on Internal	Load on Internal	Deck Moment	Girder Moment
		(11)	(ft)	(ft)	(sec)	(11)	Height* (ft)	(11)	(11)	(11)	(11)	(11)	Gilders	(kips)	(kips)	(kips)	(kips)	Girder (kips)	(kips)	Girder (kips)	(kips)	Girder (kips)	(kips)	Girder (kips)	(kips)	Deck (kips)	Deck (kips)	Girder	Girder	Girder	Girder	Arm	Arm
I10-Escambia Bay Span and	123	37.1	4.7	8.2	4.1	92.3	4.95	1.6	35.3	60	0.58	3 75	6	0	0	0	0	23.7	35.6	24.7	34.6	16.4	32.9	33.8	60.8	0	0	(kips) 54.6	(kips) 59.2	(kips) 64.3	(kips) 121.7	3.62	1.12
Conditions 110-Escambia Bay Span and																	-																
Conditions	131 W363	39.5 22.1	4.7 6.5	8.2 12.0	4.1 5.1	92.7 125.8	4.94 8.2	-0.3	35.3 45.5	60	0.58		6	333.8 769.9	500.6 1154.8	11.5 28.8	23 57.5	28.3	42.4 62.6	28.8 42.6	40.3 59.7	18.4 32.1	36.8 64.1	27.2 48.5	48.9 87.4	767.7 1770.8	41.4 103.5	65 96.1	66.2 115.4	74.9	97.8 174.8	4.25 4.81	1.53
110 - Lake Pontchartrain	W363	22.1	6.5	12.0	5.1	125.8	8.2	4.2	45.5	65 65	0.54		6	283.1	424.7	20.0 9.4	18.9	41.8 33.6	50.4	35.2	49.3	32.1	63.6	46.5 72.9	67.4 131.2	651.2	33.9	77.2	115.4	91.6	262.5	3.83	1.05
110 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-0.8	45.5	65	0.54		6	912.6	1368.9	28	56.1	45.4	68.2	45.8	64.1	29.5	59	37	66.5	2099	101	104.5	106.1	119	133.1	5.00	1.71
	W382	21.2	6.4	11.7	5.1	124.3	8.1	-3.8	45.5	65	0.54		6	1091.5	1637.3	24.8	49.6	50.9	76.3	50.5	70.7	26.7	53.5	27	48.7	2510.5	89.2	117	96.3	131.4	97.3	5.09	1.76
110 - Lake Pontchartrain	1 1										1.1		-																				
* Wave crest height above storm	water level ((Ghax)																															
I10-Escambia Bay Span Hypothetical Conditions	1	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58	3.75	6	0	0	0	0	19.6	29.4	20.7	29	12.5	25	32.6	58.8	0	0	45	45	53.9	117.5	3.29	0.76
110-Escambia Bay Span Hypothetical Conditions	2	40	4.4	8	5	128.3	4.48	3	35.3	60	0.58	3.75	6	0	0	0	0	16.6	24.9	17.9	25.1	10.4	20.7	37.1	66.8	0	0	38.1	37.3	46.6	113.6	3.03	0.49
I10-Escambia Bay Span	3	40	4.4	8	8	254	4.55	3	35.3	60	0.58	3.75	6	0	0	0	0	16.9	25.3	18.2	25.5	10.6	21.1	36.6	65.9	0	0	38.8	38	47.4	131.8	3.05	0.52
Hypothetical Conditions I10-Escambia Bay Span	4	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58	3.75	6	318.9	478.4	10.3	20.7	27.2	40.8	27.6	38.7	16.7	33.4	23.4	42.1	733.5	37.2	62.6	60.1	71.8	84.2	4.29	1.54
Hypothetical Conditions I10-Escambia Bay Span		40	4.4									-																					
Hypothetical Conditions 110-Escambia Bay Span	5	-		8	5	128.3	4.48	0	35.3	60	0.58		6	236.1	354.2	7.4	14.7	25.5	38.3	26.1	36.6	16.5	32.9	26	46.8	543	26.5	58.7	59.3	67.9	93.6	4.03	1.43
Hypothetical Conditions	6	40	4.4	8	8	254	4.55	0	35.3	60	0.58	3.75	6	245.3	368	7.7	15.4	25.7	38.5	26.3	36.8	16.5	33	25.8	46.4	564.2	27.6	59.1	59.5	68.3	92.8	4.05	1.45
I10-Escambia Bay Span Hypothetical Conditions	7	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58	3.75	6	685.8	1028.7	10.7	21.5	40.1	60.2	38.7	54.2	13	25.9	8.7	15.6	1577.4	38.7	92.3	46.7	100.7	31.3	5.05	1.80
I10-Escambia Bay Span Hypothetical Conditions	8	40	4.4	8	5	128.3	4.48	-9	35.3	60	0.58	3.75	6	665.1	997.7	11.1	22.2	39.2	58.9	38	53.2	13.3	26.5	9.3	16.7	1529.8	39.9	90.2	47.7	98.8	33.4	5.04	1.80
I10-Escambia Bay Span Hypothetical Conditions	9	40	4.4	8	8	254	4.55	-9	35.3	60	0.58	3.75	6	667	1000.5	11.1	22.1	39.3	59	38.1	53.3	13.2	26.5	9.2	16.6	1534.1	39.8	90.4	47.6	99	33.2	5.04	1.80
I10-Escambia Bay Span	10	25	4.4	8	3.1	58.2	5.38	3	35.3	60	0.58	3.75	6	0	0	0	0	20	29.9	21.1	29.5	12.8	25.5	32.2	57.9	0	0	45.9	46	54.8	115.9	3.33	0.79
Hypothetical Conditions I10-Escambia Bay Span	11	25	4.4	8	5	118.6	4.77	3	35.3	60	0.58	3.75	6	0	0	0	0	17.8	26.7	19.1	26.7	11.2	22.4	35.2	63.3	0	0	40.9	40.3	49.5	126.6	3.12	0.59
Hypothetical Conditions I10-Escambia Bay Span	12	25	4.4	8	8	217	5.16	3	35.3	60	0.58		6	0	0	0	0	19.2	28.8	20.4	28.5	12.2	24.5	33.1	59.6	0	0	44.2	44	53	119.3	3.25	0.72
Hypothetical Conditions I10-Escambia Bay Span				-									-		-								-										
Hypothetical Conditions I10-Escambia Bay Span	13	25	4.4	8	3.1	58.2	5.38	0	35.3	60	0.58		6	328	492	10.7	21.3	27.4	41.1	27.8	38.9	16.7	33.4	23	41.4	754.4	38.4	63.1	60.1	72.3	82.9	4.33	1.55
Hypothetical Conditions	14	25	4.4	8	5	118.6	4.77	0	35.3	60	0.58	3.75	6	271.2	406.8	8.6	17.2	26.2	39.2	26.7	37.4	16.6	33.2	25	45.1	623.7	31	60.2	59.8	69.4	90.2	4.12	1.48
I10-Escambia Bay Span Hypothetical Conditions	15	25	4.4	8	8	217	5.16	0	35.3	60	0.58	3.75	6	309.4	464.1	10	20	27	40.5	27.4	38.4	16.7	33.4	23.7	42.7	711.6	35.9	62.1	60.1	72.3	85.5	4.25	1.53
I10-Escambia Bay Span Hypothetical Conditions	16	25	4.4	8	3.1	58.2	5.38	-9	35.3	60	0.58	3.75	6	688.6	1032.9	10.7	21.4	40.2	60.4	38.8	54.4	12.9	25.8	8.6	15.5	1583.8	38.5	92.5	46.5	101	31	5.05	1.80
110-Escambia Bay Span Hypothetical Conditions	17	25	4.4	8	5	118.6	4.77	-9	35.3	60	0.58	3.75	6	672.8	1009.3	11	21.9	39.6	59.3	38.3	53.6	13.1	26.3	9	16.3	1547.6	39.5	91	47.3	99.5	32.6	5.05	1.80
I10-Escambia Bay Span Hypothetical Conditions	18	25	4.4	8	8	217	5.16	-9	35.3	60	0.58	3.75	6	683	1024.5	10.8	21.6	40	60	38.6	54.1	13	26	8.8	15.8	1570.9	38.8	92	46.8	100.5	31.5	5.05	1.80
I10-Escambia Bay Span	19	40	6.7	12	4	95.1	7.66	3	35.3	60	0.58	3.75	6	334.4	501.6	15.7	31.4	33.5	50.3	35	48.9	31.9	63.9	66.8	120.3	769.4	56.6	77.1	115	90.9	240.6	4.09	1.46
Hypothetical Conditions I10-Escambia Bay Span	20	40	6.7	12	6	175.1	7.06	3	35.3	60	0.58	3 75	6	209.7	314.6	9.3	18.6	31.8	47.6	33.4	46.7	31	62	71.8	129.3	482.4	33.4	73	111.5	86.7	258.6	3.89	1.34
Hypothetical Conditions I10-Escambia Bay Span	21	40	6.7		8	259	7.25	3	35.3	60	0.58	-	6	259.8	389.6	11.8	23.6	32.3	48.5	33.9	47.4	31.4	62.8	70.3	126.6	597.5	42.6	74.4		88.1	253.2		1.39
Hypothetical Conditions I10-Escambia Bay Span				12																									113			3.95	
Hypothetical Conditions I10-Escambia Bay Span	22	40	6.7	12	4	95.1	7.66	0	35.3	60	0.58		6	600.6	900.9	27.3	54.6	40.7	61	41.4	57.9	30.7	61.4	44.5	80.1	1381.4	98.3	93.6	110.5	107.6	160.1	4.89	1.69
Hypothetical Conditions I10-Escambia Bay Span	23	40	6.7	12	6	175.1	7.06	0	35.3	60	0.58	3.75	6	562.3	843.5	27.2	54.4	39.4	59.1	40.3	56.4	31.2	62.5	48.1	86.5	1293.3	97.8	90.6	112.4	104.7	173	4.82	1.67
Hypothetical Conditions	24	40	6.7	12	8	258.6	7.25	0	35.3	60	0.58	3.75	6	574.9	862.3	27.3	54.6	39.8	59.7	40.6	56.9	31.1	62.1	46.9	84.4	1322.2	98.3	91.6	111.8	105.6	168.8	4.84	1.68
I10-Escambia Bay Span Hypothetical Conditions	25	40	6.7	12	4	95.1	7.66	-9	35.3	60	0.58	3.75	6	960.4	1440.5	18.9	37.9	55.1	82.6	53.9	75.5	23.4	46.8	19.1	34.4	2208.8	68.2	126.7	84.3	140.1	68.7	5.06	1.82
I10-Escambia Bay Span Hypothetical Conditions	26	40	6.7	12	6	175.1	7.06	-9	35.3	60	0.58	3.75	6	942.6	1413.9	19.4	38.7	54.3	81.4	53.2	74.5	23.8	47.5	19.9	35.9	2168	69.7	124.9	85.6	138.4	71.7	5.06	1.82
I10-Escambia Bay Span Hypothetical Conditions	27	40	6.7	12	8	258.6	7.25	-9	35.3	60	0.58	3.75	6	948.3	1422.4	19.2	38.4	54.5	81.8	53.5	74.8	23.7	47.3	19.6	35.4	2181.1	69.2	125.4	85.2	139	70.7	5.06	1.82
I10-Escambia Bay Span Hypothetical Conditions	28	25	5.6	10	4	89.1	6.37	3	35.3	60	0.58	3.75	6	0	0	0	0	26.5	39.7	27.8	38.9	21.7	43.3	50.5	90.9	0	0	60.9	78	72.3	181.8	3.66	1.12
I10-Escambia Bay Span	29	25	5.6	10	6	154.8	6.35	3	35.3	60	0.58	3.75	6	0	0	0	0	26.4	39.6	27.8	38.9	21.6	43.2	50.6	91	0	0	60.7	77.8	72.2	182.1	3.65	1.12
Hypothetical Conditions 110-Escambia Bay Span	30	25	5.6	10	8	221.2	6.77	3	35.3	60	0.58	-	6	0	0	0	0	27.7	41.5	28.9	40.5	22.8	45.5	48.8	87.9	0	0	63.6	82	75.1	175.7	3.79	1.26
Hypothetical Conditions I10-Escambia Bay Span	31	25	5.6	10	4	89.11	6.37	0	35.3	60	0.58		6	459.4	689.1	19.2	38.5	33.9	50.9	34.5	48.4	24	48	34.9	62.9	1056.6	69.2	78	86.4	89.8	125.7	4.66	1.63
Hypothetical Conditions I10-Escambia Bay Span					•			, ,																									
Hypothetical Conditions	32	25	5.6	10	6	154.8	6.35	U	35.3	60	0.58		6	458	687	19.2	38.3	33.9	50.8	34.5	48.3	24	48	35	63	1053.4	69	77.9	86.5	89.7	126.1	4.65	1.63
Hypothetical Conditions	33	25	5.6	10	8	221.2	6.77	0	35.3	60	0.58		6	486.1	729.1	20.2	40.4	34.7	52.1	35.3	49.4	23.8	47.6	33.1	59.5	1117.9	72.8	79.9	85.6	91.7	119.1	4.77	1.65
I10-Escambia Bay Span Hypothetical Conditions	34	25	5.6	10	4	89.1	6.37	-9	35.3	60	0.58	3.75	6	826.1	1239.1	15	30	47.8	71.8	46.6	65.2	18.3	36.6	13.9	25	1890	54	110	65.9	121.1	50	5.06	1.81
I10-Escambia Bay Span Hypothetical Conditions	35	25	5.6	10	6	154.8	6.35	-9	35.3	60	0.58	3.75	6	825.5	1238.3	15	30	47.8	71.7	46.6	65.2	18.3	36.6	13.9	25	1898.7	54	110	65.9	121.1	50	5.06	1.81
I10-Escambia Bay Span Hypothetical Conditions	36	25	5.6	10	8	221.2	6.77	-9	35.3	60	0.58	3.75	6	837.1	1255.6	14.8	29.6	48.3	72.5	47	65.8	18.1	36.2	13.4	24.2	1925.3	53.2	111.1	65.2	122.2	48.5	5.06	1.81
I10-Escambia Bay Span		67	I	-		-			a= -			o ===		-	-			40-	or :				-	aa -									
Hypothetical Conditions I10-Escambia Bay Span	101	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58		6	0	0	0	0	19.6	29.4	20.7	29	12.5	25	32.6	58.8	0	0	45	45	53.9	117.5	3.29	0.76
Hypothetical Conditions	102	40	4.4	8	3.1	58.7	5.27	2	35.3	60	0.58	3.75	6	0	0	0	0	22.6	33.9	23.5	32.9	14.7	29.4	29.3	52.7	0	0	51.9	52.8	61	105.3	3.62	1.09
110-Escambia Bay Span Hypothetical Conditions	103	40	4.4	8	3.1	58.7	5.27	1	35.3	60	0.58	3.75	6	204.4	306.6	6.3	12.5	25.1	37.6	25.7	36	16.3	32.6	26.7	48	470.2	22.5	57.6	58.7	66.8	96	3.96	1.39
110-Escambia Bay Span Hypothetical Conditions	104	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58	3.75	6	318.9	478.4	10.3	20.7	27.2	40.8	27.6	38.7	16.7	33.4	23.4	42.1	733.5	37.2	62.6	60.1	71.8	84.2	4.29	1.54
110-Escambia Bay Span Hypothetical Conditions	105	40	4.4	8	3.1	58.7	5.27	-1	35.3	60	0.58	3.75	6	390.5	585.7	13	25.9	29.1	43.7	29.3	41	16.5	33	20.3	36.6	898.1	46.7	67	59.5	76.2	73.2	4.62	1.63
110-Escambia Bay Span Hypothetical Conditions	106	40	4.4	8	3.1	58.7	5.27	-2	35.3	60	0.58	3.75	6	445.8	668.7	14.2	28.3	30.8	46.3	30.8	43.1	16.1	32.2	17.8	32	1025.4	51	70.9	58	80.1	64	4.85	1.68
I10-Escambia Bay Span	107	40	4.4	8	3.1	58.7	5.27	-3	35.3	60	0.58		6	492.1	738.1	14	27.9	32.4	48.6	32.2	45.1	15.6	31.3	15.7	28.8	1131.8	50.3	75.6	56	83.7	56.4	4.93	1.71
Hypothetical Conditions I10-Escambia Bay Span	108	40	4.4	8	3.1	58.7	5.27	-4	35.3	60	0.58		6	532.4	798.6	13.4	26.9	33.9	50.9	33.5	46.8	15.1	30.3	14	25.1	1224.5	48.3	78	54.5	87	50.2	4.97	1.74
Hypothetical Conditions I10-Escambia Bay Span		40				58.7				60			6																				
Hypothetical Conditions 110-Escambia Bay Span	109		4.4	8	3.1		5.27	-5	35.3		0.58			568.4	852.6	12.8	25.6	35.3	52.9	34.6	48.5	14.6	29.3	12.5	22.5	1307.4	16.2	81.1	52.7	90.1	45.1	5.00	1.76
Hypothetical Conditions	110	40	4.4	8	3.1	58.7	5.27	-6	35.3	60	0.58		6	601.2	901.8	12.2	24.5	36.6	54.9	35.8	50.1	14.2	28.4	11.3	20.4	1382.8	44	84.2	51.1	93	40.7	5.02	1.77
I10-Escambia Bay Span Hypothetical Conditions	111	40	4.4	8	3.1	58.7	5.27	-7	35.3	60	0.58	3.75	6	631.4	947.1	11.7	23.4	37.8	56.7	36.8	51.5	13.8	27.5	10.3	18.5	1452.2	42.1	87	49.5	95.7	37.1	5.03	1.78
I10-Escambia Bay Span Hypothetical Conditions	112	40	4.4	8	3.1	58.7	5.27	-8	35.3	60	0.58	3.75	6	659.5	989.2	11.2	22.4	39	58.5	37.8	52.9	13.3	26.7	9.4	17	1516.8	40.3	89.7	48	98.3	34	5.04	1.79
110-Escambia Bay Span Hypothetical Conditions	113	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58	3.75	6	685.8	1028.7	10.7	21.5	40.1	60.2	38.7	54.2	13	25.9	8.7	15.6	1577.4	38.7	92.3	46.7	100.7	31.3	5.05	1.80
		-		-	-	-		-	-	-				-			-																

Total Quasi- Static	Total Quasi- Static	Leading Edge	Trailing Edge
Vertical Force (kips)	Horizontal Force (kips)	Moment (ft-kips)	Moment (ft-kips)
147	185	836	-1250
402	166	882	-1451
839	303	2035	-3216
424 967	406 243	2044 1907	-3166 -2920
1132	187	1780	-2601
	L		
123	176	660	-926
106	196	561	-754
108	194	570	-770
385	144	809	-1310
319	154	805	-1285
326	153	807	-1290
706	67	667	-979
687	71	677	-1004
689	70	677	-1001
126 113	174 187	673 600	-949 -821
113	187	600 648	-821
392	178	648 808	-903
346	150	809	-1299
377	145	810	-1309
708	67	665	-974
694	69	674	-994
703	68	668	-982
439	382	1427	-2627
343	399	1405	-2525
381	395	1414	-2570
661	281	1386	-2509
628	299	1397	-2565
639	293	1393	-2548
986	138	1174	-1798
969	143	1187	-1831
975	141	1183	-1820
166	274	1067	-1683
165	275	1064	-1678
172	267	1110	-1781
523	218	1110	-1936
522	218	1111	-1938
546	210	1100	-1918
850	103	927	-1396
849 860	103 100	927 920	-1396 -1378
123	176	660	-926
140	161	755	-1106
294	156	801	-1268
385	144	809	-1310
444	131	797	-1301
492	119	777	-1267
532	108	757	-1217
568	99	746	-1175
600	90	729	-1128
630	83	714	-1087
657	77	697	-1048
682	72	681	-1011
706	67	667	-979

Total Impact Vertical Force (kips)	Total Impact Horizontal Force (kips)	Leading Edge Moment (ft-kips)	Trailing Edge Moment (ft-kips)
(kips)	(kips)		
376	668	5883	-7375
968	597	16039	-18086
1994 1029	1093 1461	43228 21396	-47480 -25435
2292	873	50319	-53965
2679	672	59462	-62418
			1
315	633	5064	-6022
271	605	4480	-5077
276	697	4501	-5221
927	518	15430	-17234
772	554	12745	-14470
789	551	13038	-14776
1682	242	29081	-30205
1637	255	28274	-29448
1642	253	28349	-29519
320	626	5142	-6134
288	673	4686	-5480
309	641	4988	-5911
944	513	15735	-17542
837	542	13861	-15630
914	524	15202	-17000
1688	240	29192	-30308
1654	250	28575	-29730
1676	243	28977	-30105
1061	1375	16545	
			-20867
839	1438	12765	-16797
926	1422	14243	-18408
1583	1009	25874	-29916
1505	1075	24417	-28618
1530	1054	24888	-29042
2348	496	40260	-42506
2310	514	39548	-41865
2322	508	39780	-42074
422	987	6336	-8553
422	988	6329	-8536
439	961	6532	-8946
1254	784	20622	-23598
1252	786	20571	-23550
1308	754	21582	-24528
2017	370	34701	-36391
2023	370	34806	-36497
2048	361	35264	-36918
			I
315	633	5064	-6022
357	579	5659	-6922
715	561	11769	-13447
927	518	15430	-17234
1066	472	17887	-19702
1177	429	19871	-21633
1273	388	21617	-23269
1356	354	23130	-24672
1432	294	24665	-25804
1501	299	25788	-27132
1565	277	26958	-28220
1626	258	28056	-29244
1682	242	29081	-30205

																			New	Wallingford	l Approach														
			Significant	Maximum									1	/ertical Force	Vertical L Force on Fo			Vertical Force on	Lateral Force on	Lateral Force on	Impact In	mpace Im	teral Impact	Lateral Impact	Vertical Impact		ateral Latera		asi- Qu	otal Iasi- Lead					eading Trailing
Comment	Case #	d _s (ft)	Wave Height (ft)	Wave Height (ft)	Wave Period (sec)	d Wave Length (ft)	Wave Crest Height* (ft)	Y _c (ft)	Span Width (ft)	Span Length (ft)	b a (ft) (ft)	Number of Girders		on Deck - External	Deck - [Deck - S	Seaward	Internal Girder	Seaward Girder	Internal Cirder	Deck - E	Deck -	ad on Seaward	Seaward	Load on Internal	Internal	Deck Girde Ioment Momen	nt Vert	ical Horiz	atic Edg zontal Mom	ent Moment	t .	Vertical Ho	prizontal M	Edge Edge loment Moment
			(19	(1)										(kips)				(kips)	(kips)	(kins)			ips) Girder (kips)	Girder (kips)	Girder (kips)	Girder (kips)	Arm Arm	For (kip		irce (ft-kip ips)	s) (ft-kips)			(kips) (fi	t-kips) (ft-kips)
I10-Escambia Bay Span and Conditions	123	37.1	4.7	8.2	4.1	92.3	4.95	1.6	35.3	60	0.58 3.75	6		0	0	0	18.5	19.2	32.5	48.4	0	0	0 42	80	50	162	3.62 1.12	11	5 2	75 171	1 -2325		292	890 4	4152 -6141
I10-Escambia Bay Span and Conditions	131	39.5	4.7	8.2	4.1	92.7	4.94	-0.3	35.3	60	0.58 3.75	6	_	369		12.8	20	21.2	39.8	55.8			31 46	97	55		4.25 1.11	47		32 791					8346 -20904
110 - Lake Pontchartrain	W363	22.1	6.5	12.0	5.1	125.8	8.2	1.2	45.5	65	0.54 3.75	6	_	923.8		47	40	44.1	81.8	-			15 91	200	114		4.66 1.05	11		99 255	-		-		59357 -64164
110 - Lake Pontchartrain 110 - Lake Pontchartrain	W363 W382	22.1 21.2	6.5 6.4	12.0 11.7	5.1 5.1	125.8	8.2 8.1	4.2 -0.8	45.5 45.5	65 65	0.54 3.75 0.54 3.75	6	_	661.6 1091.9		3 55	32.6 44.9	34.9 50.2	65.4 92.8				7 74 35 102	160 227	91 130		3.83 1.21 4.56 1.02	90		00 1993 40 2913					6428 -50375 67793 -72848
I10 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-3.8	45.5	65	0.54 3.75	6	-	1361.1		67.9	52.5	59.6	109.6	106.3	3022		66 120	269	154		4.52 1.00	15		09 349		-	3696	2215 8	31301 -86883
* Wave crest height above stor	m water level	(h _{ax})											L																						
I10-Escambia Bay Span	1	40	4.4		24	50.7	5.07		25.2	60	0.58 3.75		Г		0		46.0	46.6	40.4	20			0 07	47	42	400	2 20 0 70			co 400	4070		252	647	4007 4050
Hypothetical Conditions I10-Escambia Bay Span	-	40		8	3.1	58.7	5.27	3	35.3			6	_	0		0	16.2	16.6	19.1	30			0 37		43		3.29 0.76			69 162					4027 -4856
Hypothetical Conditions I10-Escambia Bay Span	2	40	4.4	8	5	128.3	4.48	3	35.3	60	0.58 3.75	6	_	0		0	15.5	15.8	11.9	19.3			0 35	29	41		3.03 0.49	9		08 161					4055 -4405
Hypothetical Conditions I10-Escambia Bay Span	3	40	4.4	8	8	254	4.55	3	35.3	60	0.58 3.75	6	_	0	0	0	15.5	15.9	12.5	20.2			0 35	31	41	68	3.05 0.52	9		14 161					4038 -4422
Hypothetical Conditions I10-Escambia Bay Span	4	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58 3.75	6	_	344.6		11.8	18.7	19.8	37.7				29 43	92	51		4.29 1.13	44		14 738					17082 -19537
Hypothetical Conditions 110-Escambia Bay Span	5	40	4.4	8	5	128.3	4.48	0	35.3	60	0.58 3.75	6	_	326.1		5.2	18	18.9	36.2	52.2			13 41	89	49	175	4.03 1.18	42		02 708					6396 -18781
Hypothetical Conditions 110-Escambia Bay Span	6	40	4.4	8	8	254	4.55	0	35.3	60	0.58 3.75	6	_	327.7		5.7	18.1	19	36.3				14 41	89	49	175	4.05 1.18	42		03 711					16433 -18816
Hypothetical Conditions 110-Escambia Bay Span	7	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58 3.75	6	F	555.2		32.9	26.4	29.2	54.9				81 60	134	76	204	4.49 1.00	64		93 107		- -			25145 -28178
Hypothetical Conditions 110-Escambia Bay Span	8	40	4.4	8	5	128.3	4.48	-9	35.3	60	0.58 3.75	6	F	536.8			25.7	28.4	53.4	60.6			78 59	131	74	202	4.49 1.00	62		88 104		- -			24464 -27451
Hypothetical Conditions I10-Escambia Bay Span	9	40	4.4	8	8	254	4.55	-9 3	35.3	60 60	0.58 3.75	6	F	538.4		31.9 0	25.7	28.5	53.5 21.8				78 59 0 40	131	74 47		4.49 1.00 3.33 0.79	62		87 105 [.] 83 176		- -			24513 -27500
Hypothetical Conditions 110-Escambia Bay Span	-	25	4.4	8	3.1	58.2	5.38		35.3		0.58 3.75	6	F	0		0	17.5	18.2	21.8	32.3				54 38			3.33 0.79	10		83 176		- -			4376 -5318
Hypothetical Conditions 110-Escambia Bay Span	11	25	4.4	8	5	118.6	4.77	3	35.3	60 60	0.58 3.75	6	F	0	0	0	16.6	17.2	15.4	23.6			0 38	38 48	45 46		3.12 0.59 3.25 0.72	10		33 173 65 176		- -			4380 -4891
Hypothetical Conditions I10-Escambia Bay Span	12	25 25	4.4	8	8 3.1	217 58.2	5.16 5.38	3	35.3 35.3	60	0.58 3.75	6	F	369.3			17.2 21.5	17.9 23.3	19.4 44.1	29.1 55.9			0 39 33 49	48	46 60	98	3.25 0.72 4.33 1.12	47		65 176 37 801		- -			4354 -5128
Hypothetical Conditions I10-Escambia Bay Span	13	25	4.4	8	3.1	118.6	5.38	0	35.3	60	0.58 3.75	6	F	369.3			21.5	23.3	44.1	55.9			33 49 19 47	108	58		4.33 1.12 4.12 1.16	47		25 764		- -			7780 -20310
Hypothetical Conditions I10-Escambia Bay Span	14		4.4	8	5	217	5.16	0	35.3	60	0.58 3.75	6	-	340.5				22.2	42.2				28 48	105	59		4.12 1.16	43		25 764 33 788		- -			8269 -20859
Hypothetical Conditions 110-Escambia Bay Span	15	25 25	4.4	-	o 3.1		5.38		35.3	60	0.58 3.75	-	_					38.4	43.4 71.6	68.8					59 99	231	4.25 1.14 4.49 1.00	_		57 134					
Hypothetical Conditions 110-Escambia Bay Span	10	25	4.4	8		58.2 118.6	4.77	-9 -9	35.3	60	0.58 3.75	6	-	706.4 683.6		41.4	33.8 33	36.4	6937				01 77 98 75	175	99 97		4.49 1.00 4.49 1.00	79		317 622					31418 -34979 30592 -34096
Hypothetical Conditions 110-Escambia Bay Span	17	25	4.4	8	5	217	5.16	-9	35.3	60	0.58 3.75	6	-	698.2		-	33.5	37.4	70.9				00 76	174	99		4.49 1.00	79		54 133		- -			31179 -34722
Hypothetical Conditions I10-Escambia Bay Span	10	40	6.7	12	4	95.1	7.66	-9	35.3	60	0.58 3.75	6	-	502.9				29.1	55.6				25 63	136	35 75		4.09 1.17	65		64 108					25170 -28810
Hypothetical Conditions I10-Escambia Bay Span	20	40	6.7	12		175.1	7.06	3	35.3	60	0.58 3.75	6	-	481.5		2.9	26.9	28.2	53.8	78.9			7 61	130	73	264	3.89 1.23	63		51 105					24372 -27996
Hypothetical Conditions I10-Escambia Bay Span	20	40	6.7	12	8	259	7.25	3	35.3	60	0.58 3.75	6	-	488.3		5.1	27.2	28.5	54.4				13 62	132	74		3.95 1.21	63		55 106					24674 -28294
Hypothetical Conditions I10-Escambia Bay Span	21	40	6.7	12	4	95.1	7.66	0	35.3	60	0.58 3.75	6	-	609.9		36.8	31.6	33.9	64.3				90 72	158	88	281	4.57 1.05	75		20 125					29209 -33326
Hypothetical Conditions I10-Escambia Bay Span	23	40	6.7	12	6	175.1	7.06	0	35.3	60	0.58 3.75	6	_	588.5			30.8	33	62.6				87 70	153	85	278	4.60 1.07	73		13 122		-			28326 -32420
Hypothetical Conditions I10-Escambia Bay Span	24	40	6.7	12	8	258.6	7.25	0	35.3	60	0.58 3.75	6	_	595.2	786	36	31	33.3	63.1				88 71	155	86	279	4.59 1.06	73		15 1234					28623 -32723
Hypothetical Conditions I10-Escambia Bay Span	25	40	6.7	12	4	95.1	7.66	-9	35.3	60	0.58 3.75	6	-	930.7		54.9	43.2	48.3	90.5				34 99	222	125		4.48 0.99	10		26 178					1507 -46339
Hypothetical Conditions I10-Escambia Bay Span	26	40	6.7	12	6	175.1	7.06	-9	35.3	60	0.58 3.75	6	-	909.3		53.7	42.5	47.4	88.8				31 97	217	123	319	4.48 0.99	10		19 174					10732 -45502
Hypothetical Conditions I10-Escambia Bay Span	27	40	6.7	12	8	258.6	7.25	-9	35.3	60	0.58 3.75	6	-	916.1		54.1	42.7	47.7	89.3				32 97	219	123	320	4.48 0.99	10		21 175					0915 -45707
Hypothetical Conditions I10-Escambia Bay Span	28	25	5.6	10	4	89.1	6.37	3	35.3	60	0.58 3.75	6	-	0	0	0	23.9	25.3	42.8	59.8			0 55	105	66	200	3.66 1.12	15		42 226		-			5545 -8027
Hypothetical Conditions I10-Escambia Bay Span	29	25	5.6	10	6	154.8	6.35	3	35.3	60	0.58 3.75	6	-	0		0	23.9	25.3	42.5	59.4			0 54	104	65	199	3.65 1.12	15		40 227					5452 -7907
Hypothetical Conditions 110-Escambia Bay Span	30	25	5.6	10	8	221.2	6.77	3	35.3	60	0.58 3.75	6	_	0	0	0	24.6	26.2	49.4	67.6	0	0	0 56	121	68	227	3.79 1.26	15	6 3	87 225	5 -3229	-	396	1256	5401 -8558
Hypothetical Conditions 110-Escambia Bay Span	31	25	5.6	10	4	89.11	6.37	0	35.3	60	0.58 3.75	6	F	517.2	676.7	30.5		31.7	59.9				75 66	147	82	244	4.66 1.09	65		55 109		1			25366 -29031
Hypothetical Conditions I10-Escambia Bay Span	32	25	5.6	10	6	154.8	6.35	0	35.3	60	0.58 3.75	6	F	516.3			29.1	31.7	59.8				74 66	147	82		4.65 1.09			55 109	-				25335 -28990
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	33	25	5.6	10	8	221.2	6.77	0	35.3	60	0.58 3.75	6	F	536.3				32.6	61.5				79 68	151	84		4.63 1.07	67		62 112					26078 -29786
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	34	25	5.6	10	4	89.1	6.37	-9	35.3	60	0.58 3.75	6	F	946.3		55.4	44.7	51	94.9				36 102	233	132	300	4.48 1.00	10		97 179 [.]		1			1822 -46490
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	35	25	5.6	10	6	154.8	6.35	-9	35.3	60	0.58 3.75	6	F	945.3		55.3	44.7	51	94.8				36 102	231	132	299	4.48 1.00	10		97 178		1			1805 -46459
I10-Escambia Bay Span Hypothetical Conditions	36	25	5.6	10	8	221.2	6.77	-9	35.3	60	0.58 3.75	6	F	965.3	1124.8	56.4	45.4	51.9	96.5	90.2	2143	2576 1	38 104	236	134	302	4.48 0.99	10	79 6	04 182	-19820	1	2548	1884 4	2549 -47254
I10-Escambia Bay Span	1												L F																						
Hypothetical Conditions 110-Escambia Bay Span	101	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58 3.75	6	F	0		0		25.3	19.1	30			0 43	47	66		3.29 0.76			69 243		4 -			6160 -6988
Hypothetical Conditions 110-Escambia Bay Span	102	40	4.4	8	3.1	58.7	5.27	2	35.3	60	0.58 3.75	6	F	0		0	20	26.5	29.1	44			0 46	71	69		3.62 1.09	15		49 241		- -			6013 -7770
Hypothetical Conditions 110-Escambia Bay Span	103	40	4.4	8	3.1	58.7	5.27	1	35.3	60	0.58 3.75	6	_	321.1				27.8	35.8				9 48	88	72		3.96 1.20	46		99 787					8404 -20782
Hypothetical Conditions 110-Escambia Bay Span	104	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58 3.75	6	F	344.6			22.5	29	37.7	52.9			29 51	92	75	177	4.29 1.13	49		14 826		- -			9338 -21793
Hypothetical Conditions 110-Escambia Bay Span	105	40	4.4	8	3.1	58.7	5.27	-1	35.3	60	0.58 3.75	6	F	368				30.2	39.6				51 54	97	78		4.62 1.09	51		30 863		- -			20205 -22846
Hypothetical Conditions 110-Escambia Bay Span	106	40	4.4	8	3.1	58.7	5.27	-2	35.3	60	0.58 3.75	6	F	391.4			24.9	31.4	41.5	54.7			58 57	102	81		4.59 1.06	53		39 903		4 -			21152 -23845
Hypothetical Conditions 110-Escambia Bay Span	107	40	4.4	8	3.1	58.7	5.27	-3	35.3	60	0.58 3.75	6	F	414.8				32.6	43.4				61 60	106	84		4.55 1.04	56		46 943					22112 -24830
Hypothetical Conditions 110-Escambia Bay Span	108	40	4.4	8	3.1	58.7	5.27	-4	35.3	60	0.58 3.75	6	F	438.2			27.3	33.8	45.3				64 62	111	88	189	4.53 1.03	58		54 983					23123 -25881
Hypothetical Conditions 110-Escambia Bay Span	109	40	4.4	8	3.1	58.7	5.27	-5	35.3	60	0.58 3.75	6	F	461.6			28.5	35	47.2	57.4			68 65	116	91	192	4.51 1.02	60		62 1024		- -			24068 -26881
Hypothetical Conditions 110-Escambia Bay Span	110	40	4.4	8	3.1	58.7	5.27	-6	35.3	60	0.58 3.75	6	F	485		28.9	29.8	36.2	49.1				71 68	120	94	195	4.50 1.01	63		70 1064		4 -			25017 -27877
Hypothetical Conditions I10-Escambia Bay Span	111	40	4.4	8	3.1	58.7	5.27	-7	35.3	60	0.58 3.75	6	F	508.4		30.2	31	37.5	51				74 71	125	97	198	4.50 1.01	65		77 110					25951 -28864
Hypothetical Conditions I10-Escambia Bay Span	112	40	4.4	8	3.1	58.7	5.27	-8	35.3	60	0.58 3.75	6	F	531.8			32.2	38.7	53				77 76	130	100	201	4.49 1.00	67		85 114					26931 -29899
Hypothetical Conditions	113	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58 3.75	6	L	555.2	680.5	32.9	33.4	39.9	54.9	61	1233	1558 8	81 76	134	103	204	4.49 1.00	70	3	93 118	-12870	l L	1664	1235 2	27806 -30839

