PAVEMENT SUBGRADE PERFORMANCE STUDY

Volume 1. Results from accelerated pavement testing of an A-2-4 subgrade soil at near optimum moisture content

by

Vincent Janoo⁽¹⁾

Edel Cortez⁽¹⁾

Robert Eaton⁽¹⁾

Niclas Odermatt⁽²⁾

^{1.} U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755, United States

^{2.} Royal Institute of Technology, Highway Engineering, Brinellvägen 34, SE - 100 44, Stockholm, Sweden

CONTENTS

EXECUTIVE SUMMARY	ix
	1
MATERIAL PROPERTIES	2
DESCRIPTION OF THE TEST SECTION	5
CONSTRUCTION OF THE TEST SECTION	7
CONSTRUCTION CONTROL	9
Dry Densities	9
Moisture Content	11
California Bearing Ratio (CBR)	13
Elevation Measurements	17
Deflection Testing	17
INSTRUMENTATION	
Strain measurements	
Stress measurements	23
Moisture measurements	24
Temperature measurements	
TESTING PROGRAM	
ACCELERATED LOADING OF THE TEST SECTIONS	29
RESULTS	
TEMPERATURE AND MOISTURE	
Temperature Measurements	
Moisture Measurements	
RESULTS FROM TEST WINDOW 701C1	
Dynamic Stress	
Dynamic Strain	

Permanent Strain	47
Surface Profile Measurements	51
RESULTS FROM TEST WINDOW 701C2	54
Dynamic Stress	54
Dynamic Strain	60
Permanent Strain	68
Surface Profile Measurements	71
RESULTS FROM TEST WINDOW 701C3	74
Dynamic Stress	74
Dynamic Strain	77
Permanent Strain	
Surface Profile Measurements	
RESULTS FROM TEST WINDOW 701C4	81
Dynamic Strain	
Permanent Strain	
Surface Profile Measurements	
SUMMARY	94
REFERENCES	
APPENDIX A: CONSTRUCTION DATA	
APPENDIX B: INSTRUMENTATION DATA	112
APPENDIX C: 701C1 RESULTS	117
APPENDIX D: 701C2 RESULTS	126
APPENDIX E: 701C3 RESULTS	136

ILLUSTRATIONS

Figure	
1. Gradation of original and blending soil to create the A-2-4 subgrade	2
2. Stockpiled A-2-4 test soil at CRREL	
3. Grain size distribution of the subgrade material, the A-2-4 soil	
4. Moisture density relationship for A-2-4 subgrade soil	4
5. Test section area in the FERF.	5
6. Location of test section in the FERF	6
7. Cross section of test section.	6
8. Placement of first lift in 701 test section	
9. Grading of subgrade layer	8
10. Compaction of subgrade	8
11. Location of moisture and density measurements on test section 701	9
12. Constructed relative densities of the 701 subgrade	10
13. Constructed relative densities of the top 1.2 m of subgrade	10
14. Distribution of moisture content in the subgrade	11
15. Distribution of moisture content in the upper 1.2 m of subgrade	12
16. Distribution of moisture content in the upper 0.9 m of subgrade	12
17. Location of CBR measurement points using the Clegg hammer	13
18. Distribution of CBR in the subgrade	14
19. Distribution of CBR in the upper 1.2 m of subgrade.	14
20. Location of dynamic cone penetrometer (DCP) test points.	15
21. Distribution of subgrade CBR from the DCP tests	16
22. Distribution of subgrade CBR in the upper 1.2 m from the DCP tests	16
23. Stones in 701 found during the removal process	17
24. Distribution of layer thickness measured during subgrade construction	
25. Locations of various instrumentation in the test section	19
26. Emu coils for measuring strain	20
27. εmu coil placement in the test section	
28. Illustration of the layers in the test section	

29.	Dynatest soil pressure cell	23
30.	Vitel Hydra moisture probe	24
31.	Vitel moisture probe calibration results for the A-2-4 soil	25
32.	The laser profilometer.	27
33.	Locations for profile measurements in test section 701	27
34.	Definition of rut depth	27
35.	Location of test wheels over coil and stress cells	28
36.	The Heavy Vehicle Simulator (HVS), Mark IV	29
37.	Dimensions of the test tire	30
38.	Mean daily temperatures during the test period.	31
39.	Temperature regime as measured by thermistors in the Vitel Hydra probes	31
40.	Subgrade temperature profile displaying average and range.	32
41.	Subgrade moisture regime at various depths during the test period	33
42.	Profile of moisture content with average values during the test period	33
43.	Typical vertical stress response in subgrade after 20,000 repetitions	35
44.	Change in vertical stress as a function of load repetition	35
45.	Typical strains at the three wheel positions.	36
46.	Strain response as a function of depth	38
47.	Vertical strains as a function of depth and load repetition (701C1)	42
48.	Longitudinal strains as a function of depth and load repetition (701C1)	42
49.	Transverse strains as a function of depth and load repetition	43
50.	Change in vertical dynamic strain as a function of load repetition	43
51.	Change in peak longitudinal dynamic strain as a function of load repetition	44
52.	Change in peak transverse dynamic strain as a function of load repetition	44
53.	Vertical strain as a function of depth (701C1)	46
54.	Longitudinal strain as a function of depth (701C1)	46
55.	Transverse strain as a function of depth (701C1)	47
56.	Relationship between dynamic and static measured permanent deformation	48
57.	Progression of vertical permanent strain as a function of load repetition	49
58.	Log-log representation of change in vertical strain	
	as a function of load repetition	49

59.	Permanent longitudinal deformation as a function of load repetition	. 50
60.	Permanent transverse deformation as a function of load repetition	. 51
61.	Typical rut depth response as a function of load passes.	. 52
62.	Longitudinal surface rutting as a function of load repetition	. 53
63.	Comparison of total pavement deformation between	
	profilometer and coil gage systems	. 53
64.	Typical vertical stress response in the subgrade after 27,260 repetitions	. 55
65.	Vertical stress (Position 2) response as a function of load repetition	. 55
66.	Typical longitudinal stress response in the subgrade ($z = 500$ mm).	. 56
67.	Typical longitudinal stress response in the subgrade	. 56
68.	Change in longitudinal stress (Position 2) as a function of load repetition	. 57
69.	Stress response after 500 load repetitions	. 58
70.	"Corrected" vs. measured longitudinal stress as a function of load repetition	. 58
71.	Typical transverse stress response in the subgrade ($z = 500$ mm).	. 59
72.	Change in transverse stress as a function of load repetition	. 59
73.	Strain response as a function of depth ($z = 381$ mm from the surface)	. 61
74.	Strain response as a function of depth ($z = 686$ mm from the surface)	. 61
75.	Strain response as a function of depth ($z = 992$ mm from the surface)	. 62
76.	Development of dynamic vertical strain as a function of load repetition	. 63
77.	Dynamic vertical subgrade strain as a function of load repetition	. 63
78.	Change in peak longitudinal dynamic strain as a function of load repetition	. 65
79.	Change in longitudinal strain as a function of depth and load repetition	. 65
80.	Change in transverse strain as a function of load repetition.	. 67
81.	Progression of dynamic transverse strains	
	as a function of depth and load repetition	. 67
82.	Development of vertical permanent deformation	
	as a function of load repetition	. 68
83.	Development of longitudinal permanent deformation	
	as a function of load repetition	. 69
84.	Development of transverse permanent deformation	
	as a function of load repetition.	. 70

85.	Vertical strain in base and subgrade as a function of load repetition	. 70
86.	Progression of vertical permanent strain as a function of load repetition	.71
87.	Typical rut depth response as a function of load passes, Position 8	. 72
88.	Longitudinal surface rutting as a function of load repetition	. 73
89.	Comparison of total pavement deformation	
	between profilometer and coil gage systems	. 73
90.	Typical stress responses in the subgrade after 30,000 repetitions	. 75
91.	Longitudinal stress response (Position 2) as a function of load repetition	. 76
92.	Transverse stress response (Position 3) as a function of load repetition	. 76
93.	Development of dynamic vertical strain	
	as a function of load repetition and depth, Position 2	. 77
94.	Change in longitudinal strain	
	as a function of load repetition and depth, Position 2	. 79
95.	Development of the transverse strains	
	as a function of load repetition and depth, Position 2	. 80
96.	Longitudinal surface rutting as a function of load repetition	. 81
97.	Development of the dynamic vertical strain as a function of load repetition	. 83
98.	Dynamic vertical strain as a function of load repetition (701C4).	. 83
99.	Progression of vertical dynamic strain	
	as a function of depth and load repetition	. 84
100	D. Development of longitudinal strain as a function of load repetition	. 85
101	1. Change in peak longitudinal dynamic strain as a function of load repetition	. 86
102	2. Change in transverse strains with load repetition in the subgrade (701C4)	. 87
103	3. Change in transverse strain as a function of load repetition.	. 87
104	4. Progression of dynamic transverse strains	
	as a function of depth and load repetition	. 88
105	5. Development of vertical permanent deformation	
	as a function of load repetition	. 89
106	6. Development of longitudinal permanent deformation	
	as a function of load repetition.	. 90

107. Development of transverse permanent deformation	
as a function of load repetition	90
108. Progression of vertical permanent strain as a function of load repetition	91
109. Development of permanent strains in the subgrade.	91
110. Typical rut depth response as a function of load repetition, Position 8	92
111. Longitudinal surface rutting as a function of load repetition	93
112. Comparison of total pavement deformation	
between profilometer and coil gage systems	93
113. Number of passes and rut depth	96
114. Dynamic failure strain as a function of load repetition	97
115. Effect of load repetition on the dynamic vertical strain	98
116. Comparison of test results to AASHO Road Test	99

TABLES

1. Summary of classification test on 701 subgrade soil.	5
2. Coefficients for power law curves applied to dynamic strain data	45
3. Coefficients for power law curves applied to permanent strain data	50
4. Coefficients for power law curves applied to dynamic strain data	64
5. Coefficients for power law curves applied to dynamic longitudinal strain data	66
6. Coefficients for power law curves applied to dynamic transverse strain data	66
7. Coefficients for power law curves applied to longitudinal strain development	78
8. Coefficients for power law curves applies to transverse strain development	79
9. Coefficients for power law curves applied to dynamic strain development	84
10. Coefficients for power law curves applied to	
dynamic longitudinal strain development	85
11. Coefficients for power law curves applied to	
dynamic transverse strain development	88

EXECUTIVE SUMMARY

This is the second of a series of reports on the subgrade failure criteria research study. The hypothesis for this study is that the failure criterion depends on the subgrade type and the in-situ moisture content. Many of the current mechanistic design procedures incorporate the results from AASHO Road Tests conducted in the late fifties. The criterion is based on one soil type (A-6), and most of all it was difficult to discern the effect of load and environment on the failure criterion. Our assertion is that the criterion is not applicable to other subgrades and possibly to areas other than where it was developed. Also, the criterion was inferred from surface distresses rather than from actual in-situ stress and/or strain measurements.

As part of the research program, four subgrade soils were selected for testing in the Frost Effects Research Facility (FERF). Each subgrade soil was to constructed at three moisture contents, with one at or near optimum density and moisture content. The test sections, consisting of 75 mm of asphalt concrete and 229 mm of crushed base over the test subgrade soil, were instrumented with stress, strain, moisture, and temperature sensors. The test sections were then subjected to accelerated loading under controlled environmental conditions.

This report presents the results from the accelerated pavement for one of the test subgrade soil. The subgrade, based on AASHTO soil classification system, was an A-2-4. It was constructed at near optimum density and moisture content of 1933 kg/m³ and 9.5 % by weight, respectively. During construction, layer density, moisture content, and CBR were recorded. Accelerated pavement testing were conducted on four test windows in the test section. Each test window was approximately 6.0 m long and 1 m wide. Loading was applied unidirectionally at an average speed of 13 km/hr. The test section, barring any breakdowns, was subjected to about 700 load repetitions in an hour. Testing was conducted for 22 hours per day. The remaining 2 hours were used for maintenance. The load was varied in three of the test windows, ranging from 80 to 104 kN. The load was applied through dual truck tires, with the tire pressures averaging around 757 kPa.

Stress, strain, and surface rut measurements were taken periodically. Stress measurements were available in three of the four windows. All stress measurements were taken in the subgrade at approximately 150 mm from the top of the subgrade. In one of the

ix

test windows, stress measurements were also taken at 450 mm from the top of the subgrade. Dynamic and permanent strains in the base and subgrade were measured in all four windows.

This report presents the measured response of the test section to accelerated loading. It was found that the current subgrade failure criterion for an A-2-4 subgrade soil is inadequate. The current criterion overestimates the limiting subgrade strain at a given load level by an approximate factor of two. It was also found that even with a 100% crushed base course, approximately 42–46% of the total deformation was in the base. It was also found that the vertical permanent strains were significant compared to the longitudinal and transverse strains. In the vertical direction the majority of the deformation occurred in the base and the top 300 mm of subgrade. However, there was a poor correlation between the vertical strain and load repetitions. Additional results from other test sections will be used to validate the findings from these tests.

PAVEMENT SUBGRADE PERFORMANCE STUDY

Volume 1. Results from accelerated pavement testing of an A-2-4 subgrade soil

by

Vincent Janoo, Edel Cortez, Robert Eaton, Niclas Odermatt

INTRODUCTION

As a result of the work by Dormon and Metcalf (1965) using data from the AASHO Road Tests, the current design criterion for pavements stipulates that the failure of the subgrade can be minimized by limiting the level of vertical compressive strain on top of the subgrade. However, it must be remembered that this limiting subgrade strain criterion was based exclusively on the A-6 soil at the AASHO Road Test. This failure criterion may not be applicable for other material types (gravel, sand, silt, or clay) nor for other moisture conditions. For example, the practical experience of pavement and geotechnical engineers indicates that a silt subgrade ruts more easily than gravel and that moisture conditions near saturation are more critical than when the subgrade is at or near optimum.

As part of an international study on pavement subgrade performance, several full-scale test sections were constructed in the Frost Effects Research Facility (FERF) at the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) in Hanover, New Hampshire. The test sections were constructed from different subgrade soils at different moisture contents. A detailed overview of the project can be found in Janoo et al. (1999).

The test sections consisted of a 76-mm asphalt concrete (AC) layer, a 229-mm crushed gravel base, and 3 m of test subgrade soil. They were instrumented with stress cells, strain

gages, and moisture and temperature sensors. The test sections were subjected to accelerated loading using the Heavy Vehicle Simulator (HVS). Surface rut depth measurements were taken periodically during the accelerated load tests. For this study, failure was considered to be a surface rut depth of 12.5 mm. At the same time, subsurface stress and strain measurements were taken. The testing was conducted at around 20°C. The results from the first full-scale accelerated load test section with a silty gravel subgrade soil constructed at near-optimum moisture content and density are presented in this report.

MATERIAL PROPERTIES

The subgrade soil for this test section was obtained from a local quarry in West Lebanon, New Hampshire, USA. An initial analysis of the soil indicated that the material was a nonplastic A-1-b material (Fig. 1). The soil was blended with some A-4 soil to change the gradation to an A-2-4 and to increase the plasticity of the soil (Fig. 1).

Figure 1. Gradation of original and blending soil to create the A-2-4 subgrade.

The blending was done at the pit, and approximately 1500 m³ of the blended material was delivered to CRREL and stockpiled (Fig. 2). Routine classification tests conducted on the stockpiled material included optimum moisture, maximum density, gradation and hydrometer analyses, specific gravity, and liquid and plastic limits. Standard AASHTO test procedures were used. Additional details on the soil characterization can be found in Janoo et al. (1999).

Figure 2. Stockpiled A-2-4 test soil at CRREL

Additional routine tests were conducted on the subgrade soil in the test section. The results presented here are from six random samples from the test section. The average grain size distribution of the subgrade soil is shown in Figure 3. The soil has approximately 30% passing the 0.074-mm sieve. The average liquid limit (LL) and plasticity index (PI) of the soil were 30% and 2.1, respectively. The average specific gravity was 2.72. According to the

Figure 3. Grain size distribution of the subgrade material, the A-2-4 soil.

American Association of Highway and Transportation Officials (AASHTO) soil classification system, the subgrade soil was characterized as an A-2-4. According to the Unified Soil Classification System (USCS), the subgrade soil was classified as silty sand (SM).

Two sets of optimum moisture content and maximum density tests were conducted on the subgrade material in the test section using the AASHTO test procedure, *The Moisture-Density Relations of Soils Using a 5.5 lb (2.5 kg) Rammer and a 12 in. (305 mm) Drop* (T 99-90). The results from these tests are shown in Figure 4. The average optimum density and moisture content were 1934 kg/cm³ and 10%, respectively. The results from the classification tests are summarized in Table 1.

Figure 4. Moisture density relationship for A-2-4 subgrade soil.

The base course was crushed gravel (No 304 NH State DOT base course specification) and was classified as an A-1-a or GP-GM using the AASHTO or ASTM classification systems, respectively. This material was also stockpiled at CRREL. The gradation of the base course as shown in Figure 1 is the average of several tests conducted on the stockpiled material. The optimum moisture content of the base course was 3.3%. The asphalt layers met

the standard NH AC 20 base and surface course mix requirements. No tests were conducted on the asphalt mixture.

AASHTO	A-2-4
USCS	SM
Spec. Gravity	2.72
LL (%)	30
PI	2.1
Optimum moisture content (%)	10.0
Maximum Density (kg/m ³)	1934
% pass. #10	71.8

Table 1. Summary of classification test on701 subgrade soil.

DESCRIPTION OF THE TEST SECTION

The test section was constructed in the Frost Effects Research Facility (FERF). A detailed description of the FERF can be found in Janoo et al. (1999). The overall facility is 56 m long by 31 m wide and can accommodate up to 12 test sections at one time. The 701 test section was constructed on the north side of the building, as shown in Figure 5. The available area for the test section was 42 m long by 6.4 m wide and 3.7 m deep.

Of the 42 m, approximately 19.5 m was sloped. The actual length used for testing was approximately 23 m long (Fig. 6). There were the six test windows within the test area for conducting accelerated load tests. Each test window was 7.8 m long, of which the

Figure 5. Test section area in the FERF.

Figure 6. Location of test section in the FERF.

beginning and the end 0.9 m were used as acceleration and deceleration areas for the wheel. The area between these two areas (6 m long) was where the constant velocity tests were conducted. The width of each of the test window was 0.9 m. The center-to-center distance between the test windows was 1.2 m.

The thicknesses of the test section layers were based on theoretical multi-layered analysis (Hildebrand and Irwin 1994) and from results from Danish Road Institute (DRI) test sections using the Road Testing Machine (RTM) (Janoo et al. 1999). In the FERF the test section cross section was 76 mm of asphalt concrete and 229 mm of crushed base over 3048 mm of test subgrade soil (Fig. 7).

Figure 7. Cross section of test section.

CONSTRUCTION OF THE TEST SECTION

The specifications required that the subgrade be constructed in lifts and that each lift be compacted at moisture contents within $\pm 2\%$ of the optimum and to a density between 95 and 100% of the maximum dry density obtained from the Standard AASHTO T99 test procedure. The bottom 1.88 m of the subgrade in the test section was constructed in 300-mm lifts, while the remaining 1.2 m of the subgrade was constructed at a nominal lift thickness of 150 mm.

Construction of the test section was delayed due the delay in the delivery of the Heavy Vehicle Simulator (HVS). However, because the analysis by Hildebrand and Irwin (1994) showed that below 1.5 m from the pavement surface the effect of the wheel load was minimal, a decision was made to build the test section in two phases. In phase 1 the bottom 2.1 m was constructed, beginning on September 26, 1995, and completed on September 28, 1995. Seven lifts were constructed in phase 1. The seventh lift was constructed as a cover for the test section and was covered with a tarp to minimize moisture loss. Because of delays in the delivery of the HVS, the construction of the second phase of the test section did not begin until mid-October 1996. The construction in phase 2 involved removing the top existing 300 mm of subgrade, reworking the material, and reconstructing in two 150-mm layers.

During the stockpiling process, some blended oil was placed directly on top of the concrete floor in the test basin (Fig. 8). This material was mixed and placed into the first 300mm lift. The remaining lifts were constructed from the stockpiled material. The construction sequence was as follows. First, a bucket loader was used to bring the stockpiled material to the top of the test basin. A bulldozer was used to move and mix the subgrade into the test basin and level it to the proper grade (Fig. 9). For this soil, from random sampling of the stockpiled material, the moisture content was around 10%. The soil was placed at its in-situ water content. During the construction process, stones larger than 50 mm were removed manually. Once the grade was reached, the layer was compacted using a 9000-kg steel-wheel roller (Fig. 10). Compaction started at one end of the longitudinal wall and moved in approximately 0.3-m increments towards the other longitudinal wall. The compaction was done in the non-vibratory mode so as not to disturb any instrumentation in the layers below. The area approximately 0.3 m long from the south supporting pad was compacted using a hand compactor since the steel-wheel compactor could not reach this area.

7

Figure 8. Placement of first lift in 701 test section.

Figure 9. Grading of subgrade layer.

Figure 10. Compaction of subgrade soil.

Construction Control

As part of construction control, once the compaction was completed, a series of tests were conducted on the compacted layer. These measurements were made on every 300-mm lift. The tests included determination of moisture, density, CBR, layer thickness, and surface deflection. The primary properties used for construction control were the moisture content and dry density of the lifts. Additional details on construction control of the subgrade soil can be found in Janoo et al. (1999).

Moisture and density measurements were taken using the Troxler nuclear gage at the locations shown in Figure 11. The moisture and density determinations were made in a volume of soil using the direct approach. The probe from the Troxler penetrated into 150 mm of soil. On each lift, 30 measurements of moisture and densities were made. A total of 300 moisture and density measurements were made during the construction of the subgrade.

Figure 11. Location of moisture and density measurements on test section 701.

Dry Densities

The mean density of the subgrade is 1901 kg/m³, with a coefficient of variation (COV) of 3%. A histogram and cumulative frequency plot of the relative compaction is presented in Figure 12, which shows that 12% of the data was below the minimum 95% relative compaction and 69% of the compaction is at or below the maximum density. An additional 21% of the measurements are below 102%.

Figure 12. Constructed relative densities of the 701 subgrade.

Figure 13. Constructed relative densities of the top 1.2 m of subgrade.

A similar histogram and cumulative frequency plot for the relative compaction of the upper 1.2 m of subgrade soil is shown in Figure 13. The mean dry density of the upper 1.2 m of subgrade is 1933 kg/m³, with a COV of 2.4%. Approximately 2% of the measurements indicated that relative compaction of the upper 1.2 m of subgrade was less than 95%. Approximately 83% of data indicated that the relative compaction of the upper 1.2 m of subgrade was between 95 and 102% of the laboratory maximum density.

The results of the measurements are tabulated in Appendix A, Table A-1. Also shown in the table are the densities measured on top of the base course. On top of the base course, density measurements were taken using the backscatter method. The mean density of the base course was 2068 kg/m³, with a COV of approximately 6%.

Moisture Content

The mean moisture content of the test subgrade soil was 9.0%, with a COV of 13.6%. The distribution of the moisture contents in the subgrade is shown in Figure 14. Approximately 79% of the data are within the \pm 2% specification. Another distribution of the moisture content in the upper 1.2 m is shown in Figure 15. The mean moisture content of the upper 1.2 m of subgrade was 9.5%, with a COV of 6.1%. With respect to the target moisture content of 10%, approximately 79% of the data were within the \pm 2% specification. The measured moisture contents of the subgrade and base course are presented in Table A-2.

Figure 14. Distribution of moisture content in the subgrade.

Figure 15. Distribution of moisture content in the upper 1.2 m of subgrade.

Table A-2 indicates that the top 300 mm of soil from phase 1 had dried slightly since the end of phase 1 construction. When the layer was reworked, no water was added. Ignoring the moisture content of layer T4, the mean moisture content in the upper subgrade layers is 10.3%, with a COV of 9.9%. The distribution of the moisture content in the upper 0.9 m is shown in Figure 16. Approximately 98% of the data are within the \pm 2% specification.

Figure 16. Distribution of moisture content in the upper 0.9 m of subgrade.

California Bearing Ratio (CBR)

Layer CBR data were obtained from the Clegg hammer and dynamic cone penetrometer (DCP). Details on the Clegg hammer and DCP can be found in Janoo et al. (1999). Locations where the CBR tests using the Clegg hammer were measured are shown in Figure 17. A total of 48 measurements were made with the Clegg hammer tests on every 300-mm lift. The Clegg hammer test is a fast, nondestructive test and provides a good indicator of lift uniformity. The Clegg hammer is essentially a modified AASHTO compaction hammer fitted with a piezoelectric accelerometer and is commonly used in Canada, Australia, and Europe for compaction control of subgrade, subbase, and base courses. The deceleration is converted to the Clegg impact value (CIV), and the CBR of the layer is determined using the relationship CBR (%) = $0.07 \times (CIV^2)$.

Figure 17. Location of CBR measurement points using the Clegg hammer.

During the construction of the bottom subgrade layers in phase 1, due to miscommunications, CBR measurements were only made in the middle two rows. A total of 24 measurements were made on each layer. During phase 2 construction of the upper 1.2 m of subgrade, CBR measurements were made at all locations. The results of 351 measurements made during the construction of the subgrade are presented in Table A-3. A distribution of the CBR in the subgrade is shown in Figure 18. The mean CBR was 14%, with a COV of 40%.

A similar distribution of the CBR for the upper 1.2 m of subgrade is shown in Figure 19. The mean CBR of the upper 1.2 m subgrade was 16%, with a COV of 50%. A review of

Figure 19. Distribution of CBR in the upper 1.2 m of subgrade.

Table A-3 indicates that many of the lower CBR values were close to the south wall (1, 2, 13, 14, 25, 26, 37, and 38, Fig. 18). These were in the areas where it was difficult to compact the soil with the roller and it was done manually.

The CBR of the subgrade was also determined from the dynamic cone penetrometer (DCP). The DCP tests consisted of raising a 4.5-kg hammer to a height of 584 mm and then dropping it onto an anvil attached to the DCP rod. The force on the anvil drives the cone into the soil, and the number of blows required to drive the cone to a depth of 25-mm increments is noted. The DCP index, which is the amount of penetration per blow, was converted to CBR using relationships developed by the Corps of Engineers (Webster et al. 1992). A total of 24 measurements per lift were conducted, as shown in Figure 20. A distribution of the CBR results from the DCP tests are shown in Figure 21. The results are also tabulated in Table A-4.

Figure 20. Location of dynamic cone penetrometer (DCP) test points.

The mean CBR of the subgrade was 13, with a COV of 56%. This is similar to that obtained from the Clegg hammer. A similar distribution for the upper 1.2 m of subgrade is shown in Figure 22. The mean CBR of the upper subgrade was 12, with a COV of 56%.

The high coefficient of variation with the CBR data may be due to stones in the subgrade material. Even though attempts were made to remove stones larger than 50 mm, when the test section was removed at the end of testing, we found the subgrade to contain a significant number of stones (Fig 23).

Figure 21. Distribution of subgrade CBR from the DCP tests.

Figure 22. Distribution of subgrade CBR in the upper 1.2 m from the DCP tests.

Figure 23. Stones in 701 found during the removal process.

Elevation Measurements

Elevation measurements were taken for every 300-mm lift. Below 1.2 m from the surface the bottom six lifts were constructed at nominal thicknesses of 300 mm. The top 1.2 m of subgrade was constructed in 150-mm lifts. Lift thicknesses measured during the construction of the test section are presented in Table A-5. The distribution of layer thickness during the construction of the subgrade is shown in Figure 24. The mean layer thickness of the subgrade was 304 mm, with a COV of 15%. The mean lift thickness of the base layer was 267 mm, with a COV of 7%. The mean thickness of the asphalt concrete layer was 84 mm, with a COV of 14%.

Deflection Testing

Although not used as part of construction control, as the test section was constructed, falling weight deflection (FWD) measurements were taken at locations close to where the DCP tests were conducted. A total of 24 measurements were taken on each 300-mm lift in the subgrade and on top of the base and the asphalt concrete layer. Prior to construction of the test sections, FWD measurements were also taken on the concrete slab beneath the subgrade. The tests were done using the SHRP protocol. The geophone sensors were located at 0, 203, 300, 600, 900, 1200, and 1800 mm from the center of the loading plate. The plate diameters used on the subgrade and on the AC layer were 457 and 300 mm, respectively Additionally FWD tests were conducted after completion of the accelerated load tests.

Figure 24. Distribution of layer thickness measured during subgrade construction.

Instrumentation

Instrumentation for measuring stress, strain, temperature, and moisture content were installed in the pavement structure during construction of the test section. The locations of the gages are shown in Figures 25. In Figure 25a, a plan view of the location of all the gages is presented. In Figures 25b–e, the locations of the moisture, stress cells and strain and temperature gages as a function of depth are shown. A brief description of the gages is presented here. Detail descriptions can be found in Janoo et al. (1999).

Strain measurements

Strain measurements were made with the Emu system (Fig. 26). The system consisted of one sending coil and three receiving coils [longitudinal (x), transverse (y), and vertical (z)], the Emu signal conditioner, and a computer data acquisition system. Details of the system can be found in the users manual by Dawson (1994).

Figure 25a. Plan view showing the locations of various instrumentation in test section.

Figure 25b. Locations of ϵ mu coil gages in the test section.

Figure 25c. Locations of stress gages in the test section.

Figure 25d. Locations of moisture gages in the test section.

Figure 25e. Locations of temperature sensors in the test section.

Figure 26. Emu coils for measuring strain.

The principle behind the system is that when an alternating current is passed through a coil of wire, an alternating magnetic field is generated. Another coil placed within this field will have an alternating current induced in it. The magnitude of the induced current is proportional to the magnitude of the exciting current and the distance between the transmitting and receiving cells.

Sets of 100-mm-diameter coil sensors were installed in each test window in the base course and subgrade. They measure the displacements in the vertical direction (designated as the z direction) and in two perpendicular horizontal directions (the x and y directions), as shown in Figure 27. The z-direction coils are coaxial, while the x- and y-direction coils are coplanar. The x direction is parallel to the wheel travel, and the y direction is perpendicular to it. The coils are installed at eight depths in columnar stacks, starting at 150 mm below the pavement surface and extending to 1.2 m at a nominal center-to-center spacing of 150 mm. A loose coil was used on the asphalt surface to measure the permanent deformation in the upper layer of asphalt and base. The ID and location of the coils in each window are presented in Tables B-1, Appendix B.

Figure 27. Emu coil placement in the test section.

The horizontal locations are based from a datum located 0.3 m in the y direction from the northeast corner of the test section (Fig. 25a). The column identified as "Layer" in Table B-1 represents the material between the vertical coil pairs, as illustrated in Figure 28.

To relate the output voltage to the coil spacing in engineering units (millimeters), the following power equation gave a good fit:

 $V = a D^n$

where D = static distance between the transmit and receive coils

- V = demodulated (d.c.) "static" voltage from the coils
- a and n = regression constants for a pair of coils.

Details on the calibration process can be found in Janoo (1999). The coefficients a and n for each coil pair are presented in Table B-2.

Figure 28. Illustration of the layers in the test section.

Once the grade of the lift was achieved, the surface where the coils were to be placed was raked smooth and leveled. To assure that the coil was aligned coaxially with the coil immediately below, the next lower coil was excited and the static response from the upper coil was measured. The coils were aligned when a maximum output from the coil pair was achieved. The coil was pressed down on the surface, checked with a carpenter's level, and shimmed with soil, if necessary, to assure that it was level. The thickness of the underlying compacted lift of soil was then measured. A thickness of approximately 150 mm was desired. If the lift was too thick, a small amount of trimming was done in the area where the coil was placed. If the lift was too thin, a small amount of shimming with soil was done. After the coil was properly aligned and leveled, it was covered with about 5 cm of soil, which was lightly

tamped. The coaxial cable leading to the coil was routed in a small trench, with a strainrelieving loop in the cable. The alignment dowels, visible in Figure 27, were then removed, and a 150-mm lift of compacted subgrade soil or base course was constructed using normal construction procedures.

Stress measurements

Vertical, longitudinal, and transverse stress measurements were made with the Dynatest soil pressure cells. They were used to measure the dynamic stresses due to the moving wheel load on the surface of the test windows. Details of the stress cell and calibration procedure can be found in Janoo et al. (1999).

Stress cells with a range of 10–200 kPa were used to measure the horizontal stresses, while stress cells with a range of 100–800 kPa were used to measure the vertical stresses (Fig. 29). The longitudinal-direction stress cell had its sensing elements facing the direction of wheel travel, while the transverse-direction stress cell had its sensing element facing the transverse direction of wheel travel. Due to delays in delivery of the cells, only windows 701C1, 701C2, and 701 C3 were instrumented with stress cells.

Figure 29. Dynatest soil pressure cell.

The locations of the soil pressure cells are shown in Figure 25c and tabulated with the respective calibration coefficients in Table B-3. The longitudinal (x) and transverse distances in Table 10 are based from a datum located 0.3 m in the y direction from the northeast corner of the test section (Fig. 25). The depth is from the surface of pavement surface. The calibration between stress and voltage is given below:

$$\sigma(kPa) = \frac{(1000 \times V)}{(V_{ex} \times Gain \times GF \times 10^{-5})}$$

where σ = measured stress

V = measured voltage V_{ex} = excitation voltage = 10 V GF = gain factor (Table B-3, Appendix B) Gain = 500 × A/D card gain.

The A/D card gain was set at 2 for 701C1 and 8 for 701C2 and 701C3.

Moisture measurements

Soil moisture was measured with Vitel soil moisture probes (Fig. 30). Details on the probe can be found in Janoo et al. (1999). Basically the probe is used to measure the dielectric constant of the soil at a high frequency of 50 MHz. The measured dielectric constant is divided into its two components (capacitive and conductive). The capacitive component depends on the volumetric moisture content of the soil. Through the use of appropriate calibration curves, the dielectric constant measurement can be related to soil moisture. The accuracy of the volumetric moisture content is $\pm 2\%$ using the calibration equations provided by the manufacturer. The accuracy is increased to $\pm 0.5\%$ if calibrations are conducted with the test soil. The reproducibility of the measurements is $\pm 0.3\%$. The reliability of the data deteriorates below -10° C.

Figure 30. Vitel Hydra moisture probe.

Figure 31. Vitel moisture probe calibration results for the A-2-4 soil.

The Vitel moisture probes were calibrated for the test subgrade soil (Fig. 31). The sand calibration equation in the Vitel software was used to convert the dielectric constant to volumetric moisture content. Details on the calibration of the probes can be found in Janoo et al. (1999). The following linear equation was used to determine the volumetric water content in the A-2-4 test subgrade soil in test section 701:

$$\omega_{\text{vol}} = 0.8173 \times (Vitel) + 0.067 R^2 = 0.91$$

where ω_{vol} is the calibrated volumetric moisture content and *Vitel* is the volumetric moisture content measured from Vitel Hydra probe.

Six sensors were installed in each test window in test section 701. The longitudinal (x) and transverse distances are based from a datum located 0.3 m in the y direction from the northeast corner of the test section (Fig. 25). The depth is from the surface of the pavement. The locations in the x-y plane are shown in Figure 25a, and the elevation view is shown in Figure 25d. The locations are also tabulated in Table B-4. Details of the installation procedure can be found in Janoo et al. (1999). Moisture measurements were taken on a hourly basis from the end of construction of the test sections to the end of all the testing of 701.

Temperature measurements

Air, surface, and subsurface temperatures were taken using thermocouple sensors. The thermocouples have an accuracy of $\pm 0.5^{\circ}$ C. Since thermocouples require a reference if a single junction is used and they can also pick up electrical noise, the datalogger system used had reference junctions for the thermocouples.

In this test section we tried to install a thermocouple string at the end of phase 1 construction (i.e. in the bottom 1.8 m of subgrade), but we had difficulty drilling into the subgrade soil. Single thermocouples were installed in the top 1.2 m of subgrade and in the base. The locations of the thermocouples are shown in Figure 25a and e. In addition the locations are tabulated in Table B-4. Single thermocouples were also used for measuring the air and asphalt concrete surface temperatures.

Testing Program

Test windows 701C1, 701C2, 701C3, and 701C4 were subjected to accelerated pavement testing. Windows 701C5 and 701C6 were not tested because of delays in the testing of the other four windows and because of the time available for construction of 703 prior to the onset of winter.

Prior to the accelerated load tests, FWD measurements were taken on the surface of the AC layer using the same locations as during the construction phase (Fig. 21). Initial transverse profiles were measured using the 3-m-long laser profilometer (Fig. 32). The laser located 45 cm from the ground surface measured the surface profile at approximately 9-mm intervals. In addition to the profilometer measurements, level surveys were made during every test to determine whether the reference points (i.e. where the three feet of the profilometer were located during the surface profile measurements) moved. The results from the level surveys indicated that the points were stationary throughout the test. Twenty-four transverse crosssection measurements spaced 0.3 m apart were made in each window (Fig. 33). Measurements taken at locations 1, 2, 23, and 24 (acceleration and deceleration zones) and are not presented here. Surface profile measurements were made after 500, 1,000, 2,500, 50,000, 100,000, 200,000, 500,000, 1,000,000, etc. load repetitions. The rut depth was defined as the distance in the vertical direction from a point located 30 cm outside the actual test window at each side to the bottom of the rut, as shown in Figure 34. Testing was terminated when a surface rut depth of 12.5 mm was reached or exceeded.

Figure 32. The laser profilometer.

Figure 33. Locations for profile measurements in test section 701.

Figure 34. Definition of rut depth.

Subsurface stresses, strains, and permanent displacements were also measured in the vertical and in two perpendicular horizontal directions after 0, 500, 1,000, 2,500, 5,000, 10,000, 25,000, 50,000, 100,000, 200,000, 500,000, 1,000,000, etc. load repetitions. Dynamic stress and strain measurements in the test windows were taken when the wheel was in the positions shown in Figure 35. Measurements were taken at these three locations because one of the dual tires was either on top or very close to the sensors as the wheel traversed the test section. It was decided, at least for this window, to measure the stresses and strains at the three locations identified in Figure 35 and determine if there were any significant differences.

At the end of the dynamic stress-strain measurements, permanent deformation measurements were taken using the ɛmu coils. A loose coil gage on the surface was used to measure the permanent deformation between the surface and the first coil in the base course. The locations in Figure 35a, b and c were identified as Position 1, Position 2 and Position 3, respectively.

Figure 35a. Location of test wheels over coil and stress cells for Position 1 measurements.

Figure 35b. Location of test wheels over coil and stress cells for Position 2 measurements.

Figure 35c. Location of test wheels over coil and stress cells for Position 3 measurements.

Accelerated Loading of the Test Section

The test windows were loaded using the Mark IV Heavy Vehicle Simulator (HVS), accelerated loading system (Fig. 36). The tire pressure was set between 690 and 757 kPa, and the tests were conducted in the unidirectional mode at 13 km/hour. At 13 km/hour the average number of load repetitions was 700 per hour. The tests were conducted for approximately 22 hours per day, seven days a week. The load was wandered over the test window in 50-mm increments. Additional details on the HVS can be found in Janoo et al. (1999). The dimensions of the test tires are shown in Figure 37.

Figure 36. The Heavy Vehicle Simulator (HVS), Mark IV.

Figure 37. Dimensions of the test tire

RESULTS

Temperature and Moisture

Temperature Measurements

The mean daily temperatures of the test sections and the air above during the test period are presented in Figure 38. Only small temperature gradients were registered in the test section. The air temperature fluctuated somewhat more, as expected. For the purpose of these experiments, the temperature variations recorded at large are not significant. These temperatures were measured with thermocouples.

Temperature data were also obtained from thermistors built into the Vitel Hydra moisture probes. The temperatures recorded with these thermistors were consistent with those recorded by the thermocouples, as shown in Figure 39.

Figure 38. Mean daily temperatures during the test period.

Figure 39. Temperature regime as measured by thermistors built into the Vitel Hydra probes.

Figure 40 shows a profile of the average temperatures within the test section along with a range that indicates the extreme temperature values registered during the test period.

Figure 40. Subgrade temperature profile displaying average and range.

Moisture Measurements

Moisture content is a critical parameter that affects important mechanical properties of subgrade soils. Moistures variations during the test period were relatively small, as shown in Figure 41. Moisture content was monitored with the Vitel Hydra probes. As explained earlier, these probes measure moisture content indirectly. They measure the capacitive component of a high-frequency electrical signal to determine the soil's dielectric constant. The volumetric moisture content is then determined from the apparent dielectric constant. The corrected volumetric moisture contents were then converted to the gravimetric moisture content using established weight-volume relationships. The dry density of the subgrade soil used in the conversion process was 1922 kg/m³.

Figure 42 shows a profile of moisture content with average values, as well as the range of measured values during the test period. The variation of the moisture data was relatively narrow. The moisture content ranged between 8% near the top of the subgrade to approximately 13% at the lower depths. In the top 1.22 m of subgrade, the moisture content ranged between 8 and 11%, with a mean around 10%.

32

Figure 41. Subgrade moisture regime at various depths during the test period.

Figure 42. Profile of moisture content with average values during the test period.

Results from Test Window 701C1

Testing of window 701C1 began on April 10, 1997, and ended on July 1, 1997. This was the first time the HVS was used in the FERF, and during the tests there were several breakdowns. The longest period of breakdown (15 days) was at the end of 52,800 passes,

when there was a catastrophic failure of the wheel carriage. Once the carriage was repaired, a series of tests were conducted to determine if there was any rebound of the pavement structure during the breakdown period. Zhang et al. (1998) found from their program of testing a pavement section for 8 hours a day that there was a decrease in the dynamic strains prior to resumption of loading the following morning. At the end of the test, a series of tests were conducted to determine the effect of speed on the dynamic stress and strain in the pavement structure.

The test load was 80kN, with a COV of 0.9%, and the tire pressure was 690kPa was 6.7%. The tire pressure gages failed between May 4 and June 5, 1997.

Dynamic Stress

Stress measurements were made at a single depth of 508 mm from the surface in 701C1, which was approximately 203 mm from the top of the subgrade. Typical stress responses at the three positions are shown in Figure 43. Negative values indicate compressive stress. Review of the stress data from the remaining test windows and other test sections indicates that the stress measurements were taken with a 40-kN load instead of the test load of 80 kN. The maximum stresses occurred when the sensors are directly under both the wheels, i.e. at position 2. The longitudinal and transverse stresses were insignificant (ranging around 5 kPa). The results from the stress measurements are tabulated in Table C-1, Appendix C.

The changes of the vertical stress (position 2) as a function of load repetition are shown in Figure 44. With the vertical stress it appears that up to approximately 10,000 passes, there is no significant increase in the stress as a function of load repetition. After 10,000 passes, the stress increases with increasing repetition.

34

Figure 43. Typical vertical stress response in the subgrade after 20,000 repetitions.

Figure 44. Change in vertical stress as a function of load repetition.

Dynamic Strain

Vertical, longitudinal, and transverse dynamic strains were measured as a function of load repetitions at the three wheel locations. Typical strain responses in the subgrade at the three wheel positions are presented in Figure 45. Generally the vertical strain is compressive, while the longitudinal and transverse strains are expansive. However, the longitudinal strain is compressive as the wheel approaches the sensors and becomes expansive as the wheel is on top of the sensor. As the wheel leaves the sensor, the strain drops and becomes compressive before returning to zero. It was also found that in general the maximum strains occur when the wheel was in position 2.

Figure 45a. Typical vertical strains at the three wheel positions.

Figure 45b. Typical longitudinal strains at the three wheel positions.

Figure 45c. Typical transverse strains at the three wheel positions.

A comparison of the vertical, longitudinal, and transverse strains (position 2) at various depths in the subgrade is shown in Figure 46. Several typical observations were made:

- The maximum vertical strain is about 2.5–3 times the maximum longitudinal strain.
- The maximum vertical strain is about 2.5–4 times the maximum transverse strain. The factor decreases with depth.

- The response of the longitudinal and transverse strains are similar at depths of 840 mm and greater from the surface of the AC layer.
- At the top of the subgrade the initial compressive strain is about 80% of the maximum strain (expansive). This drops to about 30% at 150 mm from the top of the subgrade and below.

Figure 46a. Strain response as a function of depth (z = 381 mm from the surface).

Figure 46b. Strain response as a function of depth (z = 533 mm from the surface).

Figure 46c. Strain response as a function of depth (z = 686 mm from the surface).

Figure 46d. Strain response as a function of depth (z = 840 mm from the surface).

Figure 46e. Strain response as a function of depth (z = 992 mm from the surface).

Figure 46f. Strain response as a function of depth (z = 1067 mm from the surface).

The maximum strains in Tables C-2 to C-4 were obtained after the data were smoothed using a 10-point averaging scheme. The vertical strains are an average between the coil pairs, and the depths presented in the Table C-2 are the midpoints between the coil pairs. In the longitudinal and transverse strains, the depths in Table C-4 are the actual locations of the coil gages. Therefore, the longitudinal and transverse strains were measured slightly above the vertical strains. The difference is about 75 mm. Three sets of measurements are reported for the longitudinal strain, initial compressive strain, maximum expansive strain, and compression strain during unloading (Fig. C-1).

The development of the peak vertical, longitudinal, and transverse strains as a function of load repetitions at the different depths are presented in Figures 47–49. With the longitudinal strains, the peak strain was defined as the peak-to-peak distance between the first compressive strain A (Fig. C-1) and the peak extension strain B. We felt that near the surface, the peak compressive strain was as large as the extension strain and therefore had an impact on the overall subgrade response in the longitudinal direction.

With respect to the vertical dynamic strains in the subgrade, there was a rapid increase in strain in the first 2500 repetitions, after which there was a more gradual increase with increasing load repetitions (Fig. 47). The response of the peak longitudinal strain is shown in Figure 48. The longitudinal strain continues to increase with increasing load repetition. The rate of increase of the longitudinal strain is much greater than the vertical dynamic strain, especially in the upper subgrade layers. The peak transverse strain as a function of depth increases with increasing load repetitions (Fig. 49). The data from z = 1067 mm is not shown either in Table C-4 or in Figure 49 because in most cases the output was too noisy to clearly define the peak strain. The results shown in Figure 49 indicate that the peak transverse strains are approximately the same from the top of the subgrade to a depth of 610 mm from the AC surface. Below 610 mm there is some difference in the strain as a function of depth. Another observation made from the transverse strain results is that the strains are constant for approximately the first 5000 load repetitions.

The dynamic strain data was fitted with a power curve $y = Ax^n$ and replotted in log-log space (Fig. 50–52).

Figure 47. Vertical strains as a function of depth and load repetition (701C1).

Figure 48. Longitudinal strains as a function of depth and load repetition (701C1).

Figure 49. Transverse strains as a function of depth and load repetition.

Figure 50. Change in vertical dynamic strain as a function of load repetition.

Figure 51. Change in peak longitudinal dynamic strain as a function of load repetition.

Figure 52. Change in peak transverse dynamic strain as a function of load repetition.

The coefficients *A* and *n* for the vertical, longitudinal, and transverse strains are presented in Table 2. The mean of the exponent *n* for the vertical strain is 0.605, with a COV of 8.5%. The means for the longitudinal and transverse strains are 0.1318 and 0.081, respectively. The COVs are 19.7 and 34.3%, respectively.

Vertical				Longitudinal				Transverse		
Depth (mm)	А	n	R^2	Depth (mm)	Α	n	R^2	А	n	R^2
381	778.21	0.0529	0.87	305	117.76	0.1568	0.96	76.68	0.0918	0.72
533	591.28	0.0577	0.90	457	89.57	0.1617	0.96	84.14	0.0765	0.73
686	429.65	0.0605	0.95	610	94.67	0.1326	0.96	60.36	0.1212	0.91
840	347.72	0.0599	0.90	762	61.45	0.1369	0.95	77.93	0.069	0.86
992	273.91	0.0647	0.91	918	62.46	0.1015	0.97	79.38	0.0465	0.6
1143	183.31	0.0674	0.92	1067	49.57	0.1015	0.94			

Table 2. Coefficients for power law curves applied to dynamic strain data.

Generally the exponent n for the longitudinal and transverse strain decreases with increasing depth of subgrade, whereas n increases with depth for the vertical strain. Over the 1.22-m range of subgrade, a linear model for n as a function of depth (from top of subgrade) appears to be possible:

Vertical: n = 2E - 5 + 0.0526d, $R^2 = 0.94$ Longitudinal: n = -8E - 5 + 0.164d, $R^2 = 0.87$ Transverse: n = -6E - 5 + 0.090d, $R^2 = 0.90$.

The changes in the vertical and longitudinal strains as a function of depth at different representative load repetitions are shown in Figures 53 and 54. The mean change in dynamic vertical strain from the beginning of the test to failure was about 78%, with a COV of approximately 4% at all depths of measurements. Power curves tend to model the variation of the strain with depth at all load levels. For the longitudinal strains, it was found that in the top 150 mm of the subgrade, the mean change in the strain from the beginning to the end of the test was about 430%. At the remaining depths of measurement, it was approximately 190%. For the transverse strains, it appears that the strains remain fairly constant to a depth of approximately 300 mm. The transverse strains decrease with depth (Fig. 55). There is an 80–100% increase in the dynamic transverse strain from the beginning to the end of the test, except at the depth of 918 mm, where it appears to be about 50%.

Figure 55. Transverse strain as a function of depth (701C1).

Permanent Strain

The permanent deformations in the base and subgrade were obtained from static measurements between the Emu coils. A second source for the permanent deformations was from the dynamic measurements. During dynamic strain measurement the coils were triggered about 0.6 seconds before the wheel reached the top of the coils (Fig. 46), and it was assumed that the first 100 data points in the dynamic response measurements were unaffected by the wheel and that the mean distance between the coils represented the permanent deformation between the coils. In this way, permanent deformation data were collected from the three loading positions. The mean of the three deformations are presented in Table C-5a in Appendix C. The deformations calculated from the static measurements are presented in Table C-5b. Generally the permanent deformations measured from the dynamic and static tests agree relatively well, as seen in Figure 56. The relationship tends to breakdown at greater depths (>992 mm) in the subgrade.

Figure 56. Relationship between dynamic and static measured permanent deformation.

One issue with coil gages is that none of the coils are anchored in the ground, so a fixed point of reference is missing. However, the data in Table C-5 show that the deformations of the coil gages at a mean depth of 1143 mm are less than 1mm (static measurements) and can be considered to be fixed.

The deformations were converted to strains and are tabulated in Tables C-6a and b. The development of the vertical permanent strain in the subgrade as a function of depth and load repetitions is shown in Figure 57, which shows a combination of data from the permanent strain measurements shown in Table C-6a and b. There appear to be four trends. The largest permanent strains were in the bottom part of the base layer. The top of the base and the top of the subgrade appear to follow one trend. The permanent strain between 533 and 686 mm appears to be the same. The same can be said for the strains between 840 and 1143 mm.

Power curves were fitted to the data (Fig. 58); the coefficients for the power curve fit are presented in Table 3. The exponents for the rate of permanent strain increase in the subgrade ranges between 0.46 and 0.54.

Figure 57. Progression of vertical permanent strain as a function of load repetition.

Figure 58. Log-log representation of change in vertical strain as a function of load repetition.

Mid layer depth (mm)	A	n	R^2
381	6E-05	0.4566	0.84
533	2E-05	0.5454	0.92
686	2E-05	0.5454	0.92
840	8E-06	0.5622	0.83
992	8E-06	0.5622	0.83
1143	8E-06	0.5622	0.83

Table 3. Coefficients for power law curves applied to permanent strain data.

With respect to the permanent deformations in the longitudinal and transverse directions, the results are tabulated in Table C-7 and C-8. The maximum longitudinal and transverse strain deformations occurred at the top of the subgrade (Fig. 59 and 60). However, the magnitude of the deformations were 1 mm or less. In terms of strains, the maximums are about 1% or less.

Figure 59. Permanent longitudinal deformation as a function of load repetition.

No. of Load Repetitions

Surface Profile Measurements

Twenty-four surface profile measurements were made periodically to determine the surface deformation as a function of load repetition. Of the 24 measurements, the first two (1, 2) and last two (23, 24) measurements were taken in the acceleration and deceleration areas (Fig. 34). The measurements at these locations are not reported. The coil gages for measuring dynamic and permanent deformation are in the vicinity of locations 7, 8 and 9 (Fig. 34). A typical set of surface deformations as a function load repetitions is shown in Figure 61. A tenpoint running average was applied to the data shown in Figure 61. The maximum rut depth was extracted from the data after the ten-point averaging was done. The maximum rut depths across the test section as a function of load repetitions is presented in Table C-9.

Figure 61. Typical rut depth response as a function of load passes.

The variation in rut depth ranged from 23% to 30% in the longitudinal direction, with most of the variation at locations 3–6 (Fig. 62). This can be explained by the way the load was applied to the test section. After each load application, the wheel was raised from the pavement surface and returned to the start position. At this position the wheel was literally dropped onto the acceleration zone surface. The average rut depth in this zone was 5–7 mm higher than at other locations. This high impact loading was corrected after approximately 50,000 passes. Another potential reason for the high surface ruts is the lower densities (Table A-3) measured near these locations, which happen to be close to the south wall.