																		r) Oouglass A	nnroach										
]			Lateral		Vertical		Lateral		Vertical	Lateral	Vertical	Lateral Impact	Lateral	Lateral] [Total Quasi-	Total Quasi-
Comment	Case #	d _s	Significant Wave Height	Maximum Wave Height	Wave Period	Wave Length	Wave Crest	Y _c	Span Width	Span Length	b (ft)	a Number of (ft) Girders		Vertical Force on Deck	Upper Limit	Force on Deck	Upper Limit	Force on Girder	Upper Limit	Force on All 6	Upper Limit	Impact Load on	Impact Load on	Impact Load on	Load on All 6	Deck Moment	Girder		Static	Static
		(ft)	(ft)	(ft)	(sec)	(ft)	Height* (ft)	(ft)	(ft)	(ft)	(11)	(ft) Girders		(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	Girders (kips)	(kips)	Deck (kips)	Deck (kips)	Girder (kips)	Girders	Arm	Arm		Force	Force
I10-Escambia Bay Span and	123	37.1	4.7	8.2	4.1	92.3	4.95	1.6	35.3	60	0.58	3.75 6		0	0	0	0	23.5	47.1	64.6	129.3	0	0	94.2	(kips) 193.9	3.62	1.12		(kips) 141	(kips) 65
Conditions I10-Escambia Bay Span and	131	39.5	4.7	8.2	4.1	92.7	4.94	-0.3	35.3	60	0.58			202	404	4.3	8.5	36.8			290.7	807.9	-	147.3			1.53		360	150
Conditions 110 - Lake Pontchartrain	W363	22.1	4.7 6.5	12.0	4.1 5.1	125.8	4.94	-0.3	45.5	65	0.56	3.75 6	-	615.2	1230.3	4.3 21.7	6.5 43.4	53.3	73.6 106.6	145.4 239.9	479.7	2460.6	29.8 151.7	213.2	436.1 719.6	4.25 4.81	1.55		787	262
110 - Lake Pontchartrain 110 - Lake Pontchartrain	W363 W382	22.1 21.2	6.5 6.4	12.0	5.1	125.8	8.2	4.2	45.5 45.5	65 65	0.54			47.3 974.8	94.6 1949.6	0.1 44.4	0.3 88.8	30.5 67.8	60.9 135.5	99.5 328.8	198.9 657.5	189.3 3899.2	0.9 310.8	121.8 271	298.4 986.3	3.83	1.32		219 1146	100 373
I10 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-3.8	45.5	65	0.54		-	1542.6	3085.3	80.3	160.6	90.6	181.2	469.2	938.3	6170.5	562	362.4	1407.5		1.76		1714	550
I10-Escambia Bay Span Hypothetical Conditions	1	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58	3.75 6		0	0	0	0	16	31.9	29.7	59.4	0	0	63.8	89	3.29	0.76		96	30
I10-Escambia Bay Span Hypothetical Conditions	2	40	4.4	8	5	128.3	4.48	3	35.3	60	0.58	3.75 6		0	0	0	0	10.4	20.8	12.6	25.2	0	0	41.4	37.9	3.03	0.49		62	13
110-Escambia Bay Span Hypothetical Conditions	3	40	4.4	8	8	254	4.55	3	35.3	60	0.58	3.75 6		0	0	0	0	10.9	21.8	13.8	27.7	0	0	43.6	41.5	3.05	0.52		65	14
110-Escambia Bay Span Hypothetical Conditions	4	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58	3.75 6		199.3	398.5	4.1	8.3	37	74.1	147.5	295.1	797	29	148.1	442.6	4.29	1.54		359	152
I10-Escambia Bay Span Hypothetical Conditions	5	40	4.4	8	5	128.3	4.48	0	35.3	60	0.58	3.75 6		92.2	184.4	0.9	1.8	31.5	63	112.9	225.9	368.7	6.2	125.9	338.8	4.03	1.43		252	114
I10-Escambia Bay Span	6	40	4.4	8	8	254	4.55	0	35.3	60	0.58	3.75 6		101.7	203.3	1	2.2	32	63.9	116	232	406.7	7.6	127.9	348	4.05	1.45		262	117
Hypothetical Conditions I10-Escambia Bay Span	7	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58	3.75 6		1419.2	2838.5	92.3	184.6	100.3	200.6	541.5	1083	5676.9	646.2	401.1	1624.5	5.05	1.80		1579	634
Hypothetical Conditions I10-Escambia Bay Span	8	40	4.4	8	5	128.3	4.48	-9	35.3	60	0.58			1312.1	2624.3	84.3	168.7	94.7	189.5	506.9	1013.9	5248.6	590.4	378.9	1520.8	5.04	1.80		1472	591
Hypothetical Conditions I10-Escambia Bay Span	-					-					-																			
Hypothetical Conditions I10-Escambia Bay Span	9	40	4.4	8	8	254	4.55	-9	35.3	60	0.58		-	1321.6	2643.3	85.1	170.1	95.2	190.4	510	1020	5286.5	595.4	380.9	1530	5.04	1.80	-	1481	595
Hypothetical Conditions I10-Escambia Bay Span	10	25	4.4	8	3.1	58.2	5.38	3	35.3	60	0.58			0	0	0	0	16.7	33.4	32.6	65.3	0	0	66.9	97.9	3.33	0.79	+ $+$	100	33
Hypothetical Conditions	11	25	4.4	8	5	118.6	4.77	3	35.3	60	0.58		-	0	0	0	0	12.4	24.9	1830	36.1	0	0	49.8	54.1	3.12	0.59		74	1830
I10-Escambia Bay Span Hypothetical Conditions	12	25	4.4	8	8	217	5.16	3	35.3	60	0.58	3.75 6	4	0	0	0	0	15.2	30.4	26.9	53.7	0	0	60.7	80.6	3.25	0.72		91	27
I10-Escambia Bay Span Hypothetical Conditions	13	25	4.4	8	3.1	58.2	5.38	0	35.3	60	0.58	3.75 6		214.2	428.3	4.8	9.6	37.8	75.6	152.3	304.7	856.7	33.6	151.2	457	4.33	1.55		374	157
I10-Escambia Bay Span Hypothetical Conditions	14	25	4.4	8	5	118.6	4.77	0	35.3	60	0.58	3.75 6		131.5	263	1.8	3.6	33.5	67	125.6	251.3	525.9	12.6	134.1	376.9	4.12	1.48		292	127
I10-Escambia Bay Span Hypothetical Conditions	15	25	4.4	8	8	217	5.16	0	35.3	60	0.58	3.75 6		184.4	368.7	3.6	7.1	36.3	72.5	142.7	285.4	737.4	24.9	145	428.1	4.25	1.53		345	146
I10-Escambia Bay Span Hypothetical Conditions	16	25	4.4	8	3.1	58.2	5.38	-9	35.3	60	0.58	3.75 6		1434.1	2868.3	93.4	186.8	101.1	202.1	546.3	1092.6	5736.6	653.9	404.2	1639	5.05	1.80		1594	640
I10-Escambia Bay Span Hypothetical Conditions	17	25	4.4	8	5	118.6	4.77	-9	35.3	60	0.58	3.75 6		1351.5	2702.9	87.3	174.5	96.8	193.5	519.6	1039.2	5405.8	610.9	387.1	1558.9	5.05	1.80		1511	607
I10-Escambia Bay Span Hypothetical Conditions	18	25	4.4	8	8	217	5.16	-9	35.3	60	0.58	3.75 6		1404.3	2808.6	91.2	182.4	99.5	199	536.7	1073.4	5617.3	638.4	398	1610.1	5.05	1.80	-	1564	628
I10-Escambia Bay Span	19	40	6.7	12	4	95.1	7.66	3	35.3	60	0.58	3.75 6		116.6	233.1	1.4	2.8	32.7	65.5	120.8	241.6	466.3	9.9	131	362.5	4.09	1.46		276	122
Hypothetical Conditions I10-Escambia Bay Span	20	40	6.7	12	6	175.1	7.06	3	35.3	60	0.58			35.2	70.5	0.1	0.3	28.5	57.1	94.6	189.1	141	0.9	114.1	283.7	3.89	1.34	-	195	95
Hypothetical Conditions I10-Escambia Bay Span	21	40	6.7	12	8	259	7.25	3	35.3	60	0.58			61	122	0.4	0.8	29.9	59.7	102.9	205.7	244	2.7	119.5	308.6	3.95	1.39	-	221	103
Hypothetical Conditions I10-Escambia Bay Span			6.7										-																	
Hypothetical Conditions 110-Escambia Bay Span	22	40		12	4	95.1	7.66	0	35.3	60	0.58		-	523.2	1046.5	25.7	51.4	53.8	107.7	252.2	504.3	2092.9	179.8	215.3	756.5	4.89	1.69	-	683	278
Hypothetical Conditions I10-Escambia Bay Span	23	40	6.7	12	6	175.1	7.06	0	35.3	60	0.58		-	441.9	883.8	19.6	39.3	49.6	99.2	225.9	451.8	1767.6	137.4	198.4	677.7	4.82	1.67		602	246
Hypothetical Conditions	24	40	6.7	12	8	258.6	7.25	0	35.3	60	0.58	3.75 6	-	467.7	935.3	21.5	43.1	50.9	101.9	234.2	468.4	1870.6	150.8	203.8	702.6	4.84	1.68		627	256
I10-Escambia Bay Span Hypothetical Conditions	25	40	6.7	12	4	95.1	7.66	-9	35.3	60	0.58	3.75 6		1743.2	3486.4	116.4	232.8	117.1	234.1	646.1	1292.3	6972.8	814.8	468.3	1938.4	5.06	1.82		1903	763
I10-Escambia Bay Span Hypothetical Conditions	26	40	6.7	12	6	175.1	7.06	-9	35.3	60	0.58	3.75 6		1661.9	3323.7	110.4	220.7	112.8	225.7	619.9	1239.7	6647.5	772.5	451.4	1859.6	5.06	1.82		1821	730
I10-Escambia Bay Span Hypothetical Conditions	27	40	6.7	12	8	258.6	7.25	-9	35.3	60	0.58	3.75 6		1687.6	3375.2	112.3	224.5	114.2	228.4	628.2	1256.4	6750.5	785.9	456.8	1884.6	5.06	1.82		1847	741
110-Escambia Bay Span Hypothetical Conditions	28	25	5.6	10	4	89.1	6.37	3	35.3	60	0.58	3.75 6		0	0	0	0	23.7	47.4	65.4	130.8	0	0	94.7	196.2	3.66	1.12		142	65
I10-Escambia Bay Span Hypothetical Conditions	29	25	5.6	10	6	154.8	6.35	3	35.3	60	0.58	3.75 6		0	0	0	0	23.5	47.1	64.6	129.3	0	0	94.2	193.9	3.65	1.12		141	65
I10-Escambia Bay Span Hypothetical Conditions	30	25	5.6	10	8	221.2	6.77	3	35.3	60	0.58	3.75 6		0	0	0	0	26.5	53	81.9	163.7	0	0	106	245.6	3.79	1.26		159	82
I10-Escambia Bay Span	31	25	5.6	10	4	89.11	6.37	0	35.3	60	0.58		1	348.4	696.7	12.7	25.4	44.8	89.5	195.7	391.4	1393.5	88.8	179.1	587	4.66	1.63	1	509	208
Hypothetical Conditions I10-Escambia Bay Span	32	25	5.6	10	6	154.8	6.35	0	35.3	60	0.58		1	345.7	691.3	12.5	25	44.6	89.2	194.8	38.6	1382.6	87.4	178.5	584.4	4.65	1.63	1	506	207
Hypothetical Conditions I10-Escambia Bay Span	33	25	5.6	10	8	221.2	6.77	0	35.3	60	0.58		4	402.6	805.2	16.7	33.4	47.6	95.1	213.2	426.4	1610.4	117	190.3	639.6	4.00	1.65	1 -	563	230
Hypothetical Conditions I10-Escambia Bay Span					4	-	-			60	-		-															+ +	1728	230 694
Hypothetical Conditions I10-Escambia Bay Span	34	25	5.6	10		89.1	6.37	-9	35.3		0.58		-	1568.3	3136.7	104	206.8	108	216	589.7	1179.3	6273.3	723.8	432	1769	5.06	1.81	-		
Hypothetical Conditions 110-Escambia Bay Span	35	25	5.6	10	6	154.8	6.35	-9	35.3	60	0.58			1565.6	3131.3	103.2	206.4	107.9	215.7	588.8	1177.6	6262.5	722.4	431.5	1766.4	5.06	1.81	\downarrow	1725	692
Hypothetical Conditions 110-Escambia Bay Span	36	25	5.6	10	8	221.2	6.77	-9	35.3	60	0.58		-	1622.6	3245.1	107.4	214.8	110.8	221.6	607.2	1214.3	6490.2	752	443.3	1821.5	5.06	1.81		1782	715
Hypothetical Conditions	101	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58	3.75 6	-	0	0	0	0	16	31.9	29.7	59.4	0	0	63.8	89	3.29	0.76		96	30
I10-Escambia Bay Span Hypothetical Conditions	102	40	4.4	8	3.1	58.7	5.27	2	35.3	60	0.58	3.75 6		0	0	0	0	23	46	61.6	123.2	0	0	91.9	184.8	3.62	1.09		138	62
I10-Escambia Bay Span Hypothetical Conditions	103	40	4.4	8	3.1	58.7	5.27	1	35.3	60	0.58	3.75 6		63.7	127.4	0.4	0.8	30	60	103.7	207.5	254.8	3	120	311.2	3.96	1.39		224	104
I10-Escambia Bay Span Hypothetical Conditions	104	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58	3.75 6		199.3	398.5	4.1	8.3	37	74.1	147.5	295.1	797	29	148.1	442.6	4.29	1.54		359	152
110-Escambia Bay Span Hypothetical Conditions	105	40	4.4	8	3.1	58.7	5.27	-1	35.3	60	0.58	3.75 6		334.8	669.6	11.7	23.4	44.1	88.1	191.3	382.6	1339.3	82	176.2	573.9	4.62	1.63] [495	203
I10-Escambia Bay Span Hypothetical Conditions	106	40	4.4	8	3.1	58.7	5.27	-2	35.3	60	0.58	3.75 6	1	470.4	940.7	21.7	43.5	51.1	102.2	235.1	470.2	1881.5	152.2	204.4	705.2	4.85	1.68	1	630	257
I10-Escambia Bay Span	107	40	4.4	8	3.1	58.7	5.27	-3	35.3	60	0.58	3.75 6	1	605.9	1211.8	31.8	63.7	58.1	116.2	278.9	557.7	2423.7	222.8	232.5	836.6	4.93	1.71	1	766	311
Hypothetical Conditions I10-Escambia Bay Span	108	40	4.4	8	3.1	58.7	5.27	-4	35.3	60	0.58		1	741.5	1482.9	41.9	83.8	65.1	130.3	322.6	645.3	2965.9	293.4	260.6	967.9	4.97	1.74	1	901	365
Hypothetical Conditions I10-Escambia Bay Span	109	40	4.4	8	3.1	58.7	5.27	-5	35.3	60	0.58		4	877	1754	52	104	72.2	144.3	366.4	732.8	3508.1	363.9	288.7	1099.2	5.00	1.76	1 -	1037	418
Hypothetical Conditions I10-Escambia Bay Span											-																	┥ ┝		
Hypothetical Conditions I10-Escambia Bay Span	110	40	4.4	8	3.1	58.7	5.27	-6	35.3	60	0.58		-	1012.6	2025.1	62.1	124.1	79.2	159.4	410.2	820.4	4050.3	434.5	316.8	1230.5	5.02	1.77	+ $+$	1172	472
Hypothetical Conditions 110-Escambia Bay Span	111	40	4.4	8	3.1	58.7	5.27	-7	35.3	60	0.58		-	1148.1	2296.3	72.1	144.3	86.2	172.4	454	907.9	4592.5	505	344.9	1361.9	5.03	1.78	┥ ┝	1308	526
Hypothetical Conditions	112	40	4.4	8	3.1	58.7	5.27	-8	35.3	60	0.58		-	1283.7	2567.4	82.2	164.4	93.3	186.5	497.7	995.5	5134.7	575.6	373	1493.2	5.04	1.79		1444	580
I10-Escambia Bay Span Hypothetical Conditions	113	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58	3.75 6		1419.2	2838.5	92.3	184.6	100.3	200.6	541.5	1083	5676.9	646.2	401.1	1624.5	5.05	1.80	l [1579	634
											_																			

-	Total Quasi-	Leading	Trailing
; al	Static Horizontal	Edge Moment	Edge Moment
9	Force (kips)	(ft-kips)	(ft-kips)
	65	2413	-2557
	150	6103	-6583
	262 100	17395 4848	-18393 -5112
	373	25296	-26863
	550 30	37759 1670	-40225 -1714
	13	1094	-1106
	14	1146	-1160
	152	6086	-6576
	114	4284	-4615
	117	4446	-4790
	634	26386	-29271
	591	24601	-27272
	595	24759	-27451
	33	1740	-1792
	1830	232	-2391
	27	1588	-1627
	157	6339	-6854
	127	4945	-5332
	146	5843	-6310
	640	26637	-29551
	607 628	25262 26136	-28012 -28991
	122	4690	-28991
	95	3314	-3568
	103	3758	-4047
	278	11486	-12590
	246	10137	-11079
	256	10562	-11555
	763	31773	-35301
	730	30412	-33779
	741	30847	-34265
	65	2433	-2580
	65	2413	-2557
	82	2699	-2905
	208	8587	-9344
	207	8536	-9287
	230	9487	-10351
	694	28858	-32046
	692	28821	-31997
	715	29763	-33052
	30	1670	-1714
	62	2365	-2499
	104	3800	-4091
	152 203	6086 8361	-6576 -9091
	203	10613	-9091
	311	12863	-14131
	365	12003	-16651
	418	17374	-19181
	472	19625	-21702
	526	21875	-24221
	580	24137	-26752
	634	26386	-29271
-		-	

Total Impact Porce Force Force (retwips)Leading Edge Moment (retwips)Trailing Edge Moment (retwips)5651949745-10178144046624588-26173314687169658-734858742991944-202242541297101052-10753168561970150638-161303383896679-681424832424526-26141100934517277-18299104735617277-18299104735617277-18299104735617277-18299104735617277-18299104735617277-182915837211198051-107415925212598679-10184401986997-717213704532524-2614114073901953-21731378247110064-1122162562249104130-11637140737218941-2008378223511333-141626351247310243-1073114772425413393-14162635531115159-107316361246113041-116847372285213393-141627389267112284-1075173992672 <td< th=""><th></th><th></th><th></th><th>r.</th></td<>				r.
Vertical Force (kips) Longe (kips) 3140 466 24588 -261731 -20526 -101752 383 89 6679 6814 -2032 262 42 4589 -4632 1437 472 24526 -26141 1009 345 1727 -18299 1047 356 1727 -18291 1047 356 17927 -1895 6315 2125 98679 -11184 401 98 6997 -1151 1167 300 1953 -2173 1370 2553 -2541 5261 1497 491 25530 -11637			Leading	Trailing
Porce (rt-kips)(rt-kips)(rt-kips)16401946-10178144046624588-26173314687169658-734858742991944-202245841297101052-107531168561970150638-161303383896679-6814248384359-4632143747224526-26141100934517277-18299104735617927-1895163152271105113-1174985827211198051-1094705928212598679-10184401986997-7152299545234-52383648116361-6477149749125530-2173137845323521-250363152249100430-11627149739019953-1416266562170100648-1124262562249104130-11637110737218941-2008378228513393-14162685531115159-100371204853423444615378228513393-1416268531115159-10374784245213393-1416278528513393-14162786311151	Vertical	Horizontal	Edge Moment	Edge Moment
14404662458-261731344087169658-734858742991944-2023245841297101053-10753168561970150638-161303333896679-6814248384359-4327262424589-4632143747224526-26141100934517277-182996315227110513-1174985887211198051-1094705925212598679-10184401986997-7152299545234-52983648112550-27241116739019953-21173137845323521-250363552249104130-116379110737218941-20083782285513393-14162685531115159-16037782263213133-1416258531415159-16074785263212119-13567789267112282-37135951949745-101746961246910901-115187939267112284-137645951949745-10174696124691091-115187939267112284-137647939267112				
314687169658.7348587429919494.2023245841297101053.10753168561970150638.161303333896673.6814248384359.4327262424589.4622143747224526.26141100934517277.18299104735617927.1895563152271105113.1174985827211598679.10184401986997.7152299545234.523836481.6361.64771497491.2550.21731378453.23521.25036315229310608.118617140737218941.2008378228513333.141626855311.15159.1603778228513333.14162885311.15159.16037782285.1333.14162285311.15159.10737892671.12284.13767892671.12284.13764595194.9745.1073696124610901.118196974.12284.1477788.677.3862.41212023672.3425.37013595.194.9744.1284	565	194	9745	-10178
8742991944202968561970150638-10753168561970150638-161303333896679-6814248384359-4327262424589-4632143747224526-26141100934517277-18299104735617927-189956315227105113-1174985887211198051-1094705925212598679-10184401986997-7152299545234-52983648116361-647714974912550-2173137845323521-250365552249104130-116379110737218941-20083782285513393-14162685531115159-1603778228513393-1416268531115159-16037782263212119-13567783264712282-37137842452-3713785265212419-10178785265212419-1027478526521241911627785265212614-10178785265234429-37124785275338652-3713785275414284-13764	1440		24588	
45841297101052107753168561970150638-161303383896679-8614284384359-4327282424589-4632143747224526-26141100934517277-18299104735617927-1899563152271105113-1174985887211198051-1094705925212596679-110184401986997-7152299545234-52383648163616477149749125530-27141116739019953-21173137845323521-2504363752293100698-11861760452170100648-1122262562249104130-11637110737218941-2008378228513393-1446288531115159-1603773393646007-50323240781540639-4122225118534234-461597389267112284-137645681969794-102355651949745-1017863624610901-11518203367732624342345912493114771286745951949745				
383896679-6814248384359-4327262424589-6632143747224526-26141100934517277-18299104735617927-1895563152271105113-117485887211198051-1094705925212598679-110184401986997-71522995452345238364816361-6477149749125530-27141116739019953-21173137845323521-2504363752293106088-11861760452170100648-11242262562249104130-11637737218941-2008378228513393-1446288531115159-1603773393646007-50323240781540639-44222251185312119-135687389267112284-137645681949745-1017863624610901-115187389267112284-376217389267112284-3762474551949745-1017863624610901-115187389257413637-1287474124522674113	4584	1297	101052	-107531
248384359.4357262424589.4632143747224526.2614110093451727.1829563152271105113.117485887211198051.1094705925212598679.11018401986997.7152299545234.523836481.6361.44771497491.25530.27241116739019953.211731378453.2552.26946355.229310608.118176453.2170100648.112226256.229104130.116371107.37218941.20083782.28513393.14162885.31115159.16037733.936.46037.503237611.2753.12448.41577389.2671.12284.4137647389.2671.12284.13764555.194.9745.101786361.24610901.115182023.672.34279.327212034.676.34479.32241551.185.9517.128476911.2493.11497.128477128.2474.13624.4617514.1553.14175.128476911.2493.11497.12847				
143747224526-2614110093451727718299104735617927189956315227110511311749858872111980511094705925212596791101844019869977152299545234-52383648163616477149749125530-27141116739019953-21173137845323521-5203160452170100648-1122762562249104130-1163763752293106098-11861760452170100648-1122162562249104130-11637737393646007-5032240781540639-44222251185342344-461597614275312648-141787285263212119-13568773892671122824-137645681949745-1017863624610901-11518203367738052-412817284257413473-122745551949745-128745651949745-107863624610901-115187284257413475-12874575118559517-92045541354 <td></td> <td></td> <td></td> <td></td>				
143747224526-2614110093451727718299104735617927189956315227110511311749858872111980511094705925212596791101844019869977152299545234-52383648163616477149749125530-27141116739019953-21173137845323521-5203160452170100648-1122762562249104130-1163763752293106098-11861760452170100648-1122162562249104130-11637737393646007-5032240781540639-44222251185342344-461597614275312648-141787285263212119-13568773892671122824-137645681949745-1017863624610901-11518203367738052-412817414249311477-128745551949745-102846361246911697-128747285257413647-1287459112493141427-1286769112493141427-128747182<	262	42	4589	-4632
104735617927.1899563152271105113.117485887211198051.10184401986997.7152299545234.5286364816361.6477149749125530.21741116739019953.21173137845323521.250436375229310608.11861760452170100648.1142262562249104130.11637110737218941.2008378228513393.1416228531115159.16037782263212119.5032251185342344.461597611275312648.141777285263212119.1356873892671122824.1376456361949745.1017856361949745.101785637346034479.37214203367738052.341151124541147752175738052.24124383896679.6814551145.9517.920185531415337.16227143747224526.2614115311554.3667.3667955531415337.162271433896679.681				
63152271105113.117485887211198051.109405925212598679.11018401986997.7152299545234.5298364816361.6477149749125530.27241116739019953.21133137845323521.250436375229310608.11861760452170100648.11242262562249104130.11637110737218941.2008378228513393.1416228531115159.16037782263212119.150377849267112282.13764785266312119.135877389267112282.417877285266313447.127415651949745.10178525175738052.412816911249311475.128477128257411851.13274383896679.6814551185.9517.992089531415337.162271437472224526.261411599656.3574.3667945531415337.162371447142364037.662955519419535.316469112459<	1009	345	17277	-18299
5887211198051.109405925212598679.10184401986997.7152299545234.5298364816361.6477149749125530.21131137845323521.2504360752293106098.11861760452170100648.11242262562249104130.16379110737218941.20083782225513393.14162288531115159.1603773393646007.503212111275312648.141777285263212119.1358773892671122824.137625651949745.101785651949745.1017852642753.38052.4218152651949745.128745651949745.1287456519414775.1287452612774.38052.4218152175738052.421815211859517.92174383896679.68145511285.33574.425211437472224526.26141197965633574.36197252285742528.466773666126166409.6652936661261 <td>1047</td> <td>356</td> <td>17927</td> <td>-18995</td>	1047	356	17927	-18995
5925212598679.11014401986997.7152299545234.5298364816361.6477149749125530.21131137845323521.2504363752293106098.11861760452170100648.11242262562249104130.116379110737218941.2008378228513393.14162273393646007.50323240781540639.44222251185342344.461597611275312648.117877285263212119.135677389267112282.137645651949794.102355651949745.10178202367234295.37116361246010901.11519202367234295.3214203467634479.32241203531411437.128743183896679.6814551185.9517.992089531415337.162271437472224526.26141197965633574.36197252285742528.466773606126160409.66693606126160409.6652936061261<	6315	2271	105113	-117498
401986997.713299545234.5298364816361.6477149749125530.2173137845323521.2504363752293106098.1186176045217010648.11242262562249104130.116379110737218941.2008378228513393.14162885311.15159.16037273393646007.50323240781540639.44222251185342344.461597612275312648.11777285263212119.135677399267112282.137645651949794.102355651949745.10178636124610901.11519202367234295.3713225175738052.41211203467634479.322112035547114374.128744591245311477.12874333896679.6814343896679.6814551185.3574.3617454511453.3524.463673666126163631.768513666126160409.66693666126160409.666936661261604	5887	2111	98051	-109470
299545234-5298364816361-6477149749125530-27141116739019953-21173137845323521-2504363752293106098-11861760452170100648-11242262562249104130-116379110737218941-200837822851339-1416288531115159-16037273393646007-50323240781540639-44222251185342344-461597611275312648-117877285263212119-1356773892671122824-137645651949745-10178636124610901-11518202367234295-3713225175738052-4128169112493114947-132743633896679-68143634896679-68143735254415337-16274143747224526-26141197965633574-36197252285742528-466763606126160409-66593606126160409-66593606126160439-66593606126167631-7685136061261	5925	2125	98679	-110184
364 81 6361 6471 1497 491 25530 -27241 1167 390 19953 -21173 1378 453 23521 -25043 6375 2293 106098 -11827 6045 2170 100648 -11222 6256 2249 104130 -116379 1107 372 18941 -20083 782 285 13393 -14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -4422 2511 853 42344 -46159 7611 2753 12648 141787 7285 2632 12119 -135687 7389 2671 12284 -1078 6365 194 9745 -10178 6364 1961 3479 -37221 2023 672 34295	401	98	6997	-7152
1497 491 25530 -2741 1167 390 19953 -21173 1378 453 23521 -25043 6375 2293 106098 -118217 6045 2170 100648 -112422 6256 2249 104130 -116379 1107 372 18941 -20083 782 285 13393 -14162 885 311 15159 -16037 732 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 12648 141767 7285 2632 12119 -13567 7389 2671 122824 -13724 565 194 9745 -10178 6364 2461 10901 -11518 2023 672 34295 -37013 2254 13757 12847 <td>299</td> <td>54</td> <td>5234</td> <td>-5298</td>	299	54	5234	-5298
1167 390 19953 -21173 1378 453 23521 -25043 6375 2293 106098 -118617 6045 2170 100648 -112422 6256 2249 104130 -116379 1107 372 18941 -20083 782 285 13393 -14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 126488 -141787 7285 2632 121119 -13567 7389 2671 122824 -137624 565 194 9745 -10178 636 246 10901 -11518 2034 672 34295 -37013 2251 757 38052 -41281 6911 2493 11494	364	81	6361	-6477
1378 453 23521 -25043 6375 2293 106098 -118417 6045 2170 100648 -112422 6256 2249 104130 -116379 1107 372 18941 -20083 782 285 13393 -14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 126488 -14177 7285 2632 121119 -13567 7389 2671 122824 -137624 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2034 676 34479 -12874 6911 2493 114947 -128674 6911 2493 114	1497	491	25530	-27241
6375 2293 106098 -118617 6045 2170 100648 -11242 6256 2249 104130 -116379 1107 372 18941 -20083 782 285 13393 -14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 4234 -46159 7611 2753 126488 -141787 7285 2632 121119 -13567 7389 2671 122824 -13764 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2033 672 34295 -37013 2141 2433 114947 -12874 6901 2489 11475 -12874 6911 2483 14947	1167	390	19953	-21173
6045 2170 100648 -11222 6256 2249 104130 -116379 1107 372 18941 -20083 782 285 13393 -14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 126488 -141787 7285 2632 121119 -135687 7389 2671 122824 -13764 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2033 672 34295 -37013 2151 757 38052 -41281 6901 2489 114947 -128478 6911 2493 114947 -128478 6911 2489 114				
6256 2249 104130 -11639 1107 372 18941 -20083 782 285 13393 -14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 12648 -141787 7285 2632 121119 -135687 7389 2671 122824 -137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2033 677 38052 -41287 2023 677 38052 -41281 6911 2493 11477 128674 6911 2493 11477 12874 314 1533 -16274	6375	2293	106098	-118617
1107 372 18941 -20083 782 285 13393 14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 126488 -141787 7285 2632 121119 -135687 7389 2671 122824 137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2033 677 38052 -41281 2023 677 38052 -41281 2034 676 34479 -3284 6911 2493 11497 12874 383 89 6679 6814 551 185 9517 992	6045	2170		
782 285 13393 -14162 885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 4234 -46159 7611 2753 12648 -141787 7285 2632 121119 -135687 7389 2671 122824 -137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2035 672 34295 -3013 2251 757 38052 -41281 6911 2493 11497 12874 383 89 6679 6814 551 185 9517 9920 895 314 15337 -16227 1437 472 24526 -26141	6256	2249	104130	-116379
885 311 15159 -16037 2733 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 12648 -141787 7285 2632 12119 -135687 7389 2671 122824 -137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2023 672 34295 -37013 2251 757 38052 -41281 6911 2493 11494 -12847 512 757 38052 -41281 6911 2493 11497 12847 7128 2574 11851 13274 383 89 6679 6814 551 185 9517 9920 895 314 15337 -162	1107	372	18941	-20083
2733 936 46007 -50323 2407 815 40639 -44222 2511 853 42344 -46159 7611 2753 12648 -141787 7285 2632 12119 -135687 7389 2671 122824 -137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2023 672 34295 -37013 2251 757 38052 -41281 6901 2489 11477 128474 6901 2489 11475 128474 383 89 6679 -6814 551 185 9517 9202 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528	782	285	13393	-14162
2407 315 40639 -44222 2511 853 42344 -46159 7611 2753 126488 -141787 7285 2632 12119 -135687 7389 2671 122824 -137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2023 672 34295 -37013 2251 757 38052 -41281 6901 2493 114947 -12874 6901 2493 11497 -12874 363 89 6679 -6814 551 185 9517 -1920 895 314 15337 -16271 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3606 1261 60409	885	311	15159	-16037
2511 853 42344 -46159 7611 2753 126488 -141787 7285 2632 121119 -135687 7389 2671 122824 -137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2023 672 34295 -37013 2251 757 38052 -41281 6901 2493 114947 -12864 6901 2493 114947 -12874 7128 2574 11853 -13744 383 89 6679 -6814 551 185 9517 9202 895 314 15337 -16277 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528	2733	936	46007	-50323
7611 2753 126488 -141787 7285 2632 121119 -135687 7389 2671 122824 -137624 568 196 9794 -10235 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2023 672 34295 -37013 2251 757 38052 -41281 6901 2493 114947 -128674 6901 2493 114947 -128674 6901 2493 114947 -128674 6911 2493 114947 -128674 6911 2493 114947 -128674 6913 2574 11853 -13274 383 89 6679 -6814 551 185 9517 -9202 895 314 15337 -16274 1437 472 24526<				
7285 2632 121119 -13568 7389 2671 122824 -13724 568 196 9794 -10235 555 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2023 672 34295 -37013 2251 757 38052 -41281 6901 2489 11477 -128674 6901 2489 114775 -12874 6901 2489 114775 -12874 6901 2489 114775 -12874 383 89 6679 -6814 551 185 9517 -9920 885 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 46636 3064 1059 51468				
7389 2671 122824 -13764 568 196 9794 -10235 565 194 9745 -10778 636 246 10901 -11518 2034 676 34479 -37221 2023 672 34295 -37013 2251 757 38052 -41281 6911 2493 114947 -128674 6901 2489 11475 -128478 7128 2574 118531 -13274 383 89 6679 -6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 46363 3064 1059 51468 -56529 3066 1261 60409 -66690 4148 1463 69351 <				
568 196 9794 -1023 565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2033 672 34295 -37013 2251 757 38052 -41281 6911 2493 114947 -128674 6901 2499 11475 -128478 7128 2574 118531 -13274 383 89 6679 -6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 46363 3064 1059 51468 -56529 3066 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 <td< td=""><td></td><td></td><td></td><td></td></td<>				
565 194 9745 -10178 636 246 10901 -11518 2034 676 34479 -37221 2023 672 34295 -37013 2251 757 38052 -41281 6911 2493 114947 -128674 6901 2489 114775 128478 7128 2574 118531 -132744 383 89 6679 6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232				
636 246 10901 -11518 2034 676 34479 -37221 2023 672 34295 -37013 2251 757 38052 -41281 6911 2493 114947 -128674 6901 2489 114775 -128478 7128 2574 118531 -132744 383 89 6679 6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4488 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173				
2034 676 34479 -37221 2033 672 34295 -3703 2251 757 38052 -41281 6911 2493 114947 -128674 6901 2499 114755 -128478 7128 2574 118531 -132744 383 89 6679 6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4488 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355				
2023 672 34295 -37013 2251 757 38052 41281 6911 2493 114947 128674 6901 2489 114775 128478 7128 2574 118531 132744 383 89 6679 6814 551 185 9517 9920 895 314 15337 16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4418 1463 69351 -76851 4689 1665 78291 -87131 5231 1867 87232 -97174 5733 2069 96173 -107353				
111 112 112 1121 2251 757 38052 -41281 6911 2493 114947 -128674 6901 2489 114775 -128478 7128 2574 118531 -132744 383 89 6679 -6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355				
6911 2493 114947 -128674 6901 2489 114775 -128478 7128 2574 118531 -132744 383 89 6679 -6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355				
6901 2489 114775 -128478 7128 2574 118531 -132744 383 89 6679 -6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355				
7128 2574 118531 -13274 383 89 6679 -6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355				
889 6679 -6814 551 185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 5231 1867 87232 -97174 5773 2069 96173 -107355				
185 9517 -9920 895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -78511 5231 1867 87232 -97174 5773 2069 96173 -107355				
895 314 15337 -16227 1437 472 24526 -26141 1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87113 5231 1867 87232 -97174 5773 2069 96173 -107355				
1979 656 33574 -36197 2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355				
2522 857 42528 -46367 3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355	1437	472	24526	-26141
3064 1059 51468 -56529 3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -10735	1979	656	33574	-36197
3606 1261 60409 -66690 4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355	2522	857	42528	-46367
4148 1463 69351 -76851 4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107355	3064	1059	51468	-56529
4689 1665 78291 -87013 5231 1867 87232 -97174 5773 2069 96173 -107335	3606	1261	60409	-66690
5231 1867 87232 -97174 5773 2069 96173 -107335	4148	1463	69351	-76851
5773 2069 96173 -107335	4689	1665	78291	-87013
	5231	1867	87232	-97174
6315 2271 105113 -117498	5773	2069	96173	-107335
	6315	2271	105113	-117498