The surface rut development from the profilometer (Fig. 63) can be modeled by

$$R = 0.30N^{0.3095} \qquad R^2 = 0.99.$$

A comparison of the total rut depth measured from the profilometer and strain coil gages is shown in Figure 63. Data from the coil gages were summed through the depths. However, the data were sporadic since surface measurements were not taken at all load measurements. As seen in Figure 63, the summations from the dynamic measurements are closer to the surface rut measurements than the summations from the static measurements. The greatest difference from the dynamic measurements is approximately 3 mm.

Figure 62. Longitudinal surface rutting as a function of load repetition.

Figure 63. Comparison of total pavement deformation between profilometer and coil gage systems.

Results from Test Window 701C2

Testing of window 701C2 began on August 20, 1997, and ended on September 2, 1997. The test window was subjected to a test load was 89kN, with a COV of 1.1%, and the tire pressures in the dual wheels were 748 (COV = 5.7%) and 763k Pa (COV = 1%), respectively. As before with 701C1, during the accelerated loading phase, stress and strain responses were measured periodically. At the end of the strain and stress measurements, twenty-four surface profile measurements were made as discussed previously.

Dynamic Stress

Stress measurements in the vertical, longitudinal, and transverse directions were made at two depths of 500 and 929 mm from the AC surface in the subgrade. Typical stress responses in the vertical direction are shown in Figure 64. Negative values indicate compressive stress. The maximum vertical stress occurred when the sensors were directly under both the wheels, i.e., at position 2. The measured vertical stresses as a function of load repetition are presented in Table D-1, Appendix D. As seen in Figure 65, there was no significant change in the vertical dynamic stress as a function of load repetition. At 500 mm deep (approximately 195 mm into the subgrade) the measured stress was approximately 160 kPa. This is about 21% of the mean applied stress (755 kPa) on the surface. At 929 mm deep the stress dropped to about 8% of the applied stress on the surface.

Typical stress measurements in the longitudinal direction are presented in Figures 66 and 67. The drop in pressure as the wheel traverses over the sensor (z = 500 mm) could be explained by the thickness of the pressure gage. As the wheel approaches the pressure cell, the stress increases. However, when the wheel crosses the thickness of the pressure cell, the stress drops and then starts to pick up again after the load has traversed the thickness of the pressure cell. Later, as the load departs from the cell, the stress decreases again to zero. The thickness of the pressure cell has also an effect on the response at 929 mm; however, it is minimal (Fig. 67). It can be surmised that the decrease in longitudinal stress when the wheel is on top of the pressure cell is artificial and that the response is more of the typical V-shaped response seen in the vertical direction. The effect of the cell thickness appears to decrease with depth.

Figure 64. Typical vertical stress response in the subgrade after 27,260 repetitions.

Figure 65. Vertical stress (Position 2) response as a function of load repetition.

Figure 67. Typical longitudinal stress response in the subgrade.

The maximum longitudinal stress was compressive and initially was not affected by load repetitions. However, after 10,000 passes the longitudinal stress started to decrease. Significant decrease in the stress started to show up after 27,000 load repetitions, suggesting failure of the subgrade at this depth (Fig. 68). This is also about the time we started seeing a "tensile" stress response as the load approached and left the pressure cell. The measured longitudinal stresses as a function of load repetition are also tabulated in Table D-2.

Figure 68. Change in longitudinal stress (Position 2) as a function of load repetition.

Based on the response of the longitudinal stress at 929 mm, it is proposed that the maximum stress is higher than the measured stress at z = 500 mm, as shown by the dashed line in Figure 69. The "corrected" longitudinal stress is shown in Figure 70.

Transverse stresses were also measured at both depths (500 and 929 mm) in the subgrade. The results are tabulated in Table D-3. Typical responses are shown in Figure 71. At 929 mm the measurements were negligible, and we believe that it was more noise than actual response. The response indicated maximum compressive stresses in the vicinity of 6 kPa. However, at 500 mm deep the maximum average measured transverse stress was 36 kPa, and it was fairly constant as a function of load repetition (Fig. 72).

Figure 69. Stress response after 500 load repetitions (z = 500 mm, N = 500, Load = 89kN).

Figure 70. "Corrected" vs. measured longitudinal stress as a function of load repetition.

Figure 72. Change in transverse stress as a function of load repetition.

Dynamic Strain

Vertical, longitudinal, and transverse dynamic strains were measured as a function of load repetitions at the three wheel locations similar to that in 701C1. The results are presented in Tables D-4, D-5, and D-6, Appendix D. The vertical strain response from the Emu coils was well defined, and it was compressive at all depths. The longitudinal strain response was similar to that seen in 701 C1, i.e., the strain was compressive as the wheel approached the sensors and became expansive as the wheel was on top of the sensor. As it left the sensor, the strain dropped and became compressive before returning to zero. The second compression was significantly lower than the first. However, it was found that the magnitudes of the first compressive strain and the expansive strain can be close to equal. The quality of the longitudinal strain degraded with depth. At a depth of 1143 mm the quality of the signal was so poor that it was discarded from further analysis. At depths of 840 mm and deeper the longitudinal strain measurement at position 3 was noisy. However, the shape of the output was similar to the other two positions. The measurements at location 1 and 2 were good enough that peak strain measurements could be made from the output.

The transverse strain measurements were good at positions 1 and 2, but it was quite noisy at position 3. We had some problems with the transverse strain measurements at 0, 500, and 1000 load repetitions. It stabilized after 27,260 load repetitions. It was also found that the maximum strains in the vertical and longitudinal directions occurred when the wheel was in position 2.

Comparisons of the vertical, longitudinal, and transverse strains at various load repetitions (position 2) are shown in Figures 73–75. We found that in most cases the magnitudes of the expansive longitudinal and transverse strains were close to one another. The difference was in the shape of the response curve. This difference probably has a significant effect on the performance of the pavement structure.

60

Figure 73. Strain response as a function of depth (z = 381 mm from the surface).

Figure 74. Strain response as a function of depth (z = 686 mm from the surface).

Figure 75. Strain response as a function of depth (z = 992 mm from the surface).

The maximum strains in Table D-5 were obtained after the data were smoothed using a ten-point averaging scheme. As before, the vertical strains are an average between the coil pairs, and the depths presented in the table are the midpoints between the coil pairs. The vertical strains increased with load repetitions at all positions (Fig. 76). There is a rapid increase in strain to about 10,000 load repetitions, after which the increment in strain significantly reduced. The data in Figure 76 were replotted in log-log space (Fig. 77) and fitted with a power curve. The coefficients for the power curves are presented in Table 4.

Figure 76. Development of dynamic vertical strain as a function of load repetition.

Figure 77. Dynamic vertical subgrade strain as a function of load repetitions .

As seen by the coefficient n in Table 4, the exponent for the power curve of the vertical strain in the subgrade is approximately 0.06, with the exception of the top of the subgrade, where the gradient is 0.02.

Depth (mm)	А	n	R^2
381	1098	0.020	0.67
533	549	0.068	0.86
686	405	0.060	0.90
840	361	0.055	0.93
992	233	0.060	0.94
1143	196	0.063	0.92

Table 4. Coefficients for powerlaw curves applied to dynamicstrain data.

As done previously, the longitudinal strains reported in Table D-5 are the absolute peakto-peak distances between the first compressive strain (A in Table D-5) and the peak extension strain (B in Table D-5). Three sets of measurements are reported for the longitudinal strain. The depths in Table D-5 are the actual locations of the coil gages. The progression of the longitudinal strains as a function of load repetitions are shown in Figure 78. Clearly, in this case the longitudinal strains are significantly higher at the top of the subgrade. The absolute magnitude of the peak A and B longitudinal strains from position 2 were used to determine the rate of strain development as a function of load repetitions (Fig. 79). The coefficients *A* and *n* for describing the power curve in Figure 79 are presented in Table 5. The coefficient *n* is around 0.09-0.1, with the exception of the subgrade at 918 mm. This is different from 701C1, as the average *n* value was around 0.13. Again, the lower increase in longitudinal strain as a function of load repetition may be due to the high load used in the test. It is possible that significant damage had occurred earlier on and that any increase in load repetition produced minor additional damage to the subgrade.

Figure 78. Change in peak longitudinal dynamic strain as a function of load repetition.

Figure 79. Change in longitudinal strain as a function of depth and load repetition.

Depth (mm)	А	n	R^2
305	332	0.089	0.79
457	160	0.108	0.86
610	151	0.093	0.89
762	113	0.096	0.91
918	39	0.157	0.90
1067	-	-	-

Table 5. Coefficients for power law curves applied to dynamic longitudinal strain data.

The peak transverse strains as a function of load repetitions are tabulated in Table D-6. As mentioned earlier, the measurements at position 3 were extremely noisy and therefore are not reported. Generally the transverse strains increased with load repetition. In this test the largest transverse strains occurred at a depth of 610 mm; this was also seen in 701C1. The higher strain values occurred when the wheel was in position 1; this was also seen in 701C1. This is to be expected as the transverse coil gages are closer to position 1. In the upper layers this difference is small (2-3%). At the lower depths the difference is about 10%.

The change in transverse strain as a function of load repetitions is shown in Figure 80. Data from the top of the subgrade are not shown in Figure 80, because they were insufficient to develop a clear conclusion. With the existing data, the trend is significantly different from the others. Power curves were used to fit the data, and the appropriate coefficients are presented in Table 6. The coefficient *n* ranges between 0.06 and 0.09. The poor R^2 values can be attributed to the small transverse strains measurements.

i alisvelse sti alli uata.					
Depth (mm)	А	n	R^2		
305	332	0.089	0.79		
457	71	0.086	0.57		
610	132	0.067	0.75		
762	71	0.081	0.87		
918	68	0.062	0.82		
1067	-	-	-		

Table 6. Coefficients for power lawcurves applied to dynamictransverse strain data.

The progression of the transverse strain as a function of depth and load repetitions is shown in Figure 81. The variation of the transverse strain with depth is actually small, approximately 100 microstrains. The exception is at a depth of 610, where the strains are about 50% higher. Another exception to the data is that there is a significant increase in strain as a function of load repetition, as seen in Figure 81.

Figure 80. Change in transverse strain as a function of load repetition.

Figure 81. Progression of dynamic transverse strains as a function of depth and load repetition.

Permanent Strain

Permanent deformations were obtained from static measurements between the Emu coils and are presented in Table D-7. The surface measurements were taken between a coil gage placed on the AC surface and the coil gage in the base course layer. The distance between the two coil pairs was 182 mm. These coil pairs were not calibrated, and the calibration curve was assumed to be similar to the coil pairs in the base course. The error was considered to be minimal, as we were looking for changes in distances between the coil pairs and not the magnitude of the separation.

Generally it was found that the vertical deformations measured were compressive and increased with increasing load repetitions (Fig.82). It was also found that most of the permanent deformation occurred in the base course layer and on top of the subgrade. Relative to the base and the top of the subgrade, very little deformation occurred in the other layers.

Figure 82. Development of vertical permanent deformation as a function of load repetition.

The measured longitudinal deformations in the base and in the upper subgrade were small. However, at the lower depth in the subgrade there were some small extensional deformations in the early phase of loading. After 27,260 load repetitions, the deformation returned to its near-original state or became compressive (Fig. 83). With respect to the deformation in the transverse direction (Fig. 84), generally the deformation was extensional in the subgrade. However, the largest deformation in the subgrade was around 1 mm and occurred on top of the subgrade.

It was found that approximately 8 mm of the vertical permanent deformation occurred in the subgrade. Another 4.5 mm occurred in the base layer. It was also seen that the deformation of the subgrade occurred in three stages (Fig. 85). First there was the deformation due to compaction of the layer. This occurred until load repetition 10,000. The deformation remained fairly constant to load repetition 51,400. After that there was another increase in deformation until failure. In the longitudinal direction the overall deformation of the subgrade started in extension. After 25,00 load repetitions the deformation changed to compressive, and at failure it became extensive again. The maximum extensive deformation was approximately 3 mm. The maximum compressive strain was approximately 1 mm. Generally the overall deformation of the subgrade in the transverse direction was very small.

Figure 84. Development of transverse permanent deformation as a function of load repetition.

Figure 85. Vertical strain in the base and subgrade as a function of load repetition.

The respective permanent strains in the base and subgrade as a function of load repetitions and depth are presented in Table D-8. The maximum strains in the vertical direction is about 2-3%. In the longitudinal and transverse directions, the strain is less then 1%. The progression of the vertical strain as a function of load repetition is shown in Figure 86. There are basically two trends, as seen with the vertical deformation (Fig. 82).

The development of vertical permanent strain in the subgrade as a function of depth and load repetitions is shown in Figure 86. It is interesting to see the subgrade at depths below 800 mm goes into extension during part of the loading and becomes compressive at failure.

Permanent Vertical Strain (microstrain)

Figure 86. Progression of vertical permanent strain as a function of load repetition.

Surface Profile Measurements

Twenty-four surface profile measurements were made periodically to determine the surface deformation as a function of load repetition. Of the 24 measurements, the first two (1, 2) and last two (23, 24) measurements were taken in the acceleration and deceleration areas (Fig. 34). The measurements at these locations are not reported. Locations 7, 8, and 9 are in the vicinity of the Emu coils (Fig. 34). A typical set of surface deformation as a function load

repetition is shown in Figure 87. A ten-point running average was applied to the data shown in Figure 87, and the maximum rut depth was extracted from the averaged data. The maximum rut depths across the test section as a function of load repetition is presented in Table D-9.

Figure 87. Typical rut depth response as a function of load passes, Position 8.

The variation of surface deformation or rut depth in the longitudinal direction as a function of several levels of road repetition is shown in Figure 88. Again, as in 701C1, we see larger rut depths near the south wall. The longitudinal rut depth is fairly constant after position 8. All our measurement systems are placed at position 8 and after. After we finished the tests in this section, we moved the instrumentation to locations where we expected the rut formation to be more uniform.

A comparison of the total rut depths measured from the profilometer and strain coil gages are shown in Figure 89. Data from the dynamic measurements are not shown in Figure 89, as there were errors in the measurements. There was about a 3-mm difference between the deformation measured at the surface using the profilometer and that determined from the permanent deformation from the coil gages. However, near and at failure, the difference is less than 1 mm.

Figure 88. Longitudinal surface rutting as a function of load repetition.

Figure 89. Comparison of total pavement deformation between profilometer and coil gage systems.

Results from Test Window 701C3

Testing of window 701C3 began on September 4, 1997, and ended on September 10, 1997. The test window was subjected to a test load was 103.5 kN, with a COV of 1.9%, and the tire pressures in the dual wheels were 751 kPa (COV = 1.0%) and 764 kPa (COV = 0.9%), respectively. The average tire pressure was 758 kPA (COV = 1.25%).

Dynamic Stress

Dynamic stresses measurements were made in the vertical, longitudinal, and transverse directions at a depth of 508 mm from the AC surface in the subgrade in the test window. There were significant problems with the measurements. First, it was discovered that the wrong stress sensors were read prior to 500 passes. Second, no initial measurements were made prior to trafficking. The second error was not as serious as the first, since we found from previous test windows that the change in stresses from 0 to 500 passes is negligible. A more serious problem was discovered with the results of the vertical stress when measurements were taken at positions 2 and 3. For nearly all the measurements (except for those at 30,000 and 40,000 passes), the amplifier gains for the vertical stress measurements were set at a maximum, so the output signals were saturated at 10 V. This error was not discovered until near the end of the tests (i.e. after 30,000 passes). Stress measurements taken at 30,000 passes are presented in Figure 90. As with the previous test windows, negative values indicate compressive stress. The average maximum vertical stress at a depth of 500 mm (approximately 195 mm into the subgrade) was 315 kPa, and it occurred when the sensors were directly under both the wheels, i.e., at position 2. This is about 42% of the applied stress (758 kPa) on the surface. This clearly shows the effect of the load in addition to tire pressure on the stress in the subgrade. In 701C2 the tire pressure was similar, but the load was 89 kN versus 103.5 kN in 701C3. The stress in the subgrade was 21% and 42% of the applied tire pressure.

Figure 90. Typical stress responses in the subgrade after 30,000 repetitions.

The longitudinal stress response curves were similar to those seen in 701C2 (Fig. 69). Again, a correction was applied to the response curve to account for the effect of the sensor wall thickness, as discussed in 701C2. It was also found that the responses of the longitudinal stress at positions 1 and 2 were very similar. In general, the peak longitudinal stresses ranged between 40 and 50 kPa, and over the range of load repetition, we found that there was a small increase of approximately 10 kPa from the beginning to the end of testing (Fig. 91). The stresses in Figure 91 are those corrected for the sensor wall thickness, as discussed in 701C2.

The transverse stresses measured in the subgrade were also compressive. Again, we found that the maximum transverse stress measurements occurred when the wheel was in position 3. This was similar to the results obtained from 701C2. The response curves from the transverse stress measurements were similar to those obtained in 701C2 (Fig. 71). The peak transverse stress was approximately 30 kPa, and it stayed fairly constant throughout the test (Fig. 92).

Figure 91. Longitudinal stress response (Position 2) as a function of load repetition.

Figure 92. Transverse stress response (Position 3) as a function of load repetition.

Dynamic Strain

Vertical, longitudinal, and transverse dynamic strains were measured as a function of load repetitions at the three wheel locations similar to those in the other test windows. The results are presented in Appendix E. There was a problem with the measurements in the vertical direction at the upper depths in the subgrade. A summary of the maximum strain as a function of depth and load repetition is presented in Table E-4. Generally the strains decreased with depth and increased with load repetition.

Most of the vertical strain measurements on top of the subgrade failed during testing. Similarly, because of a coil failure, we were unable to obtain any strain measurements at a depth of 686 mm. The change in the dynamic vertical strain as a function of load repetition and depth are shown in Figure 93. The available data for the top of the subgrade, shown in Figure 93, appear to be clustered with the data from z = 533 mm. A power curve trend line is added to the data, and an assumed power curve having an average exponent of the other layer data is presented in Figure 93 for the limited top of the subgrade strains. This is not a bad

Figure 93. Development of dynamic vertical strain as a function of load repetition and depth, Position 2.

assumption, as it was seen in previous windows that the curves are nearly parallel to one another. It was also noted that the vertical strain decreased at the end of the test (i.e. at 40,000 load repetitions). This may be due to further compaction of the subgrade layer.

Also noted was that the maximum strains occurred at position 2, i.e., when the strain gages were between the dual tires. The following exponents were calculated after fitting the data with a power curve. The subgrade at depths of 992 and 1143 mm were fitted with a single power curve with the following coefficients (152, 0.092, $R^2 = 0.90$). The subgrade at a depth of 533 mm was fitted with the following coefficients (311, 0.082, $R^2 = 0.97$). The first number within the parentheses is the intercept and the second number is the exponent. The exponent for the top of the subgrade and the subgrade at 533 mm is assumed to be around 0.87.

The measurements of the longitudinal strains were better than the vertical strains. However, we were unable to measure the longitudinal strains at a depth of 686 mm. We also found the measurements at z = 553 mm to be extremely noisy and had to apply averaging techniques to the data to remove the extraneous noise in the measurements. The results of the measurements are presented in Table E-5. We also found that the longitudinal strains at position 3 were quite noisy; at times they tended to mask out the other results from positions 1 and 2. At the top of the subgrade, the strains were extremely high and mostly compressive. This was not seen in the other test windows, and with the problems with the vertical strains, we decided not to use the results in future analysis. In addition, as done with previous longitudinal strain measurements, the sums of the peak values are presented as a function of load repetition and depth in Figure 94. The coefficients for the power curve fit to the available data in Figure 94 are presented in Table 7. If an estimate was made for the top of the subgrade, the exponent will be between 0.123 and 0.153.

Depth (mm)	А	n	R^2	
305				
457	168	0.14	0.99	
610				
762	97	0.123	0.97	
918	52	0.153	0.94	
1067	-	-	-	

Table 7. Coefficients for power law curves applied to longitudinal strain development.

Figure 94. Change in longitudinal strain as a function of load repetition and depth, position 2.

The maximum transverse strains as a function of load repetition and depth are presented in Table E-6. The problems with the vertical and longitudinal strain measurements at the top of the subgrade and at a depth of 610 mm were also seen in the transverse direction. The coefficients for the power curve fits to the transverse data in Figure 95 are presented in Table 8.

Depth (mm)	А	n	R^2	
305				
457	130	0.14	0.80	
610				
762	86	0.106	0.97	
918	38	0.148	0.94	
1067				

Table 8. Coefficients for power lawcurves applied to transverse straindevelopment.

Figure 95. Development of the transverse strain as a function of load repetition and depth, position 2.

Permanent Strain

Permanent deformations were obtained from static measurements between the Emu coils and are presented in Table E-6. The surface measurements were taken between a coil gage placed on the AC surface and the coil gage in the base course layer. The distance between the two coil pairs was 182 mm. These coil pairs were not calibrated, and the calibration curve was assumed to be similar to the coil pairs in the base course. The error was considered to be minimal, as we were looking for changes in distances between the coil pairs and not the magnitude of the separation.

Again, the data from several of the depths were unavailable due to gage failure. However, with the limited data, it can be seen that generally the vertical and longitudinal deformations were compressive and that they increased with increasing load repetitions. The transverse strains were mostly in extension.

Surface Profile Measurements

The maximum rut depths across the test section as a function of load repetition are presented in Table E-7. The variation of surface deformation or rut depth in the longitudinal direction as a function of several levels of road repetition is shown in Figure 96. Again, as in the other test windows, we see larger rut depths near the south wall. The longitudinal rut depth is fairly constant after position 7. All our measurement systems are placed at position 8 and after.

Figure 96. Longitudinal surface rutting as a function of load repetition.

We did not compare the measured rut depths from the surface profilometer with the calculated rut depth from the coil gages due to limited data from the gages in this test window.

Results from Test Window 701C4

Testing of window 701C4 began on July 9, 1997, and ended on August 11, 1997. The test load was 89 kN, with a COV of 1.7%, and the mean tire pressure of the dual wheels was 748 kPa, with a COV 3.5%. The speed of the test wheel was 13 km/hr. Problems with the HVS

after 55,000 repetitions prompted us to drop the speed to 10 km/hr for the remainder of the tests. It should be noted that 701C4 was the second window to be tested, and we were still having problems with the HVS. Also, this was one of the test windows that did not have any stress cells because of delays in delivery of the stress cells. Therefore, during the accelerated loading phase, only strain responses were measured periodically.

Dynamic Strain

As with the other windows, vertical, longitudinal, and transverse dynamic strains in the base and subgrade were measured as a function of load repetitions at three wheel locations. The results are presented in Appendix F. The responses in the three directions were similar to those seen in the other windows. The vertical strain response from the Emu coils was well defined and was compressive at all depths. The longitudinal strain response was compressive as the wheel approached the sensors and became expansive as the wheel was on top of the sensor. As the wheel left the sensor, the strain dropped and became compressive before returning to zero. With increasing depth, the second compression was lower than the first. At a depth of 1143 mm, the sensor output when the wheel was at position 2 was so poor that it is not reported or used in the analysis. The transverse strain neasurements were reasonably good at all positions and depths. The peak transverse strains near the surface were higher when the wheels were at the edge (position 1 and 3). With increasing depth, the peak strains at all wheel positions tended to equalize. There was some drifting in the longitudinal and transverse strains in the base and at the top of the subgrade, and corrections were applied to remove the effect of drifting.

The change in the vertical strain at various depths in the subgrade as a function of load repetitions is shown in Figure 97. There is a rapid development of strain in the initial loading phase (up to approximately 20,000 load repetitions), followed by more of a gradual increase. Power law curves were applied to the strain response (position 2) (Fig. 98); the coefficients for the power curves are presented in Table 9. As seen by the coefficient *n* in Table 9, the gradient of the vertical strain in the subgrade is approximately 0.06–007, except for the top of the subgrade, where the gradient is 0.04. The gradient of 0.06 is similar to that found from the results from 701C1 and 701C2.

82

Figure 98. Dynamic vertical strain as a function of load repetition (701C4).

Depth (mm)	А	n	R^2	
381	720	0.0433	0.85	
533	486	0.0590	0.90	
686	378	0.0618	0.92	
840	262	0.0732	0.96	
992	185	0.0733	0.95	
1143	144	0.0645	0.92	

Table 9. Coefficients for powerlaw curves applied to dynamicstrain development.

The development of the dynamic vertical strain with depth and as a function of load repetition is shown in Figure 99. This is similar to that seen in the other test windows. There is about a four- to five-fold decrease in strain from the top of the subgrade and the measurement taken at a depth of 1143 mm. The difference in depth is 610 mm.

Figure 99. Progression of vertical dynamic strain as a function of depth and load repetition.

As done with the other test windows, the longitudinal strains reported in Table E-2 are the peaks of the first compressive strain, the peak extension strain, and the peak of the second compressive strain. The second compressive strain is usually lower in the subgrade, so it was not used in the summation process. As in the other test windows, the largest strains occurred when the wheel was in position 2. The absolute values of the magnitude between peaks A and B of the longitudinal strains from position 2 were used to determine the strain as a function of

load repetition (Fig. 100). There was a rapid increase up to about 20,000 load repetitions, after which the rate became more gradual. The peak strain curve in Figure 100 was fitted with a power curve (Fig. 101), and the coefficients for the power curve are presented in Table 10.

The exponent for longitudinal strain in the subgrade ranged between 0.11 and 0.14. This is within the range reported for 701C1 and 701C2.

Figure 100. Development of longitudinal strain as a function of load repetition.

Depth (mm)	А	n	R^2	
305	134	0.1435	0.97	
457	130	0.1374	0.95	
610	103	0.1332	0.95	
762	86	0.1193	0.97	
918	60	0.1140	0.93	
1067				

Table 10. Power-law coefficients for dynamic longitudinal strain development.

Figure 101. Change in peak longitudinal dynamic strain as a function of load repetition.

The peak transverse strains as a function of load repetitions are tabulated in Table F-3. Generally the transverse strains increased with load repetition. In this test the largest transverse strains occurred at a depth of 610 mm. This was also seen in the other test windows. However, in the subgrade the transverse strains ranged between 100 and 200 microstrains. The highest strains occurred in the base. In the base and subgrade the higher strain values generally occurred when the wheel was in position 1. At other depths they were fairly close to one another.

The change in transverse strain as a function of load repetitions is shown in Figure 102. The response is similar to the vertical and longitudinal strains. Power curves were used to fit the data (Fig. 103), and the appropriate coefficients are presented in Table 11.

The progression of the transverse strain as a function of depth and load repetitions is shown in Figure 104. Again, as with the other test sections, there was an increase in transverse strain at a depth of approximately 800 mm.

Figure 102. Change in transverse strains with load repetition in the subgrade (701C4).

Figure 103. Change in transverse strain as a function of load repetition.

Table 11. Coefficients for power law
curves applied dynamic transverse
strain development.