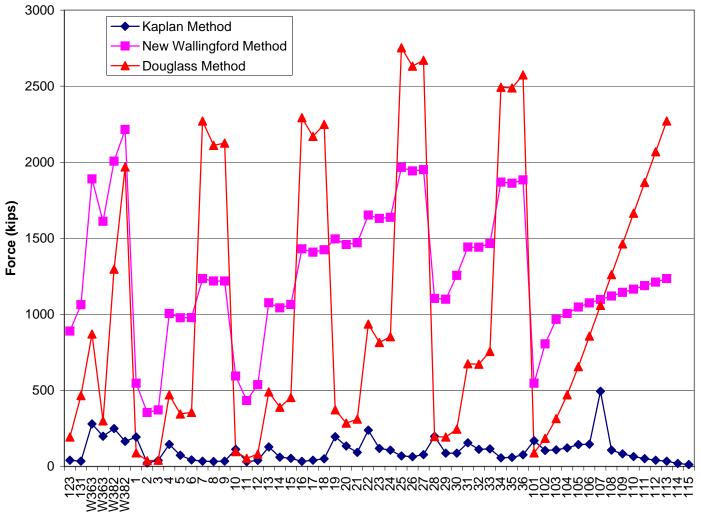
r	_	T		1	1				1	[1	1		New Wallir	ngford App	roach With			Vertical	Lataral	Vertical	Lateral			Tatal	Tata	
		d	Significant	Maximum	Wave Period	d Wave Length	Wave Crest	Y.	Span Width	Span Length	a	Number of	Vertical For		Lateral Force on	Vertical Force on		Lateral Force on	Lateral Force on	Vertical Impact Load on	Vertical Impact Load on	Lateral Impact	Vertical Impact Load on	Lateral Impact Load on	Vertical Impact Load on	Lateral Impact Load on	Lateral Deck	Lateral Girder	Total Quasi- Static	Total Quasi Statio	si- Lea
Comment	Case #	(ft)	Wave Height (ft)	Wave Height (ft)	(sec)	(ft)	Height* (ft)	(ft)	(ft)	(ft)	b (ft) (ft)	Girders	on Deck - External (kip		Deck - External	Seaward Girder	Girder	Seaward Girder	Internal Girder	Deck - External	Deck - Internal	Load on Deck	Seaward Girder	Seaward Girder	Internal Girder	Internal Girder	Moment Arm	Moment Arm	Vertical Force		ontal Mom
I10-Escambia Bay Span and														(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)	(kips)			(kips)	(kips)	s)
Conditions I10-Escambia Bay Span and	123	37.1	4.7	8.2	4.1	92.3	4.95	1.6	35.3	60	0.58 3.75	6	371.1	504.8	0	18.5	19.2	32.5	48.4	824	1156	0	42	80	50	162	3.62	1.12	462	275	
Conditions	131	39.5	6.5	8.2	4.1	92.7	4.94	-0.3	35.3	60 65	0.58 3.75	6	416.5	550.3	12.8 47	20 40	21.2	39.8	55.8	925	1260	31	46	97	55	187	4.25	1.11	505	332	
110 - Lake Pontchartrain 110 - Lake Pontchartrain	W363 W363	22.1 22.1	6.5	12.0	5.1 5.1	125.8 125.8	8.2 8.2	4.2	45.5	65	0.54 3.75 0.54 3.75	6	825.5	1346.1 1083.9	47	32.6	44.1 34.9	81.8 65.4	94 86.3	2415 1833	3083 2482	115 7	91 74	200 160	114 91	315 289	4.66 3.83	1.05 1.21	1282	599 500	
110 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-0.8	45.5	65	0.54 3.75	6	1260.1	1514.5	55	44.9	50.2	92.8	98.4	2798	3468	135	102	227	130	329	4.56	1.02	1445	640	
110 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-3.8	45.5	65	0.54 3.75	6	1529.3	1783.7	67.9	52.5	59.6	109.6	106.3	3395	4085	166	120	269	154	356	4.52	1.00	1704	709	378
* Wave crest height above storm	water level	(h _{max})																													
I10-Escambia Bay Span	1	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58 3.75	6	318.8	444.1	0	16.2	16.6	19.1	30	708	1017	0	37	47	43	100	3.29	0.76	405	169	9 70
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	2	40	4.4	8	5	128.3	4.48	3	35.3	60	0.58 3.75	6	0	0	0	15.5	15.8	11.9	19.3	0	0	0	35	29	41	65	3.03	0.49	95	108	3 16
I10-Escambia Bay Span Hypothetical Conditions	3	40	4.4	8	8	254	4.55	3	35.3	60	0.58 3.75	6	0	0	0	15.5	15.9	12.5	20.2	0	0	0	35	31	41	68	3.05	0.52	95	114	4 16
I10-Escambia Bay Span Hypothetical Conditions	4	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58 3.75	6	389	514.3	11.8	18.7	19.8	37.7	52.9	864	1178	29	43	92	51	177	4.29	1.13	472	314	4 79
110-Escambia Bay Span	5	40	4.4	8	5	128.3	4.48	0	35.3	60	0.58 3.75	6	370.5	495.8	5.2	18	18.9	36.2	52.2	823	1135	13	41	89	49	175	4.03	1.18	454	302	2 76
Hypothetical Conditions 110-Escambia Bay Span	6	40	4.4	8	8	254	4.55	0	35.3	60	0.58 3.75	6	372.2	497.4	5.7	18.1	19	36.3	52.2	826	1139	14	41	89	49	175	4.05	1.18	456	303	3 76
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	7	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58 3.75	6	599.7	725	32.9	26.4	29.2	54.9	61	1331	1660	81	60	134	76	204	4.49	1.00	672	393	3 11
I10-Escambia Bay Span Hypothetical Conditions	8	40	4.4	8	5	128.3	4.48	-9	35.3	60	0.58 3.75	6	581.2	706.5	31.8	25.7	28.4	53.4	60.6	1290	1618	78	59	131	74	202	4.49	1.00	654	388	3 11
I10-Escambia Bay Span	9	40	4.4	8	8	254	4.55	-9	35.3	60	0.58 3.75	6	582.9	708	31.9	25.7	28.5	53.5	60.3	1294	1622	78	59	131	74	202	4.49	1.00	656	387	7 11
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	10	25	4.4	8	3.1	58.2	5.38	3	35.3	60	0.58 3.75	6	328.1	453.4	0	17.5	18.2	21.8	32.3	728	1038	0	40	54	47	108	3.33	0.79	421	183	
I10-Escambia Bay Span	11	25	4.4	8	5	118.6	4.77	3	35.3	60	0.58 3.75	6	0	0	0	16.6	17.2	15.4	23.6	0	0	0	38	38	45	79	3.12	0.59	103	133	3 17
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	12	25	4.4	8	8	217	5.16	3	35.3	60	0.58 3.75	6	319.9	445.1	0	17.2	17.9	19.4	29.1	710	1019	0	39	48	46	98	3.25	0.72	413	165	5 71
I10-Escambia Bay Span Hypothetical Conditions	13	25	4.4	8	3.1	58.2	5.38	0	35.3	60	0.58 3.75	6	440.5	565.7	13.5	21.5	23.3	44.1	55.9	978	1296	33	49	108	60	187	4.33	1.12	527	337	7 88
I10-Escambia Bay Span Hypothetical Conditions	14	25	4.4	8	5	118.6	4.77	0	35.3	60	0.58 3.75	6	417.6	542.9	7.8	20.7	22.2	42.2	55	927	1243	19	47	103	58	184	4.12	1.16	505	325	5 85
I10-Escambia Bay Span Hypothetical Conditions	15	25	4.4	8	8	217	5.16	0	35.3	60	0.58 3.75	6	432.2	557.5	11.4	21.2	22.9	43.4	55.6	960	1277	28	48	106	59	186	4.25	1.14	520	333	3 87
I10-Escambia Bay Span Hypothetical Conditions	16	25	4.4	8	3.1	58.2	5.38	-9	35.3	60	0.58 3.75	6	777.6	902.8	41.4	33.8	38.4	71.6	68.8	1726	2068	101	77	175	99	231	4.49	1.00	847	457	7 14
I10-Escambia Bay Span Hypothetical Conditions	17	25	4.4	8	5	118.6	4.77	-9	35.3	60	0.58 3.75	6	754.7	880	40.1	33	37.4	6937	68	1676	2015	98	75	171	97	228	4.49	1.00	826	7317	7 70
I10-Escambia Bay Span Hypothetical Conditions	18	25	4.4	8	8	217	5.16	-9	35.3	60	0.58 3.75	6	769.4	894.6	40.9	33.5	38	70.9	68.5	1708	2049	100	76	174	99	230	4.49	1.00	839	454	4 14
I10-Escambia Bay Span Hypothetical Conditions	19	40	6.7	12	4	95.1	7.66	3	35.3	60	0.58 3.75	6	570.6	761.4	10.1	27.7	29.1	55.6	79.7	1267	1744	25	63	136	75	267	4.09	1.17	697	464	1 11
I10-Escambia Bay Span Hypothetical Conditions	20	40	6.7	12	6	175.1	7.06	3	35.3	60	0.58 3.75	6	549.3	740	2.9	26.9	28.2	53.8	78.9	1219	1695	7	61	132	73	264	3.89	1.23	677	451	1 11
I10-Escambia Bay Span Hypothetical Conditions	21	40	6.7	12	8	259	7.25	3	35.3	60	0.58 3.75	6	556	746.8	5.1	27.2	28.5	54.4	79.1	1234	1710	13	62	133	74	265	3.95	1.21	684	455	5 11
I10-Escambia Bay Span Hypothetical Conditions	22	40	6.7	12	4	95.1	7.66	0	35.3	60	0.58 3.75	6	677.6	868.3	36.8	31.6	33.9	64.3	83.8	1504	1988	90	72	158	88	281	4.57	1.05	799	520) 13
I10-Escambia Bay Span Hypothetical Conditions	23	40	6.7	12	6	175.1	7.06	0	35.3	60	0.58 3.75	6	656.2	846.9	35.6	30.8	33	62.6	83	1457	1939	87	70	153	85	278	4.60	1.07	779	513	3 13
I10-Escambia Bay Span Hypothetical Conditions	24	40	6.7	12	8	258.6	7.25	0	35.3	60	0.58 3.75	6	663	853.7	36	31	33.3	63.1	83.2	1472	1955	88	71	155	86	279	4.59	1.06	785	515	5 13
I10-Escambia Bay Span Hypothetical Conditions	25	40	6.7	12	4	95.1	7.66	-9	35.3	60	0.58 3.75	6	998.4	1189.1	54.9	43.2	48.3	90.5	96.1	2216	2723	134	99	222	125	322	4.48	0.99	1103	626	5 18
I10-Escambia Bay Span Hypothetical Conditions	26	40	6.7	12	6	175.1	7.06	-9	35.3	60	0.58 3.75	6	977	1167.7	53.7	42.5	47.4	88.8	95.3	2169	2674	131	97	217	123	319	4.48	0.99	1083	619	9 18
I10-Escambia Bay Span Hypothetical Conditions	27	40	6.7	12	8	258.6	7.25	-9	35.3	60	0.58 3.75	6	983.8	1174.5	54.1	42.7	47.7	89.3	95.6	2184	2690	132	97	219	123	320	4.48	0.99	1090	621	1 18
I10-Escambia Bay Span Hypothetical Conditions	28	25	5.6	10	4	89.1	6.37	3	35.3	60	0.58 3.75	6	464.8	624.2	0	23.9	25.3	42.8	59.8	1032	1429	0	55	105	66	200	3.66	1.12	580	342	2 98
I10-Escambia Bay Span Hypothetical Conditions	29	25	5.6	10	6	154.8	6.35	3	35.3	60	0.58 3.75	6	463.9	623.3	0	23.9	25.3	42.5	59.4	1030	1427	0	54	104	65	199	3.65	1.12	580	340	98
I10-Escambia Bay Span Hypothetical Conditions	30	25	5.6	10	8	221.2	6.77	3	35.3	60	0.58 3.75	6	483.9	643.3	0	24.6	26.2	49.4	67.6	1074	1473	0	56	121	68	227	3.79	1.26	599	387	7 10
I10-Escambia Bay Span Hypothetical Conditions	31	25	5.6	10	4	89.11	6.37	0	35.3	60	0.58 3.75	6	607.8	767.2	30.5	29.1	31.7	59.9	72.9	1349	1757	75	66	147	82	244	4.66	1.09	716	455	5 12
I10-Escambia Bay Span Hypothetical Conditions	32	25	5.6	10	6	154.8	6.35	0	35.3	60	0.58 3.75	6	606.9	766.3	30.2	29.1	31.7	59.8	72.9	1347	1755	74	66	147	82	244	4.65	1.09	715	455	5 12
I10-Escambia Bay Span Hypothetical Conditions	33	25	5.6	10	8	221.2	6.77	0	35.3	60	0.58 3.75	6	623.9	786.3	32.3	29.8	32.6	61.5	73.7	1392	1801	79	68	151	84	247	4.63	1.07	734	462	2 12
I10-Escambia Bay Span Hypothetical Conditions	34	25	5.6	10	4	89.1	6.37	-9	35.3	60	0.58 3.75	6	1036.9	1196.3	55.4	44.7	51	94.9	89.4	2302	2739	136	102	233	132	300	4.48	1.00	1123	597	7 19
I10-Escambia Bay Span Hypothetical Conditions	35	25	5.6	10	6	154.8	6.35	-9	35.3	60	0.58 3.75	6	1035.9	1195.3	55.3	44.7	51	94.8	89.4	2300	2737	136	102	231	132	299	4.48	1.00	1123	597	7 19
I10-Escambia Bay Span Hypothetical Conditions	36	25	5.6	10	8	221.2	6.77	-9	35.3	60	0.58 3.75	6	1055.9	1215.3	56.4	45.4	51.9	96.5	90.2	2344	2783	138	104	236	134	302	4.48	0.99	1142	604	4 19
I10-Escambia Bay Span	101	40	4.4	8	3.1	58.7	5.27	3	35.3	60	0.58 3.75	6	318.8	444.1	0	18.8	25.3	19.1	30	708	1017	0	43	47	66	100	3.29	0.76	451	169	9 78
Hypothetical Conditions I10-Escambia Bay Span	102	40	4.4	8	3.1	58.7	5.27	2	35.3	60	0.58 3.75	6	342.2	467.5	0	20	26.5	29.1	44	760	1070	0	46	71	69	147	3.62	1.09	474	249	
Hypothetical Conditions I10-Escambia Bay Span	103	40	4.4	8	3.1	58.7	5.27	1	35.3	60	0.58 3.75	6	365.6	490.9	3.5	21.3	27.8	35.8	52	812	1124	9	48	88	72	174	3.96	1.20	498	299	
Hypothetical Conditions I10-Escambia Bay Span	104	40	4.4	8	3.1	58.7	5.27	0	35.3	60	0.58 3.75	6	389	514.3	11.8	22.5	29	37.7	52.9	864	1178	29	51	92	75	177	4.29	1.13	522	314	
Hypothetical Conditions I10-Escambia Bay Span	104	40	4.4	8	3.1	58.7	5.27	-1	35.3	60	0.58 3.75	6	415.4	537.7	21	23.7	30.2	39.6	53.8	916	1231	51	54	97	78	180	4.62	1.09	545	330	
Hypothetical Conditions I10-Escambia Bay Span	105	40	4.4	8	3.1	58.7	5.27	-1	35.3	60	0.58 3.75	6	415.4	561.1	21	23.7	31.4	41.5	53.6	916	1231	58	54	97 102	81	183	4.62	1.09	568	339	
Hypothetical Conditions I10-Escambia Bay Span	100	40	4.4	8	3.1	58.7	5.27	-2	35.3	60	0.58 3.75	6	459.3	584.5	25.7	24.9	32.6	41.5	55.6	1020	1339	61	60	102	84	186	4.55	1.00	500	346	
Hypothetical Conditions I10-Escambia Bay Span	107	40	4.4	8	3.1	58.7	5.27	-3	35.3	60	0.58 3.75	6	439.3	607.9	25	20.1	33.8	45.3	56.5	1020	1392	64	62	100	88	189	4.53	1.04	615	340	
Hypothetical Conditions I10-Escambia Bay Span	109	40	4.4	8	3.1	58.7	5.27	-4	35.3	60	0.58 3.75	6	506.1	631.3	20.3	28.5	35	45.5	57.4	1124	1446	68	65	116	91	192	4.55	1.03	638	362	
Hypothetical Conditions I10-Escambia Bay Span	110	40	4.4	8	3.1	58.7	5.27	-5	35.3	60	0.58 3.75	6	506.1	654.7	27.6	28.5	35	47.2	57.4	1124	1446	71	68	110	91	192	4.51	1.02	662	362	
Hypothetical Conditions I10-Escambia Bay Span	111	40	4.4	8	3.1	58.7	5.27	-0	35.3	60	0.58 3.75	6	529.5	678.2	30.2	29.8 31	37.5	49.1 51	59.2	1175	1553	74	71	120	94 97	195	4.50	1.01	685	370	
Hypothetical Conditions I10-Escambia Bay Span	112	40	4.4	8	3.1	58.7	5.27	-8	35.3	60	0.58 3.75	6	576.3	701.6	31.6	32.2	38.7	53	60.1	1279	1607	77	76	130	100	201	4.49	1.00	709	385	
Hypothetical Conditions I10-Escambia Bay Span	113	40	4.4	8	3.1	58.7	5.27	-9	35.3	60	0.58 3.75	6	599.7	725	32.9	33.4	39.9	54.9	61	1331	1660	81	76	130	103	201	4.49	1.00	732	393	
Hypothetical Conditions								-	1			-			1				I				-								