~

Depth (mm)	Α	n	R^2	
305	154	0.0696	0.69	
457	69	0.1167	0.97	
610	78	0.1056	0.92	
762	72	0.0890	0.93	
918	51	0.0826	0.94	
1067	63	0.0363	0.80	

Figure 104. Progression of dynamic transverse strains as a function of depth and load repetition.

Permanent Strain

Permanent deformations were obtained from static measurements between the Emu coils and are presented in Table F-4. The vertical deformations were generally compressive and increased with increasing load repetition (Fig. 105). Most of the permanent deformation occurred in the base course layer and in the top 200 mm of the subgrade.

In the longitudinal direction, there was significant deformation in the base, and the deformation was compressive. In the subgrade the deformation was extensional, with most

occurring in the top of the subgrade (Fig. 106). With respect to the deformation in the transverse direction, the strain in the base was the largest and was compressive. At the top of the subgrade and to a depth of approximately 300 mm, the strain was extensive. Below, at a depth of 762 mm from the surface, the subgrade strains were compressive. Overall, the deformation in the transverse strains was small.

The development of vertical permanent strain in the subgrade as a function of depth and load repetitions is shown in Figure 107. As can be seen, the strains at all depths started in extension and became compressive with load repetitions (Fig. 108). It was also observed that the largest permanent strain occurs at a depth of 457 mm. This is about 150 mm below the top of the subgrade.

A summary of the total permanent vertical, longitudinal, and transverse deformation of the subgrade as a function of load repetition is shown in Figure 109. In general, the vertical deformation was approximately 14 mm (compressive), and the longitudinal and transverse deformations reached about 2 mm (extension) at the end of testing.

Figure 105. Development of vertical permanent deformation as a function of load repetition.

Figure 106. Development of longitudinal permanent deformation as a function of load repetition.

Figure 107. Development of transverse permanent deformation as a function of load repetition.

Surface Profile Measurements

A typical set of surface deformation as a function load repetition is shown in Figure 110. The maximum rut depths across the test section as a function of load repetition are presented in Table F-5. The variation of surface deformation or rut depth in the longitudinal direction as a function of several levels of road repetition is shown in Figure 111. The longitudinal rut depth is fairly constant along the length of the test section. Note that this section was away from the south wall, while the other three windows were close to the wall.

The sum of the subsurface permanent deformation from the coil gages are compared with the rut depths measured on the surface (Fig. 112). As seen in the figure, there is about a 4-mm difference between the two measurements. However, at failure this difference is minimal.

Figure 110. Typical rut depth response as a function of load repetition, position 8.

Load Repetitions

Figure112. Comparison of total pavement deformation between profilometer and coil gage systems.

SUMMARY

Accelerated pavement testing was conducted on 76 mm of asphalt concrete over a 229mm crushed base over a 3-m, A-2-4 test subgrade soil. The test section was subdivided into six 8-m-long by 1-m-wide test windows. The subgrade was placed at an average density and moisture content of 1900 kg/m³ and 9%, respectively. The top 1.2 m of subgrade, where most of the instrumentations were, had a dry density of 1933 kg/m³ and moisture content of 9.5%. The dry density and moisture content of the base were 2068 kg/m³ and 3%, respectively. In addition to density and moisture content measurements, CBR, lift thickness, and falling weight deflectometer (FWD) data were collected.

Instrumentation included temperature, moisture, stress, and strain sensors. Temperature and moisture sensors were installed outside the windows and at various depths. All test windows were instrumented with coil gages for measuring deformation in the base and subgrade. Coil gages were installed to a depth of 1.2 m at a spacing of 150 mm. The gages were used to measure both dynamic and permanent deformations. Only three of the six test windows were instrumented with pressure gages in the subgrade. Pressure cells were installed at a depth of 150 mm from the top of the subgrade. In one of the test window, an additional set of pressure cells was installed at a depth of 450 mm from the top of the subgrade. Triaxial (vertical, longitudinal, and transverse) stress and strain measurements were collected during trafficking. Permanent strains were also collected triaxially.

Traffic loading was applied through the Heavy Vehicle Simulator (HVS). The test windows were subjected to different load levels at an average tire pressure of 757 kPa. The tire was a standard dual truck tire, and the speed of load application was approximately 12 km/hr. The traffic was allowed to wander the 1-m width, and measurements were taken at three wheel positions. At the end of the dynamic stress and/or strain measurements, transverse surface rutting measurements were taken along the length of the test section. Failure was defined when the surface rut depth reached or exceeded 12.5 mm.

Accelerated pavement testing was conducted over a five-month period. The temperature in the test section varied between 15 and 20°C during the test period. According to the moisture sensors, there was a moisture gradient from the top of the subgrade to a depth of 1.2 m from the asphalt surface. In the upper 200 mm of subgrade, the moisture content ranged

94

between 8 and 9%. At 1.2 m from the surface, the moisture content was around 11.5%, suggesting that the material was fairly permeable. However, the variation of the moisture content at the various depths was small.

Only four of the six test windows were tested in this series. The loads were 80 (701C1), 89 (701C2), 103.5 (701C3) and 89 (701C4) kN. The tire pressure was 757 kPa. The values within the parentheses are test window identifiers. The stress measurements in all cases except one were made at these load levels. The exception was in the case of the 80-kN load tests, where the stress measurements were made at 40 kN. In general, the stresses appear to remain constant with load repetition. All measured stresses in the subgrade were compressive. The measured peak vertical stresses for the various load levels are presented in Table 12. In general, based on the limited data, the stresses were constant with load repetitions.

Test window	Load (kN)	Vertical stress (kPa)
701C1	40	35
701C2	89	175 (500mm from the surface) 60 (929 mm from the surface)
701C3	103.5	325
701C4	-	-

Table 12. Measured vertical stress as a function of appliedload.

The longitudinal and transverse stresses were insignificant under the 40-kN load level. The longitudinal stress response was affected by the thickness of the pressure cells. There is a drop in the stress level as the load traverses over the thickness of the pressure cell. This drop in the stress level is significantly diminished with depth, as was seen in 701C2. The corrected longitudinal stress in 701C2 (89 kN) was around 40 kPa, and it stayed constant until near failure, when it dropped to 30 kPa. At 929 mm the longitudinal stress was around 13 kPa and in general remained constant with load repetition. In 701C3, under 103.5 kN the longitudinal stress appeared to increase with load repetition. At the beginning of the test, the stress was approximately 40 kPa. At the end of the test, the stress was around 55 kPa.

The transverse stress at 500 mm from the surface in 701C2 was around 35 kPa, which is close to the peak longitudinal stress at the same location. At 929 mm the transverse stresses were negligible. In 701C3 at 500 mm the stress was around 30 kPa. At both locations the transverse stresses were nearly constant at all load repetitions.

Base and subgrade deformations were collected periodically. The measurements were made with calibrated coaxial pairs in the vertical direction, and coplanar measurements were made in the horizontal directions. The mean vertical strains presented in this report were approximately 75 mm below the horizontal strains. The vertical strains were compressive. The longitudinal strains started out compressive as the wheel approached the coil gages. The strains turned expansive as the wheel was over the gages. As the wheel left the gages, the strains dropped, sometimes becoming slightly compressive prior to becoming zero. The value of the first compressive strain can be of the same magnitude as the expansive component. This is especially true in the base and in top 300 mm of subgrade. The transverse strains were expansive.

The dynamic strains at failure (i.e. at the 12.5-mm rut depth) were estimated from the test results (Fig. 113).

Figure 113. Number of passes and rut depth.

The corresponding number of passes at failure was then converted to an equivalent standard axle load (ESAL) of 80 kN using the fourth-power law. The number of passes to failure for the standard 80-kn load level is shown in Table 13.

Test window	Load (kN)	A	n	R^2	ELAF	Measured passes at 12.5 mm	ESAL standard load
701C1	80.0	49.516	3.2206	0.997	16	168,832	2,701,307
701C2	89.0	0.4677	4.4982	0.996	25	40,187	984,936
701C3	103.5	1.4400	3.8726	0.992	45	25,483	1,142.293
701C4	89.0	9.2725	3.7267	0.997	25	113,515	2,782,092

Table 13. Coefficients for predicting passes to failure and ESALs.

The vertical, longitudinal, and transverse dynamic strains at failure are shown in Table 14 and Figure 114. Only the vertical and longitudinal strains are shown in Figure 114, as there was a poor correlation between the transverse strains and load repetitions. A power curve was fitted to the data and the equations are presented below.

Table 14. Dynamic failure strains. Strains at failure Test Measured passes ESAL window at 12.5 mm standard load Vertical Longitudinal Transverse 701C1 168832 2.701,307 0.001193 0.000777 0.000231 701C2 40187 0.001389 0.000853 0.000186 984,936 701C3 1,142.293 25483

2,782,092

0.001192

0.000712

0.000346

701C4

113515

Figure 114. Dynamic failure strain as a function of load repetition.

$$\varepsilon_v = 0.0046 N^{-0.1144} R^2 = 0.92$$

$$\varepsilon_l = 0.0021 N^{-0.0866} R^2 = 0.51$$

where $\epsilon_v =$ vertical strain

 ε_1 = longitudinal strain

N = number of load repetitions.

Note that these results were measured at 12 km/hr. To be able to compare with the results from the AASHO Road tests, where the test speed was 48 km/hr, a correction factor was applied to the strain data. The correction factors were developed based on results from MnRoad (Dai and Deusen 1998). Dai and Deusen measured the stresses in the subgrade of several test sections. We used the results from a similar structure (127 mm AC, 305 mm base over subgrade). The stresses were measured at about 150 mm from the surface of the subgrade. His results and data available from this study were used to determine the effect of speed on the stress in the subgrade (Fig. 115). We have assumed that the same reduction

Figure 115. Effect of load repetition on the dynamic vertical strain.
factors can apply to the vertical strains. This is an area we plan to collect additional data on in the future to validate our assumption. For the longitudinal and transverse strains, additional research is needed.

From Figure 115, we estimated the reduction factors for 48 and 100 km/hr (highway speeds). The reduction factors were 37 and 52%, respectively. The comparisons are shown in Figure 116. The following equations were derived for the vertical strain as a function of load repetition:

A-2-4 (48 km/hr) п A-2-4 (100 km/hr) Shell (50 % Reliability) Shell (85% Reliability) Asphalt Institute 0.1 Subgrade Vertical Strain (%) 0.01 0.001 - Ē 0.0001 100000 1000000 10000000 Load Repetition

Figure 116. Comparison of test results to AASHO Road Test.

The results show that the limiting strains are about two orders of magnitude lower then that currently used in mechanistic design, suggesting that pavements constructed on this type of subgrade soils may be under designed (if the current failure criterion is used). The permanent vertical strains at failure from the various test windows are presented in Table 15. The longitudinal and transverse permanent strains were small compared to the vertical. There was a poor correlation between the permanent strains and load repetitions.

Based on the permanent deformations measured in the base and subgrade, the proportion of the subgrade deformation to the total deformation ranged between 54 and 58%.

Test window	Measured passes at 12.5 mm	ESAL standard load	Vertical strain
701C1	168,832	2,701,307	0.014193
701C2	40,187	984,936	0.016873
701C3	25,483	1,142.293	
701C4	113,515	2,782,092	0.012368

Table 15. Permanent failure strains.

CONCLUSIONS

- From the results from this test section, the current subgrade failure criterion for an A-2-4 subgrade soil is inadequate. The current criterion overestimates the limiting subgrade strain at a given load level by an approximate factor of two.
- Approximately 54–58% of the total deformation was in the subgrade.
- The vertical permanent strains were significant compared to the longitudinal and transverse strains. In the vertical direction the majority of the deformation occurred in the base and the top 300 mm of subgrade. However, there was a poor correlation between the vertical strain and load repetition.

REFERENCES

- Dai, S., and D.V. Deusen (1998) Field study of in situ subgrade soil response under flexible pavements. Transportation Research Board, Transportation Research Record 1639, p. 23-35.
- Dawson, A. (1994) The Emu system user manual. Second Edition, University of Nottingham, United Kingdom.
- Dormon, G.M., and C.T. Metcalf (1965) Design curves for flexible pavements based on layered elastic theory. Highway Research Record, No. 71.
- Janoo, V., L. Irwin, and R. Eaton (1999) Pavement subgrade performance study: Project overview and design. Draft Report, Cold Regions Research and Engineering Laboratory, New Hampshire, USA.
- Irwin, L.H., and Hildebrand (1994) Analysis and prediction of pavement response in the FERF. Internal Report.
- Webster, S.L., R.H. Grau, and T.P. Williams (1992) Description and application of dual mass dynamic cone penetrometer. Instruction Report GL- 92-3, U.S. Army Waterways Experiment Station, Vicksburg, MS.
- Zhang, W., P. Ullidtz, and R. Macdonald (1998) Pavement subgrade performance study, Part II: Modeling pavement response and predicting pavement performance. Report 87, Danish Road Institute.

APPENDIX A: CONSTRUCTION DATA

					Dei	nsity (l	(g/m ³)				
Station	1	2	3	4	5	6	T1	T2	Т3	Τ4	BASE
1	1751	1820	1922	1874	1877	1829	1839	1949	1938	1842	1810
2	1914	1796	1829	1897	1906	1941	1917	1927	1945	1961	2063
3	1770	1810	1890	1903	1932	1836	1882	1860	1898	1858	2233
4	1847	1728	1869	1949	1828	1927	1874	1868	1802	1882	1972
5	1921	1877	1914	1965	1869	1914	1967	1903	1924	1981	2079
6	1874	1853	1938	1954	1932	1892	1882	1874	1961	1967	2076
7	1898	1816	1975	1916	1900	1930	1929	1945	1930	1972	2031
8	1826	1783	1881	1860	1869	1841	1965	1941	1930	1948	1889
9	1810	1857	1913	1906	1873	1868	1967	1998	1921	2010	1808
10	1833	1882	1849	1893	1889	1865	1941	1975	1961	2025	1818
11	1865	1816	1850	1893	1905	1818	1895	1906	1901	1733	1999
12	1842	1823	1866	1849	1845	1853	1895	1953	1938	1893	2183
13	1791	1736	1884	1901	1865	1852	1946	1961	1943	1895	2207
14	1837	1792	1977	1905	1877	1853	1946	1970	1954	1930	2235
15	1876	1882	1948	1929	1909	1893	1901	1954	1945	1945	2167
16	1909	1913	1999	1938	1922	1892	1908	1991	1985	1986	2031
17	1889	1808	1935	1876	1948	1930	1933	1946	1946	1964	2025
18	1857	1908	1927	1833	1909	1914	1972	1921	1999	1945	2121
19	1925	1861	1993	1895	1908	2142	1930	1922	1951	1983	2095
20	1938	1857		1873	1916	1921	1996	1986	1994	1959	2113
21	1897	1796	1871	1855	1818	1820	1850	1906	1929	1849	1970
22	1853	1889	1916	1845	1937	1839	1929	1839	1946	1858	2095
23	1807	1776	1834	1836	1889	1714	1917	1940	1938	1882	2135
24	1938	1844	1887	1849	1929	1905	1977	1897	1916	1890	2154
25	1890	1855	1845	1861	1866	1802	1924	1898	1885	1945	2044
26	1860	1874	1905	1895	1909	1882	1917	1892	1983	1961	2145
27	1852	1876	1898	1924	1893	1906	1946	2001	1961	1977	2249
28	1868	1937	1938	1949	1839	1869	1941	1941	1962	1954	2140
29	1871	1816	1930	1973	1879	1866	1970	1967	1959	1962	2097
30	1874	1887	1961	1973	1897	1877	1946	2025	1951	1956	2044

Table A-1. As constructed densities of the various layers.

					Mois	ture (Conte	ent (%)			
Station	1	2	3	4	5	6	T1	T2	Т3	T4	BASE
1	9.0	9.0	8.4	7.9	8.4	8.5	6.8	8.7	10.4	11.3	2.4
2	8.3	8.3	8.1	7.7	9.1	8.6	5.6	9.8	11.6	11.1	2.7
3	8.7	7.7	8.0.	8.0	9.3	9.0	6.1	10.1	10.5	11.9	2.5
4	8.6	8.4	7.9	8.1	9.0	9.5	8.1	9.4	10.4	10.5	3.1
5	8.3	8.1	7.4	8.5	9.2	9.2	6.6	8.9	11	10.9	3.1
6	8.8	8.0	8.3	7.9	9.2	9.2	6.9	8.8	10.5	11.0	2.5
7	8.6	8.1	7.4	8.0	9.1	9.0	7.5	8.1	11.2	11.5	3.2
8	8.8	8.8	8.2	8.5	9.2	9.5	6.9	9.4	10.5	11.7	3.4
9	8.5	8.4	7.7	7.9	9.3	9.2	6.8	8.7	10.6	10.3	2.2
10	9.2	8.3	7.7	8.0	9.3	9.2	7.7	9.3	10.8	10.3	2.6
11	8.2	8.7	9.0	8.0	8.5	9.1	6.3	8.9	11.3	10.9	2.5
12	9.1	8.6	7.7	8.0	9.2	9.1	7.5	9.0	11.4	11.0	2.1
13	8.7	8.6	8.2	8.2	9.4	9.4	7.3	8.8	10.8	9.8	2.8
14	9.3	8.7	8.2	8.7	8.8	9.5	6.9	10.6	10.8	11.0	2.8
15	8.6	8.2	8.4	7.7	9.0	9.0	8.0	8.9	11.1	10.9	2.9
16	8.8	8.6	8.1	7.9	9.2	9.3	8.4	9.2	10.4	10.9	3.2
17	8.9	8.6	7.6	8.0	9.2	9.4	7.5	9.4	11.1	11.3	3
18	8.8	8.2	8.1	8.1	8.6	9.4	7.4	8.6	9.9	11.6	2.7
19	8.7	7.9	8.4	8.0	9.5	7.6	8.3	9.3	11.0	10.7	3
20	9.1	8.5		8.0	9.6	9.6	7.8	9.0	10.1	11.2	3
21	8.7	8.1	8.2	7.6	8.7	9.7	7.1	9.2	11.3	11.1	2.3
22	10.3	8.2	7.5	8.0	8.6	8.5	7.7	9.4	11.3	10.5	3.4
23	9.7	7.7	7.6	7.9	8.4	9.7	8.2	8.3	10.6	10.3	3.5
24	10.2	7.8	7.8	8.0	8.6	9.2	6.8	9.1	11.8	10.0	3.6
25	10.7	8.1	7.8	8.3	8.9	9.5	8.4	9.3	11.7	11.5	4.6
26	9.6	8.0	7.7	8.0	8.8	9.1	7.3	7.7	10.8	11.3	3.8
27	10.0	8.3	8.7	8.2	8.2	9.1	7.3	9.3	10.4	11.1	4.8
28	10.9	8.1	7.6	7.7	9.4	9.3	8.3	9.3	10.6	10.7	3.9
29	11.1	8.5	8.1	7.3	9.0	9.2	7.8	9.1	10.8	10.5	2.9
30	10.9	8.7	7.9	7.6	9.8	9.4	8.7	7.8	10.1	10.0	2.9

Table A-2. Moisture content in subgrade and base.

Stations	Lift 1	Lift 2	Lift 3	Lift 4	Lift 5	Lift 6	T1	T2	Т3	T4
1							8	10	6	3
2							8	10	8	6
3							8	14	14	8
4							18	16	12	4
5							18	12	14	12
6							16	14	10	7
7							18	12	12	12
8							23	14	12	10
9							23	16	14	12
10							20	16	12	10
11							23	20	16	10
12			4.0				23	18	18	(
13	4	6	10	6	14	8	/	10	16	4
14	4	8	14	1	8	4	/	14	12	10
15	14	8	20	6	(8	8	18	14	10
16	10	12	16	10	16	6	23	25	(10
17	16	10	18	10	8	8	23	25	20	12
18	12	1	10	8	12	10	25	28	14	12
19	14	14	10	12	25	8 10	40	23	10	12
20	12	14	12	12	20	12	37	20	20	10
21	12	12	14	10	23	12	31	10	14	12
22	10	12	12	10	12	10	34 40	01	12	10
23	10	12	12	10	10	10	40	20	20	12
24	6	6	10	12	23	20	20 10	0	20	12
25	14	10	10	10	14	10	7	0	10	
20	14	10	16	12	14	4 Q	1/	0 19	7	
21	12	12	20	16	10	1	20	20	8	
20	7	2 8	20	10	6	4	16	25	1/	
30	8	7	16	7	14	4	23	23	12	
31	8	14	16	12	8	12	18	20	18	
32	12	8	10	14	10	8	25	18	23	
33	12	14	8	14	10	8	28	23	10	
34	10	16	16	18	12	14	25	23	18	14
35	8	14	10	14	12	7	28	23	18	16
36	14	14	10	25	10	4	25	23	10	14
37	••					·	8	10	6	7
38							8	18	6	10
39							12	12	18	8
40							16	10	10	12
41							14	10	10	10
42							12	8	14	10
43							23	10	16	12
44							20	16	16	14
45							20	18	16	16
46							18	20	16	14
47							25	20	14	10
48							20	20	16	10
1										

Table A-3. Layer CBR values from Clegg hammertests.

Table A-4. CBR results from DCP measurements.

	Station																								
ļ	depth (mm)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	0	6	3	8	5	5	4	6	6	5	8	12	8	5	5	6	6	4	4	6	6	5	6	5	5
	40	5	5	7	6	6	10	12	10	10	12	14	12	6	6	6	10	6	5	8	10	8	8	8	5
	80	5	6	6	10	9	10	12	10	10	12	17	17	5	4	8	10	6	8	10	14	6	9	8	6
	140	3	10	6	6	10	9	12	12	14	10	17	16	4	3	8	8	6	5	10	10	6	6	10	8
	210	3	2	7	8	19	7	10	17	14	10	17	22	2	3	6	10	5	5	6	8	8	6	5	6
	250	5	8	8	8	10	8	9	19	13	14	14	16	4	12	8	12	5	5	6	8	5	6	6	6
	280	6	10	9	10	19	14	9	13	12	8	17	13	5	17	10	17	6	6	8	6	5	5	5	5
	310	14	10	5	10	19	26	12	12	22	10	12	19	17	14	10	22	14	14	5	14	8	12	6	14
	340	14	10	4	6	19	17	22	14	31	14	14	17	6	10	14	17	14	17	5	14	22	14	14	14
	385	9	8	4	5	14	19	22	17	31	12	17	11	4	10	14	14	14	17	12	14	16	19	22	14
	420	5	8	12	5	10	27	26	17	22	9	26	6	3	6	14	10	14	22	14	27	22	22	27	10
	455	5	6	16	5	8	19	20	19	16	8	19	6	4	10	12	9	17	13	12	5	22	14	7	22
	485	6	14	13	8	12	31	19	14	13	5	16	14	22	14	9	6	17	10	9	6	16	12	10	22
	510	8	17	9	7	12	16	5	14	26	5	10	14	17	14	8	6	8	14	6	8	14	12	14	22
	540	6	37	5	10	14	22	9	22	37	7	9	17	19	14	12	14	10	14	10	10	14	14	14	31
	580	10	26	4	9	14	19	12	26	22	14	16	14	10	17	6	16	14	16	16	9	19	17	12	6
	610	6	12	7	8	22	19	10	26	31	22	19	12	10	12	14	22	22	14	22	10	27	27	12	14
	640	14	10	6	7	4	22	14	26	48	22	16	14	5	14	22	22	22	10	16	8	31	37	10	14
	680	10	7	5	10	6	16	10	22	7	19	12	17	8	12	14	16	22	14	22	5	22	16	14	14
	668	4	5	5	10	8	16	8	22	13	22	9	5	5	8	12	22	13	8	14	6	27	14	22	22
	702	6	1	5	8	10	6	1		10	31	8	6	6	12	12	16	9	5	10	12	14	8	23	14
	742	5	8	5	10	14	8	9	11	13	16	6	10	4	22	6	5	5	8	6	19	16	6	18	10
	784	4	6	4	10	10	12	17	12	11	12	9	1	3	10	6	12	8	6	6	27	8	8	12	14
	820	5	4	6	16	9	22	27	9	9	12	8	8	4	8	10	10	12	8	12		14	13	27	9 10
	882	3	3	25	10	9	12	31	ð	4	14	б Г	14	10	ð	ð	10	8	0	10		12	14	31	12
	915	0	4	о 0	13	14	17	4	ð	22	31	5	12	0 17	0	ð o	10	9	0	12		14	20	30	14
	954	10	о 0	0	20	20	20 10	1	0	о 0	20	0 5	19	16	0	0	0	Э Б	9	0		14		22	14
	904 1011	14	0 22	0 0	21	17	10	0	э 5	0	10	о 6	21	10	с С	о 0	0	C ⊿	C ⊿	0		9			14
	1011	10	55	0	23	1/	12	7	5	14	13	12	20	6	17	0 5	17	4 0	4 10	6		10			10
	1042	14 Q	2 8	7 5	24 17	14	10	11	1/	10	13	15	7	5	17	5	22	0 1/	27	10		19			22
	1126	5	7	1	16	10	17	13	22	10	10	20	+ 11	5	22	17	22	17	27	10		11			1/
	1174	1	7	т 6	1/	14	26	16	22	10	۲ <u>۲</u>	16	22	8	22	10	10	17	21 18	17		17			10
	1228	т 3	6	14	11	14	20	6	31	14	8	17	27	8	17	10	14	14	26	22		17			6
	1263	5	6	19	q	27	22	20	22	14	6	10	16	8	12	22	7	14	37	22		17			5
	1305	10	5	24	10	22	16	32	26	14	10	7	17	14	6	19	10	14	48	16		17			5
	1347	10	8	19	17	31	14	34	14	22	17	7	25	10	10	14	10	12	27	22		14			5
	1407	6	11	17	18	14	10	34	27	35	23	5	11	5	10	14	6	17	4	16		17			8
	1305	5	13	14	19	14	11	25	 27	22	36	6	22	6	14	6	9	14	7	13		27			10
	1334	7	9	17	16	5	14	26	 37	6	31	17	22	4	10	17	8	12	9	8					14
	1367	6	8	19	5	7	11	26	26	9	27	19	22	3	5	17	8	8	9	12					14
	1406	5	8	17	8	7	5	27	6	14	28	14	27	3	8	17	7	6	9	14					14
	1451	4	8	13	10	7	9		11	12	24	6	27	5	6	17	6	8	6	17					14
1			~				~			• •		~		-	~	•••	-	~	-	•••					

Station	1	2	3	1	5	6	7	8	٥	10	11	12	12	11	15	16	17	18	10	20	21	22	22	21
uepin (mm)	1	2	5	7	J	0	1	0	3	10	11	12	15	14	15	10	17	10	13	20	21	22	20	24
1490	5	12		10	10	9		11	12		9	22	10	7	14	6	5	8	5					14
1515	8	12		7	11	8		17	11		12	22	9	6	7	7	9	12	8					17
1539	8			4	12	15		18	11		14	27	8	4	10	5	8	14	10					14
1575	11			5	12	13		10	9		13	27	5	4	10	5	6	27	11					19
1607	13			9	11	11		14	8		11		6	6	8	4	5	27	11					22
1660	7			15	15	12		12	8		13			17	6	6	5	22	14					27
1695	5			14	22	15		12	14		16			27	6	15	4	22	10					31
1729	6			12	31	14		12	25		14			16	3	20	6	22	10					
1761	6			8		26		14	24		17			14	6	27	17		14					
1787	8			8		36		27	24		22			12	9	22	24		17					

Table A-4 (cont.). CBR results from DCP measurements.

Table A-5. Thickness of subgrade, base, and asphalt concrete layer.

Station	Lift 1	Lift 2	Lift 3	Lift 4	Lift 5	Lift 6	Top 1	Top 2	Тор З	Top 4	Base	Asphalt
1	375	271	326	314	283	372	229	302	296	290	277	85
2	402	271	296	323	253	399	238	268	302	259	280	79
3	393	274	296	351	253	375	247	268	320	229	302	73
4	390	287	299	338	241	375	226	283	344	216	287	73
5	366	314	274	347	229	378	250	317	308	244	287	70
6	366	314	268	366	232	372	253	363	256	274	287	64
7	357	354	238	384	241	378	241	360	235	290	280	67
8	384	366	247	354	244	384	235	354	235	277	283	67
9	393	354	271	341	229	375	253	351	253	262	290	64
10	430	311	290	317	241	360	262	344	274	253	302	64
11	430	299	311	274	271	351	262	326	308	241	287	79
12	351	311	320	277	223	366	283	320	308	241	283	82
13	424	216	332	299	268	390	226	283	335	271	274	85
14	387	274	277	360	250	360	277	256	323	262	256	91
15	396	280	280	354	265	329	280	259	335	232	290	79
16	393	299	299	326	262	320	287	277	338	229	280	76
17	378	302	287	338	259	332	274	305	311	244	283	73
18	381	323	256	357	247	354	259	341	250	283	274	76
19	369	351	235	378	238	369	250	357	232	283	280	79
20	366	369	250	363	235	360	244	357	250	256	287	79
21	378	344	283	341	238	344	250	347	268	250	280	79

23 381 290 332 305 223 351 247 320 290 280 256 98 24 357 271		23 381 290 322 305 223 351 247 320 280 280 256 98 24 357 271	23 23 23 381 290 290 32 332 305 305 232 223 351 351 247 247 320 290 290 290 280 280 256 256 98 98 24 24 357 357 271 271									
268	268	268	268	268	268	268	268	268	268	268		268
268	268	268	268	268	268	268	268	268	268	268		268
299	299	299	299	299	299	299	299	299	299	299		299
314	314	314	314	314	314	314	314	314	314	314		314
265	265	265	265	265	265	265	265	265	265	265		265
259	259	259	259	259	259	259	259	259	259	259		259
239 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73	25 91 25 329 293 317 290 293 314 311 293 344 274 274 73	259 91 25 329 293 317 290 293 314 311 293 344 274 274 73		239 91 25 329 293 317 290 293 314 311 293 344 274 274 274 73
26	26	26	26	26	26	26	26	26	26	26		26
360	360	360	360	360	360	360	360	360	360	360		360
308	308	308	308	308	308	308	308	308	308	308		308
271	271	271	271	271	271	271	271	271	271	271		271
344	344	344	344	344	344	344	344	344	344	344		344
265	265	265	265	265	265	265	265	265	265	265		265
299	299	299	299	299	299	299	299	299	299	299		299
338	338	338	338	338	338	338	338	338	338	338		338
302	302	302	302	302	302	302	302	302	302	302		302
335	335	335	335	335	335	335	335	335	335	335		335
238	238	238	238	238	238	238	238	238	238	238		238
259	259	259	259	259	259	259	259	259	259	259		259
91	91	91	91	91	91	91	91	91	91	91		91

23	23	23	23	23	23	23	23	23	23	23	23	23
381	381	381	381	381	381	381	381	381	381	381	381	38
290	290	290	290	290	290	290	290	290	290	290	290	29
332	332	332	332	332	332	332	332	332	332	332	332	33
305	305	305	305	305	305	305	305	305	305	305	305	30
223	223	223	223	223	223	223	223	223	223	223	223	22
351	351	351	351	351	351	351	351	351	351	351	351	35
247	247	247	247	247	247	247	247	247	247	247	247	24
320	320	320	320	320	320	320	320	320	320	320	320	32
290	290	290	290	290	290	290	290	290	290	290	290	29
280	280	280	280	280	280	280	280	280	280	280	280	28
256	256	256	256	256	256	256	256	256	256	256	256	25
98	98	98	98	98	98	98	98	98	98	98	98	98
24	24	24	24	24	24	24	24	24	24	24	24	24
357	357	357	357	357	357	357	357	357	357	357	357	35
271	271	271	271	271	271	271	271	271	271	271	271	27
360	360	360	360	360	360	360	360	360	360	360	360	36
268	268	268	268	268	268	268	268	268	268	268	268	26
268	268	268	268	268	268	268	268	268	268	268	268	26
299	299	299	299	299	299	299	299	299	299	299	299	29
314	314	314	314	314	314	314	314	314	314	314	314	31
265	265	265	265	265	265	265	265	265	265	265	265	26
259	259	259	259	259	259	259	259	259	259	259	259	25
91	91	91	91	91	91	91	91	91	91	91	91	9 ⁻
25	25	25	25	25	25	25	25	25	25	25	25	29
329	329	329	329	329	329	329	329	329	329	329	329	32
293	293	293	293	293	293	293	293	293	293	293	293	29
317	317	317	317	317	317	317	317	317	317	317	317	31
290	290	290	290	290	290	290	290	290	290	290	290	29
293	293	293	293	293	293	293	293	293	293	293	293	31
314	314	314	314	314	314	314	314	314	314	314	314	31
311	311	311	311	311	311	311	311	311	311	311	311	29
293	293	293	293	293	293	293	293	293	293	293	293	34
344	344	344	344	344	344	344	344	344	344	344	344	29
274	274	274	274	274	274	274	274	274	274	274	274	34
274	274	274	274	274	274	274	274	274	274	274	274	27
73	73	73	73	73	73	73	73	73	73	73	73	7:
26	26	26	26	26	26	26	26	26	26	26	26	20
360	360	360	360	360	360	360	360	360	360	360	360	36
308	308	308	308	308	308	308	308	308	308	308	308	30
271	271	271	271	271	271	271	271	271	271	271	271	27
344	344	344	344	344	344	344	344	344	344	344	344	34
265	265	265	265	265	265	265	265	265	265	265	265	26
299	299	299	299	299	299	299	299	299	299	299	299	29
338	338	338	338	338	338	338	338	338	338	338	338	33
302	302	302	302	302	302	302	302	302	302	302	302	30
335	335	335	335	335	335	335	335	335	335	335	335	33
238	238	238	238	238	238	238	238	238	238	238	238	23
259	259	259	259	259	259	259	259	259	259	259	259	25

23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 38
290	290	290	290	290	290	290	290	290	290	290	290	29
332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	33 30
223	223	223	223	223	223	223	223	223	223	223	223	22
247	247	247	247	247	247	247	247	247	247	247	247	24
320	320	320	320	320	320	320	320	320	320	320	320	32
290	290	290	290	290	290	290	290 280	290 280	290	290 280	290 280	28 28
256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	25 0
00	50	00	00	00	00	00		00	50	50	50	-
24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 35
271	271	271	271	271	271	271	271	271	271	271	271	27
360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	36
268	268	268	268	268	268	268	268	268	268	268	268	26
299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	29 31
265	265	265	265	265	265	265	265	265	265	265	265	26
259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	25 9
25	25	25	25	25	25	25	25	25	25	25	25	2
329	329	329	329	329	329	329	329	329	329	329	329	32
293	293	203	293	293	293	293	293	293	293	293	293	- 29
317	317	317	317	317	317	317	317	317	317	317	317	31
317 290	317 290	293 317 290	317 290	317 290	317 290	317 290	317 290	317 290	317 290	317 290	317 290	31 29
317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	31 29 29 31
317 290 293 314 311	317 290 293 314 311	293 317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	31 29 29 31 31
317 290 293 314 311 293 344	317 290 293 314 311 293 344	293 317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	31 29 29 31 31 29 34
317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	233 317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	31 29 31 31 29 34 34 27
317 290 293 314 311 293 344 274 274 274 73	317 290 293 314 311 293 344 274 274 73	233 317 290 293 314 311 293 344 274 274 73	317 290 293 314 311 293 344 274 274 73	317 290 293 314 311 293 344 274 274 73	317 290 293 314 311 293 344 274 274 274 73	31 29 31 31 29 34 27 27 27						
317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	233 317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 274 73	317 290 293 314 311 293 344 274 274 274 73	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	31 29 31 31 29 34 27 27 7 27
317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	233 317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	31 29 31 31 29 34 27 27 27 27 27 27 27 27 27 27 20 30
317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	31 29 31 31 29 34 27 27 7 27 36 30 27
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	31 29 29 31 31 29 34 27 27 7 27 7 36 30 27 30 30 27 34							
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	31 29 29 31 31 29 34 27 77 77 20 30 27 34 20 27 34 20 22 29							
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338	233 317 290 293 314 311 293 344 274 274 274 73 26 360 308 271 344 265 299 338 203	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 200	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 200	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 200	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	31 29 29 31 31 29 34 27 75 20 36 30 27 34 26 29 33 30 27 34 26 29 33 30 27 34 26 29 33 30 27 34 26 30 30 30 30 30 30 30 30 30 30 30 30 30
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	233 317 290 293 314 311 293 344 274 73 26 360 308 271 344 265 299 338 302 335	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	31 29 29 31 31 29 34 27 75 20 30 27 34 20 30 27 34 20 30 30 33 30 33
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 252	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 250	233 317 290 293 314 311 293 344 274 73 26 360 308 271 344 265 299 338 302 335 238 250	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 250	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 250	31 29 29 31 31 29 34 27 77 34 20 30 27 34 20 30 27 34 20 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 30							
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	31 29 29 31 31 29 34 27 7 7 26 36 30 27 34 26 29 33 30 33 25 9							

23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 381	23 38
290	290	290	290	290	290	290	290	290	290	290	290	29
332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	332 305	33 30
223	223	223	223	223	223	223	223	223	223	223	223	22
247	247	247	247	247	247	247	247	247	247	247	247	24
320	320	320	320	320	320	320	320	320	320	320	320	32
290	290	290	290	290	290	290	290 280	290 280	290 280	290 280	290 280	28 28
256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	256 98	25 0
00	50	00	00	00	00	00		00	50	50	50	-
24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 357	24 35
271	271	271	271	271	271	271	271	271	271	271	271	27
360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	360 268	36
268	268	268	268	268	268	268	268	268	268	268	268	26
299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	299 314	29 31
265	265	265	265	265	265	265	265	265	265	265	265	26
259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	259 91	25 9
25	25	25	25	25	25	25	25	25	25	25	25	2
329	329	329	329	329	329	329	329	329	329	329	329	32
293	293	203	293	293	293	293	293	293	293	293	293	- 29
317	317	317	317	317	317	317	317	317	317	317	317	31
317 290	317 290	293 317 290	317 290	317 290	317 290	317 290	317 290	317 290	317 290	317 290	317 290	31 29
317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	317 290 293 314	31 29 29 31
317 290 293 314 311	317 290 293 314 311	293 317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	317 290 293 314 311	31 29 29 31 31
317 290 293 314 311 293 344	317 290 293 314 311 293 344	293 317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	317 290 293 314 311 293 344	31 29 29 31 31 29 34
317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	233 317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	317 290 293 314 311 293 344 274	31 29 31 31 29 34 34 27
317 290 293 314 311 293 344 274 274 274 73	317 290 293 314 311 293 344 274 274 73	233 317 290 293 314 311 293 344 274 274 73	317 290 293 314 311 293 344 274 274 73	317 290 293 314 311 293 344 274 274 73	317 290 293 314 311 293 344 274 274 274 73	31 29 31 31 29 34 27 27 27						
317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	233 317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 274 73	317 290 293 314 311 293 344 274 274 274 73	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	317 290 293 314 311 293 344 274 274 73 26	31 29 31 31 29 34 27 27 27 7
317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	233 317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 274 73 26 360	317 290 293 314 311 293 344 274 274 73 26 360	31 29 31 31 29 34 27 27 27 27 27 27 27 27 27 27 20 30
317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271	317 290 293 314 311 293 344 274 274 73 26 360 308 271	31 29 31 31 29 34 27 27 7 27 7 20 30 30 27
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271 344	31 29 29 31 31 29 34 27 27 7 27 7 36 30 27 30 30 27 34						
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299	31 29 29 31 31 29 34 27 77 77 20 30 27 34 20 27 34 20 22 29							
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338	233 317 290 293 314 311 293 344 274 274 274 73 26 360 308 271 344 265 299 338 203	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 200	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 200	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 200	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 202	31 29 29 31 31 29 34 27 75 20 36 30 27 34 26 29 33 30 27 34 26 29 33 30 27 34 26 29 33 30 27 34 26 30 30 30 30 30 30 30 30 30 30 30 30 30
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	233 317 290 293 314 311 293 344 274 73 26 360 308 271 344 265 299 338 302 335	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335	31 29 29 31 31 29 34 27 75 20 30 27 34 20 30 27 34 20 30 30 33 30 33
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 252	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 250	233 317 290 293 314 311 293 344 274 73 26 360 308 271 344 265 299 338 302 335 238 250	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 250	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 250	31 29 29 31 31 29 34 27 77 34 20 30 27 34 20 30 27 34 20 33 30 33 30 33 30 33 30 33 30 33 30 33 30 33 30 30							
317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	233 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	200 317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	317 290 293 314 311 293 344 274 274 73 26 360 308 271 344 265 299 338 302 335 238 259 91	31 29 29 31 31 29 34 27 7 7 26 36 30 27 34 26 29 33 30 33 25 9							

27	335	326	296	326	277	287	323	277	347	238	268	79
28	338	311	323	323	271	274	344	274	344	262	253	73
29	311	317	308	338	271	271	344	287	332	277	247	76
30	335	320	293	344	241	296	335	317	296	293	250	73
31	344	329	262	375	223	308	332	341	280	277	247	82
32	344	335	283	357	219	314	308	375	277	241	271	79
33	351	335	290	335	229	296	308	369	296	232	268	82
34	369	317	290	329	210	314	296	363	299	238	265	85
35	372	271	326	326	189	317	293	335	317	244	262	88
36	360	262	341	344	177	296	296	332	320	250	262	88
37	302	290	317	320	283	320	329	317	317	268	265	85
38	293	360	232	341	274	357	302	311	302	259	250	98
39	280	372	238	344	280	323	299	271	338	262	241	91
40	287	357	265	338	274	314	314	274	338	280	232	88
41	299	323	271	351	262	305	344	283	314	283	247	94
42	323	283	277	363	256	314	338	283	308	293	238	104
43	320	305	253	378	241	335	329	323	305	250	253	104
44	305	320	299	332	250	341	299	360	302	229	253	104
45	332	305	308	311	259	344	265	360	320	219	244	104
46	344	314	311	283	238	360	253	344	317	229	241	110
47	351	308	308	317	210	320	287	338	299	244	244	107
48	357	287	323	341	183	299	280	366	293	244	253	101

APPENDIX B: INSTRUMENTATION DATA

ID	X (m)	Y (m)	Z (mm)	Window	Layer
EMU383	3.05	4.42	152.40	C1	1
EMU382	3.20	4.57	152.40	C1	1
EMU381	3.05	4.57	152.40	C1	1
EMU363	3.05	4.42	304.80	C1	2
EMU362	3.20	4.57	304.80	C1	2
EMU361	3.05	4.57	304.80	C1	2
EMU343	3.05	4.42	457.20	C1	3
EMU342	3.20	4.57	457.20	C1	3
EMU341	3.05	4.57	457.20	C1	3
EMU323	3.05	4.42	609.60	C1	4
EMU322	3 20	4 57	609.60	C1	4
EMU321	3.05	4 57	609.60	C1	4
EMU303	3.05	4 4 2	762.00	C1	5
EMU302	3.20	4 57	762.00	C1	5
EMU301	3.05	4.57	762.00	C1	5
EMI 1283	3.05	4.07	017 58	C1	6
EMI 1282	3.00	4.57	017.50	C1	6
	3.20	4.57	017.50	C1	6
	2.05	4.37	1066.90	C1	7
	2.00	4.42	1000.00		7
	3.20	4.07	1000.00		7
EMU201	3.05	4.57	1000.80		/
EMU243	3.05	4.42	1219.20		8
EMU242	3.20	4.57	1219.20	C1	8
EMU241	3.05	4.57	1219.20	C1	8
EMU386	3.05	3.20	152.40	C2	1
EMU385	3.20	3.35	152.40	C2	1
EMU384	3.05	3.35	152.40	C2	1
EMU366	3.05	3.20	304.80	C2	2
EMU365	3.20	3.35	304.80	C2	2
EMU364	3.05	3.35	304.80	C2	2
EMU346	3.05	3.20	457.20	C2	3
EMU345	3.20	3.35	457.20	C2	3
EMU344	3.05	3.35	457.20	C2	3
EMU326	3.05	3.20	609.60	C2	4
EMU325	3.20	3.35	609.60	C2	4
EMU324	3.05	3.35	609.60	C2	4
EMU306	3.05	3.20	762.00	C2	5
EMU305	3.20	3.35	762.00	C2	5
EMU304	3.05	3.35	762.00	C2	5
EMU286	3.05	3.20	917.58	C2	6
EMU285	3.20	3.35	917.58	C2	6
EMU284	3.05	3.35	917.58	C2	6
EMU266	3.05	3.20	1066.80	C2	7
EMU265	3.20	3.35	1066.80	C2	7
EMU264	3.05	3.35	1066.80	C2	7

Table B-1. Location of coil gages in test section 701.

EMU246	3.05	3.20	1219.20	C2	8
EMU245	3.20	3.35	1219.20	C2	8
EMU244	3.05	3.35	1219.20	C2	8
EMU389	3.05	1.98	152.40	C3	1
EMU388	3.20	2.13	152.40	C3	1
EMU387	3.05	2.13	152.40	C3	1
EMU369	3.05	1.98	304.80	C3	2
EMU368	3.20	2.13	304.80	C3	2
EMU367	3.05	2.13	304.80	C3	2
EMU349	3.05	1.98	457.20	C3	3
EMU348	3.20	2.13	457.20	C3	3
EMU347	3.05	2.13	457.20	C3	3
EMU329	3.05	1.98	609.60	C3	4
EMU328	3.20	2.13	609.60	C3	4
EMU327	3.05	2.13	609.60	C3	4
EMU309	3.05	1.98	762.00	C3	5
EMU308	3.20	2.13	762.00	C3	5
EMU307	3.05	2.13	762.00	C3	5
EMU289	3.05	1.98	914.40	C3	6
EMU288	3.20	2.13	914.40	C3	6
EMU287	3.05	2.13	914.40	C3	6
EMU269	3.05	1.98	1066.80	C3	7
EMU268	3.20	2.13	1066.80	C3	7
EMU267	3.05	2 13	1066 80	C3	7
EMU249	3.05	1.98	1219 20	C3	8
EMU248	3 20	2 13	1219 20	C3	8
EMU247	3.05	2.13	1219.20	C3	8
EMU392	18 14	4 4 2	152 40	C4	1
EMU391	18 29	4 57	152.40	C4	1
EMU390	18 14	4.57	152.40	C4	1
EMU372	18 14	4 4 2	304.80	C4	2
EMU371	18 29	4 57	304.80	C4	2
EMU370	18 14	4.57	304.80	C4	2
EMU352	18 14	4.07	457 20	C4	2
EMU351	18 20	4.57	457 20	C4	3
EMU350	18 1/	4.57	457 20	C4	3
EMU332	18 14	4.57	609 60	C4	1
EMU331	18 20	4.42	609.60	C4	ч Л
EMU330	18 1/	4.57	609.60	C4	т Л
	10.14	4.57	762.00	C4	-+ 5
	10.14	4.42	762.00	C4	5
	10.29	4.57	702.00	C4	5
	10.14	4.57	702.00	C4	5
	10.14	4.42	914.40	C4	0
	10.29	4.37	914.40	C4	0
EMU290	10.14	4.57	914.40	04	0
	18.14	4.42	1066.80	C4	(
	18.29	4.57	1000.80		(
	18.14	4.57	1066.80	04	(
EMU252	18.14	4.42	1219.20	C4	8
EMU251	18.29	4.57	1219.20	C4	8
EMU250	18.14	4.57	1219.20	C4	8

EMU395	18.14	3.20	152.40	C5	1
EMU394	18.29	3.35	152.40	C5	1
EMU393	18.14	3.35	152.40	C5	1
EMU375	18.14	3.20	304.80	C5	2
EMU374	18.29	3.35	304.80	C5	2
EMU373	18.14	3.35	304.80	C5	2
EMU355	18.14	3.20	457.20	C5	3
EMU354	18.29	3.35	457.20	C5	3
EMU353	18.14	3.35	457.20	C5	3
EMU335	18 14	3 20	609.60	C5	4
EMU334	18 29	3 35	609.60	C5	4
EMU333	18 14	3.35	609.60	C5	4
EMU315	18.14	3 20	762.00	C5	5
EMU314	18 29	3.35	762.00	C5	5
EMU313	18.14	3.35	762.00	C5	5
EMU295	18 14	3 20	914 40	C5	6
EMI 1294	18 29	3 35	914.40 914.40	C5	6
EMI 1203	18 14	3 35	014.40 014.40	C5	6
EMU235	18 14	3 20	1066.80	C5	7
	18 20	3.20	1066.80	C5	7
	18 1/	3.35	1066.80	C5	7
	10.14	3.00	1210.20	C5	7 Q
	10.14	2.20	1219.20	C5	0
	10.29	3.30	1219.20	C5	0
	10.14	3.30	1219.20	00	0
	10.14	1.98	152.40	00	1
EMU397	18.29	2.13	152.40	6	1
EMU396	18.14	2.13	152.40		1
EMU378	18.14	1.98	304.80	06	2
EMU377	18.29	2.13	304.80	C6	2
EMU376	18.14	2.13	304.80	C6	2
EMU358	18.14	1.98	457.20	C6	3
EMU357	18.29	2.13	457.20	C6	3
EMU356	18.14	2.13	457.20	C6	3
EMU338	18.14	1.98	609.60	C6	4
EMU337	18.29	2.13	609.60	C6	4
EMU336	18.14	2.13	609.60	C6	4
EMU318	18.14	1.98	762.00	C6	5
EMU317	18.29	2.13	762.00	C6	5
EMU316	18.14	2.13	762.00	C6	5
EMU298	18.14	1.98	914.40	C6	6
EMU297	18.29	2.13	914.40	C6	6
EMU296	18.14	2.13	914.40	C6	6
EMU278	18.14	1.98	1066.80	C6	7
EMU277	18.29	2.13	1066.80	C6	7
EMU276	18.14	2.13	1066.80	C6	7
EMU258	18.14	1.98	1219.20	C6	8
EMU257	18.29	2.13	1219.20	C6	8
EMU256	18.14	2.13	1219.20	C6	8