Quesise Leading regise Trailing Second kips Trailing best regise 275 7837 48450 332 8490 -3308 599 28361 -29960 500 22805 -24034 659 22805 -24034 659 22805 -24034 660 22805 -24034 6700 37815 -39706 709 37815 -39706 114 1616 -1719 114 1616 -1733 314 7924 -3707 302 7650 -4402 333 11329 -1244 388 11029 -12029 333 7430 -1887 1333 1737 -12051 1341 11377 -12051 454 11137 -12051 454 14139 -14142 513 13065 -14402 514 131361 -14152	
Force (kips) kips) kips) kips) 275 7837 -8450 332 8490 -9308 599 28361 -2960 500 22805 -24034 640 32024 -33720 709 37815 -39706 709 37815 -39706 108 1612 -1719 114 1616 -7266 303 7656 -8402 314 7924 -3777 303 7656 -8402 313 11329 -12444 388 11029 -12029 337 11357 -1505 133 7769 -7560 133 1737 -1919 325 8509 -3939 333 8744 -5570 1435 14199 -15291 454 14199 -15292 1431 13167 14205 513	Э
(µpp) 1 275 7837 8450 275 7837 8450 332 8490 9308 599 28361 29960 500 22805 -24034 640 3224 -33720 709 37815 -39706 7010 77266 -1006 106 1612 -1779 314 7924 -8707 303 7655 -8402 393 11329 -12244 388 11029 -12029 313 7269 -7560 133 7269 -7561 133 7269 -7561 133 7269 -7561 133 7269 -1309 333 8744 -9570 455 11491 -1328 7517 7092 -22021 454 14199 -1529 455 11491 -1269 513	
3328490-930859928361-2990050022805-2403464032024-3372070937815-3970070937815-3970070107266-17331081612-17733147924-807073027627-83723037656-840230311329-1234438811029-120293337755-840233411029-120293337763-77601331730-18871657163-74013378875-97193258509-33093338744-95704541419-1529246411721-126445511491-126151513167-144251513167-145862118403-200143429842-106093409835-105445512014-1321945512025-198662113229-135153719000-265753719000-26575371902-26575371902-26575339771-100373349572-104583359174-100373369174-100373399572-104583409174	
599 28361 29900 500 22805 24034 640 32024 33720 709 37815 39706 709 37815 39706 709 37815 39706 709 37815 39706 709 37815 39706 7010 17266 1114 1616 1773 314 7924 68707 302 7657 68372 303 7656 6402 303 11329 12244 388 11029 12255 183 7650 1402 5700 333 6744 9309 333 8744 9570 4532 4553 14019 15292 464 11721 12864 4553 15536 15536 513 13055 14402 5597 14335 15064 514 14191 15261 14026 15026 515 13167	
500 22805 -24034 640 32024 -33720 709 37815 -39706 709 37815 -39706 708 169 7010 -7256 108 1612 -1719 114 1616 -1733 314 7924 -80707 302 7657 -8372 303 7656 -8402 393 11329 -12344 388 11029 -12055 183 7269 -7560 133 1730 -1887 165 7163 -7401 333 8744 -9570 453 14335 -15536 7317 7092 -22021 454 1419 -15292 455 14403 -10192 515 1367 -14425 513 13055 -14402 514 13167 -14264 520 1	
640 32024 33720 709 37815 -39706 709 37815 -39706 108 1612 -1719 114 1616 -1733 314 7924 -8707 302 7652 -8402 303 1529 -12244 388 11029 -12254 383 11329 -12444 388 11029 -12055 183 7269 -7560 133 1730 -1887 165 7163 -7401 337 8875 -9309 333 8744 -9570 453 11491 -1525 1433 1553 -13167 717 7092 -22021 454 14199 -15259 1433 15536 -14402 515 11491 -12616 520 13404 -14759 513 13055 <td< td=""><td></td></td<>	
37815 337015 169 7010 -7266 108 1612 -1719 114 1616 -1733 314 7924 -8707 302 7627 -8372 303 7656 -8402 393 11329 -1244 388 11029 -12029 387 11057 -12055 183 7269 -7600 333 8744 -9570 333 8744 -9570 454 14199 -15252 454 14199 -15264 451 11377 -12864 451 11377 -12864 451 11391 -12864 451 11395 -1402 513 13055 -1402 513 13055 -1402 513 1305 -1402 513 1305 -1402 513 1305 -1402 <	
169 7010 -7266 108 1612 -1719 114 1616 -1733 314 7924 -8707 302 7627 -8372 303 7656 -8402 303 7656 -8402 303 7656 -8402 303 11329 -1244 388 11029 -12029 387 11057 -12055 183 7269 -7560 133 1730 -1887 334 8754 -9719 325 8509 -3309 333 8744 -9570 454 14139 -15237 454 11377 -12051 455 11491 -12166 513 13055 -14402 513 13055 -1402 514 18295 -1988 621 18636 -20259 619 13205 -10132<	
108 1612 -1719 114 1616 -1733 314 7924 -8707 302 7627 -8372 303 7656 -8402 303 11329 -12344 386 11029 -12229 387 11057 -1265 183 7269 -7500 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -3309 333 8744 -9570 453 11435 -15536 7117 7092 -22021 454 11171 -12664 455 11491 -15536 7317 7092 -22021 455 11491 -15536 731 7052 -2021 455 11491 -15261 513 1365 -1442 514 13167 -1266	•
108 1612 -1719 114 1616 -1733 314 7924 -8707 302 7627 -8372 303 7656 -8402 303 11329 -12344 386 11029 -12229 387 11057 -1265 183 7269 -7500 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -3309 333 8744 -9570 453 11435 -15536 7117 7092 -22021 454 11171 -12664 455 11491 -15536 7317 7092 -22021 455 11491 -15536 731 7052 -2021 455 11491 -15261 513 1365 -1442 514 13167 -1266	
114 1616 -1733 314 7924 -8707 302 7627 -8372 303 7656 -8402 393 11329 -12344 388 11029 -12029 387 11057 -12055 183 7269 -7560 133 1733 -1887 165 7163 -7401 337 8875 -9719 325 8509 -3309 333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 1419 -1529 455 11491 -1266 510 13167 -1442 511 13167 -1455 620 18403 -20014 455 11491 -1266 513 13055 -14402 514 18403 -20014 342 9842 -1060	6
314 7924 -8707 302 7627 -8372 303 7656 -8402 393 11329 -12444 388 11029 -12029 387 11057 -12055 183 7269 -7560 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -3309 333 8744 -5576 1435 -15536 717 7092 -22021 454 14199 -1532 455 11491 -1526 513 13055 -14402 513 13167 -1455 626 18636 -20259 619 18295 -1989 621 18403 -20014 342 9842 -10609 340 9835 -10544 342 9842 -1069 <	Э
302 7627 -8372 303 7656 -8402 303 11329 -12344 388 11029 -12029 387 11057 -12055 183 7269 -7560 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -3309 333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 14199 -15392 454 14191 -12664 451 13177 -12664 455 11401 -12666 513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -10809 455 12004 -13206 455 12014 -13219 455 12005	3
303 7656 -8402 303 11329 -12344 388 11029 -12029 387 11057 -12055 183 7269 -7560 133 1730 -1887 165 7163 -7011 337 8875 -9719 325 8509 -3309 333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 14199 -15392 454 14191 -12664 451 11377 -12616 520 13404 -14759 513 13055 -14025 514 1836 -20259 621 18403 -20014 342 9842 -10609 340 9835 -10364 455 12014 -13219 455 1202 -13561 597 19002	7
393 11329 -1234 388 11029 -1203 387 11057 -1255 133 7269 -7560 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -3339 333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 14199 -15392 454 14191 -12664 451 11377 -12864 451 11377 -12616 520 13404 -14759 513 1365 -14402 514 1835 -2059 619 18295 -10898 621 18403 -20014 342 9842 -10609 340 9835 -10544 357 12014 -13219 455 12021 <t< td=""><td>2</td></t<>	2
388 11029 -12029 387 11057 -12029 183 7269 -7560 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -9309 333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 14199 -15392 464 11721 -2664 451 11377 -12501 455 11491 -12616 520 13404 -14759 513 13055 -10402 514 18403 -2014 340 9835 -10504 541 18403 -2014 342 9842 -10609 340 9835 -10544 357 10062 -11336 597 19012 -20587 597 19012	2
387 11057 -12057 183 7269 -7560 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -9309 333 8744 -9570 457 14335 -15536 717 7092 -22021 454 14199 -15392 464 11721 -2664 451 1337 -2616 520 13404 -14759 513 13055 -14402 514 14191 -12616 520 13404 -14759 513 13055 -14402 514 18403 -2014 340 9835 -1069 341 18403 -2014 342 9842 -1069 340 9835 -1059 455 12014 -13219 455 1205 -20	4
183 7269 -7560 133 1730 -1887 165 7163 -7401 337 8875 -9719 325 8509 -9309 333 8744 -9570 457 14335 -15536 717 7092 -22021 454 14199 -15392 464 11721 -2664 451 11377 -2501 454 14199 -15392 464 11721 -2664 451 13167 -14515 520 13404 -14759 513 13055 -14402 514 18403 -2014 340 9835 -1069 452 12041 -13219 455 12014 -13219 455 12015 -1366 597 19001 -20547 604 19325 -2078 597 19002 <t></t>	9
133 1730	5
165 7163 -7401 337 8875 -9719 325 8509 -9309 333 8744 -9570 457 14335 -1532 717 7092 -22021 454 14199 -1532 454 1419 -1532 464 11721 -12864 451 11377 -12501 455 11491 -12616 520 13404 -14759 513 13055 -14402 514 18403 -2014 340 9825 -10593 621 18403 -2014 340 9835 -10594 340 9835 -10594 340 9835 -10594 340 9835 -10594 455 12004 -13219 455 12005 -13206 462 12329 -13516 597 19001 <t< td=""><td>D</td></t<>	D
337 8875 -9719 325 8509 -9309 333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 14199 -15392 464 11721 -12864 451 11377 -12501 455 11491 -14515 500 13404 -14759 513 13055 -14402 514 18403 -2014 342 9842 -10609 340 9835 -10326 455 12004 -13219 455 12005 -1306 455 12025 -1326 462 12329 -13551 597 19001 -20574 604 19225 -20918 169 7822 -8078 249 8089 -6622 299 8412 -9152 330 9171	7
325 8509 -9309 333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 14199 -15392 464 11721 -12864 451 11377 -12501 455 11491 -15261 520 13404 -14759 513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -00143 342 9842 -10609 340 9835 -10594 340 9835 -10594 347 10062 -11326 455 12005 -13206 462 12329 -13551 597 19000 -20574 604 17222 -2018 159 7922 -8078 249 8089	1
333 8744 -9570 457 14335 -15536 7317 7092 -22021 454 14199 -15392 454 11721 -12864 451 11377 -12501 454 11721 -12864 451 11377 -12501 455 11491 -12166 520 13404 -14759 513 13055 -14402 514 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -0014 342 9842 -10609 340 9835 -10594 347 10062 -11320 455 12014 -13209 455 12014 -13209 452 12095 -20587 597 19000 -20574 604 13325 -20818 797 19000<	Ð
457 14335 -15536 7317 7092 -22021 454 14199 -15392 454 14179 -12864 451 11377 -12664 451 11377 -12616 520 13404 -14759 513 13055 -14402 514 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -0014 342 9842 -10609 340 9835 -10594 351 12014 -13206 455 12014 -13206 455 12015 -13206 452 12329 -0587 597 19000 -20574 604 13325 -20918 797 19000 -20574 604 13325 -2018 797 19000 -20574 604 13325<	Э
7317 7092 -22021 454 14199 -15392 464 11721 -12864 451 11377 -12501 455 11491 -12616 520 13404 -14759 513 13055 -14402 514 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -0014 342 9842 -10609 340 9835 -10594 347 10062 -11336 455 12014 -13219 455 12025 -10594 377 19002 -0574 604 13325 -2018 7577 19000 -0574 604 13325 -2018 7597 19022 -3678 249 8089 -8632 299 8412 -9152 314 8801	D
454 14199 -15392 464 11721 -12864 451 11377 -12501 455 11491 -12616 520 13404 -14759 513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -20114 342 9842 -10609 340 9835 -10594 455 12014 -13219 455 12025 -13206 462 12329 -13515 597 19000 -20574 604 19325 -20918 7 9000 -20574 604 19325 -20918 7 19000 -20574 604 19325 -20918 7 19000 -20574 604 19325 -20818 249 8089	6
464 11721 -12864 451 11377 -12501 455 11491 -12616 520 13404 -14759 513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -20114 342 9842 -10609 340 9835 -10594 355 12014 -13219 455 12014 -13206 462 12329 -13515 597 19012 -20587 597 19012 -20587 597 19020 -20574 604 19325 -20918 7 19000 -20574 604 19325 -3078 249 8089 -8632 299 8412 -9152 314 8801 -39585 330 9171	1
451 11377 -12501 455 11491 -12616 520 13404 -14759 513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -20114 342 9842 -10609 340 9835 -10594 355 12014 -13219 455 1205 -13206 462 12329 -13515 597 19012 -20577 597 19012 -20574 604 19325 -20918 7 9000 -20574 604 9325 -20587 597 19020 -20574 604 9325 -20918 7 9209 8412 -9152 314 8801 -9585 330 9171 -10037 346 9977	2
455 11491 -12616 520 13404 -14759 513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -20114 342 9842 -10609 340 9835 -10594 387 10062 -11036 455 12014 -13219 455 1205 -13206 462 12329 -13517 597 19012 -20587 597 19000 -20574 604 19325 -20918 7 9002 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 346 9977 -10458 346 9977 -10587	4
520 13404 -14759 513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -20114 342 9842 -10609 340 9835 -10544 387 10062 -11036 455 12014 -13219 455 1205 -13206 462 12329 -1351 597 19012 -20587 597 19000 -20574 604 19325 -20918 7 9000 -20574 604 19325 -20918 7 9000 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 346 9977 -10458 346 9977 -10287 354 10379	1
513 13055 -14402 515 13167 -14515 626 18636 -20259 619 18295 -19898 621 18403 -2014 342 9842 -10609 340 9835 -10544 387 10062 -11036 455 12014 -13219 455 12025 -13206 462 12329 -13551 597 19012 -20537 597 19000 -20574 604 19325 -20618 7 9808 -8632 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 346 9977 -10458 346 9977 -10545	6
515 13167 -14515 626 18636 -20259 619 18295 -19698 621 18403 -20114 342 9842 -10609 340 9835 -10594 387 10062 -11036 455 12014 -13219 455 12025 -13561 597 19012 -20587 597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -3958 330 9171 -10037 334 9572 -10458 346 9977 -10575	9
626 18636 -20259 619 18295 -19898 621 18403 -20014 342 9842 -10609 340 9835 -10594 387 10062 -11036 455 12014 -13219 455 12005 -13206 462 12329 -13551 597 19012 -20587 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -3958 330 9171 -10037 334 9572 -10458 346 9977 -10575	2
619 18295 -19898 621 18403 -20014 342 9842 -10609 340 9835 -10594 387 10062 -11036 455 12014 -13219 455 12025 -13206 462 12329 -13551 597 19012 -20587 597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -6632 299 8412 -9152 314 8801 -3855 330 9171 -10037 339 9572 -10458 346 9977 -10257	5
621 18403 -20014 342 9842 -10609 340 9835 -10594 387 10062 -11036 455 12014 -13219 455 12025 -13561 597 19012 -20587 597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -3585 330 9171 -10037 346 9977 -10458 346 9374 -102458	9
342 9842 -10603 340 9835 -10594 387 10062 -11036 455 12014 -13219 455 12005 -13206 462 12329 -1351 597 19012 -20587 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -3585 330 9171 -10037 346 9977 -10458 354 10379 -11294	8
340 9835 -10594 387 10062 -11036 455 12014 -13219 455 12005 -13206 462 12329 -13511 597 19012 -20587 597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 346 9977 -10458 354 10379 -11294	4
340 9835 -10594 387 10062 -11036 455 12014 -13219 455 12005 -13206 462 12329 -13551 597 19001 -20587 597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 334 9572 -10458 346 9977 -10275 354 10379 -11294	9
387 10062 -11036 455 12014 -13219 455 12005 -13206 462 12329 -13551 597 19012 -20587 597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 346 9977 -10458 354 10379 -11244	
455 12014 -13219 455 12005 -13206 462 12329 -13551 597 19012 -20587 597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 346 9977 -10458 354 10379 -11244	
455 12005 -13206 462 12329 -13551 597 19012 -20587 597 19000 -20574 604 1925 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9565 330 9171 -10037 346 9977 -10458 354 10379 -11294	
462 12329 -13551 597 19012 -20587 597 19000 -20574 607 19025 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -5655 330 9171 -10037 339 9572 -10458 346 9977 -10275 354 10379 -11244	
597 19012 -20587 597 19000 -20574 60 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 334 9977 -10458 346 9977 -10245	
597 19000 -20574 604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 339 9572 -10458 346 9977 -10275 354 10379 -11244	
604 19325 -20918 169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -5655 330 9171 -10037 339 9572 -10458 346 9977 -10275 354 10379 -11244	_
169 7822 -8078 249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 339 9572 -10458 346 9977 -10875 354 10379 -11244	
249 8089 -8632 299 8412 -9152 314 8801 -9585 330 9171 -10037 339 9572 -10458 346 9977 -10875 354 10379 -11294	•
299 8412 -9152 314 8801 -9585 330 9171 -10037 339 9572 -10458 346 9977 -10675 354 10379 -11294	в
314 8801 -9585 330 9171 -10037 339 9572 -10458 346 9977 -10875 354 10379 -11294	2
330 9171 -10037 339 9572 -10458 346 9977 -10875 354 10379 -11294	2
339 9572 -10458 346 9977 -10875 354 10379 -11294	5
339 9572 -10458 346 9977 -10875 354 10379 -11294	7
346 9977 -10875 354 10379 -11294	
354 10379 -11294	
370 11185 -12136	
377 11595 -12567	
385 11995 -12988	
393 12396 -13410	

Total Impact Force (kps) Totaling Edge (kps) Trailing Edge (kps) Trailing Edge (kps) Trailing Edge (kps) 1088 890 18180 -20169 1189 1063 19668 -22227 3000 1890 65847 -70653 2412 1612 52900 -56848 3383 2007 74438 -79493 3989 2215 87963 -93546 952 547 16369 -17197 240 354 4055 -4405 240 371 4038 -4422 1007 977 17621 -20077 1070 978 17671 -2054 1583 1219 25702 -28689 1546 1219 2571 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1076 2054 -22288		r	-	
Vertical Force (kips) Longe Moment (R) Moment (R) P320 1088 890 18180 -20169 1189 1063 19668 -22227 3000 1890 65847 -70653 2412 1612 5290 -56448 3383 2007 74438 -79433 3989 2215 87963 -33546 952 547 16369 -17197 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2054 1543 1219 25702 -28689 1544 1219 25701 -28738 990 594 16972 -17914 1241 1076 20564 -23192 1193 1042				
(kips) (kips) (kips) (kips) (kips) 1088 890 18180 -20169 1189 1063 19668 -22227 3000 1880 65847 -70653 2412 1612 52900 56846 3333 2007 74438 -9493 3989 2215 87963 -93546 952 547 16369 -17197 240 371 4038 4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2064 1583 1235 26383 -29415 1543 1219 25701 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17484 1221 1064 20247 -22837 1996 1431			Moment (ft-	Moment (ft
1189 1063 19668 -22227 3000 1890 65847 -70653 2412 1612 52900 -56848 3383 2007 74438 -79433 3989 2215 87963 -33546 952 547 16369 -17197 240 354 4055 -4405 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2054 1583 1225 26383 -29415 1543 1219 25701 -2869 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4300 -4891 971 538 16719 -17494 1241 1076 2054 -33172 1996 1431 3336				
3000 1890 65847 -70653 2412 1612 52900 -56848 3383 2007 74438 -79433 3989 2215 87963 -33546 952 547 16369 -17197 240 354 4055 -4405 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2054 1583 12235 26383 -29415 1546 1219 25701 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1076 20564 -23372 1996 1431 33396 -36071 1933 1459 26265				
2412 1612 52200 -56448 3383 2007 74438 -79433 3989 2215 87963 -93546 3383 2007 74438 -79433 3989 2215 87963 -93546 240 354 4055 -4405 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2054 1583 1225 26383 -29415 1546 1219 25761 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1221 1064 20247 -2288 1222 1064 20247 -22837 1996 1431 33396 -36701 1639 1496 27063				
3989 2215 87963 -93546 952 547 16369 -17197 240 354 4055 4405 240 371 4038 4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2054 1583 1235 26383 -29415 1543 1219 25702 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 3336 -36001 1633 11630 30207 -34301 1634 26265 -29889				
1111 1111 11111 11111 952 547 16369 -17197 240 354 4055 -4405 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2054 1583 1235 26383 -29415 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17444 1221 1064 20247 -22837 1996 1431 3336 -36957 1947 1409 32570 -36074 1982 1424 3157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555	3383	2007	74438	-79493
240 354 4055 -4405 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2004 1583 1235 26383 -29415 1543 1219 25702 -26689 1546 1219 2571 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 33396 -36070 1639 1492 26265 -29889 1609 1471 26555 -30175 1881 1653 300207 -34301 1847 1633 30504	3989	2215	87963	-93546
240 354 4055 -4405 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -2004 1583 1235 26383 -29415 1543 1219 25702 -26689 1546 1219 2571 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 33396 -36070 1639 1492 26265 -29889 1609 1471 26555 -30175 1881 1653 300207 -34301 1847 1633 30504				
111 1111 240 371 4038 -4422 1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -20054 1583 1235 26383 -29415 1543 1219 25702 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4300 -4891 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 33396 -36070 1639 1492 26265 -29889 1609 1471 26555 -30175 1881 1653 30207 -34301 1847 1638 30504 -34604	952	547	16369	-17197
1109 1006 18320 -20775 1067 977 17621 -20007 1070 978 17671 -20054 1583 1235 26383 -29415 1543 1219 25702 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1075 20564 -23192 1133 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 3336 -36070 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1633 30207 -34301 1847 1633 30504	240	354	4055	-4405
1067 977 17621 -20007 1070 978 17671 -2004 1583 1235 26383 -29415 1543 1219 25702 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 3336 -36674 1982 1424 3157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1633 30207 -34301 1847 1653 31090	240	371	4038	-4422
1070 978 17671 -20054 1583 1235 26383 -29415 1543 1219 25702 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 3336 -36957 1947 1409 32570 -36074 1982 1424 3157 -36700 1639 1496 27063 -30733 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1633 30207 -34301 1847 1653 31090	1109	1006	18320	-20775
1583 1225 26383 -29415 1543 1219 25702 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17444 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 3336 -36957 1947 1409 32570 -36074 1982 1424 31157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2553 1943 42613 <td>1067</td> <td>977</td> <td>17621</td> <td>-20007</td>	1067	977	17621	-20007
1543 1219 25702 -28689 1546 1219 25751 -28738 990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17444 1241 1076 20564 -23192 1193 1042 19758 -22283 1222 1064 20247 -22837 1996 1431 33396 -36957 1947 1409 32570 -36074 1982 1424 33157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2553 1943 42613 -47588 1369 1105 22866 </td <td>1070</td> <td>978</td> <td>17671</td> <td>-20054</td>	1070	978	17671	-20054
1546 1219 25751 -28738 990 594 16972 -17314 263 433 4380 -4891 971 538 16719 -17444 1241 1076 20564 -23192 1193 1042 19758 -22283 1222 1064 20247 -22837 1996 1431 33396 -36957 1947 1409 32570 -36074 1982 1424 31157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -46220 2553 1943 42613 -47588 1369 1105 22866 </td <td>1583</td> <td>1235</td> <td>26383</td> <td>-29415</td>	1583	1235	26383	-29415
990 594 16972 -17914 263 433 4380 -4891 971 538 16719 -17444 1241 1076 20564 -23192 1193 1042 19758 -22283 1222 1064 20247 -22837 1996 1431 3336 -36957 1947 1409 32570 -36074 1982 1424 31157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 27769 <td>1543</td> <td>1219</td> <td>25702</td> <td>-28689</td>	1543	1219	25702	-28689
263 433 4380 -4891 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 33396 -36957 1947 1409 32570 -36074 1982 1424 31157 -36700 1639 1496 27063 -0703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -46220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -3224 1410 1256 23276 </td <td></td> <td>1219</td> <td></td> <td></td>		1219		
1.00 1.000 1.000 1.001 971 538 16719 -17494 1241 1076 20564 -23192 1193 1042 19758 -22283 1222 1064 20247 -22837 1996 1431 3336 -36957 1947 1409 32570 -36074 1982 1424 33157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -3224 1410 1256 232				-
1241 1076 20564 -23192 1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 33396 -36957 1947 1409 32570 -36074 1982 1424 33157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31080 -35207 1830 1630 30207 -34301 1847 1638 30564 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1255 23276 -26433 1666 1442 27878 -31543 1684 1441 <td< td=""><td>263</td><td>433</td><td>4380</td><td>-4891</td></td<>	263	433	4380	-4891
1193 1042 19758 -22288 1222 1064 20247 -22837 1996 1431 33396 -36957 1947 1409 32570 -36074 1982 1424 33157 -36070 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31080 -35207 1880 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1255 23276 -26433 1686 1442 27878 -31514 1728 1465 28602 -32310 2646 1862 <td< td=""><td></td><td></td><td></td><td></td></td<>				
1222 1064 20247 -22837 1996 1431 3336 -36957 1947 1409 32570 -36074 1982 1424 33157 -36070 1639 1436 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -2524 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31543 1684 1441 27859 -35431 1684 1441 27859 -31543 1684 1441 2				
1996 1431 33396 -36957 1947 1409 32570 -36074 1982 1424 33157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 49002 2646 1862 44317 -48971 2690 1884				
1947 1409 32570 -36074 1962 1424 33157 -36700 1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1633 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47383 2564 1951 42796 -47588 1369 1105 22886 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1684 1441 27859 -31543 1684 1441 27859 -31543 1684 1441 27859 -31543 1685 44334 <t< td=""><td></td><td></td><td></td><td></td></t<>				
1982 1424 33157 -36700 1633 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1684 1441 27859 -31514 1728 1465 28602 -32310 2648 1869 44334 -4902 2646 1862 44317 -48971 2690 1884 45061 -9766 1073 547 18				
1639 1496 27063 -30703 1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1880 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47383 2564 1951 42796 -47588 1369 1105 22886 -25367 1362 1099 22769 -2524 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31543 1686 1442 27878 -31543 1686 1482 44317 -48971 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884				
1593 1459 26265 -29889 1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47383 2564 1951 42796 -47588 1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 -4902 2646 1862 44317 -4871 2690 1884 45061 -19329 1128 806 18997 -20754 1182 967 196	-			
1609 1471 26555 -30175 1881 1653 31090 -35207 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -2524 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 -4902 2646 1862 44317 -4871 2690 1884 45061 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 2144				
1881 1653 31090 -35207 1830 1630 30207 -34301 1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47588 1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 -4902 2646 1862 44317 -4871 2690 1884 45061 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 214				
1830 1630 30207 -34301 1847 1638 30504 -34604 2599 1966 43388 -48220 2553 1943 42613 -47383 2564 1951 42796 -47588 1369 1105 22886 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -4871 2690 1884 45061 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22				
1847 1638 30504 -34604 2599 1966 43388 48220 2553 1943 42613 47383 2564 1951 42796 47588 1369 1105 22886 -25367 1362 1099 22769 -2524 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31543 1684 1441 27859 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390				
2553 1943 42613 -47383 2564 1951 42796 -47588 1369 1105 22886 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27678 -31543 1686 1442 27678 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 2				
2564 1951 42796 -47588 1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25	2599	1966	43388	-48220
1369 1105 22866 -25367 1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -9766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 262	2553	1943	42613	-47383
1362 1099 22769 -25224 1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1442 27878 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -30311 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27	2564	1951	42796	-47588
1410 1256 23276 -26433 1686 1442 27878 -31543 1686 1441 27859 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -33031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28	1369	1105	22886	-25367
1686 1442 27878 -31543 1684 1441 27859 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -30311 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137 <td>1362</td> <td>1099</td> <td>22769</td> <td>-25224</td>	1362	1099	22769	-25224
1684 1441 27859 -31514 1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24068 1347 1075 22390 -25062 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1410	1256	23276	-26433
1728 1465 28602 -32310 2648 1869 44334 -49002 2646 1862 44334 -49002 2646 1862 44334 -49002 2646 1862 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28	1686	1442	27878	-31543
2648 1869 44334 -49002 2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1684	1441	27859	-31514
2646 1862 44317 -48971 2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1728	1465	28602	-32310
2690 1884 45061 -49766 1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -250682 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	2648	1869	44334	-49002
1073 547 18501 -19329 1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	2646	1862	-	-48971
1128 806 18997 -20754 1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1997 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27169 -30102 1682 1212 28169 -31137	2690	1884	45061	-49766
1182 967 19642 -22020 1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1073	547	18501	-19329
1237 1006 20576 -23031 1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1128	806	18997	-20754
1292 1048 21443 -24084 1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1182	967	19642	-22020
1347 1075 22390 -25082 1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1237	1006	20576	-23031
1402 1097 23350 -26068 1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1292	1048	21443	-24084
1460 1120 24360 -27119 1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1347	1075	22390	-25082
1516 1144 25306 -28119 1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1402	1097	23350	-26068
1570 1166 26243 -29103 1625 1189 27189 -30102 1682 1212 28169 -31137	1460	1120	24360	-27119
1625 1189 27189 -30102 1682 1212 28169 -31137	1516	1144	25306	-28119
1682 1212 28169 -31137	1570	1166	26243	-29103
	1625	1189	27189	-30102
1734 1235 29044 -32077	1682	1212	28169	-31137
	1734	1235	29044	-32077