Coll ID Coll ID Coll ID Coll ID LAYER 1 381 881 7.665 -0.3853 381 382 6.626 -0.2910 381 383 6.8707 -0.2920 LAYER 2 381 381 381 381 383 6.8767 -0.2920 LAYER 3 321 322 6.6663 -0.2924 321 322 6.6663 -0.2864 321 323 6.0664 -0.2864 321 323 6.0664 -0.2864 321 322 6.6444 -0.2876 -0.2876 LAYER 5 281 221 221 221 221 221 224 241 243 701C2 8 n 8 n 8 n 1.283 6.8404 -0.2907 LAYER 3 344 345 6.6465 -0.2906 344 366 6.8624 -0.2907 LAYER 3 344 345 6.6463 -0.2907 244 246 -0.2907			Vertical (Z)					Longitudinal (X)				Transverse (Y)	
701C1 Transmit Receive a n Transmit Receive a n Transmit Receive a n LAYER 1 381 381 382 6.626 -0.2900 381 382 6.626 -0.2900 381 382 6.626 -0.2910 381 382 6.626 -0.2910 381 382 6.626 -0.2910 381 382 6.626 -0.2910 381 382 6.6364 -0.2917 381 382 6.6564 -0.2917 384 6.6466 -0.2916 281 6.8464 -0.2926 281 -0.281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -281 -283 -0.2906 -284 -284 -284 -284 -284 -284 -284 -284 -284 -284 -284 -286 -2807 -2824 -2907 <td></td> <td>Coil ID</td> <td></td> <td></td> <td></td> <td>Coil ID</td> <td></td> <td></td> <td></td> <td>Coil ID</td> <td></td> <td></td> <td></td>		Coil ID				Coil ID				Coil ID			
LAYER 1 381 381 7.965 -0.2863 381 382 6.626 -0.2893 381 383 6.8506 -0.2200 LAYER 3 341 321 6.6476 -0.3863 341 342 7.0641 -0.2847 341 342 7.2564 -0.2877 -0.2200 LAYER 4 321 322 6.6665 -0.2883 301 303 6.4043 -0.2200 LAYER 5 301 281 7.967 -0.3863 221 222 6.6444 -0.2807 281 283 6.8463 -0.2200 LAYER 7 281 241 242 241 242 241 242 241 241 241 242 241 241 241 242 241 241 242 241 241 241 242 241 242 241 241 241 242 241 242 241 242 241 242 242 241 242 241 242 241 242 241 242 241 242 241 241 <t< td=""><td>701C1</td><td>Transmit</td><td>Receive</td><td>а</td><td>n</td><td>Transmit</td><td>Receive</td><td>а</td><td>n</td><td>Transmit</td><td>Receive</td><td>а</td><td>n</td></t<>	701C1	Transmit	Receive	а	n	Transmit	Receive	а	n	Transmit	Receive	а	n
LAYER 2 361 341 7.7502 -0.3863 361 362 6.6663 -0.2910 361 363 6.8787 -0.2927 LAYER 3 311 324 6.6767 -0.3863 341 342 7.6944 -0.2874 321 323 6.0666 -0.2894 321 323 6.0463 -0.2893 LAYER 7 261 241 7.9965 -0.3829 281 226 6.6744 -0.2895 281 283 6.9978 -0.2894 LAYER 7 261 241 7.9955 -0.3791 384 385 6.6455 -0.2191 384 386 6.8504 -0.2396 LAYER 2 344 344 7.8057 -0.3839 344 385 6.4419 -0.2905 344 346 7.1466 -0.23907 LAYER 3 344 344 7.8057 -0.3339 344 345 6.3406 -0.2901 324 346 6.1466 -0.23907 LAYER 4 344	LAYER 1	381	361	7.965	-0.3853	381	382	6.626	-0.2893	381	383	6.8506	-0.2920
LAYER 3 311 321 6.6476 -0.3853 341 322 7.0641 -0.2247 341 332 7.2564 -0.2877 LAYER 5 301 201 7.987 -0.3849 301 302 6.6662 -0.2883 301 303 6.0463 -0.22903 LAYER 6 211 221 246 6.494 -0.2907 261 283 6.4843 -0.2907 LAYER 7 261 241 7.9765 -0.3683 261 222 6.6494 -0.2907 261 283 6.4854 -0.2907 LAYER 7 264 344 7.6967 -0.3939 364 365 6.6445 -0.2909 344 366 6.853 -0.2908 LAYER 3 344 344 7.6967 -0.3939 344 355 6.6445 -0.2906 344 7.4666 -0.2907 LAYER 3 344 7.6967 -0.3939 284 285 6.6465 -0.2906 344 7.4666 -0.2907 LAYER 3 344 7.6987 -0.3901 340	LAYER 2	361	341	7.7502	-0.3853	361	362	6.6653	-0.2910	361	363	6.8787	-0.2920
LAYER 4 321 321 321 322 6.6560 -0.2894 321 323 6.0566 -0.2876 LAYER 5 301 221 7.997 -0.3849 301 302 6.6625 -0.2893 303 6.4463 -0.2894 LAYER 7 261 241 7.9952 -0.3829 281 226 6.6744 -0.2995 281 283 6.8976 -0.2894 TOIC2 a n a a a <td< td=""><td>LAYER 3</td><td>341</td><td>321</td><td>8.6476</td><td>-0.3853</td><td>341</td><td>342</td><td>7.0641</td><td>-0.2947</td><td>341</td><td>342</td><td>7.2594</td><td>-0.2877</td></td<>	LAYER 3	341	321	8.6476	-0.3853	341	342	7.0641	-0.2947	341	342	7.2594	-0.2877
LAYER 5 301 281 7.987 0.3849 301 302 6.6625 0.2893 301 303 6.4043 0.22903 LAYER 7 261 261 7.962 0.3863 261 222 6.6744 0.2907 261 263 6.8978 0.2290 TOIC2 a n a n a n a n a n LAYER 1 384 364 365 6.6485 0.22905 364 366 6.8634 0.2206 LAYER 3 344 324 7.6807 0.3393 364 355 6.3314 0.3071 304 6.6425 0.22907 LAYER 3 244 264 7.9667 0.3392 264 265 6.6633 0.2007 264 266 6.6621 0.22917 LAYER 3 244 245 6.6436 0.22901 367 368 6.642 0.2996 367 368 6.6621 0.22917	LAYER 4	321	301	7.995	-0.3806	321	322	6.6506	-0.2894	321	323	6.0566	-0.2876
LAYER 6 281 261 7.9692 0.3829 281 282 6.6494 0.2295 281 283 6.8463 0.2894 LAYER 7 261 241 7.9765 0.3863 261 262 6.6744 0.2295 261 283 6.8478 0.2392 TOIC2 8 n 8 n 8 n 8 n 8 n 8 n 8 n 8 n 8 n 8	LAYER 5	301	281	7.987	-0.3849	301	302	6.6625	-0.2893	301	303	6.4043	-0.2903
LAYER 2 241 241 7.9765 -0.3863 261 262 6.6744 -0.2907 261 263 6.8978 -0.2920 701C2 8 n 8 n 8 364 7.9255 -0.3791 884 365 6.6485 -0.2919 384 386 6.8504 -0.2906 LAYER 3 344 324 7.6855 -0.2702 344 345 6.9362 -0.2906 344 346 7.1466 -0.2907 LAYER 4 344 7.9255 -0.2702 344 345 6.9362 -0.2906 344 346 7.1466 -0.2907 LAYER 4 344 7.9685 -0.2702 344 345 6.9362 -0.2908 344 346 7.1466 -0.2907 LAYER 5 304 284 8.0251 -0.3895 304 305 6.3314 -0.3071 304 306 6.4825 -0.2898 LAYER 7 264 244 8.0349 -0.3872 264 255 6.6493 -0.2907 264 266 6.8631 -0.2924 LAYER 6 244 244 8.0349 -0.3872 264 265 6.6493 -0.2907 264 266 6.8631 -0.2924 LAYER 7 264 244 8.0349 -0.3872 264 265 6.6493 -0.2907 264 266 6.8611 -0.2925 LAYER 7 264 244 8.0349 -0.3872 264 265 6.6493 -0.2907 264 266 6.8611 -0.2926 LAYER 8 244 - 244 245 - 244 245 - 2490 367 389 6.8728 -0.2904 LAYER 3 347 327 9.047 -0.3846 347 348 7.3086 -0.2901 347 349 7.346 -0.2981 LAYER 3 347 327 9.047 -0.3846 347 348 7.3086 -0.2901 347 349 7.346 -0.2981 LAYER 5 307 287 7.9277 -0.3840 327 286 6.653 -0.2907 289 6.6641 -0.2925 LAYER 5 307 287 7.9277 -0.3840 307 308 6.4492 -0.2923 307 309 6.6599 -0.2885 LAYER 6 287 287 7.9277 -0.3840 277 286 6.654 -0.2899 27 289 6.6641 -0.2895 LAYER 7 307 287 7.9277 -0.3840 377 378 6.654 -0.2898 267 289 6.6641 -0.2895 LAYER 7 307 287 7.9277 -0.3840 370 391 6.6201 -0.2887 390 382 6.8303 -0.2887 LAYER 7 303 0.6149 -0.3847 390 391 6.6201 -0.2887 390 382 6.8303 -0.2887 LAYER 7 303 0.7.7374 -0.3840 370 371 6.7146 -0.2085 300 332 6.6571 -0.2285 LAYER 7 310 7.9574 -0.3840 370 371 6.7146 -0.2805 310 312 6.6572 -0.2895 LAYER 7 313 0.330 6.048 373 374 6.6674 -0.2895 330 332 6.6571 -0.2895 LAYER 7 313 0.39 7.9987 -0.3843 377 374 6.6628 -0.2900 333 335 6.8689 -0.2846 LAYER 7 313 313 7.946 -0.3820 333 334 6.6628 -0.2900 333 335 6.8689 -0.2894 LAYER 7 277 250 8.0341 376 377 6.6628 -0.2900 333 335 6.8689 -0.2894 LAYER 7 273 533 8.009 -0.3833 273 274 6.6638 -0.2900 333 335 6.8689 -0.2894 LAYER 7 275 556 7.7214 -0.3843 377 7.4660.3314 396 377 6.6632 -0.2902 333 3	LAYER 6	281	261	7.9692	-0.3829	281	282	6.6494	-0.2895	281	283	6.8463	-0.2894
LAYER 8 241 242 241 242 241 243 701C2 a n n a n a n a n a n a n a n a n a n	LAYER 7	261	241	7.9765	-0.3863	261	262	6.6744	-0.2907	261	263	6.8978	-0.2920
TOIC2 a n a n a n a n a n LAYER 1 384 364 7.9255 -0.3791 384 385 6.6485 -0.2919 384 386 6.8683 -0.2906 344 366 6.8683 -0.2906 344 346 7.1466 -0.2907 LAYER 3 344 324 7.6657 -0.3305 304 305 6.3314 -0.3071 304 306 6.8422 -0.2997 LAYER 6 284 284 80.051 -0.3070 284 286 6.653 -0.2907 284 286 6.653 -0.2907 284 286 6.653 -0.2907 284 286 6.653 -0.2907 284 286 6.653 -0.2907 284 286 6.653 -0.2907 284 286 6.654 -0.2800 367 369 6.8728 -0.2902 LAYER 1 387 7.967 -0.3840 367 3686	LAYER 8	241				241	242			241	243		
AULYER 1 S84 364 7 9225 - 0.3791 384 385 6.6485 -0.2119 384 386 6.8604 -0.2906 364 366 6.8803 -0.2906 LAYER 2 364 344 7.0027 344 345 6.6405 -0.2901 324 326 6.8482 -0.2907 LAYER 4 324 326 6.6405 -0.2907 1344 346 6.862 -0.2907 LAYER 7 244 245 6.6405 -0.2907 284 266 6.862 -0.2907 LAYER 7 244 245 6.6446 -0.2907 284 266 6.862 -0.2917 LAYER 7 387 387 6.6446 -0.2904 387 389 6.872 -0.2917 LAYER 7 387 387 6.864 -0.2904 387 389 6.872 -0.2925 LAYER 7 387 389 6.872 -0.2925 307 306 6.829 -0.2802	70100							2					
LATER 1 364 364 7 42.53 -0.3781 384 385 6.6483 -0.2193 384 386 6.6493 -0.2193 384 386 6.6483 -0.2105 384 386 6.6481 -0.2105 384 386 6.6481 -0.2105 384 386 6.6481 -0.2107 1.4186 -0.2206 344 346 7.4666 -0.2207 1.4186 -0.2208 2.42 386 6.6383 -0.2207 2.84 2.86 6.853 -0.2207 2.84 2.86 6.853 -0.2207 2.84 2.86 6.8651 -0.2207 2.84 2.86 6.8651 -0.2207 2.84 2.86 6.8631 -0.2924 2.44		204	204	a 7 0055	0.0704	204	205	a 0.0405	0.0010	204	200	a 0.0504	0.0000
LATER 2 364 344 7.897 40.3639 364 356 0.6819 -0.2006 344 346 0.7466 -0.2907 LAYER 3 434 324 7.9527 -0.3382 324 325 0.6405 -0.2901 324 326 0.6482 -0.2997 LAYER 4 324 304 7.9527 -0.3382 324 325 0.6405 -0.2901 324 326 0.6482 -0.2997 LAYER 5 304 284 0.251 -0.3985 304 305 0.5314 -0.3071 304 306 0.6425 -0.2998 LAYER 6 284 224 0.0397 -0.3803 284 285 0.6453 -0.2907 264 286 0.6861 -0.2907 LAYER 7 264 244 0.0349 -0.3872 264 285 0.6493 -0.2907 264 286 0.6861 -0.2904 LAYER 7 37 367 7.9255 -0.3791 387 388 0.6544 -0.2904 387 389 0.6872 0.2905 LAYER 8 244 245		384	364	7.9200	-0.3791	384	385	0.0485	-0.2919	384	380	0.8504	-0.2906
LATER 3 344 324 7,0853 -12.702 344 345 0,3052 -12.200 324 326 6,4825 -0.2997 LAYER 4 324 304 7,957 -0.3895 304 305 6,3314 -0.3071 304 306 6,4825 -0.2997 LAYER 5 304 224 8,0349 -0.3872 224 225 6,6493 -0.2907 224 226 6,6862 -0.2917 LAYER 7 224 224 8,0349 -0.3872 224 225 6,6493 -0.2907 224 226 6,68631 -0.2924 LAYER 7 224 224 8,0349 -0.3872 224 225 6,6493 -0.2907 224 226 6,68631 -0.2924 LAYER 8 244 - 244 245 - 244 246 -0.2907 244 226 6,6863 -0.2907 LAYER 3 347 327 9,047 -0.3843 347 348 6,6446 -0.2900 347 349 6,68728 -0.2906 LAYER 3 347 327 9,047 -0.3844 347 348 7,3096 -0.2910 347 349 7,345 -0.2981 LAYER 3 347 327 9,047 -0.3844 327 328 6,6538 -0.2906 347 349 7,345 -0.2981 LAYER 5 307 287 8,0056 -0.3834 327 328 6,6538 -0.2906 347 349 7,345 -0.2981 LAYER 5 307 287 0,056 -0.3844 327 328 6,654 -0.2289 287 289 6,6684 -0.2899 LAYER 5 307 287 0,0360 287 288 6,654 -0.2899 287 289 6,6684 -0.2898 LAYER 6 287 267 7,9277 -0.3840 267 228 6,654 -0.2899 287 289 6,6684 -0.2898 LAYER 7 27 247 7.9928 -0.3840 307 371 6,7146 -0.3003 370 372 6,6868 -0.2898 LAYER 7 27 247 7.9278 -0.3847 300 391 6,6201 -0.2887 380 392 6,8303 -0.2887 LAYER 8 247 - 247 248 247 249 - 247 24	LATER 2	304	344	7.0097	-0.3639	304	305	0.0419	-0.2905	304	300	0.0000	-0.2090
LAYER 4 324 304 7.9527 -0.3882 324 325 0.6405 -0.2901 324 326 0.6482 -0.2997 LAYER 5 304 264 8.0251 -0.3803 284 285 6.6553 -0.2907 264 286 6.862 0.2917 LAYER 7 264 244 8.0349 -0.3872 264 285 6.6493 -0.2907 264 286 6.863 -0.2924 LAYER 8 244 245 244 245 244 246 25 LAYER 8 244 246 24 LAYER 7 387 367 7.7513 -0.3840 367 368 6.6446 -0.2904 387 389 6.8728 -0.2906 LAYER 2 367 347 7.513 -0.3840 367 368 6.654 -0.2904 387 369 6.8651 -0.2925 LAYER 3 347 327 9.047 -0.3848 347 348 7.3096 -0.2910 347 349 7.345 -0.2981 LAYER 5 307 287 8.012 -0.3840 307 308 6.6534 -0.2905 327 329 6.8699 -0.2942 LAYER 5 307 287 8.012 -0.3840 307 308 6.654 -0.2890 387 309 6.8589 -0.2989 LAYER 7 287 287 7.9277 -0.3840 307 308 6.654 -0.2899 287 289 6.6841 -0.2895 LAYER 7 287 287 7.9274 -0.3840 307 308 6.654 -0.2899 287 289 6.6841 -0.2895 LAYER 7 287 247 7.9278 -0.3840 307 301 6.654 -0.2899 287 289 6.6841 -0.2895 LAYER 8 247 249 247 248 247 249 701C4 a n a n a n a n a n LAYER 1 300 370 7.9747 -0.3844 370 371 6.7146 -0.3003 370 372 6.6830 -0.2946 LAYER 7 267 247 7.928 -0.3847 310 391 6.6234 -0.2905 337 329 6.6830 -0.2946 LAYER 7 267 247 7.928 -0.3847 310 331 6.6426 -0.2905 330 332 6.6830 -0.2946 LAYER 7 303 300 6.408 -0.3838 350 351 7.7472 -0.2923 350 352 7.2766 -0.2867 LAYER 3 303 300 7.9971 -0.3804 370 371 6.7146 -0.3003 370 372 6.8688 -0.2946 LAYER 3 30 310 7.9571 -0.3804 370 371 6.6634 -0.2905 330 332 6.6871 -0.2926 LAYER 7 270 250 8.0119 -0.3836 270 271 6.6624 -0.2906 310 312 6.8724 -0.2900 LAYER 6 290 270 7.9685 -0.3841 290 291 6.6602 -0.2912 290 292 6.6728 -0.2867 LAYER 4 330 310 7.9571 -0.3803 330 331 6.6426 -0.2905 330 335 6.6859 -0.2946 LAYER 7 273 253 8.0421 +0.3838 350 351 7.7472 -0.2806 270 272 6.68552 -0.2879 LAYER 8 250 250 251 250 251 250 252 701C5 8 n a n a n LAYER 1 393 373 7.9687 -0.3838 330 394 6.6526 -0.2906 333 355 6.6859 -0.2946 LAYER 7 273 253 8.0421 +0.3843 373 374 6.6715 -0.2886 270 272 6.68554 -0.2905 LAYER 7 273 253 8.0421 +0.3843 353 334 4 6.6526 -0.2906 333 355 6.6859 -0.2906 LAYER 7 273 255	LAYER 3	344	324	7.6855	-0.2702	344	345	6.9362	-0.2906	344	346	7.1466	-0.2907
LAYER 5 304 224 8.024 8.025 -0.3895 304 305 6.3314 -0.3071 306 6.4825 -0.22917 LAYER 7 264 224 8.0349 -0.3872 264 225 6.6493 -0.2907 224 226 6.6862 -0.2917 LAYER 8 244 245 244 246 245 244 246 701C3 8 n 8 n 8 n 8 n 8 n 8 n 8 n 1 8 n 1 1.4YER 1 387 347 7.5133 -0.3840 367 368 6.6544 -0.2904 387 389 6.8728 -0.2906 LAYER 2 367 347 7.5133 -0.3840 367 368 6.654 -0.2901 347 349 7.345 -0.2901 LAYER 3 347 327 9.047 -0.3848 347 348 7.3096 -0.2910 347 349 7.345 -0.2901 LAYER 4 327 307 8.0656 -0.3834 327 328 6.6538 -0.2906 327 329 6.8699 -0.2942 LAYER 5 307 287 8.012 -0.3804 337 388 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 6 287 267 7.9277 -0.3805 287 288 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 8 247 247 7.9928 -0.3840 267 268 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 8 247 247 7.9928 -0.3840 307 311 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 8 247 247 7.9928 -0.3840 307 311 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 307 339 322 6.8303 -0.2887 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 330 320 352 6.8371 -0.2887 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 330 350 352 7.2766 -0.2871 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2905 330 332 6.6871 -0.2926 LAYER 5 310 290 8.0119 -0.3836 270 271 6.6626 -0.2912 290 292 6.8728 -0.2897 LAYER 5 310 290 8.0119 -0.3836 270 271 6.6626 -0.2905 330 332 6.6871 -0.2926 LAYER 5 310 320 -0.3838 350 331 6.6426 -0.2905 330 332 6.6871 -0.2926 LAYER 5 310 320 -0.3838 350 331 334 6.6626 -0.2906 333 335 6.8699 -0.2846 LAYER 4 333 313 7.9646 -0.3820 333 334 6.6626 -0.2906 333 335 6.8659 -0.2897 LAYER 7 273 250 8.0119 -0.3838 254 6.6113 -0.2896 270 272 6.6555 -0.2879 LAYER 7 273 253 8.004 -0.3838 323 324 6.6715 -0.2806 270 272 6.6556 -0.2897 LAYER 7 273 253 8.004 -0.3833 233 344 6.6226 -0.2906 333 335 6.8659 -0.2896 LAYER 7 333 331 7.9646 -0.3820 333 334 6.6526 -0.2906 333 335 6.8659 -0.2896 LAYER 7 273 253 8.0041 -0.3833 233 244 6.6415 -0.2817 233 275 6.8859 -0.2897 LAYER 7 273 253 8.0041 -0.	LAYER 4	324	304	7.9527	-0.3382	324	325	6.6405	-0.2901	324	326	6.8482	-0.2997
LAYER 1 204 204 7.9987 -0.3803 224 285 6.6953 -0.2907 264 286 6.662 -0.2917 LAYER 2 44 8.0349 -0.3872 224 265 6.6493 -0.2907 264 266 6.8631 -0.2924 LAYER 8 244 245 244 245 244 246 25 TOIC3 a a n 3 n 4 n 3 n 4 n 3 n 4 n 3 n 4 n 7 LAYER 2 367 347 7.5133 -0.3840 367 368 6.6464 -0.2890 367 369 6.8611 -0.2925 LAYER 3 347 327 9.047 -0.3848 347 348 7.3986 -0.2900 347 349 7.345 -0.2901 LAYER 4 327 307 8.0056 -0.3834 347 328 6.6538 -0.2906 327 329 6.8699 -0.2942 LAYER 5 307 287 8.012 -0.3840 307 308 6.4302 -0.2893 307 309 6.8589 -0.2895 LAYER 7 287 267 7.9275 -0.3805 287 288 6.654 -0.2889 267 289 6.8641 -0.2895 LAYER 7 287 247 7.9928 -0.3840 267 268 6.654 -0.2898 267 269 6.8641 -0.2895 LAYER 7 287 247 7.9928 -0.3840 370 371 6.6201 -0.2887 390 392 6.8303 -0.2895 LAYER 7 287 300 7.9974 -0.3843 370 371 6.7146 -0.3003 370 372 6.8968 -0.2895 LAYER 7 287 350 350 7.7374 -0.3843 370 371 6.7146 -0.3003 370 372 6.8968 -0.2897 LAYER 4 300 310 7.9571 -0.3803 331 6.6246 -0.2905 310 322 6.8303 -0.2887 LAYER 4 300 310 7.9571 -0.3803 330 331 6.6426 -0.2905 310 322 6.8724 -0.2807 LAYER 4 300 310 7.9571 -0.3803 350 151 7.0472 -0.2923 350 352 7.2788 -0.2871 LAYER 4 300 310 7.9571 -0.3803 331 6.6426 -0.2906 310 312 6.8724 -0.2807 LAYER 4 300 310 7.9571 -0.3803 331 6.6426 -0.2906 310 312 6.8724 -0.2807 LAYER 4 303 310 7.9571 -0.3802 333 34 6.66715 -0.2918 373 375 6.8661 -0.2897 LAYER 8 250 250 251 250 252 701C5 a n n a n a n LAYER 1 393 373 7.9897 -0.3853 333 46.6571 -0.2908 333 335 6.8691 -0.2906 LAYER 7 273 3.53 8.009 -0.3833 331 314 6.6479 -0.2908 333 335 6.8691 -0.2906 LAYER 8 250 251 250 252 701C5 a n n a n a n LAYER 1 393 376 7.9466 -0.3813 334 6.6571 -0.2918 373 375 6.8691 -0.2918 LAYER 2 373 353 8.009 -0.3833 233 346 6.6512 -0.2918 373 375 6.8691 -0.2918 LAYER 7 273 253 8.0421 -0.3843 313 314 6.6479 -0.2900 333 335 6.8564 -0.22895 LAYER 7 273 255 8.6427 -0.2805 255 6.8571 -0.2905 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6665 -0.2894 273 275 6.8854 -0.2895 LAYER 7 273 255 8.6427 -0.2805 257 255 6.8571 -0	LAYER 5	304	284	8.0251	-0.3895	304	305	6.3314	-0.3071	304	306	6.4825	-0.2898
LAYER 7 264 264 8.039 -0.3872 264 265 6.6493 -0.2907 264 266 6.8631 -0.2924 LAYER 8 244 245 244 246 244 246 TOIC3 a n a n a n a n a n LAYER 1 387 367 7.9255 -0.3791 387 388 6.6446 -0.2900 367 369 6.8611 -0.2925 LAYER 3 347 327 9.047 -0.3840 367 368 6.654 -0.2910 347 349 7.345 -0.2901 LAYER 5 307 267 7.9277 -0.3840 327 228 6.654 -0.2928 287 269 6.8641 -0.2895 LAYER 6 287 267 7.9277 -0.3860 301 6.6201 -0.2898 287 269 6.8641 -0.2895 LAYER 4 3270 370 7.9974 -0.3847 390 391 6.6201 -0.2810 350 352	LAYER 6	284	264	7.9687	-0.3803	284	285	6.6553	-0.2907	284	286	6.862	-0.2917
LAYER 8 244 245 244 246 701C3 a a n 3 n 3 n 3 n 3 n 3 n 3 n 3 n 3 n	LAYER 7	264	244	8.0349	-0.3872	264	265	6.6493	-0.2907	264	266	6.8631	-0.2924
701C3 a n a n a n a n LAYER 1 387 387 7.513 0.3840 367 368 6.6446 0.2900 367 369 6.8718 -0.2906 LAYER 2 367 347 327 9.047 -0.3848 347 348 7.3096 -0.2906 327 329 6.8599 -0.2942 LAYER 3 307 287 8.012 -0.3840 307 308 6.6543 -0.2923 307 309 6.8589 -0.2892 LAYER 7 267 7.927 -0.3840 267 268 6.654 -0.2889 267 268 6.654 -0.2891 247 249 -0.2895 LAYER 8 247 249 -0.2895 LAYER 8 307 350 7.7374 -0.3864 370 371 6.7146 -0.3003 370 372 6.8561 -0.2871 LAYER 8 350 350 7.977 -0.3864 <	LAYER 8	244				244	245			244	246		
LAYER 1 387 367 7.9255 -0.3791 387 388 6.6446 -0.2904 387 389 6.8728 -0.2906 LAYER 2 367 347 7.513 -0.3840 367 368 6.654 -0.2900 367 399 6.8611 -0.2925 LAYER 3 377 8.002 -0.3848 327 328 6.6538 -0.2906 327 329 6.8699 -0.2942 LAYER 4 327 307 8.002 -0.3840 327 328 6.6538 -0.2906 327 329 6.8699 -0.2942 LAYER 6 287 267 7.9277 -0.3805 287 288 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 6 287 267 7.9277 -0.3805 287 288 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 7 267 247 7.9928 -0.3840 267 268 6.654 -0.2889 267 269 6.8641 -0.2895 LAYER 1 390 370 7.9374 -0.3847 390 391 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 1 390 370 7.9374 -0.3864 370 371 6.7146 -0.2905 332 6.8503 -0.2887 LAYER 4 330 310 7.9571 -0.3800 330 331 6.6426 -0.2905 330 332 6.8571 -0.2926 LAYER 7 250 8.0119 -0.3838 350 351 7.0472 -0.2925 350 352 7.2768 -0.2871 LAYER 6 290 270 7.9665 -0.3841 290 291 6.6602 -0.2912 290 292 6.8528 -0.2887 LAYER 7 250 8.0119 -0.3847 393 394 6.6260 -0.2916 290 533 332 6.8571 -0.2871 LAYER 4 330 310 7.9571 -0.3800 330 331 6.6426 -0.2905 330 332 6.8571 -0.2871 LAYER 5 290 270 7.9665 -0.3841 290 291 6.6602 -0.2912 290 292 6.8528 -0.2887 LAYER 7 270 250 8.0131 -0.3847 310 311 6.6632 -0.2912 290 292 6.8528 -0.2879 LAYER 7 270 250 8.0139 -0.3859 393 394 6.6286 -0.2916 270 272 6.8552 -0.2879 LAYER 7 270 250 8.0199 -0.3838 351 373 74 6.6715 -0.2918 373 375 6.8691 -0.2987 LAYER 4 333 313 7.9918 -0.3828 354 353 6.6512 -0.2900 393 395 6.8558 -0.2887 LAYER 7 37 553 8.009 -0.3833 13 314 6.6479 -0.2906 333 335 6.8659 -0.2887 LAYER 4 333 313 7.9918 -0.3828 354 353 6.6512 -0.2807 272 6.58564 -0.2875 LAYER 7 37 553 8.004 -0.3833 293 294 6.6415 -0.2870 272 CASE 25 TOIC5 a n n a n a n LAYER 4 333 313 7.9918 -0.3828 354 353 6.6512 -0.2906 333 335 6.8564 -0.2875 LAYER 7 37 553 8.004 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 8 253	701C3			а	n			а	n			а	n
LAYER 2 367 347 7.513 -0.3840 367 368 6.654 -0.2890 367 369 6.8611 -0.2825 LAYER 3 347 327 9.047 -0.3848 347 348 7.3096 -0.2910 347 349 7.345 -0.2981 LAYER 3 347 327 9.047 -0.3848 347 348 7.3096 -0.2910 347 349 7.345 -0.2981 LAYER 5 307 287 8.012 -0.3840 307 308 6.4302 -0.2923 307 309 6.8589 -0.2898 LAYER 6 287 267 7.9277 -0.3805 287 288 6.654 -0.2889 287 289 6.8684 -0.2895 LAYER 8 247 247 7.9922 -0.3840 267 268 6.654 -0.2889 287 289 6.8684 -0.2895 LAYER 8 247 247 7.9924 -0.3847 390 391 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 3 350 370 7.9974 -0.3864 370 371 6.7146 -0.3003 370 372 6.8966 -0.2946 LAYER 3 350 7.7374 -0.3864 370 371 6.7146 -0.3003 370 372 6.8966 -0.2946 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2925 350 352 7.2768 -0.2871 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2906 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6624 -0.2906 310 312 6.8724 -0.2906 LAYER 5 310 290 8.0131 -0.3847 310 291 6.6620 -0.2912 290 292 6.8728 -0.2897 LAYER 8 250 270 7.9685 -0.3841 290 291 6.6622 -0.2912 290 292 6.8728 -0.2897 LAYER 8 250 270 7.9685 -0.3841 290 291 6.6628 -0.2906 310 312 6.8724 -0.2906 LAYER 8 250 270 7.9685 -0.3841 290 291 6.6628 -0.2906 333 356 6.8673 -0.2996 LAYER 8 250 270 7.9685 -0.3841 290 291 6.6628 -0.2912 290 292 6.8728 -0.2897 LAYER 8 250 250 251 250 252 701C5 a a n a n a n a n a n LAYER 1 393 373 7.9867 -0.3859 393 394 6.6216 -0.2906 333 355 6.8667 -0.2906 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 3 353 333 7.9948 -0.3833 293 294 6.6415 -0.2891 373 375 6.8689 -0.2894 LAYER 8 253 250 251 250 252 701C6 a n n a n n a n n a n LAYER 1 396 376 7.7346 -0.3833 293 294 6.6415 -0.2892 253 255 6.8371 -0.2905 TAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2896 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n n a n n a n n a n LAYER 1 396 376 7.5946 -0.3831 397 6.6529 -0.2828 396 398 6.8557 -0.2897 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n n a n n a n n a n n LAYER	LAYER 1	387	367	7.9255	-0.3791	387	388	6.6446	-0.2904	387	389	6.8728	-0.2906
LAYER 3 347 327 9.047 0.3848 347 348 7.3096 -0.2910 347 349 7.345 -0.2981 LAYER 4 327 307 8.0026 -0.3840 327 328 6.6538 -0.2906 327 329 6.8699 -0.2942 LAYER 5 287 267 7.9277 -0.3805 287 288 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 7 267 247 7.9928 -0.3840 391 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 8 247 248 247 249 247 249 247 249 247 248 .0303 392 6.8303 -0.2887 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 350 352 7.2768 -0.2871 LAYER 4 330 310 7.9571 -0.3800 330 331 6.6426 -0.2906 330 322 6.8572 -0.2897 LAYER 4 330	LAYER 2	367	347	7 5133	-0.3840	367	368	6 654	-0 2890	367	369	6 8611	-0 2925
LAYER 4 327 307 8.0056 -0.3834 327 328 6.6538 -0.2906 327 329 6.86699 -0.2942 LAYER 5 307 287 8.012 -0.3840 307 308 6.4302 -0.2923 307 309 6.8589 -0.2998 LAYER 6 287 286 6.654 -0.2889 287 289 6.8641 -0.2895 LAYER 7 267 247 7.9928 -0.3840 267 268 6.654 -0.2889 267 269 6.8641 -0.2895 LAYER 8 247 248 247 249 247 249 247 249 701C4 a n a a a	LAYER 3	347	327	9 047	-0.3848	347	348	7 3096	-0 2910	347	349	7 345	-0 2981
LAYER 5 307 267 0.0000		327	307	8 0056	-0.3834	327	328	6 6538	-0.2006	327	320	6 8699	-0.2042
LAYER 6 287 267 7.9277 -0.3805 287 288 6.654 -0.2889 287 289 6.6841 -0.2895 LAYER 7 267 247 7.9928 -0.3840 267 268 6.654 -0.2889 267 269 6.6841 -0.2895 LAYER 8 247 247 248 247 249 701C4 a n a n a n a n a n a n a n A n A n A n		207	297	0.0000	0.3034	307	200	6.4202	-0.2900	207	329	6 9590	-0.2942
LAYER 7 267 247 7.927 -0.3805 267 268 6.654 -0.2889 267 269 6.6841 -0.2895 LAYER 8 247 248 247 249 24		307	207	7 0077	-0.3040	207	200	0.4302	-0.2923	207	209	0.0009	-0.2090
LAYER 7 207 247 7.9928 -0.3840 267 268 0.654 -0.2869 267 269 0.6841 -0.2895 LAYER 2 47 247 248 247 247 249 701C4 a n a n a n a n LAYER 1 390 370 7.9974 -0.3847 390 391 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 2 370 350 7.7374 -0.3864 370 371 6.7146 -0.3003 370 372 6.8968 -0.2946 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 350 352 7.2768 -0.2871 LAYER 4 330 310 7.9571 -0.3800 330 331 6.6426 -0.2905 330 332 6.8571 -0.2926 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2900 LAYER 6 290 270 7.9685 -0.3841 290 291 6.6602 -0.2912 290 292 6.8728 -0.2897 LAYER 8 250 251 250 251 250 252 701C5 a n a n a n a n LAYER 8 250 250 251 250 252 701C5 a n a n a n a n LAYER 1 393 373 7.9897 -0.3859 393 394 6.6226 -0.2901 393 395 6.8558 -0.2894 LAYER 3 353 3.30 7.9918 -0.3828 354 353 6.6512 -0.2890 333 355 6.8691 -0.2916 LAYER 3 353 333 7.9948 -0.3828 354 353 6.6512 -0.2809 353 355 6.8691 -0.2916 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2903 313 315 6.8691 -0.2916 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6529 -0.2903 313 315 6.8691 -0.2916 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6529 -0.2809 333 355 6.8671 -0.2906 LAYER 5 313 293 7.9802 -0.3383 293 294 6.6415 -0.2807 293 295 6.8564 -0.2807 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2807 293 295 6.8564 -0.2805 TOIC6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2894 273 275 6.8893 -0.2896 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6665 -0.2804 273 275 6.8893 -0.2896 LAYER 7 273 253 8.0421 -0.3841 376 377 6.6502 -0.2902 376 378 6.6555 -0.2897 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8571 -0.2895 TOIC6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2895 LAYER 7 336 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3008 -0.2917 LAYER 3 356 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.6555 -0.2917 LAYER 3 356 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.291		287	207	7.9277	-0.3805	287	288	0.004	-0.2889	287	289	0.8041	-0.2895
LAYER 5 247 248 247 249 701C4 a n a n a n a n LAYER 1 390 370 7.9974 -0.3847 390 391 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 3 350 350 7.374 -0.3864 370 371 6.7146 -0.003 370 372 6.8968 -0.2887 LAYER 4 330 310 7.9571 -0.3800 330 331 6.6424 -0.2905 330 332 6.8571 -0.2897 LAYER 5 310 290 8.0131 -0.3841 290 291 6.6602 -0.2912 290 292 6.8728 -0.2897 LAYER 7 270 250 8.0119 -0.3836 270 271 6.6674 -0.2906 310 312 6.8522 -0.2879 LAYER 7 270 250 8.0119 -0.3836 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 </td <td>LAYER /</td> <td>267</td> <td>247</td> <td>7.9928</td> <td>-0.3840</td> <td>267</td> <td>268</td> <td>6.654</td> <td>-0.2889</td> <td>267</td> <td>269</td> <td>6.6841</td> <td>-0.2895</td>	LAYER /	267	247	7.9928	-0.3840	267	268	6.654	-0.2889	267	269	6.6841	-0.2895
TO1C4 a n a n a n a n LAYER 1 390 370 7.9974 -0.3847 390 391 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 2 370 350 350 7.374 -0.3864 370 371 6.7146 -0.3003 370 372 6.8968 -0.2946 LAYER 3 350 330 8.6408 -0.3803 331 6.6246 -0.2905 330 332 6.8571 -0.2926 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2900 LAYER 7 270 250 8.0119 -0.3863 270 271 6.6475 -0.2896 270 272 6.8552 -0.2879 LAYER 1 393 373 7.987 -0.3863 373 374 6.6715 -0.2906 333 355 6.8673 -0.2901 LAYER 1 393 373 7.987 -0.3853	LAYER 8	247				247	248			247	249		
LAYER 1 390 370 7.9974 -0.3847 390 391 6.6201 -0.2887 390 392 6.8303 -0.2887 LAYER 2 370 350 7.7374 -0.3864 370 371 6.7146 -0.3003 370 372 6.8968 -0.2946 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 350 352 7.2768 -0.2871 LAYER 4 330 310 7.9571 -0.3800 330 331 6.6426 -0.2905 330 332 6.8571 -0.2926 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2900 LAYER 6 290 270 7.9685 -0.3841 290 291 6.6602 -0.2912 290 292 6.8728 -0.2879 LAYER 8 250 250 251 250 252 701C5 a n a n a n a n a n LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2896 LAYER 5 313 293 7.9940 -0.3838 313 314 6.6528 -0.2900 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9942 -0.3838 313 314 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6528 -0.2903 313 315 6.8497 -0.2902 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2806 LAYER 5 313 293 7.986 -0.3820 333 334 6.6528 -0.2890 293 295 6.8564 -0.2875 LAYER 8 253 273 7.986 -0.3813 293 294 6.6413 -0.2892 253 255 6.8571 -0.2884 LAYER 8 253 273 7.986 -0.3813 293 294 6.6413 -0.2892 253 255 6.8371 -0.2884 LAYER 8 253 273 7.9466 -0.3814 396 397 6.6529 -0.2890 293 295 6.8564 -0.2875 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2884 LAYER 8 253 253 254 6.6413 -0.2892 253 255 6.8371 -0.2884 LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2902 376 378 6.8505 -0.2817 LAYER 3 356 336 8.774 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2917 LAYER 3 356 336 8.774 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 4 336 316 7.9677 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9848 -0.3803 296 297 6.8516 -0.2877 296 298 7.0412 -0.2897 LAYER 5 316 296 7.9848 -0.3835 276 277 6.8586 -0.2904 316 318 6.8567 -0.2877 296 298 7.0412 -0.2897	701C4			а	n			а	n			а	n
LAYER 2 370 350 7.7374 -0.3864 370 371 6.7146 -0.3003 370 372 6.8968 -0.2946 LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 350 352 7.2768 -0.2871 LAYER 4 330 310 7.5571 -0.3800 330 331 6.6426 -0.2905 330 332 6.8571 -0.2926 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2900 LAYER 6 290 270 7.9685 -0.3841 290 291 6.6602 -0.2912 290 292 6.8728 -0.2897 LAYER 7 270 250 8.0119 -0.3836 270 271 6.6475 -0.2896 270 272 6.8552 -0.2879 LAYER 8 250 251 250 251 701C5 a n a n a n a n a n LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 6.552 -0.2809 353 355 6.8673 -0.2896 LAYER 3 353 333 7.9918 -0.3828 354 6.552 -0.2879 252 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2909 353 355 6.8673 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.9862 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2902 LAYER 6 293 273 7.9866 -0.3814 396 397 6.6529 -0.2903 313 315 6.8893 -0.2896 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2902 376 378 6.8561 -0.2895 TO1C6 a n n a n a n LAYER 2 376 356 7.6212 -0.3841 376 377 6.6562 -0.2902 376 378 6.8565 -0.2917 LAYER 7 3356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2917 LAYER 7 336 316 7.9567 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2917 LAYER 4 336 316 7.9567 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2917 LAYER 5 316 296 7.8983 -0.3840 316 317 7.0572 -0.2804 316 318 6.8567 -0.2897 LAYER 5 316 296 7.8983 -0.3840 316 317 7.0572 -0.2804 316 318 6.8567 -0.2897 LAYER 5 316 296 7.69848 -0.3830 296 297 6.8516 -0.2907 36 6.8705 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590	LAYER 1	390	370	7.9974	-0.3847	390	391	6.6201	-0.2887	390	392	6.8303	-0.2887
LAYER 3 350 330 8.6408 -0.3838 350 351 7.0472 -0.2923 350 352 7.2768 -0.2871 LAYER 4 330 310 7.9571 -0.3800 330 331 6.6426 -0.2905 330 332 6.8571 -0.2926 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2900 LAYER 7 270 250 8.0119 -0.3836 270 271 6.6475 -0.2896 270 272 6.8552 -0.2879 LAYER 8 250 250 250 250 250 250 250 250 250 250	LAYER 2	370	350	7.7374	-0.3864	370	371	6.7146	-0.3003	370	372	6.8968	-0.2946
LAYER 4 330 310 7.9571 -0.3800 330 331 6.6426 -0.2905 330 332 6.8571 -0.2926 LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2900 LAYER 6 290 270 7.9685 -0.3841 290 291 6.6602 -0.2912 290 292 6.8728 -0.2897 LAYER 7 270 250 8.0119 -0.3836 270 271 6.6475 -0.2896 270 272 6.8552 -0.2879 LAYER 8 250 250 251 250 250 701C5 a n a n a n a n LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2900 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 7 273 253 8.0421 -0.3843 373 376 6.6529 -0.2894 273 275 6.8893 -0.2895 701C6 a n a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 7 276 356 7.6212 -0.3814 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 336 337 6.6643 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 336 337 6.6643 -0.2902 376 378 6.8505 -0.2917 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2902 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9838 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 5 316 296 7.9848 -0.3803 296 297 6.8516 -0.2902 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9838 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 7 276 256 8.0105 -0.3835 276 277 6.86868 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 3	350	330	8.6408	-0.3838	350	351	7.0472	-0.2923	350	352	7.2768	-0.2871
LAYER 5 310 290 8.0131 -0.3847 310 311 6.6634 -0.2906 310 312 6.8724 -0.2900 LAYER 6 290 270 7.9685 -0.3841 290 291 6.6602 -0.2912 290 292 6.8728 -0.2897 LAYER 8 250 250 251 250 252 -0.2879 LAYER 8 250 252 -0.2879 LAYER 8 250 252 -0.2879 1.4YER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8661 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 4 333 313 7.9546 -0.3820 333 344 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2886 LAYER 8 253 - 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n a n a n a n LAYER 8 253 - 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n a n a n A n LAYER 8 253 - 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 5 - 0.3803 336 357 7.1373 -0.2917 356 358 7.3608 -0.2917 LAYER 8 253 - 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 - 0 n a n a n a n A n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2917 356 358 7.3608 -0.2917 LAYER 3 356 336 8.734 -0.3803 336 337 6.6643 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9848 -0.3840 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.8868 -0.2908 276 278 6.8705 -0.2878 Tab	LAYER 4	330	310	7 9571	-0.3800	330	331	6 6426	-0 2905	330	332	6 8571	-0.2926
LAYER 6 290 270 7.9685 -0.3841 290 291 6.6602 -0.2912 290 292 6.8728 -0.2897 LAYER 8 250 250 251 250 252 6.8552 -0.2879 LAYER 8 250 250 251 250 252 70 272 6.8552 -0.2879 LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 4 333 313 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n a n LAYER 8 253 264 6.6413 -0.2892 253 255 6.8571 -0.2895 TO1C6 a n a n a n a n LAYER 4 336 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2895 TO1C6 a n a n a n a n LAYER 4 336 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2895 LAYER 4 336 316 7.9567 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2917 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9883 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9883 -0.3803 356 357 7.1373 -0.2914 316 318 6.8557 -0.2897 LAYER 5 316 296 7.9883 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9883 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9884 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2908 276 278 6.8705 -0.2878 Tab	LAYER 5	310	290	8 0131	-0.3847	310	311	6 6634	-0 2906	310	312	6 8724	-0.2900
LAYER 7 270 250 8.019 -0.383 270 271 6.6475 -0.2896 270 272 6.8552 -0.2879 LAYER 8 250 251 250 251 250 252 70 272 6.8552 -0.2879 LAYER 8 250 250 251 250 252 70 272 6.8552 -0.2879 LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2895 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2802 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9933 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 5 316 296 7.99484 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2897 LAYER 7 276 256 8.0105 -0.3835 276 277 6.8688 -0.2908 276 278 6.8705 -0.2878 Tah		200	270	7 0685	-0.38/1	200	201	6 6602	-0.2012	200	202	6 8728	0.2807
LAYER 8 250 0.0115 0.0300 210 211 0.0473 0.0300 210 212 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.0302 0.000	LAVED 7	270	250	8 0110	-0.3836	270	271	6.6475	-0.2806	270	272	6 8552	-0.2870
ZNICK 0 ZS0 ZS0 ZS1 ZS0 ZS2 701C5 a n a n a n LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9566 -0.3820 333 334 6.6528 -0.2903 313 315 6.8589 -0.2802 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2895		250	200	0.0115	-0.3030	250	251	0.0475	-0.2030	250	252	0.0002	-0.2013
701C5 a n a n a n a n LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2903 313 315 6.8689 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2805 LAYER 8 253 253 254 <td< td=""><td>LATENO</td><td>200</td><td></td><td></td><td></td><td>200</td><td>201</td><td></td><td></td><td>200</td><td>252</td><td></td><td></td></td<>	LATENO	200				200	201			200	252		
LAYER 1 393 373 7.9897 -0.3859 393 394 6.6286 -0.2900 393 395 6.8358 -0.2894 LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 - 253 254 6.6413 -0.2802 253 255 6.8371 -0.2805 701C6 a n a n a n LAYER 8 253 - 253 254 6.6413 -0.2802 253 255 6.8371 -0.2805 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2805 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2802 336 338 6.8661 -0.2911 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 4 326 316 7.9567 -0.3803 326 327 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 326 327 7.557 -0.2804 316 318 6.8557 -0.2807 LAYER 4 326 316 7.9567 -0.3803 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.66686 -0.2908 276 278 6.8705 -0.2807 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6568 -0.2908 276 278 6.8705 -0.2807 LAYER 7 276 256 8.0105 -0.3835 276 277 6.66686 -0.2908 276 278 6.8705 -0.2807 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6568 -0.2908 276 278 6.8705 -0.2807 LAYER 7 276 256 8.0105 -0.3835 276 277 6.66686 -0.2908 276 278 6.8705 -0.2807 LAYER 7 276 256 8.0105 -0.3835 276 277 6.66686 -0.2908 276 278 6.8705 -0.2878 Tah	701C5			а	n			а	n			а	n
LAYER 2 373 353 8.009 -0.3863 373 374 6.6715 -0.2918 373 375 6.8691 -0.2918 LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2895 701C6 a n a n a n LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.66686 -0.2908 276 278 6.8705 -0.2877 Tah	LAYER 1	393	373	7.9897	-0.3859	393	394	6.6286	-0.2900	393	395	6.8358	-0.2894
LAYER 3 353 333 7.9918 -0.3828 354 353 6.6512 -0.2909 353 355 6.8673 -0.2906 LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n a n a n a n A N A N A N A N A N A N A N A N A N A	LAYER 2	373	353	8.009	-0.3863	373	374	6.6715	-0.2918	373	375	6.8691	-0.2918
LAYER 4 333 313 7.9546 -0.3820 333 334 6.6528 -0.2906 333 335 6.8589 -0.2896 LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2910 LAYER 5 316 296 7.9848 -0.3810 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3815 276 277 6.66688 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 3	353	333	7.9918	-0.3828	354	353	6.6512	-0.2909	353	355	6.8673	-0.2906
LAYER 5 313 293 7.9802 -0.3838 313 314 6.6479 -0.2903 313 315 6.8497 -0.2902 LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2910 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3815 276 277 6.66688 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 4	333	313	7.9546	-0.3820	333	334	6.6528	-0.2906	333	335	6.8589	-0.2896
LAYER 6 293 273 7.986 -0.3833 293 294 6.6415 -0.2870 293 295 6.8564 -0.2875 LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.66868 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 5	313	293	7.9802	-0.3838	313	314	6.6479	-0.2903	313	315	6.8497	-0.2902
LAYER 7 273 253 8.0421 -0.3843 273 274 6.6685 -0.2894 273 275 6.8893 -0.2884 LAYER 8 253 253 253 255 6.8371 -0.2895 701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6668 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 6	293	273	7.986	-0.3833	293	294	6.6415	-0.2870	293	295	6.8564	-0.2875
LAYER 8 253 253 254 6.6413 -0.2892 253 255 6.8371 -0.2895 701C6 a n a n a n A N LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6868 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 7	273	253	8.0421	-0.3843	273	274	6.6685	-0.2894	273	275	6.8893	-0.2884
701C6 a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6529 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 7.734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9839 -0.3803 336 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 5 296 276 7.9448 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277	LAYER 8	253				253	254	6.6413	-0.2892	253	255	6.8371	-0.2895
ruico a n a n a n LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 27	704.00			c.				r.				r.	_
LAYER 1 396 376 7.9466 -0.3814 396 397 6.6529 -0.2928 396 398 6.8571 -0.2905 LAYER 2 376 356 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6868 -0.2908 276 278 6.8705 -0.2878 Tah		000	070	a	n 0.001 (000	007	a	n 0.0000	000	000	a	11
LAYER 2 376 366 7.6212 -0.3841 376 377 6.6502 -0.2902 376 378 6.8505 -0.2917 LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6868 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 1	396	376	7.9466	-0.3814	396	397	6.6529	-0.2928	396	398	6.8571	-0.2905
LAYER 3 356 336 8.7734 -0.3803 356 357 7.1373 -0.2917 356 358 7.3608 -0.2910 LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.66668 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 2	376	356	7.6212	-0.3841	376	377	6.6502	-0.2902	376	378	6.8505	-0.2917
LAYER 4 336 316 7.9567 -0.3803 336 337 6.6643 -0.2920 336 338 6.8661 -0.2911 LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6868 -0.2908 276 278 6.8705 -0.2878 Tak	LAYER 3	356	336	8.7734	-0.3803	356	357	7.1373	-0.2917	356	358	7.3608	-0.2910
LAYER 5 316 296 7.9893 -0.3840 316 317 7.0572 -0.2904 316 318 6.8557 -0.2897 LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6868 -0.2908 276 278 6.8705 -0.2878 Tak	LAYER 4	336	316	7.9567	-0.3803	336	337	6.6643	-0.2920	336	338	6.8661	-0.2911
LAYER 6 296 276 7.9848 -0.3830 296 297 6.8516 -0.2597 296 298 7.0412 -0.2590 LAYER 7 276 256 8.0105 -0.3835 276 277 6.6868 -0.2908 276 278 6.8705 -0.2878 Tak	LAYER 5	316	296	7.9893	-0.3840	316	317	7.0572	-0.2904	316	318	6.8557	-0.2897
LAYER 7 276 256 8.0105 -0.3835 276 277 6.6868 -0.2908 276 278 6.8705 -0.2878 Tah	LAYER 6	296	276	7.9848	-0.3830	296	297	6.8516	-0.2597	296	298	7.0412	-0.2590
	LAYER 7	276	256	8.0105	-0.3835	276	277	6.6868	-0.2908	276	278	6.8705	-0.2878 Tab

 Table B-2. Calibration coefficients for coil gages.

le B-3. Locations of stress cell and calibration coefficients.

ID	Window	Orientation	X (m)	Y (m)	Z (mm)	Full-scale range (kPa)	Gain factors (GF) mv/V/kPa
B3.8	C1	Z	5.44	2.13	482.60	800	39.4
A6.19	C1	х	5.78	2.13	495.30	200	155
A6.6	C1	У	6.15	2.13	495.30	200	161
B3.2	C2	z	5.44	3.35	482.60	800	39

A6.1	C2	х	5.77	3.35	508.00	200	159
A6.15	C2	у	6.15	3.34	495.30	200	162
B3.4	C2	Z	5.45	4.57	927.10	800	40
A6.10	C2	х	5.75	4.57	933.45	200	170
A6.11	C2	у	6.15	4.57	927.10	200	164
B3.5	C3	z	5.44	3.35	508.00	800	30.4
A6.5	C3	х	5.77	3.35	495.30	200	167
A6.33	C3	У	6.15	3.35	495.30	200	166

Table B-4. Locations of Vitel Hydra moisture probes in test section 701.

ID	X(m)	Y(m)	Z(mm)
V410	10.9	2.7	342.9
V322	16.1	5.4	622.3
V124	4.9	1.4	965.2
V123	10.6	3.9	1238.3
V122	16.4	1.5	1524.0
V398	4.1	5.4	1778.0

Table B-5. Locations of thermocouplesin test section 701.

ID	X(m)	Y(m)	Z(mm)
TC 1	Air		
TC 2	3.6	4.0	76.2
TC 3	3.6	4.0	152.4
TC 4	3.6	4.0	304.8
TC 5	3.6	4.0	457.2
TC 6	3.6	4.0	609.6
TC 7	3.6	4.0	762.0
TC 8	3.6	4.0	914.4
TC 9	3.6	4.0	1066.8
TC 10	3.6	4.0	1219.2

APPENDIX C: 701C1 RESULTS

Load		Vertical stress (k	(Pa)
repetitions	Position 1	Position 2	Position 3
0	-30.48	-28.49	-25.18
500	-31.62	-31.66	-24.69
1000	-30.40	-31.64	-25.18
2500	-30.12	-31.56	-28.98
5000	-31.09	-32.22	-30.83
10000	-31.63	-34.99	-30.10
20000	-34.17	-36.98	-31.68
45509	-35.84	-37.33	-34.70
52493	-33.81	-37.41	-33.22
53493	-34.93	-39.10	-34.68
63900	-37.21	-39.36	-33.40
99011	-38.51	-40.75	-36.36
200000	-41.16	-43.77	-36.36
283480		-35.99	

Table C-1. Measured vertical stress as a functionof load repetition.

Table C-2. Maximum dynamic vertical subgrade strain as a function of load repetition and depth.