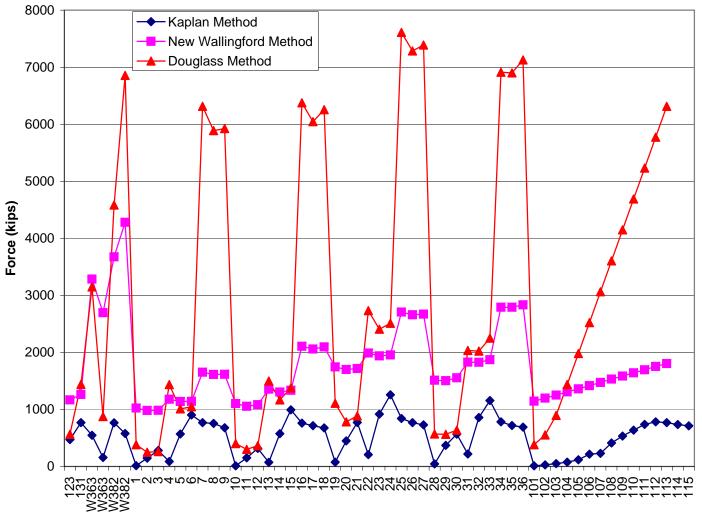
																		1	New Wallin	gford Appro	oach With 1	100% Air							
b b b b b </th <th></th> <th></th> <th></th> <th>0</th> <th></th> <th>Vertical</th> <th>Lateral</th> <th>Lateral</th> <th>Vertical</th> <th>Vertical</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Lateral</th> <th>Lateral</th>				0														Vertical	Lateral	Lateral	Vertical	Vertical						Lateral	Lateral
	Comment	Case #									h b (ft) a										Load on	Load on		Load on	Load on				Girder Moment
And			(11)	(ft)	(ft)	(SEC)	(11)	neight (it)	(11)	(11)		Gilder		External (kips)							External			Girder	Girder				Arm
number	ambia Bay Span and												-		,	,		,					,						
	tions	123	37.1	4.7	8.2	4.1	92.3	4.95	1.6 35.3	60	0.58 3	.75 6		421.6	555.4	0	18.5	19.2	32.5	48.4	936	1272	0	42	80	50	162	3.62	1.12
Desc	tions	131	39.5	4.7	8.2	4.1	92.7	4.94	-0.3 35.3	60	0.58 3	.75 6		464	597.8	12.8	20	21.2	39.8	55.8	1030	1369	31	46	97	55	187	4.25	1.11
Bala Na Ma Ma Ma Ma Ma <	ake Pontchartrain	W363	22.1	6.5	12.0	5.1	125.8	8.2	1.2 45.5	65	0.54 3	.75 6		1251.6	1510	47	40	44.1	81.8	94	2779	3458	115	91	200	114	315	4.66	1.05
····································	ake Pontchartrain	W363	22.1	6.5	12.0	5.1	125.8	8.2	4.2 45.5	65	0.54 3	.75 6		989.4	1247.7	3	32.6	34.9	65.4	86.3	2196	2857	7	74	160	91	289	3.83	1.21
	ake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-0.8 45.5	65	0.54 3	.75 6		1428.4	1682.7	55	44.9	50.2	92.8	98.4	3171	3853	135	102	227	130	329	4.56	1.02
cond cond cond cond	Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3	8.1	-3.8 45.5	65	0.54 3	.75 6		1697.5	1951.9	67.9	52.5	59.6	109.6	106.3	3768	4470	166	120	269	154	356	4.52	1.00
	scambia Bay Span	1	40	4.4	8	3.1	58.7	5.27	3 35.3	60	0.58 3	.75 6		363.3	488.5	0	16.2	16.6	19.1	30	806	1119	0	37	47	43	100	3.29	0.76
1 4 5 5 5 5 </td <td>cambia Bay Span</td> <td>2</td> <td>40</td> <td>4.4</td> <td>8</td> <td>5</td> <td>128 3</td> <td>4.48</td> <td>3 35.3</td> <td>60</td> <td>0.58 3</td> <td>75 6</td> <td></td> <td>344.8</td> <td>470</td> <td>0</td> <td>15.5</td> <td>15.8</td> <td>11.9</td> <td>19.3</td> <td>765</td> <td>1076</td> <td>0</td> <td>35</td> <td>29</td> <td>41</td> <td>65</td> <td>3.03</td> <td>0.49</td>	cambia Bay Span	2	40	4.4	8	5	128 3	4.48	3 35.3	60	0.58 3	75 6		344.8	470	0	15.5	15.8	11.9	19.3	765	1076	0	35	29	41	65	3.03	0.49
bit bit <td></td> <td></td> <td></td> <td>-</td> <td></td>				-																									
bit	etical Conditions	3	40	4.4	8	8	254	4.55	3 35.3	60	0.58 3	.75 6		346.4	471.7	0	15.5	15.9	12.5	20.2	769	1080	0	35	31	41	68	3.05	0.52
bit bit <td></td> <td>4</td> <td>40</td> <td>4.4</td> <td>8</td> <td>3.1</td> <td>58.7</td> <td>5.27</td> <td>0 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>433.5</td> <td>558.8</td> <td>11.8</td> <td>18.7</td> <td>19.8</td> <td>37.7</td> <td>52.9</td> <td>962</td> <td>1280</td> <td>29</td> <td>43</td> <td>92</td> <td>51</td> <td>177</td> <td>4.29</td> <td>1.13</td>		4	40	4.4	8	3.1	58.7	5.27	0 35.3	60	0.58 3	.75 6		433.5	558.8	11.8	18.7	19.8	37.7	52.9	962	1280	29	43	92	51	177	4.29	1.13
number n		5	40	4.4	8	5	128.3	4.48	0 35.3	60	0.58 3	.75 6		415	540.3	5.2	18	18.9	36.2	52.2	921	1237	13	41	89	49	175	4.03	1.18
3 4 4 4 4 4 4 5 5 5 5 </td <td>cambia Bay Span</td> <td>6</td> <td>40</td> <td>4.4</td> <td>8</td> <td>8</td> <td>254</td> <td>4 55</td> <td>0 35.3</td> <td>60</td> <td>0.58 3</td> <td>75 6</td> <td></td> <td>416 7</td> <td>541 9</td> <td>57</td> <td>18.1</td> <td>19</td> <td>36.3</td> <td>52.2</td> <td>925</td> <td>1241</td> <td>14</td> <td>41</td> <td>89</td> <td>49</td> <td>175</td> <td>4.05</td> <td>1.18</td>	cambia Bay Span	6	40	4.4	8	8	254	4 55	0 35.3	60	0.58 3	75 6		416 7	541 9	57	18.1	19	36.3	52.2	925	1241	14	41	89	49	175	4.05	1.18
math mat mat <		-												-															
arr bit bit <	etical Conditions	7	40	4.4	8	3.1	58.7	5.27	-9 35.3	60	0.58 3	.75 6		644.2	769.5	32.9	26.4	29.2	54.9	61	1430	1762	81	60	134	76	204	4.49	1.00
shale	etical Conditions	8	40	4.4	8	5	128.3	4.48	-9 35.3	60	0.58 3	.75 6		625.7	751	31.8	25.7	28.4	53.4	60.6	1389	1720	78	59	131	74	202	4.49	1.00
matrix matrix matrix matrix matrix matrix matrix matrix matrix <	ambia Bay Span	9	40	4.4	8	8	254	4.55	-9 35.3	60	0.58 3	.75 6		627.3	752.6	31.9	25.7	28.5	53.5	60.3	1393	1723	78	59	131	74	202	4.49	1.00
symbol b symbol symbol symbol s	ambia Bay Span	10	25	4.4	8	3.1	58.2	5.38	3 35 3	60	0.58 3	.75 6		399.3	524.5	0	17.5	18.2	21.8	32.3	886	1201	0	40	54	47	108	3,33	0.79
Norma Norma <td></td> <td>- </td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>													-											-					
cond cond cond	etical Conditions			4.4	8	5					_		_	376.4		U							U	38	38	45	79		0.59
interpart interpart <td>netical Conditions</td> <td>12</td> <td>25</td> <td>4.4</td> <td>8</td> <td>8</td> <td>217</td> <td>5.16</td> <td>3 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>391</td> <td>516.3</td> <td>0</td> <td>17.2</td> <td>17.9</td> <td>19.4</td> <td>29.1</td> <td>868</td> <td>1182</td> <td>0</td> <td>39</td> <td>48</td> <td>46</td> <td>98</td> <td>3.25</td> <td>0.72</td>	netical Conditions	12	25	4.4	8	8	217	5.16	3 35.3	60	0.58 3	.75 6		391	516.3	0	17.2	17.9	19.4	29.1	868	1182	0	39	48	46	98	3.25	0.72
mmm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm mm< mm< mm< mm< mm< mm< mm< <td></td> <td>13</td> <td>25</td> <td>4.4</td> <td>8</td> <td>3.1</td> <td>58.2</td> <td>5.38</td> <td>0 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>511.7</td> <td>636.9</td> <td>13.5</td> <td>21.5</td> <td>23.3</td> <td>44.1</td> <td>55.9</td> <td>1136</td> <td>1459</td> <td>33</td> <td>49</td> <td>108</td> <td>60</td> <td>187</td> <td>4.33</td> <td>1.12</td>		13	25	4.4	8	3.1	58.2	5.38	0 35.3	60	0.58 3	.75 6		511.7	636.9	13.5	21.5	23.3	44.1	55.9	1136	1459	33	49	108	60	187	4.33	1.12
bit bit< <	cambia Bay Span	14	25	4.4	8	5	118.6	4.77	0 35.3	60	0.58 3	.75 6		488.8	614.1	7.8	20.7	22.2	42.2	55	1085	1406	19	47	103	58	184	4.12	1.16
constant						•		E 40			0.50 2	75 6		502.4												50	496		
matrix matrix<						-																							1.14
interpart interpart <t< td=""><td>etical Conditions</td><td>16</td><td>25</td><td>4.4</td><td>8</td><td>3.1</td><td>58.2</td><td>5.38</td><td>-9 35.3</td><td>60</td><td>0.58 3</td><td>.75 6</td><td></td><td>848.8</td><td>974</td><td>41.4</td><td>33.8</td><td>38.4</td><td>71.6</td><td>68.8</td><td>1884</td><td>2230</td><td>101</td><td>77</td><td>175</td><td>99</td><td>231</td><td>4.49</td><td>1.00</td></t<>	etical Conditions	16	25	4.4	8	3.1	58.2	5.38	-9 35.3	60	0.58 3	.75 6		848.8	974	41.4	33.8	38.4	71.6	68.8	1884	2230	101	77	175	99	231	4.49	1.00
image image <td></td> <td>17</td> <td>25</td> <td>4.4</td> <td>8</td> <td>5</td> <td>118.6</td> <td>4.77</td> <td>-9 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>825.9</td> <td>951.2</td> <td>40.1</td> <td>33</td> <td>37.4</td> <td>6937</td> <td>68</td> <td>1834</td> <td>2178</td> <td>98</td> <td>75</td> <td>171</td> <td>97</td> <td>228</td> <td>4.49</td> <td>1.00</td>		17	25	4.4	8	5	118.6	4.77	-9 35.3	60	0.58 3	.75 6		825.9	951.2	40.1	33	37.4	6937	68	1834	2178	98	75	171	97	228	4.49	1.00
cond cond <td>cambia Bay Span</td> <td>18</td> <td>25</td> <td>4.4</td> <td>8</td> <td>8</td> <td>217</td> <td>5.16</td> <td>-9 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>840.5</td> <td>965.8</td> <td>40.9</td> <td>33.5</td> <td>38</td> <td>70.9</td> <td>68.5</td> <td>1866</td> <td>2212</td> <td>100</td> <td>76</td> <td>174</td> <td>99</td> <td>230</td> <td>4.49</td> <td>1.00</td>	cambia Bay Span	18	25	4.4	8	8	217	5.16	-9 35.3	60	0.58 3	.75 6		840.5	965.8	40.9	33.5	38	70.9	68.5	1866	2212	100	76	174	99	230	4.49	1.00
omb for for< for< for	ambia Bay Span	19	40	67	12	4	95.1	7.66	3 35 3	60	0.58 3	75 6		638.4	820.1	10.1	27.7	20.1	55.6	79.7	1417	1800	25	63	136	75	267	4.09	1.17
match and																													
matrix i i i i <td>netical Conditions</td> <td>20</td> <td>40</td> <td>6.7</td> <td>12</td> <td>6</td> <td>175.1</td> <td>7.06</td> <td>3 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>617</td> <td>807.7</td> <td>2.9</td> <td>26.9</td> <td>28.2</td> <td>53.8</td> <td>78.9</td> <td>1370</td> <td>1850</td> <td>7</td> <td>61</td> <td>132</td> <td>73</td> <td>264</td> <td>3.89</td> <td>1.23</td>	netical Conditions	20	40	6.7	12	6	175.1	7.06	3 35.3	60	0.58 3	.75 6		617	807.7	2.9	26.9	28.2	53.8	78.9	1370	1850	7	61	132	73	264	3.89	1.23
index index <th< td=""><td></td><td>21</td><td>40</td><td>6.7</td><td>12</td><td>8</td><td>259</td><td>7.25</td><td>3 35.3</td><td>60</td><td>0.58 3</td><td>.75 6</td><td></td><td>623.8</td><td>814.5</td><td>5.1</td><td>27.2</td><td>28.5</td><td>54.4</td><td>79.1</td><td>1385</td><td>1865</td><td>13</td><td>62</td><td>133</td><td>74</td><td>265</td><td>3.95</td><td>1.21</td></th<>		21	40	6.7	12	8	259	7.25	3 35.3	60	0.58 3	.75 6		623.8	814.5	5.1	27.2	28.5	54.4	79.1	1385	1865	13	62	133	74	265	3.95	1.21
math j j j j j j j j j j j j j j j j j j j j< j< j< j< j< j< j< j< <		22	40	6.7	12	4	95.1	7.66	0 35.3	60	0.58 3	.75 6		745.3	936	36.8	31.6	33.9	64.3	83.8	1655	2144	90	72	158	88	281	4.57	1.05
matrix matrix<	cambia Bay Span	23	40	6.7	12	6	175.1	7.06	0 35.3	60	0.58 3	.75 6		723.9	914.7	35.6	30.8	33	62.6	83	1607	2095	87	70	153	85	278	4.60	1.07
constant							050.0				_			700 7	004.4														
matrix matrix<		24	40	6.7	12	8	258.6	7.25	0 35.3	60	0.58 3	./5 6		/30./	921.4	36	31	33.3	63.1	83.Z	1622	2110	88	71	155	80	2/9	4.59	1.06
main condition main of all	etical Conditions	25	40	6.7	12	4	95.1	7.66	-9 35.3	60	0.58 3	.75 6		1066.1	1256.9	54.9	43.2	48.3	90.5	96.1	2367	2878	134	99	222	125	322	4.48	0.99
and bit		26	40	6.7	12	6	175.1	7.06	-9 35.3	60	0.58 3	.75 6		1044.8	1235.5	53.7	42.5	47.4	88.8	95.3	2319	2829	131	97	217	123	319	4.48	0.99
sind state sind s sind s sind s sind	cambia Bay Span	27	40	6.7	12	8	258.6	7.25	-9 35.3	60	0.58 3	.75 6		1051.5	1242.2	54.1	42.7	47.7	89.3	95.6	2334	2845	132	97	219	123	320	4.48	0.99
bit bit< bit< bit< bit<		28	25	5.6	10	4	80.1	6.37	3 35.3	60	0.58 3	75 6		555 A	714.8	0	23.0	25.3	42.8	59.8	1233	1637	0	55	105	66	200	3 66	1.12
besic cond cond <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																													
under Condition is	etical Conditions	29	25	5.6	10	6	154.8	6.35	3 35.3	60	0.58 3	.75 6		554.4	713.8	0	23.9	25.3	42.5	59.4	1231	1635	0	54	104	65	199	3.65	1.12
and and and by in in in <td>hetical Conditions</td> <td>30</td> <td>25</td> <td>5.6</td> <td>10</td> <td>8</td> <td>221.2</td> <td>6.77</td> <td>3 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>574.4</td> <td>733.9</td> <td>0</td> <td>24.6</td> <td>26.2</td> <td>49.4</td> <td>67.6</td> <td>1275</td> <td>1681</td> <td>0</td> <td>56</td> <td>121</td> <td>68</td> <td>227</td> <td>3.79</td> <td>1.26</td>	hetical Conditions	30	25	5.6	10	8	221.2	6.77	3 35.3	60	0.58 3	.75 6		574.4	733.9	0	24.6	26.2	49.4	67.6	1275	1681	0	56	121	68	227	3.79	1.26
consisting strain consisting strain <thconsistin strain<="" th=""> consistin strain</thconsistin>	scambia Bay Span	31	25	5.6	10	4	89.11	6.37	0 35.3	60	0.58 3	.75 6		698.4	857.8	30.5	29.1	31.7	59.9	72.9	1550	1964	75	66	147	82	244	4.66	1.09
bits definition of an and and a state bits definition of and a state	cambia Bay Span	32	25	5.6	10	6	154.8	6.35	0 35 3	60	0.58 3	.75 6		697.4	856.8	30.2	29.1	31.7	59.8	72.9	1548	1962	74	66	147		244		1.09
abcal conditiones is													-																
lead Conditions i	netical Conditions												_																1.07
letal Conditions is	netical Conditions	34	25	5.6	10	4	89.1	6.37	-9 35.3	60	0.58 3	.75 6		1127.4	1286.8	55.4	44.7	51	94.9	89.4	2503	2947	136	102	233	132	300	4.48	1.00
analysic prime bit bit< bit bit <td></td> <td>35</td> <td>25</td> <td>5.6</td> <td>10</td> <td>6</td> <td>154.8</td> <td>6.35</td> <td>-9 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>1126.5</td> <td>1285.9</td> <td>55.3</td> <td>44.7</td> <td>51</td> <td>94.8</td> <td>89.4</td> <td>2501</td> <td>2945</td> <td>136</td> <td>102</td> <td>231</td> <td>132</td> <td>299</td> <td>4.48</td> <td>1.00</td>		35	25	5.6	10	6	154.8	6.35	-9 35.3	60	0.58 3	.75 6		1126.5	1285.9	55.3	44.7	51	94.8	89.4	2501	2945	136	102	231	132	299	4.48	1.00
bits bits <td>cambia Bay Span</td> <td>36</td> <td>25</td> <td>5.6</td> <td>10</td> <td>8</td> <td>221.2</td> <td>6.77</td> <td>-9 35.3</td> <td>60</td> <td>0.58 3</td> <td>.75 6</td> <td></td> <td>1146.5</td> <td>1305.9</td> <td>56.4</td> <td>45.4</td> <td>51.9</td> <td>96.5</td> <td>90.2</td> <td>2545</td> <td>2991</td> <td>138</td> <td>104</td> <td>236</td> <td>134</td> <td>302</td> <td>4.48</td> <td>0.99</td>	cambia Bay Span	36	25	5.6	10	8	221.2	6.77	-9 35.3	60	0.58 3	.75 6		1146.5	1305.9	56.4	45.4	51.9	96.5	90.2	2545	2991	138	104	236	134	302	4.48	0.99
best of the field of	cambia Bay Span																												
lefe lefe <th< td=""><td>etical Conditions</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.76</td></th<>	etical Conditions																												0.76
103 40 4.4 8 3.1 5.7 1 3.3. 60 0.88 7.5 6 104 40 4.4 8 3.1 5.7 1 3.3. 60 0.88 7.5 6 104 40 4.4 8 3.1 5.7 5.7 0 3.5. 60 0.58 7.5 6 104 400 4.4 8 3.1 5.7 5.7 0 3.5. 60 0.58 7.5 6 3.5 6 3.5 6 105 40 4.4 8 3.1 5.7 5.7 1.3 3.5. 6 6 5.7 6 105 40 4.4 8 3.1 5.7 5.7 1.3 5.3 6 6 6 6 6.7 2.1 2.3 3.6 5.8 1.8 2.1 2.1 2.3 5.8 5.8 1.8 2.1 2.1 2.3 2.1 2.3 2.1 2.3 2.1 2.3 3.1 3.1 3.1	etical Conditions	102	40	4.4	8	3.1	58.7	5.27	2 35.3	60	0.58 3	.75 6		386.7	511.9	0	20	26.5	29.1	44	858	1172	0	46	71	69	147	3.62	1.09
ambig Span 10 4.0 4.4 8 3.1 5.7 0 3.5 6.0 5.7 6.0 ambig Span 10.0 4.0 4.0 4.0 6.0 5.7 6.0 5.7 6.0 5.7 6.0 ambig Span 10.0 4.0 4.0 8.0 5.7 5.7 6.0 5.7 6.		103	40	4.4	8	3.1	58.7	5.27	1 35.3	60	0.58 3	.75 6		410.1	535.4	3.5	21.3	27.8	35.8	52	910	1226	9	48	88	72	174	3.96	1.20
bit all chall challed bit all b	ambia Bay Span	104	40	4.4	8	3.1	58.7	5.27	0 35 3	60	0.58 3	.75 6	-	433.5	558,8	11.8	22.5	29	37.7	52.9	962	1280	29	51	92	75	177	4.29	1.13
ical Conditions ical S.1					-								-																
106 40 4.4 8 3.1 5.8.7 5.2.7 -2 35.3 60 0.58 3.75 60 605.6 23.7 24.9 31.4 41.5 54.7 106 137 58 57 102 81 133 4.59 imilia Bay Span 107 40 4.4 8 3.1 58.7 5.2.7 -3 35.3 60 0.58 3.75 60 605.6 23.7 629 25.6 31.4 41.5 54.7 106 137 58 57 102 81 133 4.59 imbia Bay Span 108 40 4.4 8 3.1 58.7 5.2.7 -3 35.3 60 58 3.75 62 25.1 32.6 43.4 45.5 111 40.9 64	tical Conditions												_																1.09
itcal Conditions itor ito	etical Conditions	106	40	4.4	8	3.1	58.7	5.27	-2 35.3	60	0.58 3	.75 6		480.3	605.6	23.7	24.9	31.4	41.5	54.7	1066	1387	58	57	102	81	183	4.59	1.06
amble aby Span 10 40 4.4 8 3.1 58.7 5.27 4.4 35.3 60 0.5 5.7 6 amble aby Span 100 40 4.4 8 3.1 58.7 5.27 4.4 35.3 60 0.5 5.7 6 amble aby Span 100 40 4.4 8 3.1 58.7 5.27 -5 35.3 60 0.5 6 55.6 67.5 2.6 2.6 2.6 3.6 4.5 4.6 6.6 110 8.6 9.6 9.6 4.5 amble aby Span 100 4.0 4.4 8 3.1 58.7 5.27 -5 35.3 60 0.5 7.7 652.6 67.6	ambia Bay Span	107	40	4.4	8	3.1	58.7	5.27	-3 35.3	60	0.58 3	.75 6		503.7	629	25	26.1	32.6	43.4	55.6	1118	1440	61	60	106	84	186	4.55	1.04
bit definition bit def	ambia Bay Span	108	40	4.4	R	31	58 7	5.27	-4 35 2	60	0.58 3	.75 6		527 2	652 4	26.3	27.3		45.3	56 5	1170	1494			111	88	189		1.03
itema Conditions itema Conditions <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				-																									
circle conditions 110 40 4.4 6 5.1 5.4 5.4 6.0 5.3. 60 6.3 5.4 6.3 6.3. <t< td=""><td>etical Conditions</td><td>109</td><td>40</td><td>4.4</td><td>8</td><td>3.1</td><td>58.7</td><td>5.27</td><td>-5 35.3</td><td>60</td><td>0.58 3</td><td>.75 6</td><td>_ </td><td>550.6</td><td>675.8</td><td>27.6</td><td>28.5</td><td>35</td><td>47.2</td><td>57.4</td><td>1222</td><td>1548</td><td>68</td><td>65</td><td>116</td><td>91</td><td>192</td><td>4.51</td><td>1.02</td></t<>	etical Conditions	109	40	4.4	8	3.1	58.7	5.27	-5 35.3	60	0.58 3	.75 6	_	550.6	675.8	27.6	28.5	35	47.2	57.4	1222	1548	68	65	116	91	192	4.51	1.02
starting large Span 111 40 4.4 8 3.1 58.7 5.27 -7 35.3 60 0.58 3.75 6 etcal Conditions 112 40 4.4 8 3.1 58.7 5.27 -7 35.3 60 0.58 3.75 6 597.4 72.6 30.2 31 37.5 51 59.2 1326 165 74 71 125 97 188 4.50 etcal Conditions 112 40 4.4 8 3.1 58.7 5.27 -7 35.3 60 0.58 3.75 6 620.8 746 31.6 32.2 38.7 53 60.1 137.8 74 71 125 97 14.9 4.4	etical Conditions	110	40	4.4	8	3.1	58.7	5.27	-6 35.3	60	0.58 3	.75 6		574	699.2	28.9	29.8	36.2	49.1	58.3	1274	1601	71	68	120	94	195	4.50	1.01
cambia Bay Span 112 40 4.4 8 3.1 58.7 5.27 -8 35.3 60 0.58 3.75 6 letical Conditions combine Bay Span .	cambia Bay Span	111	40	4.4	8	3.1	58.7	5.27	-7 35.3	60	0.58 3	.75 6		597.4	722.6	30.2	31	37.5	51	59.2	1326	1655	74	71	125	97	198	4.50	1.01
	ambia Bay Span	112	40	4.4	8	3.1	58.7	5.27	-8 35 3	60	0.58 3	.75 6		620.8	746	31.6	32.2	38.7	53	60.1	1378	1708	77	76	130	100	201	4.49	1.00
113 40 4.4 8 3.1 58.7 5.27 -9 35.3 60 0.58 3.75 6 644.2 769.5 32.9 33.4 39.9 54.9 61 1430 1762 81 76 134 103 204 4.49		113	40		8		58.7						-		769.5	32.9	33.4	39.9	54.9	61	1430	1762	81	76	134	103	204		1.00

Total Quasi-	Total Quasi-	Leading	Trailing		T
Static Vertical	Static Horizontal	Edge Moment (ft-	Edge		Ve
Force	Force	kips)	kips)		Fo (k
(kips) 497	(kips) 275	8451	-9064		1
538	332	9066	-9884		1
1406	599	31190	-32788		3
1154	500	25633	-26861		2
1573	640	34927	-36623		3
1831	709	40718	-42609		4
436	169	7548	-7804		1
418	108	7316	-7422		9
420	114	7340	-7457		9
502	314	8464	-9247		1
485	302	8167	-8912		1
486	303	8196	-8942		1
702	393	11869	-12884		1
685	388	11569	-12569		1
686	387	11598	-12596		1
470	183	8132	-8422		1
448	133	7818	-7975		1
462	165	8027	-8265		1
577	337	9739	-10583		1
555	325	9373	-10173		1
569	333	9608	-10434		1
896	457	15199	-16400		2
875	7317	7956	-22885		2
888	454	15063	-16256		2
744	464	12542	-13685		1
724	451	12198	-13323		1
730	455	12312	-13438		1
846	520	14225	-15580		1
826	513	13877	-15224		1
832	515	13988	-15336		1
1150	626	19458	-21082		2
1130	619	19118	-20720		2
1136	621	19225	-20835		2
643	342	10941	-11709		1
642	340	10934	-11692		1
661	387	11161	-12135		1
778	455	13113	-14318		1
778	455	13103	-14305		1
797	462	13428	-14651		1
1186	597	20110	-21685		2
1185	597	20100	-21674		2
1204	604	20424	-22017		2
482	169	8361	-8617		1
505	249	8628	-9171		1
529	299	8952	-9692		1:
552	314	9341	-10125		1
576	330	9711	-10577		1
599	339	10112	-10998		1
622	346	10517	-11415		1
645	354	10919	-11834		1
669	362	11321	-12254		1
692	370	11725	-12676		1
716	377	12134	-13105		1
739	385	12534	-13527		1
763	393	12936	-13950		1
103	333	12330	-13930	J I	

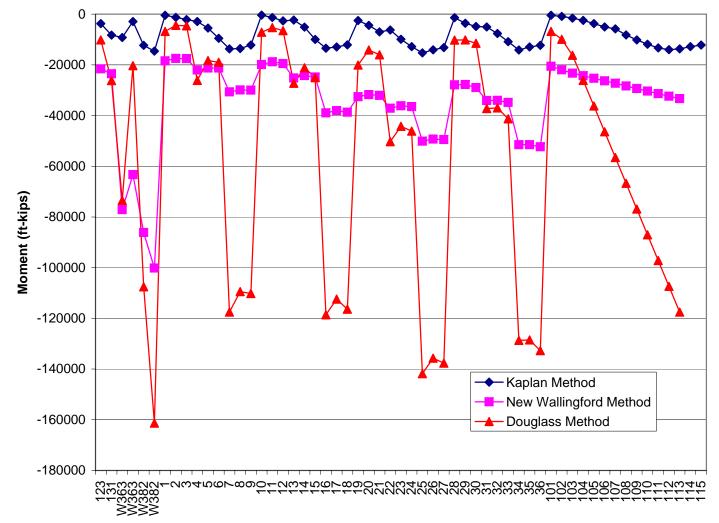

Total Impact	Total Impact	Leading	Trailing
Vertical Force	Horizontal Force	Edge Moment (ft	Edge Moment (fl
(kips)	(kips)	kips)	kips)
1168	890	19588	-21576
1264	1063	20991	-23550
3285 2697	1890 1612	72320 59373	-77126 -63320
3675	2007	59373 81084	-63320
4281	2215	94609	-100191
1022	547	17606	-18435
981	354	17113	-17462
984	371	17144	-17528
1179	1006	19558	-22012
1138	977	18859	-21245
1140	978	18909	-21292
1653	1235	27620	-30653
1613	1219	26940	-29927
1615	1219	26976	-29963
1102	594	18950	-19892
1054	433	18323	-18834
1083	538	18697	-19472
1354	1076	22542	-25170
1305	1042	21736	-24266
1334	1064	22225	-24815
2107	1431	35362	-38923
2060	1409	34548	-38052
2094	1424	35135	-38678
1745	1496	28944	-32584
1700	1459	28146	-31770
1716	1471	28436	-32055
1988	1653	32983	-37100
1937	1630	32100	-36194
1954	1638	32385	-36485
2706	1966	45269	-50101
2660	1943	44494	-49264
2671	1951	44677	-49469
1512	1105	25410	-27892
1505	1099	25293	-27748
1553	1256	25800	-28957
1828	1442	30390	-34055
1827	1442	30350	-34035
1871	1441	31114	-34822
2791	1869	46858	-54622
2790 2833	1862 1884	46841 47585	-51495 -52290
1143	1884 547	47585	-52290
1143		20235	
1198	806 967	20235	-21992 -23258
1252	1006	20879	-23258
1362	1048	22681	-25322
1417 1471	1075 1097	23628 24575	-26320 -27293
1531	1120	25598	-28357
1586	1144	26543	-29356
1640	1166	27480	-30340
1695	1189	28426	-31340
1752	1212	29394	-32363
1804	1235	30282	-33315

												—	c	DEA No Air	May	imum Positiv	e Horizontal F	orce			1		м	laximum Positi	ive Vertical Fr	2100				Large	st Positive N	oment about the	Leading Edge			r		l argest N	enative Mom	ent about the Tra	ulina Edae		
															Associate	Associate	enonzontari	Associate	Associate Moment	Associate Moment			Associate	Associate	verticalit	Associate	Associate Moment	Associate Moment	Largest	Large	Asso		Associate	Associate Moment	Associate Moment	Lowest		Laigest N	Associate	ent about the Tra	Associate	Associate A Moment	ssociate Moment
Bridge #	Case#	# ds (ft)	Significan Wave	Wave	Wave Period	Wave Cres Length (ft) (ft)	st Y,	r₀ Spa ft) Width		n b (ft)	a (ft)	of L	Maximum Positive Iorizontal	Associate Vertical	Moment about the	Moment about the	Associate Resultant	Vertical Force without	about the Leading Edge	about the Trailing Edge	Positive Vertical	Associate Horizontal	Moment about the	Moment about the	Associate Resultant	Vertical Force without	about the Leading Edge	about the Trailing Edge	Moment Ass about the Hor	ociate Assoc izontal Vertic	al about	the Resultan	it without	about the Leading Edge	about the Trailing Edge	Moment about the	Associate Horizontal	Associate Vertical	Moment about the	Associate Resultant	Vertical Force without	Leading 1	bout the Trailing Edge
		(14)	Height (ft	t) Height (ft)) (sec)	(ft) (ft))		(ft)		'		Force	Force	Leading Edge	Trailing Edge	Force	Slamming Force	without Slamming	without Slamming	Force	Force	Leading Edge	Trailing Edge	Force	Slamming Force	without Slamming	without Slamming	Leading F Edge	orce Ford	e Trail Edg		Slamming Force	without Slamming	without Slamming	Trailing Edge	Force	Force	Leading Edge	Force	Slamming Force	without Slamming Sl	without lamming
I10-Escambia Bay Span an	1d 123	37.1	4.7	8.2	4.1	92.3 4.95	5 1.0	.6 35	5.3 60	0.5833	3.75	6	28	-133	-2774	1958	136	-133	-2774	Force 1958	20	7	141	-564	21	20	Force 141	-564	180	14 14	-32	4 20	14	180	-324	-564	7	20	141	21	20		-564
Conditions I10-Escambia Bay Span an			4.7	8.2	4.1	92.7 4.94		0.3 35.		0.5833	3.75	6	33	-51	-248	1570	61	-51	-248	1570	111	5	797	-1381	111	40	413	-997		5 111			40	413	-997	-1381	5	111	797	111	40		-997
Conditions	W363		6.5	12.0	5.1	125.8 8.2		.2 45		0.54	3.75	6	271	-29	-665	509	272	-29	-665	509	84	83	384	-2190	118	55	211	-2017		83 84			55	211	-2017	-2201	128	71	78	147	52		-2110
110 - Lake Pontchartrain	W363		6.5	12.0	5.1	125.8 8.2		.2 45		0.54	3.75	6	192	-138	-5110	424	237	-138	-5110	424	27	29	100	-994	40	27	100	-994		29 27	-99		27	100	-994	-994	29	27	100	40	27		-994
110 - Lake Pontchartrain	W382		6.4	11.7	5.1	124.3 8.1).8 45.		0.54	3.75	6	240	-81	-474	2760	253	-81	-474	2760	212	88	1036	-3853	229	83	250	-3067		88 212			83	250	-3067	-3853	88	212	1036	229	83		-3067
110 - Lake Pontchartrain	W382		6.4	11.7	5.1	124.3 8.1			5.5 65	0.54	3.75	6	159	34	2740	1359	162	34	2740	1359	631	12	4667	-8945	631	212	2117	-6395		12 631			212	2117	-6395	-8945	12	631	4667	631	212		-6395
110 - Lake Pontchartrain 110-Escambia Bay Span	1	40	4.4	8	3.1	58.7 5.27		3 35.			3.75	6	101	-51	-309	1481	113	-51	-309	1481	9	24	27	-296	26	9	27	-296		16 8			8	27	-272	-296	24	9	27	26	9		-296
Hypothetical Conditions 110-Escambia Bay Span	-	40	4.4	8	5	128.3 4.48	-	3 35.			3.75	0	23	-164	-2861	2966	165	-164	-2861	2966	7	4	26	-224	8	7	26	-230		4 7			7	26	-224		4	7	26	8	7		-224
Hypothetical Conditions I10-Escambia Bay Span	3		4.4	8	5	254 4.55			5.3 60	_	3.75	0	23		-2861	1226			-2861		7	4		-224	7	7							6	54		-224		7		7	7		-224
Hypothetical Conditions 110-Escambia Bay Span												6		-86			89	-86		1226		-	29				29	-205					-		-153	-205	3		29				
Hypothetical Conditions 110-Escambia Bay Span	4	40	4.4	8	3.1	58.7 5.27		0 35.		0.58	3.75	6	141	-24	-383	475	144	-24	-383	475	21	6	78	-659	22	21	78	-659		5 21			21	78	-657	-659	6	21	78	22	21		-659
Hypothetical Conditions	5	40	4.4	8	5	128.3 4.48		0 35.		0.58	3.75	6	42	-145	-3380	1796	151	-145	-3380	1796	34	14	381	-834	37	34	381	-834		28 12			12	389	-48	-940	6	33	232	33	33		-940
Hypothetical Conditions	6	40	4.4	8	8	254 4.55				0.58	3.75	6	27	-1	15	66	27	-1	15	66	39	5	509	-860	39	39	509	-860		9 37			37	674	-635	-860	5	39	509	39	39		-860
I10-Escambia Bay Span Hypothetical Conditions	7	40	4.4	8	3.1	58.7 5.27	7 -9	9 35.	5.3 60	0.58	3.75	6	33	219	4313	-3438	222	219	4313	-3438	369	5	6175	-6370	369	348	6064	-6258	6572	18 320	-47	11 320	320	6572	-4741	-6731	-3	325	4775	325	325		-6731
I10-Escambia Bay Span Hypothetical Conditions	8	40	4.4	8	5	128.3 4.48	8 -9	9 35.		_	3.75	6	31	215	4744	-2926	218	215	4744	-2926	378	-7	6656	-6803	378	378	6656	-6803		-3 376			376	6681	-6705	-7035	-2	365	5949	365	365		-7035
I10-Escambia Bay Span Hypothetical Conditions	9	40	4.4	8	8	254 4.55				0.58	3.75	6	34	155	2818	-2700	159	155	2818	-2700	295	2	5193	-5286	295	295	5193	-5286		7 292			292	5256	-5116	-5298	1	294	5141	294	294		-5298
I10-Escambia Bay Span Hypothetical Conditions	10	25	4.4	8	3.1	58.2 5.38	8 3	3 35.	5.3 60	0.58	3.75	6	107	-94	-1036	2271	142	-94	-1036	2271	8	25	21	-256	26	8	21	-256	26	16 8	-24	4 18	8	26	-244	-259	36	8	9	37	8	9	-259
I10-Escambia Bay Span Hypothetical Conditions	11	25	4.4	8	5	118.6 4.77	7 3	3 35.	5.3 60	0.58	3.75	6	29	-132	-1620	3069	135	-132	-1620	3069	10	6	40	-309	12	10	40	-309	40	6 10	-30	9 12	10	40	-309	-309	6	10	40	12	10	40	-309
I10-Escambia Bay Span Hypothetical Conditions	12	25	4.4	8	8	217 5.16	6 3	3 35.	5.3 60	0.58	3.75	6	33	-135	-2808	2038	139	-135	-2808	2038	8	13	61	-219	15	8	61	-219	61	13 8	-21	9 15	8	61	-219	-236	4	7	32	9	7	32	-236
I10-Escambia Bay Span Hypothetical Conditions	13	25	4.4	8	3.1	58.2 5.38	8 0	0 35.	5.3 60	0.58	3.75	6	122	-125	-756	3671	175	-125	-756	3671	22	5	83	-679	22	22	83	-679	83	5 22	-67	9 22	22	83	-679	-679	5	22	83	22	22	83	-679
I10-Escambia Bay Span Hypothetical Conditions	14	25	4.4	8	5	118.6 4.77	7 0	0 35.	5.3 60	0.58	3.75	6	51	-56	-43	1950	76	-56	-43	1950	46	9	292	-994	47	32	216	-917	331	23 29	-70	1 37	29	331	-701	-994	9	46	292	47	32	216	-917
I10-Escambia Bay Span Hypothetical Conditions	15	25	4.4	8	8	217 5.16	6 0	0 35.	5.3 60	0.58	3.75	6	52	-32	-80	1076	61	-32	-80	1076	131	13	1017	-1326	132	37	512	-821	1017	13 131	-13	26 132	37	512	-821	-1326	13	131	1017	132	37	512	-821
I10-Escambia Bay Span Hypothetical Conditions	16	25	4.4	8	3.1	58.2 5.38	8 -9	9 35.	5.3 60	0.58	3.75	6	32	214	4099	-3483	217	214	4099	-3483	360	4	5994	-6213	360	339	5882	-6101	6339	18 310	-46	26 311	310	6339	-4626	-6543	-3	318	4695	318	318	4695	-6543
I10-Escambia Bay Span Hypothetical Conditions	17	25	4.4	8	5	118.6 4.77	7 -9	9 35.	5.3 60	0.58	3.75	6	38	214	4702	-2902	217	214	4702	-2902	339	-6	5923	-6131	339	339	5923	-6131	5949	5 328	-57	26 328	328	5949	-5726	-6371	-2	333	5490	333	333	5490	-6371
I10-Escambia Bay Span Hypothetical Conditions	18	25	4.4	8	8	217 5.16	6 -9	9 35.	5.3 60	0.58	3.75	6	50	134	2622	-2169	143	134	2622	-2169	276	8	4895	-4987	276	276	4895	-4987	4945	15 272	-47	33 272	272	4945	-4783	-5024	4	274	4798	274	274	4798	-5024
I10-Escambia Bay Span Hypothetical Conditions	19	40	6.7	12	4	95.1 7.66	6 3	3 35.	5.3 60	0.58	3.75	6	189	-61	-697	1477	199	-61	-697	1477	29	20	111	-927	36	29	111	-927	111	20 29	-92	7 36	29	111	-927	-927	20	29	111	36	29	111	-927
I10-Escambia Bay Span Hypothetical Conditions	20	40	6.7	12	6	175.1 7.06	6 3	3 35.	5.3 60	0.58	3.75	6	86	-234	-4968	3345	250	-234	-4968	3345	30	22	223	-835	37	30	223	-835	226	45 16	-32	6 47	16	226	-326	-835	22	30	223	37	30	223	-835
I10-Escambia Bay Span Hypothetical Conditions	21	40	6.7	12	8	259 7.25	5 3	3 35.	5.3 60	0.58	3.75	6	68	-97	-1464	1968	118	-97	-1464	1968	28	12	206	-791	30	28	206	-791	314	41 14	-18	1 43	14	314	-181	-791	12	28	206	30	28	206	-791
I10-Escambia Bay Span Hypothetical Conditions	22	40	6.7	12	4	95.1 7.66	6 0	0 35.	5.3 60	0.58	3.75	6	232	-14	-616	-127	232	-14	-616	-127	60	69	197	-1935	91	60	197	-1935	302	48 58	-17	57 76	58	302	-1767	-2022	89	60	98	108	60	98	-2022
I10-Escambia Bay Span Hypothetical Conditions	23	40	6.7	12	6	175.1 7.06	6 0	0 35.	5.3 60	0.58	3.75	6	114	-36	212	1475	119	-36	212	1475	252	48	1835	-2712	257	74	879	-1755	1835	48 252	-27	12 257	74	879	-1755	-2712	48	252	1835	257	74	879	-1755
I10-Escambia Bay Span Hypothetical Conditions	24	40	6.7	12	8	258.6 7.25	5 0	0 35.	5.3 60	0.58	3.75	6	107	257	2630	-2155	278	82	1688	-1213	407	106	3474	-3044	421	86	1747	-1318	3474	106 407	-30	44 421	86	1747	-1318	-3044	106	407	3474	421	86	1747	-1318
I10-Escambia Bay Span Hypothetical Conditions	25	40	6.7	12	4	95.1 7.66	6 -9	9 35.	5.3 60	0.58	3.75	6	66	235	6087	-2254	245	235	6087	-2254	463	0	7289	-8450	463	436	7142	-8303	7454	32 395	-65	26 396	395	7454	-6526	-8450	0	463	7289	463	436	7142	-8303
I10-Escambia Bay Span Hypothetical Conditions	26	40	6.7	12	6	175.1 7.06	6 -9	9 35.	5.3 60	0.58	3.75	6	63	64	1605	-680	90	64	1605	-680	377	12	6623	-6742	377	377	6623	-6742	6687	13 377	-66	59 377	377	6687	-6669	-7079	0	356	5534	356	356	5534	-7079
I10-Escambia Bay Span Hypothetical Conditions	27	40	6.7	12	8	258.6 7.25	5 -9	9 35.	5.3 60	0.58	3.75	6	77	113	2023	-1986	137	113	2023	-1986	358	7	6223	-6500	358	358	6223	-6500	6337	17 354	-62	52 354	354	6337	-6252	-6520	5	356	6124	356	356	6124	-6520
I10-Escambia Bay Span Hypothetical Conditions	28	25	5.6	10	4	89.1 6.37	7 3	3 35.	5.3 60	0.58	3.75	6	113	-178	-1854	4437	211	-178	-1854	4437	20	19	72	-625	28	20	72	-625	72	19 20	-62	5 28	20	72	-625	-625	19	20	72	28	20	72	-625
I10-Escambia Bay Span Hypothetical Conditions	29	25	5.6	10	6	154.8 6.35	5 3	3 35.	5.3 60	0.58	3.75	6	70	-247	-4377	4402	256	-247	-4377	4402	16	7	66	-500	17	16	66	-500	108	33 15	-42	8 37	15	108	-428	-500	7	16	66	17	16	66	-500
I10-Escambia Bay Span	30	25	5.6	10	8	221.2 6.77	7 3	3 35.	5.3 60	0.58	3.75	6	75	-189	-4139	2542	203	-189	-4139	2542	21	21	142	-593	30	21	142	-593	142	21 21	-59	3 30	21	142	-593	-593	21	21	142	30	21	142	-593
Hypothetical Conditions I10-Escambia Bay Span	31	25	5.6	10	4	89.11 6.37	7 0	0 35.	5.3 60	0.58	3.75	6	149	-40	-369	1043	154	-40	-369	1043	40	31	254	-1149	50	40	254	-1149	254	31 40	-11	19 50	40	254	-1149	-1149	31	40	254	50	40	254	-1149
Hypothetical Conditions I10-Escambia Bay Span	32	25	5.6	10	6	154.8 6.35	5 0	0 35.	5.3 60	0.58	3.75	6	103	-78	-104	2675	130	-78	-104	2675	184	24	1202	-1885	185	45	455	-1138	1202	24 184	-18		45	455	-1138	-1885	24	184	1202	185	45	455	-1138
Hypothetical Conditions I10-Escambia Bay Span	33		5.6	10	8	221.2 6.77			5.3 60	_	3.75	6	112	-16	253	820	113	-16	253	820	275	24	1858	-2435	276	54	671	-1248		24 275			54	671	-1248	-2435	24	275	1858	276	54		-1248
Hypothetical Conditions I10-Escambia Bay Span	34		5.6	10	4	89.1 6.37			5.3 60	_	3.75	6	53	247	5757	-2987	252	247	5757	-2987	397	-5	6847	-7204	397	396	6844	-7201		3 389			389	6942	-6824	-7279	-8	392	6620	392	392		-7279
Hypothetical Conditions I10-Escambia Bay Span	35		5.6	10	6	154.8 6.35				0.58	3.75	6	57	165	3856	-2025	175	165	3856	-2025	333	5	5742	-6114	333	333	5742	-6114		24 319			319	5860	-5506	-6154	-1	331	5640	331	331		-6154
Hypothetical Conditions I10-Escambia Bay Span	36		5.6	10	8	221.2 6.77		9 35.		0.58	3.75	6	75	113	2270	-1714	135	113	2270	-1714	302	13	5201	-5503	303	302	5201	-5503		29 294			294	5313	-5105	-5536	8	300	5081	300	300		-5536
Hypothetical Conditions I10-Escambia Bay Span	101		4.4	8	3.1	58.7 5.27	-			_	3.75	6	94	-42	-260	1213	103	-42	-260	1213	9	36	15	-306	37	9	15	-306		16 9			9	30	-280	-306	36	9	15	37	9		-306
Hypothetical Conditions 110-Escambia Bay Span	101	_	4.4	8	3.1	58.7 5.2				0.58	3.75	6	94	-42	-260	1213	103	-42	-260	1213	9	20	61	-306	26	9	61	-306					17	61	-280	-306	20	9	61	26	9		-306
Hypothetical Conditions 110-Escambia Bay Span	_									_	3.75	6																															-539
Hypothetical Conditions I10-Escambia Bay Span	103		4.4	8	3.1	58.7 5.27			5.3 60	_		0	104	-89	-2967	169	137	-89	-2967	169	21	12	80	-664	24	21	80	-664		12 21			21	80	-664	-664	12	21	80	24	21		
Hypothetical Conditions	104		4.4	8	3.1	58.7 5.27			5.3 60	-	3.75		118	-124	-4193	181	171	-124	-4193	181	23	6	89	-718	24	23	89	-718		6 23			23	89	-718	-718	6	23	89	24	23		-718
Hypothetical Conditions	105		4.4	8	3.1	58.7 5.27			5.3 60	_	3.75	6	140	-34	-484	716	144	-34	-484	716	32	28	205	-940	43	32	205	-940		28 32	-		32	205	-940	-972	36	32	163	49	32		-972
I10-Escambia Bay Span Hypothetical Conditions I10-Escambia Bay Span	106		4.4	8	3.1	58.7 5.27		2 35.		_	3.75	6	142	-32	-402	732	145	-32	-402	732	40	8	258	-1166	41	40	258	-1166		10 40			40	259	-1160	-1166	8	40	258	41	40		-1166
Hypothetical Conditions	107		4.4	8	3.1	58.7 5.27		-3 35.		_	3.75	6	138	-58	-174	1887	150	-58	-174	1887	99	0	1490	-2011	99	99	1490	-2011		3 91			91	1496	-1723	-2015	0	99	1484	99	99		-2015
Hypothetical Conditions	108		4.4	8	3.1	58.7 5.27		-4 35.		_	3.75	6	103	-36	487	1763	110	-36	487	1763	172	-2	2794	-3296	172	172	2794	-3296		-2 171			171	2850	-3212	-3299	-2	172	2769	172	172		-3299
I10-Escambia Bay Span Hypothetical Conditions	109		4.4	8	3.1	58.7 5.27			5.3 60	_	3.75	6	80	55	1418	-518	97	55	1418	-518	199	2	2963	-4074	199	199	2963	-4074		3 199			199	3000	-4025	-4095	2	199	2926	199	199		-4095
110-Escambia Bay Span Hypothetical Conditions	110		4.4		3.1	58.7 5.27			5.3 60	_	3.75	6	64	115	2271	-1800	131	115	2271	-1800	289	11	3809	-5229	290	241	3548	-4968		11 289			241	3548	-4968	-5229	11	289	3809	290	241		-4968
I10-Escambia Bay Span Hypothetical Conditions	111	40	4.4	8	3.1	58.7 5.27	7 -7	-7 35	5.3 60	0.58	3.75	6	50	181	3450	-2955	188	181	3450	-2955	341	4	4857	-6255	341	302	4647	-6045	5051	27 287	-51	11 289	287	5051	-5111	-6255	4	341	4857	341	302	4647	-6045
I10-Escambia Bay Span Hypothetical Conditions	112	40	4.4	8	3.1	58.7 5.27	7 -8	8 35.	5.3 60	0.58	3.75	6	39	229	4524	-3578	232	229	4524	-3578	385	7	6414	-6711	385	365	6306	-6603	6817	28 331	-49	333	331	6817	-4903	-7100	-3	340	4934	340	340	4934	-7100
I10-Escambia Bay Span Hypothetical Conditions	113	40	4.4	8	3.1	58.7 5.27	7 -9	9 35.	5.3 60	0.58	3.75	6	33	219	4313	-3438	222	219	4313	-3438	369	5	6175	-6370	369	348	6064	-6258	6572	18 320	-47	41 320	320	6572	-4741	-6731	-3	325	4775	325	325	4775	-6731
I10-Escambia Bay Span Hypothetical Conditions	114	40	4.4	8	3.1	58.7 5.27	7 -13	12 35.	5.3 60	0.58	3.75	6	19	204	3775	-3425	205	204	3775	-3425	335	2	5578	-5647	335	310	5440	-5509	5849	9 288	-43	12 288	288	5849	-4342	-5877	-3	292	4452	292	292	4452	-5877
I10-Escambia Bay Span Hypothetical Conditions	115	40	4.4	8	3.1	58.7 5.27	7 -1	15 35.	5.3 60	0.58	3.75	6	12	194	3428	-3446	195	194	3428	-3446	314	1	5163	-5181	314	283	4998	-5016	5301	6 269	-41	97 269	269	5301	-4197	-5295	-2	270	4260	270	270	4260	-5295
										· · ·																																	

													OEA 50% Air		Мах	imum Positiv	e Horizontal Fe	orce			1			Maximum Posit	ive Vertical Fo	orce					Largest Po	sitive Moment a	about the Lead	ing Edge			1		Largest Ne	gative Momer	nt about the Tr	ailing Edge		
Bridge #	Case#	d _s (ft)	Significant Wave Height (ft)	t Maximum Wave Height (ft)	Wave Period (sec)	Wave Wav Length Heigi (ft) (ft)	ve ist Y, iht* (ft .)	′₀ Spa t) Width	an Span Lengi h (ft) (ft)	ın jth b(ft))) a (ft)	Number of Girders	Maximum Positive Horizontal Force	Associate Vertical Force	Associate Moment about the Leading Edge	Associate Moment about the Trailing Edge	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming		Maximum Positive Vertical Force	Associate Horizontal Force		Associate Moment about the Trailing Edge	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming	Associate Moment about the Trailing Edge without Slamming	Largest Moment about the Leading Edge	Associate Horizontal Force	Associate Vertical Force	Associate Moment about the Trailing Edge	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming	Associate Moment about the Trailing Edge without Slamming	Lowest Moment about the Trailing Edge	Associate Horizontal Force	Associate Vertical Force	Associate Moment about the Leading Edge	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming	Associate Moment about the Trailing Edge without Slamming
I10-Escambia Bay Span and	123	37.1	4.7	8.2	4.1	92.3 4.9	1 5 1.	.6 35	5.3 60	0.5833	3 3.75	6	31	-117	-2626	1532	121	-117	-2626	Force 1532	128	7	724	-1147	128	20	Force 141	-564	724	7	128	-1147	128	20	Force 141	-564	-1147	7	128	724	128	20	Force 141	-564
Conditions I10-Escambia Bay Span and	131	39.5	4.7	8.2	4.1	92.7 4.9	94 -0.	.3 35	5.3 60	0.5833	3 3.75	6	34	132	2498	-2202	136	132	2498	-2202	467	32	4465	-4264	468	149	2753	-2552	4465	32	467	-4264	468	149	2753	-2552	-4264	32	467	4465	468	149	2753	-2552
Conditions 110 - Lake Pontchartrain	W363	22.1	6.5	12.0	5.1	125.8 8.2	2 1.	.2 45	5.5 65	0.54		6	276	64	-58	-2640	284	64	-58	-2640	240	172	939	-4904	295	104	114	-4080	939	172	240	-4904	295	104	114	-4080	-4904	172	240	939	295	104	114	-4080
I10 - Lake Pontchartrain	W363		6.5	12.0	5.1	125.8 8.2		.2 45	5.5 65	0.54	-	6	192	-124	-4589	389	229	-124	-4589	389	41	29	182	-1076	50	27	100	-994	182	29	41	-1076	50	27	100	-994	-1076	29	41	182	50	27	100	-994
110 - Lake Pontchartrain	W382 W382	21.2 21.2	6.4 6.4	11.7	5.1	124.3 8.1 124.3 8.1		.8 45				6	246	74	964 6357	-2015 -4286	257	74 266	964 6357	-2015	504 732	130 34	2864 5819	-7854	521 733	164 343	790 3444	-5780	2864 7373	130	504 241	-7854	521	164 241	790 7373	-5780	-7854	130 34	504 732	2864	521 733	164 343	790 3444	-5780
110 - Lake Pontchartrain 110-Escambia Bay Span	VV362	40	4.4	11.7	3.1	58.7 5.2						6	110	-58	-383	-4200	312	-58	-383	-4200	9	24	27		26	9	27		27	16	8	-2279	276	241	27		-12004	24	9	27	26	9	27	-10289
Hypothetical Conditions I10-Escambia Bay Span	1	40	4.4	8	3.1	128.3 4.4					_	6	23	-58	-383	2966	124	-58	-383	2966	7	4	27	-296	26	7	27	-296 -224	27	4	8	-272	18	8	27	-272	-296	4	9	27	8	7	27	-296
Hypothetical Conditions I10-Escambia Bay Span	3	40	4.4	8	8	254 4.5	5 3	3 35	5.3 60	0.58	3.75	6	20	-86	-1849	1226	89	-86	-1849	1226	7	3	29	-205	7	7	29	-205	54	6	6	-153	8	6	54	-153	-205	3	7	29	7	7	29	-205
Hypothetical Conditions	4	40	4.4	8	3.1	58.7 5.2	27 0	35	5.3 60	0.58	3.75	6	144	16	-230	-788	145	16	-230	-788	21	6	78	-659	22	21	78	-659	78	5	21	-657	21	21	78	-657	-851	142	16	-274	143	16	-274	-851
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	5	40	4.4	8	5	128.3 4.4	18 0	35	5.3 60	0.58	3.75	6	56	-84	-1816	1173	101	-84	-1816	1173	233	28	1677	-2039	235	49	685	-1047	1677	28	233	-2039	235	49	685	-1047	-2039	28	233	1677	235	49	685	-1047
I10-Escambia Bay Span Hypothetical Conditions	6	40	4.4	8	8	254 4.5	i5 0	35	5.3 60	0.58	3.75	6	27	233	3471	-3517	234	181	3192	-3238	529	27	5242	-5196	529	192	3428	-3382	5242	27	529	-5196	529	192	3428	-3382	-5196	27	529	5242	529	192	3428	-3382
I10-Escambia Bay Span Hypothetical Conditions	7	40	4.4	8	3.1	58.7 5.2	.7 -9	9 35	5.3 60	0.58	3.75	6	34	412	7455	-7122	414	412	7455	-7122	584	3	9786	-10273	584	560	9654	-10142	10067	14	541	-9054	541	541	10067	-9054	-10483	-4	543	8727	543	543	8727	-10483
110-Escambia Bay Span Hypothetical Conditions	8	40	4.4	8	5	128.3 4.4	18 -9	9 35	5.3 60	0.58	3.75	6	32	402	7968	-6351	403	402	7968	-6351	580	-8	10248	-10410	580	580	10248	-10410	10255	-5	579	-10375	579	579	10255	-10375	-10552	-1	572	9818	572	572	9818	-10552
I10-Escambia Bay Span Hypothetical Conditions	9	40	4.4	8	8	254 4.5	i5 -9	9 35	5.3 60	0.58	3.75	6	35	356	6378	-6271	357	356	6378	-6271	496	2	8740	-8892	496	496	8740	-8892	8775	5	495	-8819	495	495	8775	-8819	-8899	0	495	8691	495	495	8691	-8899
I10-Escambia Bay Span Hypothetical Conditions	10	25	4.4	8	3.1	58.2 5.3	38 3	3 35	5.3 60	0.58	3.75	6	107	-95	-1048	2311	143	-95	-1048	2311	8	25	21	-256	26	8	21	-256	26	16	8	-244	18	8	26	-244	-259	36	8	9	37	8	9	-259
I10-Escambia Bay Span Hypothetical Conditions	11	25	4.4	8	5	118.6 4.7	7 3	3 35	5.3 60	0.58	3.75	6	29	-132	-1620	3069	135	-132	-1620	3069	10	6	40	-309	12	10	40	-309	40	6	10	-309	12	10	40	-309	-309	6	10	40	12	10	40	-309
I10-Escambia Bay Span Hypothetical Conditions	12	25	4.4	8	8	217 5.1	6 3	3 35	5.3 60	0.58	3.75	6	33	-135	-2808	2038	139	-135	-2808	2038	8	13	61	-219	15	8	61	-219	61	13	8	-219	15	8	61	-219	-236	4	7	32	9	7	32	-236
I10-Escambia Bay Span Hypothetical Conditions	13	25	4.4	8	3.1	58.2 5.3	88 0	35	5.3 60	0.58	3.75	6	125	-71	-534	1984	143	-71	-534	1984	22	5	83	-679	22	22	83	-679	83	5	22	-679	22	22	83	-679	-679	5	22	83	22	22	83	-679
I10-Escambia Bay Span Hypothetical Conditions	14	25	4.4	8	5	118.6 4.7	7 0	35	5.3 60	0.58	3.75	6	55	-93	-1992	1328	108	-93	-1992	1328	249	28	1518	-2373	250	49	444	-1300	1518	28	249	-2373	250	49	444	-1300	-2373	28	249	1518	250	49	444	-1300
I10-Escambia Bay Span Hypothetical Conditions	15	25	4.4	8	8	217 5.1	6 0	35	5.3 60	0.58	3.75	6	53	165	2985	-2922	173	165	2985	-2922	574	52	5421	-5258	577	180	3297	-3134	5421	52	574	-5258	577	180	3297	-3134	-5258	52	574	5421	577	180	3297	-3134
I10-Escambia Bay Span Hypothetical Conditions	16	25	4.4	8	3.1	58.2 5.3	8 -9	9 35	5.3 60	0.58	3.75	6	33	405	7202	-7109	406	405	7202	-7109	575	3	9630	-10098	575	551	9497	-9966	9883	15	528	-8787	528	528	9883	-8787	-10278	-3	535	8636	535	535	8636	-10278
I10-Escambia Bay Span Hypothetical Conditions	17	25	4.4	8	5	118.6 4.7						6	40	404	7958	-6402	406	404	7958	-6402	542	-7	9549	-9751	542	542	9549	-9751	9556	-5	542	-9737	542	542	9556	-9737	-9924	-1	535	9121	535	535	9121	-9924
110-Escambia Bay Span Hypothetical Conditions	18		4.4	8	8	217 5.1						6	50	344	6372	-5934	347	344	6372	-5934	488	9	8712	-8748	488	488	8712	-8748	8714	17	482	-8538	482	482	8714	-8538	-8790	4	487	8634	487	487	8634	-8790
I10-Escambia Bay Span Hypothetical Conditions I10-Escambia Bay Span	19	40	6.7	12	4	95.1 7.6						6	191	-23	-494	324	193	-23	-494	324	29	20	111	-927	36	29	111	-927	111	20	29	-927	36	29	111	-927	-927	20	29	111	36	29	111	-927
Hypothetical Conditions	20	40	6.7	12	6	175.1 7.0						6	106 75	-172	-3678	2434	202	-172	-3678	2434	158	45	1025	-1435	164	31 54	343	-753	1025	45	158	-1435	164	31	343	-753	-1435	45	158	1025	164	31	343	-753
Hypothetical Conditions	21 22	40	6.7	12	8	259 7.2 95.1 7.6		3 35. D 35.				6	237	-91 76	-2098	-2638	118 248	-91 76	-2098	-2638	288	67	2399 246	-2030	296	111	1140 246	-770	2399 552	67 140	-16	-2030 1133	296	54 -16	1140 552	-770	-2030	67 120	288	2399 241	296	54	1140 241	-3706
Hypothetical Conditions 110-Escambia Bay Span	22	40	6.7	12		175.1 7.0					_	6	117	468	5248	-4361	482	185	3725	-2838	581	109	5899	-4928	592	185	3767	-2796	5899	109	581	-4928	592	185	3767	-2796	-4928	109	581	5899	592	185	3767	-2796
Hypothetical Conditions 110-Escambia Bay Span	24	40	6.7	12	8	258.6 7.2					_	6	107	270	4893	-4722	291	270	4893	-4722	945	100	8581	-8774	951	290	5054	-5247	8581	100	945	-8774	951	290	5054	-5247	-8774	100	945	8581	951	290	5054	-5247
Hypothetical Conditions I10-Escambia Bay Span	25	40	6.7	12	4	95.1 7.6	6 -9			0.58	_	6	69	409	8886	-5596	415	409	8886	-5596	660	-4	10832	-12109	660	642	10733	-12009	10891	9	630	-11433	630	630	10891	-11433	-12109	-4	660	10832	660	642	10733	-12009
Hypothetical Conditions	26	40	6.7	12	6	175.1 7.0)6 -§	9 35	5.3 60	0.58	3.75	6	64	284	5499	-4583	291	284	5499	-4583	589	9	10156	-10716	589	589	10156	-10716	10343	15	587	-10458	587	587	10343	-10458	-10894	1	573	9412	573	573	9412	-10894
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	27	40	6.7	12	8	258.6 7.2	25 -9	9 35	5.3 60	0.58	3.75	6	77	309	5494	-5476	318	309	5494	-5476	552	9	9659	-9985	553	552	9659	-9985	9710	13	551	-9886	551	551	9710	-9886	-10018	5	551	9564	551	551	9564	-10018
I10-Escambia Bay Span Hypothetical Conditions	28	25	5.6	10	4	89.1 6.3	37 3	3 35	5.3 60	0.58	3.75	6	136	-188	-2026	4623	232	-188	-2026	4623	20	19	72	-625	28	20	72	-625	72	19	20	-625	28	20	72	-625	-625	19	20	72	28	20	72	-625
110-Escambia Bay Span Hypothetical Conditions	29	25	5.6	10	6	154.8 6.3	35 3	3 35	5.3 60	0.58	3.75	6	74	-236	-4153	4248	247	-236	-4153	4248	105	7	545	-978	105	16	66	-500	545	7	105	-978	105	16	66	-500	-978	7	105	545	105	16	66	-500
I10-Escambia Bay Span Hypothetical Conditions	30	25	5.6	10	8	221.2 6.7	7 3	3 35	5.3 60	0.58	3.75	6	79	-143	-3189	1887	164	-143	-3189	1887	164	21	913	-1365	166	21	142	-593	913	21	164	-1365	166	21	142	-593	-1365	21	164	913	166	21	142	-593
110-Escambia Bay Span Hypothetical Conditions	31	25	5.6	10	4	89.11 6.3	37 0	35	5.3 60	0.58	3.75	6	153	38	118	-1239	157	38	118	-1239	70	105	128	-2344	126	70	128	-2344	348	103	-16	927	104	-16	348	927	-2356	122	69	77	140	69	77	-2356
I10-Escambia Bay Span Hypothetical Conditions	32	25	5.6	10	6	154.8 6.3	85 0	35	5.3 60	0.58	3.75	6	107	-99	-2436	1076	145	-99	-2436	1076	501	71	3149	-4984	506	111	1051	-2887	3149	71	501	-4984	506	111	1051	-2887	-4984	71	501	3149	506	111	1051	-2887
I10-Escambia Bay Span Hypothetical Conditions	33	25	5.6	10	8	221.2 6.7	7 0	35				6	115	505	5204	-4909	518	190	3508	-3213	782	106	6911	-6342	789	196	3762	-3193	6911	106	782	-6342	789	196	3762	-3193	-6342	106	782	6911	789	196	3762	-3193
110-Escambia Bay Span Hypothetical Conditions	34		5.6	10	4	89.1 6.3		9 35				6	56	432	8838	-6476	436	432	8838	-6476	602	-5	10433	-10890	602	602	10433	-10890	10493	0	596	-10634	596	596	10493	-10634	-10955	-9	599	10259	599	599	10259	-10955
110-Escambia Bay Span Hypothetical Conditions	35		5.6	10	6	154.8 6.3		9 35				6	59	356	7142	-5551	361	356	7142	-5551	530	3	9244	-9628	530	530	9244	-9628	9320	12	527	-9455	527	527	9320	-9455	-9648	0	529	9194	529	529	9194	-9648
110-Escambia Bay Span Hypothetical Conditions	36		5.6	10	8	221.2 6.7			5.3 60		_	6	76	315	5837	-5316	324	315	5837	-5316	507	12	8850	-9094	507	507	8850	-9094	8912	20	505	-8981	506	505	8912	-8981	-9115	9	505	8774	505	505	8774	-9115
110-Escambia Bay Span Hypothetical Conditions 110-Escambia Bay Span	101	40	4.4	8	3.1	58.7 5.2						6	94	-42	-260	1213	103	-42	-260	1213	9	36	15	-306	37	9	15	-306	30	16	9	-280	19	9	30	-280	-306	36	9	15	37	9	15	-306
I10-Escambia Bay Span Hypothetical Conditions I10-Escambia Bay Span	102		4.4	8	3.1				5.3 60			6	105	-67	-2239	144	125	-67	-2239	144	17	20	61	-539	26	17	61	-539	61	20	17	-539	26	17	61	-539	-539	20	17	61	26	17	61	-539
Hypothetical Conditions 110-Escambia Bay Span	103		4.4	8	3.1 3.1	58.7 5.2 58.7 5.2		1 35 0 35				6	104	-89	-2930	221 866	137	-89 -35	-2930 -369	221 866	21 23	12	80	-664	24	21 23	80 89	-664 -718	80	12 6	21 23	-664 -718	24 24	21 23	80 89	-664 -718	-664	12 94	21 21	-46	24 97	21	80 -46	-664
Hypothetical Conditions 110-Escambia Bay Span	104		4.4	8	3.1	58.7 5.2			5.3 60		_	6	120	-35	-369	-968	125	-35	-369	-968	23 42	80	39	-718	24 90	23 42	89 39	-718	206	6 29	23	-718	24 46	23 36	89 206	-718	-795	94	21 40	-46	97	21 40	-46 -80	-795
Hypothetical Conditions 110-Escambia Bay Span	105		4.4	8	3.1	58.7 5.2		2 35			_	6	143	39	-229	-908	144	39	-229	-900	42 82	73	39	-1445	110	82	39	-1445	522	69	-7	753	40 69	-7	522	753	-1400	73	82	337	110	82	337	-1400
Hypothetical Conditions I10-Escambia Bay Span	107		4.4	8	3.1	58.7 5.2			5.3 60			6	284	-199	-6476	545	347	-199	-6476	545	104	41	673	-3000	112	104	673	-3000	1344	0	96	-2033	96	96	1344	-2033	-3000	41	104	673	112	104	673	-3000
Hypothetical Conditions 110-Escambia Bay Span	108	40	4.4	8	3.1	58.7 5.2						6	108	94	1504	-1810	143	94	1504	-1810	249	3	2927	-4494	249	193	2625	-4191	3073	7	146	-705	146	90	2771	-403	-4494	3	249	2927	249	193	2625	-4191
Hypothetical Conditions 110-Escambia Bay Span	109		4.4	8	3.1	-			5.3 60			6	84	211	3190	-4264	227	211	3190	-4264	328	4	4310	-6545	329	298	4143	-6379	4548	13	163	-1232	164	163	4548	-1232	-6545	4	328	4310	329	298	4143	-6379
Hypothetical Conditions 110-Escambia Bay Span	110		4.4	8	3.1	58.7 5.2						6	66	316	5322	-5841	323	316	5322	-5841	441	5	6548	-8565	441	421	6441	-8458	6588	31	414	-8065	416	414	6588	-8065	-8565	5	441	6548	441	421	6441	-8458
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	111	40	4.4	8	3.1	58.7 5.2	27 -7	7 35	5.3 60	0.58	3.75	6	52	390	6925	-6871	394	390	6925	-6871	552	7	8923	-10082	552	531	8809	-9968	8969	18	524	-9554	524	524	8969	-9554	-10101	-1	524	8436	524	524	8436	-10101
Hypothetical Conditions 110-Escambia Bay Span Hypothetical Conditions	112	40	4.4	8	3.1	58.7 5.2	27 -8	8 35	5.3 60	0.58	3.75	6	41	420	7660	-7197	422	420	7660	-7197	599	4	10020	-10614	599	577	9897	-10492	10304	23	550	-9129	550	550	10304	-9129	-10865	-3	558	8883	558	558	8883	-10865
110-Escambia Bay Span Hypothetical Conditions	113	40	4.4	8	3.1	58.7 5.2	.7 -9	9 35	5.3 60	0.58	3.75	6	34	412	7455	-7122	414	412	7455	-7122	584	3	9786	-10273	584	560	9654	-10142	10067	14	541	-9054	541	541	10067	-9054	-10483	-4	543	8727	543	543	8727	-10483
I10-Escambia Bay Span Hypothetical Conditions I10-Escambia Bay Span	114		4.4	8	3.1	58.7 5.2		2 35				6	21	395	6917	-7044	395	395	6917	-7044	549	1	9215	-9481	549	520	9057	-9322	9378	9	502	-8357	502	502	9378	-8357	-9583	-3	507	8345	507	507	8345	-9583
Hypothetical Conditions	115	40	4.4	8	3.1	58.7 5.2	-1	15 35	5.3 60	0.58	3.75	6	13	382	6423	-7068	382	382	6423	-7068	526	1	8811	-8937	526	491	8626	-8752	8851	6	479	-8080	479	479	8851	-8080	-8959	-3	482	8088	482	482	8088	-8959

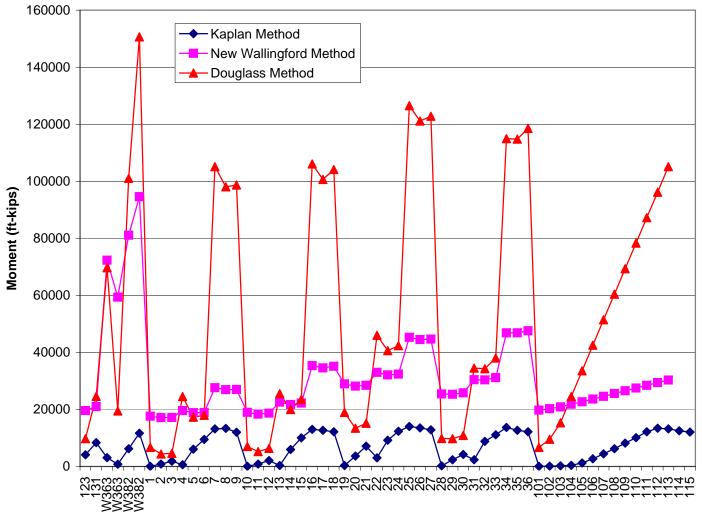

															Ma	ximum Positiv	e Horizontal F	orce			1			Maximum Posi	tive Vertical F	Force					Largest P	ositive Moment	about the Lea	ding Edge			OEA 100% A	r	Largest Ne	gative Momer	nt about the Tr	ailing Edge		
Bridge #	Case#	d _s (ft)	Significant Wave Height (ft)	Maximum Wave Height (ft)	Wave Period (sec)	Wave Wave Length Cres (ft) (ft)	e st Y _c ht* (ft)	Spa Width	an Spa Leng (ft) (ft)	ın jth b (ft))	a (ft)	Number of Girders	Maximum Positive Horizontal Force	Associate Vertical Force	Associate Moment about the Leading Edge	Associate Moment about the Trailing Edge	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming	Trailing Edge without Slamming	Maximum	Associate Horizontal Force		Moment about the	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming	Associate Moment about the Trailing Edge without Slamming	Largest Moment about the Leading Edge	Associate Horizontal Force	Associate Vertical Force	Associate Moment about the Trailing Edge	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming	Associate Moment about the Trailing Edge without Slamming	Lowest Moment about the Trailing Edge	Associate Horizontal Force	Associate Vertical Force	Associate Moment about the Leading Edge	Associate Resultant Force	Associate Vertical Force without Slamming Force	Associate Moment about the Leading Edge without Slamming	Associate Moment about the Trailing Edge without Slamming
110-Escambia Bay Span and	123	37.1	4.7	8.2	4.1	92.3 4.95	5 1.6	35.3	.3 60	0.5833	3.75	6	41	25	706	-193	48	25	Force 706	-193	471	26	4087	-3693	472	109	2139	-1746	4087	26	471	-3693	472	109	2139	-1746	-3693	26	471	4087	472	109	2139	-1746
Conditions I10-Escambia Bay Span and	131	39.5	4.7	8.2	4.1	92.7 4.94		-	.3 60	0.5833	3.75	6	34	322	5648	-5824	324	322	5648	-5824	769	32	8360	-8296	769	337	6040	-5976	8360	32	769	-8296	769	337	6040	-5976	-8296	32	769	8360	769	337	6040	-5976
Conditions	W363	22.1	6.5	12.0	5.1	125.8 8.2	_	_		0.54	_	6	280	317	1981	-7264	422	192	1221	-6504	548	238	3069	-9189	597	199	940	-7061	3069	238	548	-9189	597	199	940	-7061	-9189	238	548	3069	597	199	940	-7061
110 - Lake Pontchartrain	W363	22.1	6.5	12.0	5.1	125.8 8.2						6	199	-106	-1032	3252	225	-106	-1032	3252	156	145	812	-2926	213	65	261	-2374	812	145	156	-2926	213	65	261	-2374	-2926	145	156	812	213	65	261	-2374
110 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3 8.1	-0.8					6	249	278	3788	-7336	373	278	3788	-7336	765	220	5422	-12280	796	300	2586	-9445	6243	90	155	27	179	155	6243	27	-12280	220	765	5422	796	300	2586	-9445
110 - Lake Pontchartrain	W382	21.2	6.4	11.7	5.1	124.3 8.1	-3.8				3.75	0	165	522	11223	-9702	548	522	11223	-9702	577	114	9166	-13319	588	554	9026	-13179	11644	151	491	-8029	514	491	11644	-8029	-14579	33	536	6888	537	536	6888	-14579
110 - Lake Pontchartrain 110-Escambia Bay Span	VV302			11.7				_				0									-																							
Hypothetical Conditions	1	40	4.4	8	3.1	58.7 5.27		35.3			3.75	6	194	-14	-253	242	194	-14	-253	242	13	36	36	-437	38	13	36	-437	37	25	13	-405	28	13	37	-405	-450	48	13	22	50	13	22	-450
I10-Escambia Bay Span Hypothetical Conditions	2	40	4.4	8	5	128.3 4.48	_					6	23	-71	-807	1708	74	-71	-807	1708	146	14	818	-1245	146	20	141	-568	818	14	146	-1245	146	20	141	-568	-1245	14	146	818	146	20	141	-568
I10-Escambia Bay Span Hypothetical Conditions	3	40	4.4	8	8	254 4.55	5 3	35.3		0.58	3.75	6	40	-1	32	79	40	-1	32	79	279	14	1849	-2135	280	39	557	-844	1849	14	279	-2135	280	39	557	-844	-2135	14	279	1849	280	39	557	-844
110-Escambia Bay Span Hypothetical Conditions	4	40	4.4	8	3.1	58.7 5.27	7 0	35.3	.3 60	0.58	3.75	6	146	85	170	-2828	169	85	170	-2828	88	123	221	-2874	151	88	221	-2874	628	79	41	-822	89	41	628	-822	-2916	143	86	141	167	86	141	-2916
I10-Escambia Bay Span Hypothetical Conditions	5	40	4.4	8	5	128.3 4.48	в О	35.3	.3 60	0.58	3.75	6	73	68	1646	-770	100	68	1646	-770	570	32	6057	-5473	571	217	4158	-3574	6057	32	570	-5473	571	217	4158	-3574	-5473	32	570	6057	571	217	4158	-3574
110-Escambia Bay Span Hypothetical Conditions	6	40	4.4	8	8	254 4.55	5 0	35.3	.3 60	0.58	3.75	6	44	90	2136	-1054	100	90	2136	-1054	903	27	9493	-9501	903	374	6652	-6659	9493	27	903	-9501	903	374	6652	-6659	-9501	27	903	9493	903	374	6652	-6659
110-Escambia Bay Span Hypothetical Conditions	7	40	4.4	8	3.1	58.7 5.27	7 -9	35.3	.3 60	0.58	3.75	6	34	579	10185	-10298	580	579	10185	-10298	768	2	12955	-13519	768	740	12803	-13368	13187	14	718	-12220	719	718	13187	-12220	-13668	-4	726	12007	726	726	12007	-13668
I10-Escambia Bay Span Hypothetical Conditions	8	40	4.4	8	5	128.3 4.48	8 -9	35.3	.3 60	0.58	3.75	6	33	572	10961	-9396	573	572	10961	-9396	753	-7	13364	-13459	753	753	13364	-13459	13366	-6	753	-13440	753	753	13366	-13440	-13558	-1	742	12865	742	742	12865	-13558
110-Escambia Bay Span Hypothetical Conditions	9	40	4.4	8	8	254 4.55	5 -9	35.3	.3 60	0.58	3.75	6	35	540	9645	-9567	541	540	9645	-9567	678	2	11970	-12151	678	678	11970	-12151	11991	6	677	-12069	677	677	11991	-12069	-12163	0	677	11924	677	677	11924	-12163
I10-Escambia Bay Span Hypothetical Conditions	10	25	4.4	8	3.1	58.2 5.38	3 3	35.3	.3 60	0.58	3.75	6	112	-16	-203	362	113	-16	-203	362	11	36	19	-358	38	11	19	-358	33	16	10	-325	19	10	33	-325	-358	36	11	19	38	11	19	-358
I10-Escambia Bay Span Hypothetical Conditions	11	25	4.4	8	5	118.6 4.77	7 3	35.3	.3 60	0.58	3.75	6	32	-52	-477	1367	61	-52	-477	1367	151	25	852	-1341	153	23	159	-648	852	25	151	-1341	153	23	159	-648	-1341	25	151	852	153	23	159	-648
I10-Escambia Bay Span Hypothetical Conditions	12	25	4.4	8	8	217 5.16	6 3	35.3	.3 60	0.58	3.75	6	40	-13	-138	336	43	-13	-138	336	316	28	2050	-2625	318	51	621	-1196	2050	28	316	-2625	318	51	621	-1196	-2625	28	316	2050	318	51	621	-1196
I10-Escambia Bay Span Hypothetical Conditions	13	25	4.4	8	3.1	58.2 5.38	в о	35.3	.3 60	0.58	3.75	6	129	-91	-915	2316	158	-91	-915	2316	72	91	233	-2314	116	72	233	-2314	350	35	66	-1975	75	66	350	-1975	-2329	88	72	209	114	72	209	-2329
I10-Escambia Bay Span	14	25	4.4	8	5	118.6 4.77	7 0	35.3	.3 60	0.58	3.75	6	61	75	1685	-978	97	75	1685	-978	576	44	5923	-5098	578	194	3868	-3043	5923	44	576	-5098	578	194	3868	-3043	-5098	44	576	5923	578	194	3868	-3043
Hypothetical Conditions I10-Escambia Bay Span	15	25	4.4	8	8	217 5.16	6 0	35.3	.3 60	0.58	3.75	6	54	405	6552	-6830	408	361	6315	-6593	992	52	10050	-9968	993	373	6724	-6642	10050	52	992	-9968	993	373	6724	-6642	-9968	52	992	10050	993	373	6724	-6642
Hypothetical Conditions I10-Escambia Bay Span	16	25	4.4	8	3.1	58.2 5.38	3 -9	35.3	.3 60	0.58	3.75	6	33	571	9890	-10284	572	571	9890	-10284	759	2	12808	-13343	759	731	12655	-13190	13009	14	709	-12049	709	709	13009	-12049	-13463	-4	718	11916	718	718	11916	-13463
Hypothetical Conditions I10-Escambia Bay Span	17	25	4.4	8	5	118.6 4.77	7 -9	35.3	.3 60	0.58	3.75	6	41	575	10972	-9495	577	575	10972	-9495	717	-8	12683	-12817	717	717	12683	-12817	12686	-6	716	-12802	716	716	12686	-12802	-12948	-1	707	12197	707	707	12197	-12948
Hypothetical Conditions I10-Escambia Bay Span	18	25	4.4	8	8	217 5.16	5 -9	35.3	.3 60	0.58	3.75		51	538	9879	-9393	541	538	9879	-9393	677	9	12151	-12092	677	677	12151	-12092	12151	9	677	-12092	677	677	12151	-12092	-12144	4	677	12085	677	677	12085	-12144
Hypothetical Conditions I10-Escambia Bay Span	19	40	6.7	12	4	95.1 7.66		35.3			3.75	6	195	-111	-1063	2857	224	-111	-1063	2857	77	150	258	-2469	169	77	258	-2469	359	93	74	-2273	119	74	359	-2273	-2516	169	77	207	186	77	207	-2516
Hypothetical Conditions I10-Escambia Bay Span	20	40	6.7	12	6	175.1 7.06	_				_	6	135	-16	-57	522	136	-16	-57	522	448	77	3635	-4440	454	132	1937	-2742	3635	77	448	-4440	454	132	1937	-2742	-4440	77	448	3635	454	132	1937	-2742
Hypothetical Conditions I10-Escambia Bay Span	20	40	6.7	12	0	259 7.25		35.3			3.75	0	92	44	1238	-330		44	1238		773	67	7100	-6978		233	4196	-4074	7100	67	773	-6978		233	4196	-4074	-6978	67	773	7100		233		-4074
Hypothetical Conditions 110-Escambia Bay Span					•						_	0					102			-330					775								775								775		4196	
Hypothetical Conditions 110-Escambia Bay Span	22	40	6.7	12	4	95.1 7.66		_				6	239	201	1378	-5743	312	201	1378	-5743	207	204	1103	-6245	291	207	1103	-6245	3039	103	98	-433	142	98	3039	-433	-6277	200	207	1070	288	207	1070	-6277
Hypothetical Conditions	23	40	6.7	12	ь	175.1 7.06		35.3				ь	118	371	6715	-6459	390	371	6715	-6459	918	103	9203	-9929	924	375	6278	-7005	9203	103	918	-9929	924	375	6278	-7005	-9929	103	918	9203	924	375	6278	-7005
Hypothetical Conditions 110-Escambia Bay Span	24	40	6.7	12	8	258.6 7.25	5 0	35.3			3.75		107	450	8016	-7970	462	450	8016	-7970	1257	100	12321	-12797	1261	468	8076	-8553	12321	100	1257	-12797	1261	468	8076	-8553	-12797	100	1257	12321	1261	468	8076	-8553
Hypothetical Conditions	25	40	6.7	12	4	95.1 7.66		35.3				6	70	580	11792	-8757	584	580	11792	-8757	841	-5	14048	-15246	841	821	13936	-15134	14048	-5	841	-15246	841	821	13936	-15134	-15246	-5	841	14048	841	821	13936	-15134
I10-Escambia Bay Span Hypothetical Conditions	26	40	6.7	12	6	175.1 7.06					3.75	6	64	469	8740	-7904	474	469	8740	-7904	768	8	13291	-13962	768	768	13291	-13962	13509	16	765	-13623	765	765	13509	-13623	-14086	1	754	12642	754	754	12642	-14086
I10-Escambia Bay Span Hypothetical Conditions	27	40	6.7	12	8	258.6 7.25	5 -9					6	77	492	8740	-8748	498	492	8740	-8748	730	9	12800	-13147	730	730	12800	-13147	12834	14	728	-13038	728	728	12834	-13038	-13195	5	727	12656	727	727	12656	-13195
I10-Escambia Bay Span Hypothetical Conditions	28	25	5.6	10	4	89.1 6.37	7 3	35.3	.3 60	0.58	3.75	6	197	-67	-649	1738	209	-67	-649	1738	45	71	221	-1387	85	45	221	-1387	225	86	44	-1338	96	44	225	-1338	-1409	84	45	195	96	45	195	-1409
110-Escambia Bay Span Hypothetical Conditions	29	25	5.6	10	6	154.8 6.35	5 3	35.3	.3 60	0.58	3.75	6	87	-60	-593	1534	105	-60	-593	1534	371	65	2359	-3586	376	79	790	-2018	2359	65	371	-3586	376	79	790	-2018	-3586	65	371	2359	376	79	790	-2018
I10-Escambia Bay Span Hypothetical Conditions	30	25	5.6	10	8	221.2 6.77	7 3	35.3	.3 60	0.58	3.75	6	87	19	520	-157	89	19	520	-157	568	73	4197	-4867	572	120	1788	-2458	4197	73	568	-4867	572	120	1788	-2458	-4867	73	568	4197	572	120	1788	-2458
110-Escambia Bay Span Hypothetical Conditions	31	25	5.6	10	4	89.11 6.37	7 0	35.3	.3 60	0.58	3.75	6	155	176	1401	-4425	234	160	1315	-4339	218	149	1302	-5050	264	162	1003	-4750	2336	87	99	-1155	132	99	2336	-1155	-5050	149	218	1302	264	162	1003	-4750
110-Escambia Bay Span Hypothetical Conditions	32	25	5.6	10	6	154.8 6.35	5 0	35.3	.3 60	0.58	3.75	6	113	89	1821	-1332	143	89	1821	-1332	857	77	8787	-7653	861	290	5738	-4603	8787	77	857	-7653	861	290	5738	-4603	-7653	77	857	8787	861	290	5738	-4603
110-Escambia Bay Span Hypothetical Conditions	33	25	5.6	10	8	221.2 6.77	7 0	35.3	.3 60	0.58	3.75	6	116	822	9047	-9198	830	382	6677	-6828	1156	107	11081	-10834	1161	385	6934	-6687	11081	107	1156	-10834	1161	385	6934	-6687	-10834	107	1156	11081	1161	385	6934	-6687
I10-Escambia Bay Span Hypothetical Conditions	34	25	5.6	10	4	89.1 6.37	7 -9	35.3	.3 60	0.58	3.75	6	56	607	11843	-9674	610	607	11843	-9674	781	-6	13601	-14080	781	781	13601	-14080	13663	-4	780	-13969	780	780	13663	-13969	-14140	-10	779	13450	779	779	13450	-14140
I10-Escambia Bay Span Hypothetical Conditions	35	25	5.6	10	6	154.8 6.35	5 -9	35.3	.3 60	0.58	3.75	6	60	550	10544	-9022	553	550	10544	-9022	719	2	12638	-12949	719	719	12638	-12949	12698	13	714	-12740	715	714	12698	-12740	-12962	0	718	12603	718	718	12603	-12962
I10-Escambia Bay Span Hypothetical Conditions	36	25	5.6	10	8	221.2 6.77	7 -9	35.3	.3 60	0.58	3.75	6	76	506	9231	-8666	511	506	9231	-8666	690	11	12148	-12295	691	690	12148	-12295	12198	20	688	-12159	688	688	12198	-12159	-12309	9	689	12086	689	689	12086	-12309
I10-Escambia Bay Span Hypothetical Conditions	101	40	4.4	8	3.1	58.7 5.27	7 3	35.3	.3 60	0.58	3.75	6	169	-14	-218	265	170	-14	-218	265	13	37	30	-415	39	13	30	-415	38	17	11	-367	20	11	38	-367	-417	51	12	13	53	12	13	-417
I10-Escambia Bay Span Hypothetical Conditions	102	40	4.4	8	3.1	58.7 5.27	7 2	35.3	.3 60	0.58	3.75	6	105	-34	-1183	15	110	-34	-1183	15	28	50	96	-894	57	28	96	-894	107	40	28	-877	49	28	107	-877	-898	63	28	78	69	28	78	-898
I10-Escambia Bay Span Hypothetical Conditions	103	40	4.4	8	3.1	58.7 5.27	7 1	35.3	.3 60	0.58	3.75	6	110	-53	-438	1424	122	-53	-438	1424	50	70	201	-1554	86	50	201	-1554	230	49	49	-1500	70	49	230	-1500	-1567	85	49	171	98	49	171	-1567
I10-Escambia Bay Span Hypothetical Conditions	104	40	4.4	8	3.1	58.7 5.27	7 0	35.3	.3 60	0.58	3.75	6	122	62	348	-1851	137	62	348	-1851	77	98	286	-2437	125	77	286	-2437	418	107	37	-901	114	37	418	-901	-2461	108	77	261	132	77	261	-2461
I10-Escambia Bay Span	105	40	4.4	8	3.1	58.7 5.27	7 -1	35.3	.3 60	0.58	3.75	6	144	113	487	-3503	183	113	487	-3503	117	120	499	-3654	168	117	499	-3654	1232	66	63	-996	91	63	1232	-996	-3709	141	116	404	183	116	404	-3709
Hypothetical Conditions I10-Escambia Bay Span Hypothetical Conditions	106	40	4.4	8	3.1	58.7 5.27	7 -2	35.3	.3 60	0.58	3.75	6	147	155	1093	-4405	214	155	1093	-4405	217	96	1325	-5010	237	162	1030	-4715	2719	39	160	-1591	165	105	2424	-1296	-5052	111	213	1228	240	162	957	-4782
Hypothetical Conditions I10-Escambia Bay Span	107	40	4.4	8	3.1	58.7 5.27	7 -3	35.3	.3 60	0.58	3.75	6	494	12	-1971	-2393	495	12	-1971	-2393	229	38	2180	-5312	232	204	2045	-5177	4414	15	211	-2421	211	186	4280	-2286	-5776	54	216	1862	223	216	1862	-5776
Hypothetical Conditions I10-Escambia Bay Span	108	40	4.4	8	3.1	58.7 5.27	7 -4	35.3	.3 60	0.58	3.75	6	108	307	4595	-6272	326	307	4595	-6272	413	11	5902	-8205	413	393	5794	-8098	6232	7	310	-4253	310	290	6125	-4146	-8205	11	413	5902	413	393	5794	-8098
Hypothetical Conditions I10-Escambia Bay Span	109	40	4.4	8	3.1	58.7 5.27	7 -5	35.3	.3 60	0.58	3.75	6	83	411	6412	-8135	420	411	6412	-8135	534	6	8168	-10180	534	512	8052	-10065	8168	6	534	-10180	534	512	8052	-10065	-10180	6	534	8168	534	512	8052	-10065
Hypothetical Conditions I10-Escambia Bay Span	110		4.4	8	3.1	58.7 5.27					3.75	6	66	496	8292	-9260	501	496	8292	-9260	636	4	10037	-11889	636	613	9912	-11765	10086	30	608	-11409	609	608	10086	-11409	-11889	4	636	10037	636	613	9912	-11765
Hypothetical Conditions I10-Escambia Bay Span	111		4.4	8	3.1	58.7 5.27		_				6	51	559	9701	-10081	562	559	9701	-10081	739	5	12165		739	714	12031	-13208	12197	17	705	-12722	705	705	12197	-12722	-13342	5	739	12165	739	714	12031	-13208
Hypothetical Conditions I10-Escambia Bay Span	112	40	4.4	8	3.1	58.7 5.27							41	586	10368	-10081	588	586	10368	-10081	739	3	13152	-13342	739	714	13009	-13208	13399	22	730	-12/22	705	730	13399	-12722	-13342	-3	739	12165	739	741	12031	-14039
Hypothetical Conditions				8			_				_	_											_																					
Hypothetical Conditions I10-Escambia Bay Span	113		4.4	8	3.1 3.1	58.7 5.27		-			_		34 21	579	10185 9658	-10298	580	579	10185 9658	-10298	768	2	12955	-13519	768	740	12803	-13368 -12555	13187 12537	9	718 685	-12220	719	718	13187	-12220	-13668	-4 -3	726	12007	726 691	726	12007	-13668
Hypothetical Conditions I10-Escambia Bay Span	114		4.4	8	3.1	58.7 5.27					_	-	21	563	9658	-10240	563 547	563	9658	-10240	735	1	12428	-12733	735	674	12250	-12555	12537	9	685	-11670	685 662	685	12537	-11670	-12789	-3	691 712	11636	691 712	691	11636	-12789 -11997
hypothetical Conditions	.15	3		3	0.1	3.21	-15	33.5	30	0.00	3.13	v	13	547	5080	10201	547	541	3050	10231	112	1	12030	12202	/12	0/4	033		12000	5	502	11304	002	002	.2000	11304	1202		112	.2030	7.12	0/4		

Maximum Horizontal Force Comparison

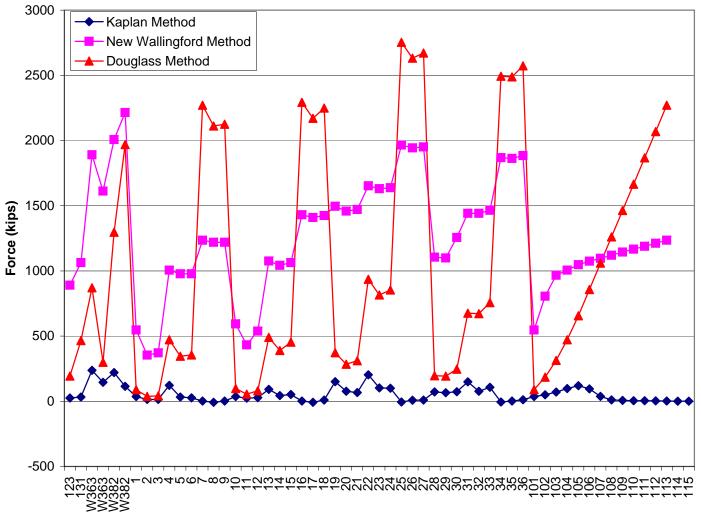


Case #

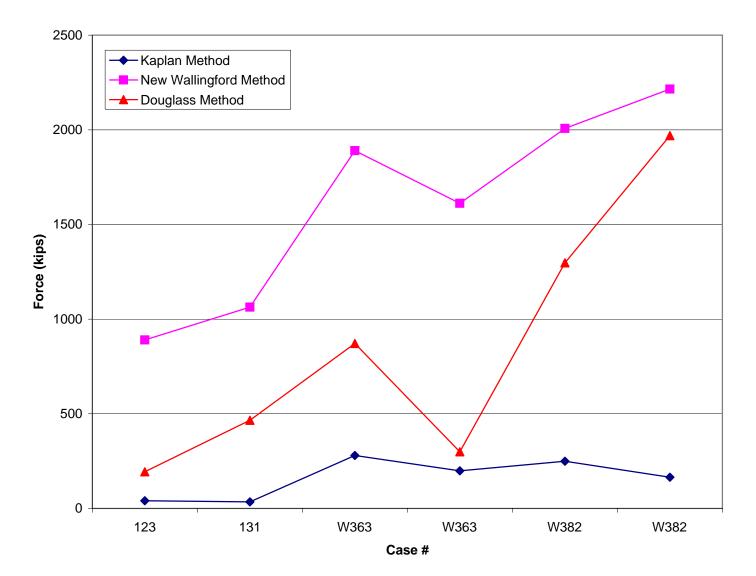
Maximum Vertical Force Comparison


Case #

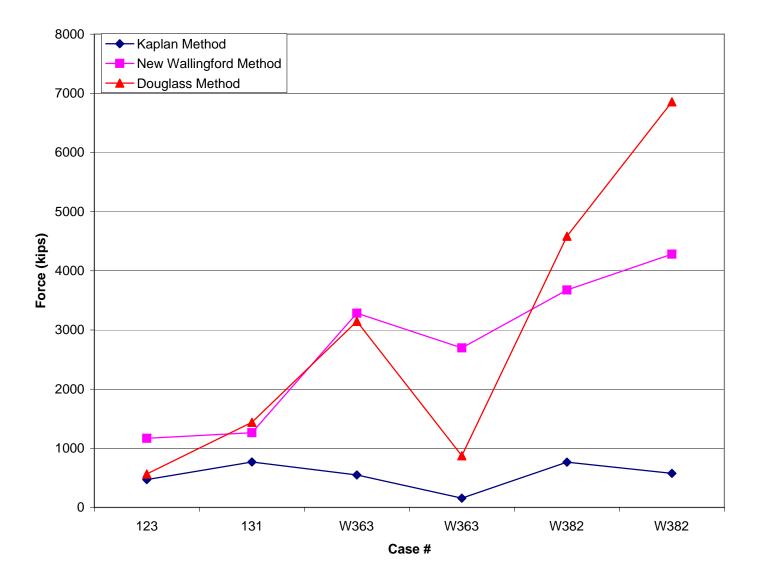
Maximum Moment about the Trailing Edge

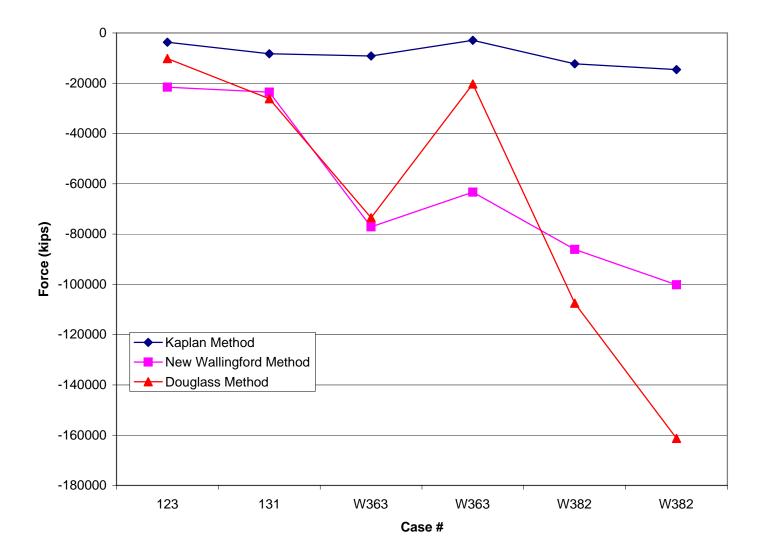

Case #

Maximum Moment about the Leading Edge

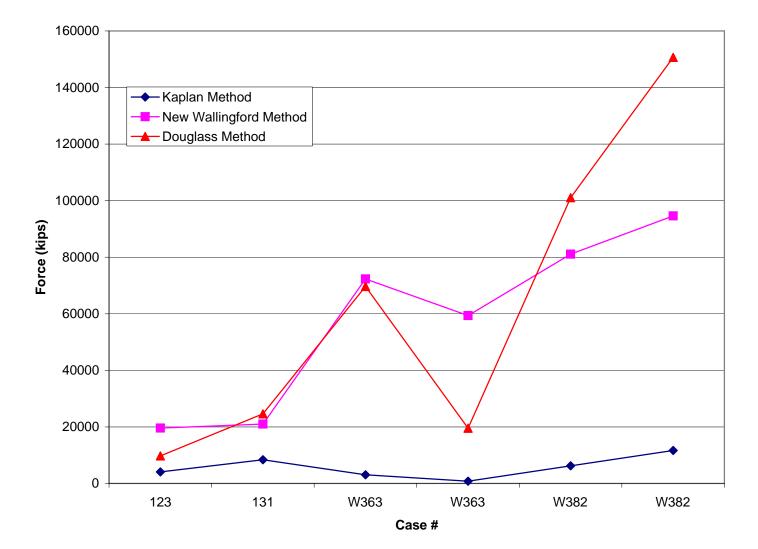


Case #


Horizontal Force at the Time of Maximum Vertical Force


Case #

Horizontal Comparison Force I-10 Bridges over Escambia Bay and Lake Pontchartrain



Vertical Force Comparison I-10 Bridges over Escambia Bay and Lake Pontchartrain

Moment about the Trailing Edge Comparison Force I-10 Bridges over Escambia Bay and Lake Pontchartrain

Attachment C

Analysis Results for One Span of I-10 Escambia Bay Bridge Under Varying Storm Water Levels and Different Wave Periods and Wave Heights

Effect of changing Y_c for 8 ft wave height

Effect of changing Y_c for different wave periods and wave height of 12 ft.

Maximum Wave Height (ft)	Y _c (ft)	OEA Maximum Vertical Force (kips)	OEA Maximum Moment about the Leading Edge (ft- kips)	OEA Maximum Moment about the Trailing Edge (ft- kips)	Wallingford Method 2 Maximum Vertical Force (kips)	Wallingford Method 2 Associated Moment about the Leading Edge (ft- kips)	Wallingford Method 2 Associated Moment about the Trailing Edge (ft- kips)	Douglas Method Maximum Vertical Force (kips)	Douglas Method Maximum Moment about the Leading Edge (ft- kips)	Douglas Method Maximum Moment about the Trailing Edge (ft- kips)
8	3	13	38	-417	1143	19739	-20567	383	6679	-6814
8	2	28	107	-898	1198	20235	-21992	551	9517	-9920
8	1	50	230	-1567	1252	20879	-23258	895	15337	-16227
8	0	77	418	-2461	1307	21814	-24268	1437	24526	-26141
8	-1	117	1232	-3709	1362	22681	-25322	1979	33574	-36197
8	-2	217	2719	-5052	1417	23628	-26320	2522	42528	-46367
8	-3	229	4414	-5776	1471	24575	-27293	3064	51468	-56529
8	-4	413	6232	-8205	1531	25598	-28357	3606	60409	-66690
8	-5	534	8168	-10180	1586	26543	-29356	4148	69351	-76851
8	-6	636	10086	-11889	1640	27480	-30340	4689	78291	-87013
8	-7	739	12197	-13342	1695	28426	-31340	5231	87232	-97174
8	-8	783	13399	-14039	1752	29394	-32363	5773	96173	-107335
8	-9	768	13187	-13668	1804	30282	-33315	6315	105113	-117498
8	-12	735	12537	-12789						
8	-15	712	12039	-12202						

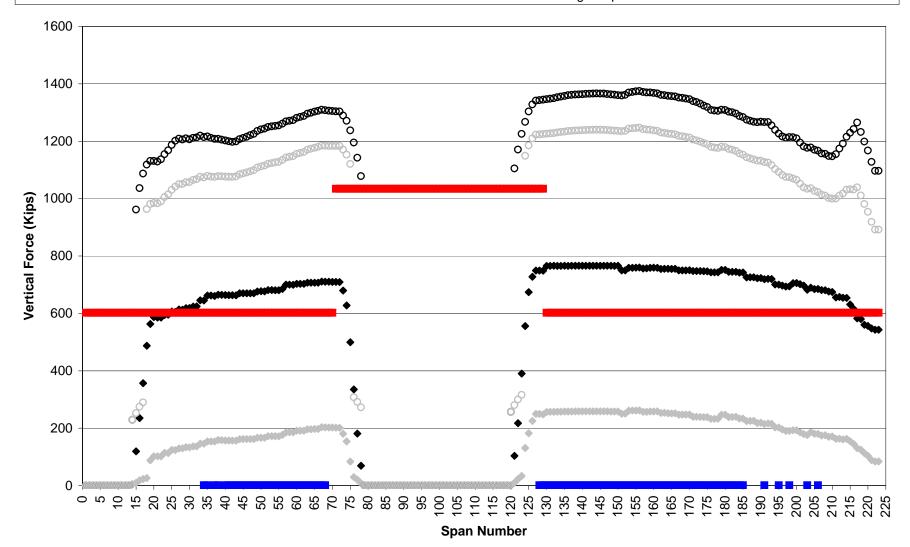
Wave Period (sec)	Maximum Wave Height (ft)	Y _c (ft)	OEA Maximum Vertical Force (kips)	OEA Maximum Moment about the Leading Edge (ft- kips)	OEA Maximum Moment about the Trailing Edge (ft- kips)	Wallingford Method 2 Maximum Vertical Force (kips)	Wallingford Method 2 Associated Moment about the Leading Edge (ft-kips)	Wallingford Method 2 Associated Moment about the Trailing Edge (ft- kips)	Douglas Method Maximum	Moment about the Leading	about the Trailing
4	12	3	77	359	-2516	1745	28944	-32584	1107	18941	-20083
6	12	3	448	3635	-4440	1700	28146	-31770	782	13393	-14162
8	12	3	773	7100	-6978	1716	28436	-32055	885	15159	-16037
4	12	0	207	3039	-6277	1988	32983	-37100	2733	46007	-50323
6	12	0	918	9203	-9929	1937	32100	-36194	2407	40639	-44222
8	12	0	1257	12321	-12797	1954	32385	-36485	2511	42344	-46159
4	12	-9	841	14048	-15246	2706	45269	-50101	7611	126488	-141787
6	12	-9	768	13509	-14086	2660	44494	-49264	7285	121119	-135687
8	12	-9	730	12834	-13195	2671	44677	-49469	7389	122824	-137624

Effect of changing	Y _a for wave	period 4 sec. and wave height of 12 ft.

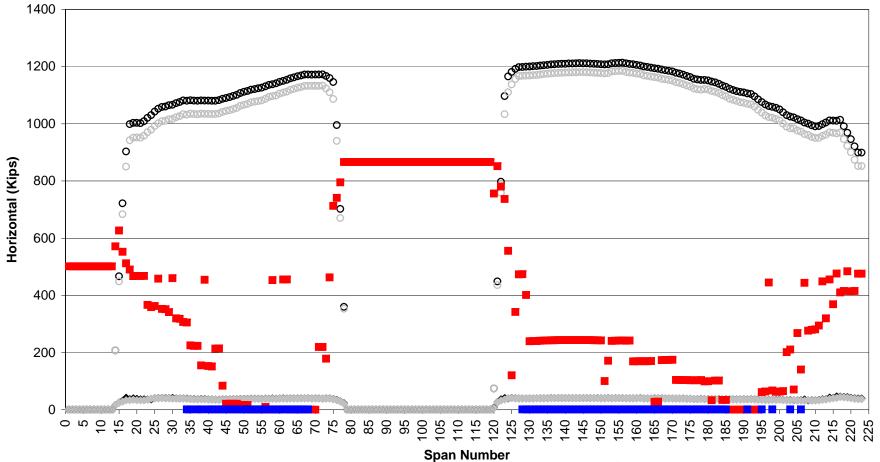
Wave Period (sec)	Maximu m Wave Height (ft)	Y _c (ft)	OEA Maximum Vertical Force T=4sec (kips)	OEA Maximum Moment about the Leading Edge T=4sec (ft- kips)	OEA Maximum Moment about the Trailing Edge T=4sec (ft- kips)	Wallingford Method 2 Maximum Vertical Force T=4sec (kips)	Wallingford Method 2 Associated Moment about the Leading Edge T=4sec (ft- kips)	Wallingfo rd Method 2 Associate d Moment about the Trailing Edge T=4sec (ft kips)	Maximum Vertical Force T=4sec (kips)	Douglas Method Associated Moment about the Leading Edge T=4sec (ft-kips)	Douglas Method Associate d Moment about the Trailing Edge T=4sec (ft-kips)
4	12	3	77	359	-2516	1745.4817	28944	-32584	1107	18941	-20083
4	12	0	207	3039	-6277	1988.16681	32983	-37100	2733	46007	-50323
4	12	-9	841	14048	-15246	2705.53362	45269	-50101	7611	126488	-141787

E	ffect of	chan	ging Y _c	for way	ve perio	d 6 sec. a	and wav	ve heig	ht of 1	2 ft.	
Wave Period (sec)	Maximu m Wave Height (ft)	Y _c (ft)	OEA Maximum Vertical Force T=6sec (kips)	OEA Maximum Moment about the Leading Edge T=6sec (ft- kips)	OEA Maximum Moment about the Trailing Edge T=6sec (ft- kips)	Wallingford Method 2 Maximum Vertical Force T=6sec (kips)	Wallingford Method 2 Associated Moment about the Leading Edge T=6sec (ft- kips)	Method 2	Douglas Method Maximum Vertical	d Moment	Douglas Method Associate d Moment about the Trailing Edge T=6sec (ft-kips)
6	12	3	448	3635	-4440	1699.744681	28146	-31770	782	13393	-14162
6	12	0	918	9203	-9929	1937.429787	32100	-36194	2407	40639	-44222
6	12	-9	768	13509	-14086	2659.796596	44494	-49264	7285	121119	-135687

Effect of cha	nging	Y
---------------	-------	---

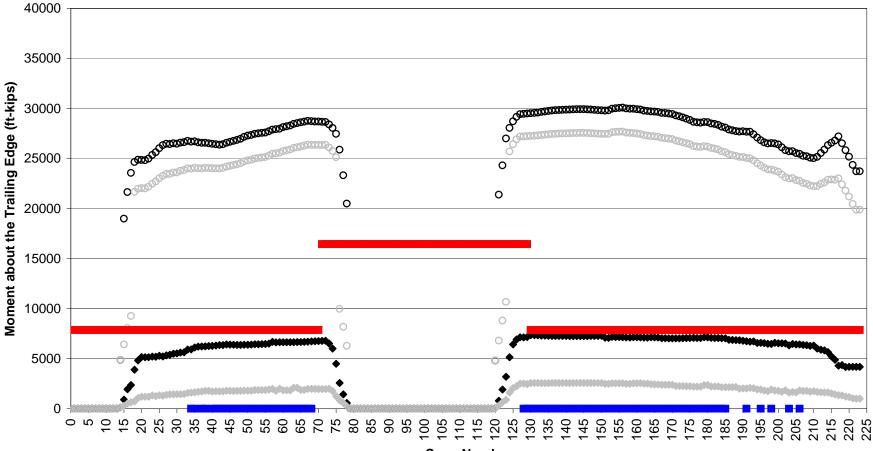

Wave Period (sec)	Maximum Wave Height (ft)	Y _c	OEA Maximum Vertical Force T=8sec (kips)	Moment	OEA Maximum Moment about the Trailing Edge T=8sec (ft-kips)	Method 2 Maximum	Wallingford Method 2 Associated Moment about the Leading Edge T=8sec (ft- kips)	Wallingford Method 2 Associated Moment about the Trailing Edge T=8sec (ft- kips)	Douglas	Douglas Method Associate d Moment about the Leading Edge T=8sec (ft-kips)	d Moment
8	12	3	773	7100	-6978	1716.07234	28436	-32055	885	15159	-16037
8	12	0	1257	12321	-12797	1953.757447	32385	-36485	2511	42344	-46159
8	12	-9	730	12834	-13195	2670.812766	44677	-49469	7389	122824	-137624

 Y_c for wave period 8 sec. and wave height of 12 ft.


-1

Attachment D

Wave Force Calculations for All Spans of I-10 Escambia Bay Bridge using different analysis methods Modified Kaplan Maximum Positive Vertical Force (74% Air Entrapment)
 Wallingford Maximum Positive Vertical Force (74% Air Entrapment)
 Wallingford Maximum Positive Vertical Force (74% Air Entrapment)
 Wallingford Maximum Positive Vertical Force (No Air Entrapment)
 Wallingford Maximum Positive Vertical Force (No Air Entrapment)
 Uertical Resistive Force



- Modified Kaplan Maximum Positive Horizontal Force (74% Air Entrapment)
- Modified Kaplan Maximum Positive Horizontal Force (No Air Entrapment)
- o Wallingford Maximum Positive Horizontal Force (74% Air Entrapment)
- Wallingford Maximum Positive Horizontal Force (No Air Entrapment)
- Horizontal Resistive Force at the Time of Maximum Horizontal Force*
- Location of Damaged Spans

*Based on vertical forces from the Modified Kaplan method

- ◆ Modified Kaplan Maximum Moment about the Trailing Edge (74% Air Entrapment)
- Modified Kaplan Maximum Moment about the Trailing Edge (No Air Entrapment)
- o Wallingford Maximum Moment about the Trailing Edge (74% Air Entrapment)
- Wallingford Maximum Moment about the Trailing Edge (No Air Entrapment)
- Resistive Moment about the Trailing Edge
- Location of Damaged Spans

Span Number

Attachment E

A Method for Estimating Bridge Span Resistance to Storm Surge and Wave Loading for Girder Type Bridge Superstructures

TASK ORDER DTFH61-06-T-70006

FOR THE DEVELOPMENT OF GUIDE SPECIFICATIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS AND HANDBOOK OF RETROFIT OPTIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS

A Method for Estimating Bridge Span Resistance to Storm Surge and Wave Loading for Girder Type Bridge Superstructures

D. Max Sheppard Phil Dompe OEA, Inc. February 2007

When bridge decks encounter elevated water levels and wind waves they can be subjected to complex horizontal and vertical loads. The loads are dynamic and are composed of drag, inertia, change in added mass and impulse (slamming) forces. In the vertical direction there is also a buoyancy force. As used here the reactive forces consist of the weight of the superstructure (beams, deck, railings, etc.) and the frictional forces between the beams and the pile cap.

The analyses presented here makes the assumption that the forces and moments due to constraints (e.g. anchor bolts and tie-downs) are not initiated until the reaction forces/moments (as defined above) have been exceeded. Once the reaction forces/moments have been exceeded the constraint forces/moments are initiated and increase until failure. A number of additional assumptions have also been made including:

- Static analysis of the following three cases is sufficient to capture the state of forces: 1) maximum vertical force and associated horizontal force and moment about the trailing girder, 2) maximum horizontal force and associated vertical force and moment about the trailing girder, and 3) maximum moment and associated horizontal and vertical forces.
- Superstructure assumed to be a rigid body with no deflections
- The span itself has sufficient strength to withstand the applied loads (i.e. the span does not fracture). Since bridge spans are not normally designed for upward

vertical forces this could be a problem and should be investigated by a separate analysis.

The horizontal and vertical forces are out of phase as the wave propagates past the structure. For this reason the forces/moment are computed for three different times, 1) at the time of maximum vertical force (with associated horizontal force and moment about the trailing edge (see Figures 1 and 2), 2) at the time of maximum horizontal force (with associated vertical force and moment about the origin) and 3) at the time of maximum moment about the origin (with associated horizontal and vertical forces). For the spans analyzed to date the most critical situation has been when the vertical force is a maximum. Even though this may be true for most spans and wave conditions the other cases should be checked.

Figure 1 is a definition sketch showing the location and orientation of the coordinate system, the reactive forces and the notation used in the analysis. Figure 2 is another definition sketch showing the constraint forces and moments that occur once the reaction forces and moments are exceeded.

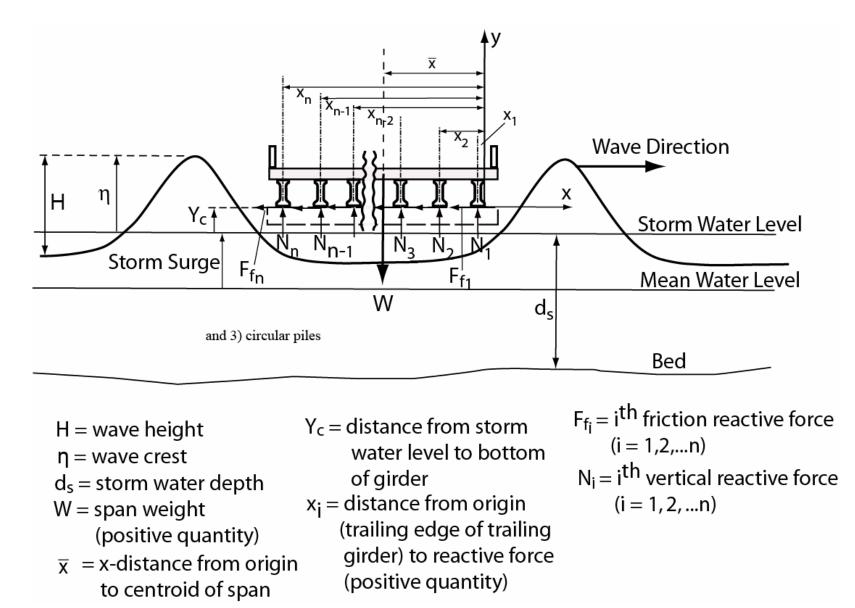
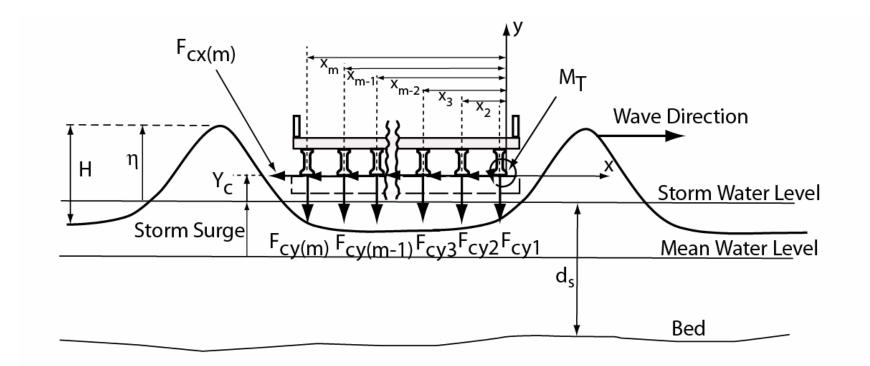
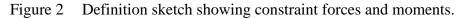




Figure 1 Definition sketch showing coordinate system, reactive forces, span weight, waves and nomenclature used in analysis.

 $\begin{array}{lll} H = wave \ height \\ \eta = wave \ crest \ height \ above \\ storm \ water \ level \\ d_s = storm \ water \ depth \\ \end{array} \begin{array}{lll} F_{cx(j)} = \ horizontal \ component \\ of \ the \ i^{th} \ constraint \ force \\ of \ the \ i^{th} \ constraint \ force \\ (j = 1, 2, ..., m) \end{array} \begin{array}{lll} M_T = \ trailing \ edge \ constraint \\ moment \ located \ at \ origin \\ moment \ located \ at \ origin \\ of \ the \ i^{th} \ constraint \ force \\ (j = 1, 2, ..., m) \end{array}$

UNCONSTRAINED ANALYSIS

If the wave forces are not enough to overcome the reactive forces, the structure is in static equilibrium and the following equilibrium equations apply:

Note that the

Total Reaction Force in the x-direction = $2\sum_{i=1}^{n} F_{f(i)}$. (0.1)

The assumption is that the friction force is the same on both ends of the girder (and therefore the 2 in Equation (0.1).

$$\sum_{i=1}^{n} F_{x} = F_{x(wave)} - 2\sum_{i=1}^{n} F_{f(i)}$$
(0.2)

$$\sum F_{y} = F_{y(wave)} - W + 2\sum_{i=1}^{n} N_{i} = 0$$
(0.3)

$$\sum M_{0} = M_{0(wave)} + W \overline{x} - 2\sum_{i=2}^{n} N_{i} x_{i} = 0$$
(0.4)

where

$$\begin{split} F_{f(i)} &\equiv \mbox{ frictional force on one end of the i}^{th} \mbox{ girder} \\ N_i &\equiv \mbox{ vertical component of the reactive force on one end of i}^{th} \mbox{ girder} \\ \overline{x} &\equiv \mbox{ x distance from origin to span center of gravity (positive scalar)} \\ x_i &\equiv \mbox{ x distance from origin to center of the i}^{th} \mbox{ girder (positive scalar)} \\ W &\equiv \mbox{ weight of superstructure (positive scalar)} \\ F_{x(wave)} &\equiv \mbox{ x component of wave force (positive or negative)} \\ F_{y(wave)} &\equiv \mbox{ y component of wave force (positive or negative)} \\ M_{0(wave)} &\equiv \mbox{ moment of wave loading about origin (positive CCW)} \\ n &\equiv \mbox{ number of girders} \end{split}$$

The friction force between the bottom of one end of the i^{th} girder and the pile cap is given in Equation (0.5)

$$\mathsf{F}_{\mathsf{f}(\mathsf{i})} = \mu \mathsf{N}_{\mathsf{i}} \tag{0.5}$$

where

$$\mu = \text{static friction coefficient}$$
 (0.6)

Substituting Equation (0.5) into Equations (0.3) and (0.4) results in

Reaction Force in X - direction =
$$\begin{cases} \mu N & \text{for } W > F_{y(\text{wave})} \\ 0 & \text{for } W \le F_{y(\text{wave})} \end{cases}, \quad (0.7)$$

where

$$N = 2\sum_{i=1}^{n} N_i = W - F_{y(wave)}$$
 (0.8)

Note that N cannot be negative.

Reaction Force in y - direction =
$$\begin{cases} W - F_{y(wave)} & \text{for } W > F_{y(wave)} \\ 0 & \text{for } W \le F_{y(wave)} \end{cases}$$
(0.9)

Stabilizing Moment about origin =
$$W \bar{x}$$
 (0.10)

We can now see if any of the maximum reaction forces are exceeded.

If

$$F_{x(wave)} > \mu N = \mu \left(W - F_{y(wave)} \right)$$
(0.11)

the horizontal wave force exceeds the horizontal friction force.

If

$$F_{y(wave)} > W$$
(0.12)

the vertical wave forces exceeds the vertical reactive force.

 $M_{0(wave)} < 0$ (i.e. $M_{0(wave)}$ is in CW direction, and;

$$\left|\mathsf{M}_{0(\mathsf{wave})}\right| > \mathsf{W}\ \overline{\mathsf{x}}\,,\tag{0.13}$$

the moment about the origin created by the wave forces exceeds the stabilizing moment.

If any one of the above described reactive forces/moments are exceeded and the span has constraints (i.e. bolts, tie downs, etc.) then the following analysis must be performed.

The following equations assume that at least one of the reaction forces and/or moments (due to the weight of the structure in the vertical direction and the friction forces in the horizontal direction) have been exceeded. The constraint forces and moments in the following analysis are the best estimates of their maximum value. The total number of constraints is m and the location of the jth constraint relative to the origin of the coordinate system is x_i as shown in Figure 2.

The excess forces and moment are defined as follows. These forces/moment represent the amount the wave/surge forces exceed the reactive forces. Note that some of these could be negative (i.e. one or more may not have exceeded the reactive forces/moments for the unconstrained span).

$$F_{x(\text{excess})} = F_{x(\text{wave})} - \mu N = F_{x(\text{wave})} - \mu \left(W - F_{y(\text{wave})}\right)$$
(0.14)

$$\mathsf{F}_{\mathsf{y}(\mathsf{excess})} = \left(\mathsf{F}_{\mathsf{y}(\mathsf{wave})} - \mathsf{W}\right) \tag{0.15}$$

$$M_{0(\text{excess})} = \left(W \,\overline{X} + M_{0(\text{wave})}\right) \tag{0.16}$$

If $M_{0(excess)} \ge 0.0$, unconstrained stabilizing moment has not been exceeded

If M_{0(excess)} < 0.0, unconstrained stabilizing moment has been exceeded

CONSTRAINED ANALYSIS

If

$$2\sum_{j=1}^{m} \mathsf{F}_{\mathsf{cx}(j)} > \mathsf{F}_{\mathsf{x}(\mathsf{excess})}$$
(0.17)

the horizontal constraint forces exceed the excess wave force in the x direction.

If

$$2\sum_{j=1}^{11} \mathsf{F}_{\mathsf{cx}(j)} \leq \mathsf{F}_{\mathsf{x}(\mathsf{excess})}$$
(0.18)

the horizontal constraint forces are exceeded by the excess horizontal force and the span will fail.

If

If

$$2\sum_{j=1}^{m} F_{cy(j)} > F_{y(excess)}$$
(0.19)

the vertical constraint forces exceed the excess wave force in the y direction.

If

$$2\sum_{j=1}^{m} \mathsf{F}_{\mathsf{cy}(j)} \leq \mathsf{F}_{\mathsf{y}(\mathsf{excess})}$$
(0.20)

the vertical constraint forces are exceeded by the excess vertical force and the span will fail.

If $M_{0(excess)} < 0.0$, i.e. $M_{0(excess)}$ is in CW direction, and;

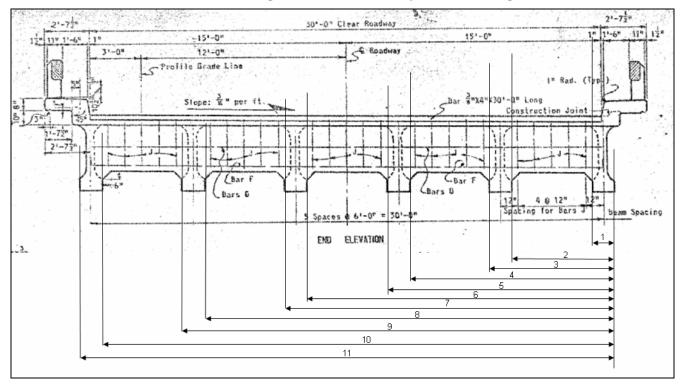
$$2\sum_{j=1}^{m} F_{cy(j)} \mathbf{x}_{j} + \mathbf{M}_{T} > \left| \mathbf{M}_{0(excess)} \right|$$
(0.21)

the constraint moment exceeds the excess moment about the origin.

If

$$2\sum_{j=1}^{m} \mathbf{F}_{cy(j)} \mathbf{x}_{J} + \mathbf{M}_{T} \leq \left| \mathbf{M}_{0(excess)} \right|$$
(0.22)

the constraint moment is exceeded by the excess moment and the span will fail.


Where

- M_T = the moment due to the constraint at the trailing edge (this term is included to account for the rare situation where the constraint is located at the origin of the coordinate system (thus a zero moment arm) but exerts a reactive moment.
- $m \equiv$ number of constraints
- $F_{cx(i)} \equiv j^{th}$ component of the horizontal constraint forces at each end of the girders

 $F_{cv(i)} \equiv j^{th}$ component of the vertical constraint forces at each end of the girders

 $x_j \equiv$ horizontal distance from the origin of the jth component of the vertical constraint forces

Example Problem 1: Given the Storm Surge and Wave Forces Determine if Span 131 on the East Bound I-10 Bridge over Escambia Bay Failed during Hurricane Ivan.

	Moment Arms	
#	Length (ft)	
1	1.833 =	1.833
2	6-(1.833/2)+(1.833/2) =	6.000
3	6+(1.833/2)+(1.833/2) =	7.833
4	12-(1.833/2)+(1.833/2) =	12.000
5	12+(1.833/2)+(1.833/2) =	13.833
6	18-(1.833/2)+(1.833/2) =	18.000
7	18+(1.833/2)+(1.833/2) =	19.833
8	24-(1.833/2)+(1.833/2) =	24.000
9	24+(1.833/2)+(1.833/2) =	25.833
10	30-(1.833/2)+(1.833/2) =	30.000
11	30+(1.833/2)+(1.833/2) =	31.833

Step 1 – Determine wave and surge forces

	Horizontal Force (kips)	Moment (ft-kips)
Maximum Positive Vertical Force (kips)	at time of	at time of
	Maximum Vertical Force	Maximum Vertical Force

Wave and surge forces computed using the Modified Kaplan Method

Step 2 – UNCONSTRAINED ANALYSIS

Maximum Reactive forces in the y-direction

Maximum Reactive Force in y - direction for unconstrained span = W = 386 kips

Maximum possible Reaction forces in the x-direction

Maximum Possible reaction Force in x - direction for unconstrained span = μ N

$$= \mu W = 0.4 \times 386 \text{ kips} = 154 \text{ kips}$$

Maximum stabilizing moment about the origin

Maximum Stabilizing Moment about origin for unconstrained span = W \bar{x}

Maximum Stabilizing Moment about origin for unconstrained span = 386 kips $\left[\frac{30\text{ft}+1.833\text{ft}}{2}\right]$

Maximum Reactive Stabilizing about origin for unconstrained span = 6,144 ft-kips

Reactive forces with surge/wave loading in the y-direction

N = 2
$$\sum_{i=1}^{n} N_i$$
 = W - F_{y(wave)}
N = 2 $\sum_{i=1}^{n} N_i$ = 386 kips - 760 kips = -374 kips

Since the vertical reaction forces for the unconstrained case (i.e. the normal forces) must be positive or zero

N = 0 kips

Step 3 - Check to see if surge wave forces and moments exceed reactive forces and moments

Check x-direction:

Is $F_{x(wave)} > \mu N$? 40 kips > 0.4 x 0 40 kips > 0 kips

Therefore, horizontal wave force exceeds horizontal friction force for unconstrained span.

Check y-direction Is $F_{y(wave)} > W$? 760 > 386 Therefore, vertical wave force exceeds vertical reactive force for unconstrained span

Check moment about the origin

Is $\frac{\mathsf{M}_{_{0(wave)}} < 0 \text{ and }}{\left|\mathsf{M}_{_{0(wave)}}\right| > W \overline{x}}$?

-7207 ft-kips < 0

|-7207| > 6144

Therefore, moment due to wave forces exceeds moment due to reactive forces for unconstrained span.

Step 4 – Calculate excess force

Excess force in x-direction

$$\begin{split} F_{x(\text{excess})} &= F_{x(\text{wave})} - \mu N = F_{x(\text{wave})} - \mu \left(W - F_{y(\text{wave})}\right) \\ F_{x(\text{excess})} &= 40 \text{ kips - 0 kips} = 40 \text{ kips} \end{split}$$

Excess force in y-direction

$$F_{y(excess)} = (F_{y(wave)} - W)$$
$$F_{y(excess)} = (760 - 386) = 374 \text{ kips}$$

Excess moment about the origin

 $M_{0(wave)} < 0$ and $M_{0(excess)} = (W \overline{x} + M_{0(wave)})$

-7207 ft-kips < 0 $M_{0(excess)} = (6144 \text{ ft-kips } -7207 \text{ ft-kips}) = -1063 \text{ ft-kips}$

Step 5 – CONSTRAINED ANALYSIS

Eight 7/8 in diameter anchor bolts connect the span to the substructure (two bolts at the ends of the outer girders). The plans specify A307 bolts which have a shear strength of 24 ksi and a tensile strength of 45 ksi. The bolt section is 0.6013 in² resulting in bolt shear and axial resistances of 14.4 kips and 27 kips, respectively. Calculating the bolt resistance using design specifications other than those used in designing the bridge and/or making different assumptions regarding the presence of threads in the shear planes or assuming some corrosion will result in different values of the calculated resistance.

Check x-direction constraints

$$\sum_{j=1}^{m} F_{cx(j)} = 8 \text{ bolts x 14.4 kips/bolt} = 115 \text{ kips > } F_{x(excess)}$$

Therefore, constrained span does not fail due to wave forces in the x-direction.

Check y-direction constraints

$$\sum_{j=1}^{m} F_{cy(j)} = 8 \text{ bolts x } 27 \text{ kips/bolt} = 217 \text{ kips} < F_{y(excess)} \text{ (i.e. } 217 \text{ kips} < 374 \text{ kips})$$

Therefore, the constrained span DOES FAIL due to surge/wave forces in y direction.

Check the constraining moment about the origin

$$\sum_{j=1}^{11} F_{cy(j)} x_j + M_{T} = 2 \times (1.833 \text{ ft } x \text{ 27 kips} + 30 \text{ ft } x \text{ 27 kips} + 31.833 \text{ ft } x \text{ 27 kips}) + 0$$
$$= 3,438 \text{ ft-kips} > |M_{0(\text{excess})}|$$

Therefore, the constrained span does not fail due to moments due to surge/wave forces.

According to these calculations the span will fail due to the upward vertical surge and wave force. An additional 157 kips of vertical constraint is required to equal the vertical forces.

Attachment F

Task 4 Submission

Attachment G

Discussion of Coefficients of Variation (COV's) to use in Reliability Analysis

TASK ORDER DTFH61-06-T-70006

FOR THE DEVELOPMENT OF GUIDE SPECIFICATIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS AND HANDBOOK OF RETROFIT OPTIONS FOR BRIDGES VULNERABLE TO COASTAL STORMS

Discussion of Coefficients of Variation (COV's) to use in Reliability Analysis

Paraphrasing from "Marketing Uncertainty" by J. William Kamphuis;

Uncertainties are inherent in basic coastal data and in derived data. Physical and numerical modeling contain their own uncertainties. Interpretation to produce quantitative output relies on measurements of output variables (calibration and verification data) and interpretation of model results requires coastal engineering expertise and must be done very carefully.

Coastal variables and the resulting computations contain substantial uncertainties. In reality, engineering is working with such uncertain parameters to derive best possible solutions to practical problems by careful study, application of basic principles, use of the appropriate tools and eventually introduction of a large measure of ingenuity and experience.

Regarding the development of guide specifications for bridges subject to coastal storm events, there are four basic parameters in the wave force prediction equations which all have varying degrees of uncertainty. They are:

- 1) Coefficients from laboratory tests
- 2) Wave height (including crest elevation)
- 3) Wave period
- 4) Storm water level (composed of astronomical tide, storm surge created by reduced atmospheric pressure and wind stress on water surface, wave setup, and local wind setup/set-down)

For most physical quantities, errors increase with the magnitude of the quantity. For example, the absolute error in measuring a wave height of 0.5m will be less than the absolute error in measuring a wave height of 5m. Thus, the uncertainty is defined as a coefficient of variation (COV) which is equal to the standard deviation divided by the mean value. Thus, COV's for each of the parameters listed above must be determined for use in the reliability analysis. The primary reference used for this effort is the Report of PIANC Working Group No. 12, "Uncertainty Related to Environmental Data and Estimated Extreme Events." It was decided that COVs should be developed independently for both Level I and Level III degrees of analysis and load factors developed through calibration using Monte Carlo Simulation for both cases. Based on these results, an estimate of the load factors for a Level II analysis would be made.

A discussion of how each of the COV's was developed follows.

- <u>Coefficients from Laboratory Tests</u> These coefficients are based on curve fitting the design equations to the results of the physical laboratory tests. As such, COV's can be determined directly from the data and resulting equations. They were calculated to be (TBD) for coefficient "A" and (TBD) for coefficient "B"
- 2) <u>Wave Height</u> With respect to the determination of the design wave height and crest elevation, four primary areas of uncertainties apply:
 - Errors in the calculation methods to determine the wave height these uncertainties pertain to the validity of any analytical or numerical methods used to calculate wave heights as well as the reliability of the underlying data used in these methods. The PIANC report presents a range of COV's for nearshore wave heights of 0.25 0.35 for manual calculations and of 0.1-0.2 for numerical methods (noting, thought, that it could be much larger in some cases). The upper limits of these ranges were chosen; 0.35 for a Level I analysis which is based on manual analytical calculations and 0.2 for a Level III analysis which requires the use of advanced numerical models.
 - Extreme Value Analysis to determine the 100-year design event two issues are involved in this item. The first is the error induced by the lack of knowledge about the true extremal distribution and the second concerns the influence of choice of threshold level in a Peak over Threshold, POT, analysis which is typically used for coastal storm events as these are discrete events which could occur any number of times in a given year (or not at all), and thus an annual maximum approach isn't valid. For the former issue, the PIANC report states the COV is in the order of 0.05-0.1 for events of 50 to 100 year return periods. For the latter issue, COV's on the order of 0.18-0.22 were calculated. Given that the extremal value analysis methods will be similar for Level I and Level III analyses, a combined COV value of 0.20 was chosen for uncertainties related to Extreme Value Analyses.
 - ▷ Distribution of wave heights within the spectrum, i.e. the magnitude of H_{max} versus H_s . Wave heights are typically assumed to follow a Rayleigh distribution. However, in reality, the wave heights observed in the sea tend to indicate a distribution slightly narrower than the Rayleighan due to the spread of a wave spectra over a wide frequency range, contrary to the assumption of the narrow-banded spectrum in the derivation of the Rayleigh distribution (Goda, 2000). A COV of 0.03 for both levels of analysis was chosen.
 - > Calculation of η versus H, i.e., the wave crest elevation above the still water elevation – the shape of a wave is impacted by the water depth and wave period and this in turn affects the relative elevation of the wave crest above the still water elevation. Different theories have been developed to describe a wave profile and its particle movements depending upon such parameters as the wave height, water depth and wave period. A COV of 0.03 for both levels of analysis was chosen.

Based on the above values, total COV's for wave height / crest elevation of 0.4 and 0.3 were calculated for Level I and III analyses respectively. The following table summarizes these preliminary COVs for the wave height for review and concurrence by the Task Force committee members.

	Level I	Level III
H _s calculation	0.35	0.20
Extreme Value Analysis	0.20	0.20
H _{max} /H _s factor	0.03	0.03
η / H factor	0.03	0.03
Total ($\sqrt{\text{sum of squares}}$)	0.4	0.3

- 3) <u>Wave Period</u> With respect to the determination of the design wave period, two primary areas of uncertainties apply:
 - Errors in the calculation methods to determine the wave height these uncertainties pertain to the validity of any analytical or numerical methods used to calculate wave periods as well as the reliability of the underlying data used in these methods. The same COV's as chosen for wave heights were chosen for wave periods.
 - Extreme Value Analysis to determine the 100-year design event similar issues as discussed for wave height above. Given that the extremal value analysis methods will be similar for Level I and Level III analyses, a combined COV value of 0.20 was chosen for uncertainties related to Extreme Value Analyses

The following table of preliminary COVs was developed for review by the Task Force committee members.

	Level I	Level III
Tp calculation	0.35	0.20
Extreme Value Analysis	0.20	0.20
Total ($\sqrt{\text{sum of squares}}$)	0.4	0.3

- 4) <u>Water Level</u> With respect to the determination of the design water level three primary areas of uncertainties apply:
 - ➢ Errors in the calculation methods to determine the storm surge these uncertainties pertain to the validity of any analytical or numerical methods used to calculate water levels as well as the reliability of the underlying data used in these methods. The PIANC report presents a range of COV's for estimates of storm surge of 0.1 − 0.25 for numerical methods. The upper limit of this range was chosen, 0.25 for a Level I analysis and the lower limit, 0.1 for a Level III analysis.
 - Astronomical Tides The PIANC report provides estimates of COV's ranging from 0.001 to 0.07 for predictions from constants. A mid-range value of 0.03 was chosen for both levels of analysis.
 - Extreme Value Analysis to determine the 100-year design event similar issues as discussed above for wave heights. Given that the extremal value analysis methods will be similar for Level I and Level III analyses, a combined COV value of 0.20 was chosen for uncertainties related to Extreme Value Analyses.
 - Errors in the calculation methods to determine the local wind set-up / set-down these uncertainties pertain to the validity of any analytical or numerical methods used to calculate local wind set-up / set-down as well as the reliability of the underlying data used in these methods. A COV of 0.35 was chosen for a Level I analysis and 0.2 for a Level III analysis.

The following table of preliminary COVs was developed for review by the Task Force committee members.

	Level I	Level III
Surge calculation	0.25	0.10
Astronomical Tide	0.03	0.03
Extreme Value Analysis	0.20	0.20
Local Wind Set-up / -down	0.35	0.20
Total ($\sqrt{\text{sum of squares}}$)	0.5	0.3