Mid layer														
depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	200000	283480
	Position 1													
229 (Base)	-940	-1040	-1105	-1029	-1228	-1392	-1375	-1456	-1327	-1432				
381	-753	-713	-763	-825	-823	-904	-964	-972	-796	-1105	-556	-1096	-1136	
533	-462	-543	-565	-588	-605		-725		-639	-701	-542	-797	-825	
686	-427	-461	-478	-519	-544		-631	-643	-543	-603	-613	-710	-716	-716
840	-355	-369	-400	-418	-442		-535	-539	-462	-525	-556	-585	-626	-622
992	-236	-245	-279	-290	-308		-335	-371	-321	-343	-356	-405	-407	-410
1143	-209	-241	-241	-248	-275	-275	-337	-332	-305	-312	-337	-350	-371	-374
						F	Position	2						
229 (Base)	-966	-1037	-1071	-1148	-1163	-1344		-1472	-1319	-1477			-1553	
381	-719	-824	-856	-938	-930	-988	-1024	-1033	-997	-1174	-809	-1259	-1234	-1278
533	-530	-602	-628	-673	-687	-765	-784	-811	-699	-796	-611	-909	-937	-936
686	-427	-482	-508	-548	-569		-637	-668	-583	-665	-673	-754	-779	-738
840	-344	-389	-415	-438	-459		-531	-564	-487	-548	-568	-620	-643	-623
992	-232	-263	-275	-302	-315		-372	-399	-339	-380	-394	-421	-441	-422
1143	-201	-231	-247	-256	-263	-288	-287	-342	-293	-318	-331	-359	-362	-354
						F	Position	3						
229 (Base)	-906	-1069	-992	-1173	-1023	-1340	-1283	-1484	-1173					
381	-639	-864	-806	-959	-871	-967	-963	-926	-695	-995	-502	-1007	-1137	
533	-393	-506	-504	-573	-652	-719	-756	-766	-650	-761	-409	-847	-878	
686	-362	-438	-455	-493	-500		-577	-604	-494	-592	-537	-662	-688	-654
840	-298	-374	-384	-414	-535		-487	-520	-433	-510	-515	-558	-594	-568
992	-219	-258	-269	-289	-153		-341	-371	-307	-356	-373	-397	-416	-391
1143	-188	-212	-217	-235	-236	-249	-272	-295	-248	-291	-301	-325	-338	-323

Figure C-1. Illustration of peak longitudinal strains presented in Table C-3.

Table C-3a	. Maximum dynamic	longitudinal subgrad	e strain as a functi	on of load repetition
and depth	(Position 1).			

Depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	200000	283480
							(A	۹)						
229 (Base)	-91	-101	-215	-219	-238	-304	-289	-307	-201	-243	-	-	-	-
381	-96	-154	-180	135	-182	-208	-308	-260	-227	-245	-204	-321	-358	
533	-75	-91	-91	-98	-95		-132		-134	-138	-114	-189	-215	
686	-65	-76	-86	-80	-93		-101	-115	-114	-123	-122	-149	-149	-149
840	-45	-38	-51	-47	-51		-72	-70	-71	-79	-66	-96	-91	-97
992	-30	-36	-39	-48	-37		-60	-66	-58	-57	-56	-84	-73	-74
1143	-35	-37	-37	-44	-47	-29	-39	-49	-54	-51	-40	-48		-52
							(E	3)						
229 (Base)	254	208	377	484	335	264	369	338	451	550	-	-	-	-
381	84	121	138	-179	128	189	240	236	255	315	224	393	446	
533	161	181	179	188	191		255		256	299	227	359	443	
686	110	123	137	149	169		222	231	204	251	234	301	335	335
840	96	115	118	132	129		162	180	166	169	176	227	238	240
992	82	85	88	101	106		115	123	120	142	128	141	154	156
1143	55	66	66	73	73	100	95	99	95	91	96	114		229
							(0	C)						
229 (Base)	-45	-34	-129	-92	-103	-164	-104	-124	-149	-177	-	-	-	-
381	-40	-41	-41	-39	-34	-33	-38	-36	-55	-56	-43	-46	-61	
533	-64	-64	-68	-56	-73		-97		-62	-72	-66	-78	-96	
686	-49	-44	-50	-57	-55		-72	-68	-76	-95	-73	-85	-90	-90
840	-54	-47	-56	-57	-67		-80	-65	-68	-64	-75	-68	-83	-99
992	-39	-52	-42	-50	-61		-58	-60	-55	-52	-48	-66	-68	-73
1143	-41	-38	-38	-41	-36	-30	-39	-44	-43	-44	-45	-48		-45

Depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	200000	283480
							(A)							
229 (Base)	-104	-205	-260	-263	-277	-304		-363	-232	-275			-405	
381	-104	-230	-231	-241	-248	-281	-321	-304	-266	-291	-231	-364	-389	-448
533	-48	-69	-91	-107	-103	-118	-127	-151	-122	-147	-112	-190	-225	-224
686	-81	-73	-73	-69	-73		-101	-114	-94	-105	-100	-132	-153	-149
840	-16	-32	-41	-53	-50		-51	-78	-48	-63	-50	-75	-86	-65
992	-24	-17	-26	-29	-39		-44	-42	-40	-35	-38	-54	-49	-56
1143	-16	-22	-17	-17	-24	-20	-27	-33	-31	-25	-32	-38		-41
							(B)							
229 (Base)	202	303	280	365	298	265		202	595	500			444	
381	66	122	116	160	153	222	250	266	289	324	229	439	483	457
533	93	179	181	200	216	283	289	361	305	354	249	450	496	534
686	110	158	171	187	208		235	277	221	267	288	334	364	357
840	62	125	132	129	146		188	210	169	203	213	241	268	275
992	54	98	100	114	112		138	149	134	135	151	154	180	162
1143	49	78	76	94	89	107	108	117	103	115	116	128		167
							(C)							
229 (Base)	-25	-181	-146	-163	-137	-164		-185	-138	-179			-280	
381	-76	-77	-52	-61	-51	-69	-67	-84	-56	-67	-54	-82	-73	-113
533	-43	-46	-44	-67	-46	-59	-61	-61	-52	-69	-49	-76	-77	-77
686	-54	-42	-48	-57	-51		-60	-65	-48	-73	-63	-72	-78	-72
840	-32	-36	-41	-51	-48		-51	-64	-48	-61	-57	-75	-75	-50
992	-36	-26	-32	-30	-27		-31	-41	-34	-38	-35	-37	-38	-43
1143	-22	-17	-25	-18	-23	-21	-28	-35	-35	-52	-26	-30		-37

Table C-3b. Maximum dynamic longitudinal subgrade strain as a function of load repetition anddepth (Position 2).

Depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	200000	283480
							(A)						
229 (Base)	-106	-182	-191	-204	-232	-260	-287	-277	-219	-241				
381	-73	-158	-166	-226	-184	-238	-261	-304	-238	-257	-206	401	-339	
533	-44	-89	-86	-106	-102	-115	-143	-154	-127	-154	-95	401	-212	
686	-55	-60	-59	-74	-79		-99	-107	-89	-117	-107	293	-132	307
840	-24	-44	-46	-45	-72		-60	-69	-52	-63	-68	205	-90	235
992	-17	-34	-43	-40	-32		-38	-53	-42	-50	-51	137	-63	140
1143	-19	-27	-23	-30	-36	-38	-30	-48	-30	-38	-45	110		115
							(B)						
229 (Base)	293	330	436	373	455	291	441	332	490	412				
381	207	233	243	237	230	222	257	282	244	331	223	401	545	
533	78	163	167	205	202	254	273	290	242	324	203	401	433	
686	123	150	149	159	172		225	247	184	237	232	293	325	307
840	54	113	112	120	162		160	178	149	178	182	205	236	235
992	54	83	83	90	55		115	123	97	124	126	137	155	140
1143	35	67	67	79	74	85	81	108	80	88	149	110		115
							(C)						
229 (Base)	-39	-147	-138	-161	-94	-133	-103	-153	-153	-195				
381	-45	-29	-43	-47	-45	-50	-53	-23	-56	-62	-37	-61	-76	
533	-34	-43	-50	-62	-58	-58	-58	-55	-54	-81	-56	-74	-90	
686	-47	-57	-95	-91	-97		-69	-70	-53	-70	-74	-73	-83	-72
840	-38	-43	-45	-51	-80		-54	-68	-54	-67	-63	-73	-78	-71
992	-33	-32	-38	-37	-27		-43	-57	-40	-50	-52	-55	-50	-44
1143	-19	-33	-30	-31	-34	-32	-42	-47	-31	-40	-47	-42		-45

 Table C-3c. Maximum dynamic longitudinal subgrade strain as a function of load repetition and depth (Position 3).

Depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	200000	283480
							Pos	ition 1						
305	79	79	79	79	79	128	135	148	184	193	134	275	273	
457	61	61	61	61	61		77		124	144	95	190	156	
610	144	144	144	144	144		208	195	162	196	198	205	251	251
762	113	113	113	113	113		169	149	165	138	133	189	193	182
918	115	115	115	115	115		141	122	114		122	133	134	148
1067														
							Pos	ition 2						
305	126	126	133	133	133	159		171	209	243	182	254	287	262
457	125	125	140	140	140	142	163	200	179	192	138	248	224	262
610		126	158	158	158		174	238	206	213	234	250	297	278
762	104	104	130	130	130		151	173	154	159	159	180	205	194
918	103	64	103	103	103		122	129	115		130	150	169	151
1067														
							Pos	ition 3						
305	130	130	130	130	130	180	191	177	176	253	166	254	299	
457	135	135	135	135	135	130	183	185	162	202	62	219	208	
610	141	141	165	165	165		195	224	184	200	188	226	270	252
762	119	119	119	119	169		129	171	127	142	154	170	186	177
918	64	64	64	64	64		119	122	110		130	148	170	154
1067														

Table C-4. Maximum dynamic transverse subgrade strain as a function of load repetition and depth.

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
229	0	-0.533	-0.757	-1.028	-1.472	-1.326	-1.961	-2.243	-2.341	-2.612	-3.745			-6.930	
381	0	-0.226	-0.320	-0.120	-0.432	-0.376	-0.530	-0.079	-1.203	-1.153	-0.785	-0.587		-2.565	-3.564
533	0	-0.161	-0.153	-0.108	-0.259	-0.265	-0.610	-0.877	-1.127	-1.223	-1.172	-1.471		-2.141	-3.110
686	0	-0.098	-0.099	-0.057	-0.220		-0.479	-0.705	-0.978	-1.070	-0.984	-1.234		-1.955	-2.406
840	0	-0.091	-0.066	-0.035	-0.217		-0.367	-0.502	-0.738	-0.789	-0.737	-0.948		-1.407	-2.019
992	0	-0.054	-0.042	0.011	-0.096		-0.200	-0.297	-0.525	-0.568	-0.501	-0.651		-0.980	-1.591
1143	0	-0.108	-0.086	-0.063	-0.149	-0.122	-0.266	-0.368		-0.585		-0.658		-1.028	-1.667

Table C-5a. Permanent vertical deformation from dynamic strain measurements (mm).

 Table C-5b. Permanent vertical deformation from static strain measurements (mm).

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
112	0						-1.561		-1.856			-3.077	-3.648	-4.084	-4.827
229	0	-0.205	-0.436	-0.946	-0.947	-1.057	-1.498	-2.041	-2.482	-2.564	-4.802	-5.561	-5.032	-7.090	-6.676
381	0	-0.452	-0.478	-0.411	-0.646	-0.791	-0.911	0.064	1.445	-0.524	0.666	1.378	-0.812	-1.936	-2.748
533	0	0.186	0.156	0.165	-0.027	-0.031	-0.333	-0.608	-1.452	-1.467	-1.496	-1.732	-1.979	-2.234	-2.689
686	0	0.131	0.090	0.139	-0.034		-0.284	-0.523							
840	0	0.065	0.046	0.109	-0.040		-0.220	-0.375	-0.355	-0.400	-0.373	-0.619	-0.888	-1.104	-1.610
992	0	0.053	0.043	0.111	-0.012		-0.094	-0.201	-0.036	-0.097	-0.037	-0.195	-0.453	-0.572	-1.034
1143	0	0.029	0.023	0.068	-0.050	-0.004	-0.141	-0.183	0.644	0.610	0.661	0.504	0.271	0.072	-0.399

Table C-6a. Permanent vertical strain as a function of load repetition (from dynamic strain measurements), %.

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
229	0.00	-0.29	-0.42	-0.57	-0.81	-0.73	-1.08	-1.24	-1.29	-1.44	-2.07			-3.83	
381	0.00	-0.17	-0.25	-0.09	-0.33	-0.29	-0.41	-0.06	-0.93	-0.89	-0.61	-0.45		-1.98	-2.76
533	0.00	-0.11	-0.10	-0.07	-0.17	-0.18	-0.40	-0.58	-0.75	-0.81	-0.78	-0.97		-1.42	-2.06
686	0.00	-0.07	-0.07	-0.04	-0.15		-0.32	-0.47	-0.66	-0.72	-0.66	-0.83		-1.31	-1.62
840	0.00	-0.06	-0.04	-0.02	-0.14		-0.24	-0.33	-0.48	-0.51	-0.48	-0.62		-0.91	-1.31
992	0.00	-0.04	-0.03	0.01	-0.07		-0.14	-0.21	-0.38	-0.41	-0.36	-0.47		-0.71	-1.15
1143															

Table C-6b. Permanent vertical s	train as a function of load	l repetition (from static strain
measurements), %.		

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
112	0.00						-0.82		-0.98			-1.63	-1.93	-2.16	-2.55
229	0.00	-0.11	-0.24	-0.52	-0.52	-0.58	-0.83	-1.13	-1.37	-1.42	-2.65	-3.07	-2.78	-3.92	-3.69
381	0.00	-0.35	-0.37	-0.32	-0.50	-0.61	-0.70	0.05	1.12	-0.40	0.51	1.06	-0.63	-1.50	-2.12
533	0.00	0.12	0.10	0.11	-0.02	-0.02	-0.22	-0.40	-0.96	-0.97	-0.99	-1.15	-1.31	-1.48	-1.78
686	0.00	0.09	0.06	0.09	-0.02		-0.19	-0.35							
840	0.00	0.04	0.03	0.07	-0.03		-0.14	-0.24	-0.23	-0.26	-0.24	-0.40	-0.58	-0.72	-1.05
992	0.00	0.04	0.03	0.08	-0.01		-0.07	-0.15	-0.03	-0.07	-0.03	-0.14	-0.33	-0.41	-0.75
1143	0.00	0.02	0.02	0.04	-0.03	0.00	-0.09	-0.12	0.42	0.39	0.43	0.33	0.18	0.05	-0.26

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.000	-0.183	-0.236	-0.218	-0.350	-0.132	-0.318	-0.266	-0.280	-0.423	-0.408			-0.713	
305	0.000	-0.128	-0.148	-0.045	-0.159	-0.013	-0.303	-0.361	-0.628	-0.704	-0.316	-0.592		-1.267	-1.653
457	0.000	-0.005	-0.029	0.021	-0.072	0.022	-0.179	-0.203	-0.330	-0.383	-0.258	-0.412		-0.713	-1.140
610	0.000	-0.002	-0.030	0.040	-0.073		-0.117	-0.176	-0.336	-0.390	-0.300	-0.460		-0.962	-1.240
762	0.000	-0.020	-0.028	0.017	-0.078		-0.132	-0.157	-0.319	-0.338	-0.271	-0.396		-0.756	-1.184
918	0.000	-0.034	-0.038	-0.001	-0.081		-0.108	-0.138	-0.341	-0.349	-0.275	-0.382		-0.739	-1.205
1067	0.000	-0.048	-0.058	-0.046	-0.105	-0.059	-0.131	-0.171		-0.290		-0.312			-0.367

Table C-7a. Permanent longitudinal deformation from dynamic strain measurements (mm).

Table C-7b. Permanent longitudinal deformation from static strain measurements (mm).

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.000	-0.039	-0.070	-0.180	-0.062	-0.003	-0.074	-0.157	0.297	0.250	0.085	-0.012	-0.320	-0.195	-0.511
305	0.000	0.097	0.082	-0.033	0.001	-0.127	-0.073	-0.213	-1.122	-0.871	-0.866	-1.055	-1.281	-1.495	-2.087
457	0.000	0.123	0.116	0.107	0.027	0.105	-0.035	-0.091	-3.300	-3.195	-3.247	-3.326	-3.527	-3.642	-4.011
610	0.000	0.085	0.062	0.107	0.016		-0.018	-0.094	-0.548	-0.514	-0.544	-0.664	-0.951	-1.123	-1.546
762	0.000	0.019	0.005	0.044	-0.035		-0.070	-0.110	-8.750	-8.719	-8.719	-8.825	-9.075	-9.177	-9.556
918	0.000	-0.005	-0.012	0.033	-0.053		-0.068	-0.101	-0.162	-0.147	-0.132	-0.211	-0.491	-0.583	-0.967
1067	0.000	-0.013	-0.025	-0.001	-0.072	-0.030	-0.095	-0.100	-0.830	-0.805	-0.784	-0.853	-1.088		

Table C-8a. Permanent longitudinal strain as a function of load repetitions (from dynamic strain measurements), %.

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.00	-0.11	-0.15	-0.14	-0.22	-0.08	-0.20	-0.17	-0.18	-0.27	-0.26			-0.45	
305	0.00	-0.07	-0.09	-0.03	-0.09	-0.01	-0.18	-0.21	-0.37	-0.41	-0.18	-0.34		-0.74	-0.96
457	0.00	0.00	-0.02	0.01	-0.04	0.01	-0.10	-0.12	-0.19	-0.22	-0.15	-0.24		-0.41	-0.66
610	0.00	0.00	-0.02	0.02	-0.04		-0.07	-0.10	-0.20	-0.23	-0.17	-0.27		-0.56	-0.72
762	0.00	-0.01	-0.02	0.01	-0.05		-0.08	-0.10	-0.20	-0.21	-0.17	-0.24		-0.46	-0.72
918	0.00	-0.02	-0.02	0.00	-0.05		-0.07	-0.08	-0.21	-0.21	-0.17	-0.23		-0.44	-0.72
1067	0.00	-0.03	-0.04	-0.03	-0.07	-0.04	-0.08	-0.11		-0.18		-0.20			-0.23

Table C-8b. Permanent longitudinal strain as a function of load repetitions (from static strain measurements), %.

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.00	-0.02	-0.04	-0.11	-0.04	0.00	-0.05	-0.10	0.19	0.16	0.05	-0.01	-0.20	-0.12	-0.32
305	0.00	0.06	0.05	-0.02	0.00	-0.07	-0.04	-0.12	-0.65	-0.51	-0.50	-0.61	-0.75	-0.87	-1.22
457	0.00	0.07	0.07	0.06	0.02	0.06	-0.02	-0.05	-1.91	-1.84	-1.88	-1.92	-2.04	-2.10	-2.32
610	0.00	0.05	0.04	0.06	0.01		-0.01	-0.05	-0.32	-0.30	-0.32	-0.39	-0.55	-0.65	-0.90
762	0.00	0.01	0.00	0.03	-0.02		-0.04	-0.07							
918	0.00	0.00	-0.01	0.02	-0.03		-0.04	-0.06	-0.10	-0.09	-0.08	-0.13	-0.29	-0.35	-0.58
1067	0.00	-0.01	-0.02	0.00	-0.05	-0.02	-0.06	-0.06	-0.53	-0.51	-0.50	-0.54	-0.69		

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.000	0.000	0.088	0.089	-0.041	0.285	0.118	0.229	0.160	-0.029	-0.124			-0.853	
305	0.000	0.000	0.015	0.015	0.015	0.105	-0.104	-0.083	-0.317	-0.440	-0.081	-0.400		-1.234	-1.621
457	0.000	0.000	-0.012	-0.012	-0.012	0.105	-0.066	-0.044	-0.185	-0.269	-0.151	-0.285			-1.017
610	0.000	0.010	0.025	0.025	0.025		0.004	0.031	-0.147	-0.213	-0.121	-0.266		-0.599	-0.821
762	0.000	0.000	-0.009	-0.009	-0.021			-0.043	-0.266	-0.326	-0.280	-0.386		-0.734	-1.218
918	0.000	0.003	0.000	0.000	0.000		-0.044	-0.029	-0.283	-0.310	-0.229	-0.365		-0.717	-1.095
1067	0.000	0.000	-0.019	-0.018											

Table C-9a. Permanent transverse deformation from dynamic strain measurements (mm).

Table C-9b. Permanent transverse deformation from dynamic strain measurements (mm).

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.000	0.072	0.124	0.250	0.304	0.482	0.364	0.390	0.399	0.282	-0.019	-0.166	-0.407	-0.710	-1.199
305	0.000	0.067	0.223	0.043	0.121	0.004	0.091	0.097	-0.675	-0.456	-0.488	-0.714	-1.000	-1.366	-1.883
457	0.000	0.161	0.170	0.206	0.134	0.246	0.121	0.110	-2.783	-2.784	-2.780	-2.863	-2.962		-3.481
610	0.000	0.082	0.108	0.144	0.107		0.095	0.097							
762	0.000	0.031	0.012	0.090	0.006		-0.039	-0.029	1.829	1.766	1.780	1.709	1.453	1.317	0.978
918	0.000	-0.014	0.008	0.042	-0.009		-0.046	-0.039	0.093	0.086	0.110	0.002	-0.234	-0.356	-0.671
1067	0.000	-0.035	-0.023	0.001	-0.059	0.017	-0.018	-0.040							

Table C-10a. Permanent transverse strain from dynamic strain measurements (mm).

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.00	0.00	0.05	0.05	-0.02	0.17	0.07	0.13	0.09	-0.02	-0.07			-0.50	
305	0.00	0.00	0.01	0.01	0.01	0.06	-0.06	-0.05	-0.19	-0.27	-0.05	-0.24		-0.75	-0.98
457	0.00	0.00	-0.01	-0.01	-0.01	0.07	-0.04	-0.03	-0.12	-0.17	-0.09	-0.18		0.00	-0.63
610	0.00	0.01	0.02	0.02	0.02		0.00	0.02	-0.09	-0.14	-0.08	-0.17		-0.39	-0.53
762	0.00	0.00	-0.01	-0.01	-0.01		0.00	-0.03	-0.16	-0.19	-0.16	-0.23		-0.43	-0.71
918	0.00	0.00	0.00	0.00	0.00		-0.03	-0.02	-0.16	-0.18	-0.13	-0.21		-0.42	-0.64
1067	0.00	0.00	-0.01	-0.01											

Table C-10b. Permanent transverse strain from static strain measurements (mm).

Mid-layer depth (mm)	0	500	1000	2500	5000	10000	20000	44509	52493	53493	63900	99011	151565	200000	283480
150	0.00	0.04	0.07	0.15	0.18	0.28	0.21	0.23	0.23	0.17	-0.01	-0.10	-0.24	-0.42	-0.71
305	0.00	0.04	0.14	0.03	0.07	0.00	0.06	0.06	-0.41	-0.28	-0.30	-0.43	-0.61	-0.83	-1.14
457	0.00	0.10	0.11	0.13	0.08	0.15	0.08	0.07	-1.73	-1.73	-1.73	-1.78	-1.85		-2.17
610	0.00	0.05	0.07	0.09	0.07		0.06	0.06							
762	0.00	0.02	0.01	0.05	0.00		-0.02	-0.02							
918	0.00	-0.01	0.00	0.02	-0.01		-0.03	-0.02	0.05	0.05	0.06	0.00	-0.14	-0.21	-0.39
1067	0.00	-0.02	-0.01	0.00	-0.03	0.01	-0.01	-0.02							

Location	500	2500	5000	10000	20000	45509	52493	53494	99011	283480
Pos3	2.40	4.28	5.63	6.21	7.35	9.33	10.00	10.21	11.83	18.55
Pos4	2.68	4.77	5.90	7.20	8.31	10.33	10.78	11.17	12.48	18.15
Pos5	2.79	5.75	6.71	7.97	9.45	12.10	12.42	12.74	13.84	20.32
Pos6	2.51	5.38	6.95	8.50	9.72	11.62	12.11	11.84	13.92	19.68
Pos7	2.74	4.57	5.08	5.83	7.32	9.43	10.61	10.51	12.23	16.96
Pos8	1.87	3.61	3.86	5.25	6.39	8.03	8.72	8.88	9.80	14.25
Pos9	1.36	2.74	3.67	4.04	5.52	6.77	7.67	6.95	8.79	13.34
Pos10	2.03	3.12	3.75	4.40	5.51	6.25	6.83	7.60	9.25	12.53
Pos11	1.75	2.77	3.29	4.02	4.97	6.51	6.79	7.10	7.87	12.49
Pos12	2.55	3.16	3.82	4.26	5.12	6.78	6.98	7.07	8.29	11.97
Pos13	0.93	2.36	2.86	3.70	4.38	6.27	6.34	6.70	7.39	11.40
Pos14	1.89	3.10	3.13	3.62	4.54	6.10	6.72	6.88	7.59	11.23
Pos15	1.94	3.33	3.77	4.16	5.20	6.54	7.31	7.48	8.58	11.86
Pos16	1.66	2.32	2.80	3.53	4.58	6.26	6.34	6.39	7.43	11.27
Pos17	1.49	2.81	3.28	3.74	4.70	6.47	6.64	7.13	8.18	12.22
Pos18	1.69	2.27	3.56	4.10	4.98	6.60	7.24	7.63	8.88	11.97
Pos19	1.40	2.77	3.31	4.08	5.28	6.29	6.95	7.01	7.94	11.93
Pos20	1.05	2.71	3.18	3.82	4.75	6.70	6.95	6.87	8.07	11.37
Pos21	1.61	2.49	3.02	3.88	4.33	6.07	6.78	7.04	8.21	10.84
Pos22	2.14	3.18	3.65	4.46	4.48	6.41	6.91	6.69	8.13	11.24

Table C-11. Maximum surface rut (mm) as a function of longitudinal location and load repetition.

APPENDIX D: 701C2 RESULTS

	Vertical stress (kPa)								
Load repetitions	Position 1	Position 2	Position 3						
	Z = 50	00 mm							
10	-132.72	-152.81	-140.18						
500	-130.66	-148.79	-137.48						
1000	-134.44	-154.13	-139.73						
2500	-152.71	-175.15	-161.09						
5000	-140.98	-161.31	-145.09						
10000	-142.40	-160.38	-140.24						
27260	-138.70	-161.34	-142.79						
51400	-142.62	-168.43	-145.80						
103455	-142.71	-169.95	-149.30						
149614	-137.64	-163.27	-135.25						
	Z = 92	29 mm							
10	-55.95	-59.98	-53.80						
500	-54.77	-58.55	-52.76						
1000	-56.15	-60.26	-53.85						
2500	-65.13	-67.44	-61.69						
5000	-58.65	-62.05	-54.10						
10000	-59.96	-62.26	-52.99						
27260	-59.18	-63.22	-54.31						
51400	-61.36	-66.45	-55.35						
103455	-62.17	-67.16	-57.51						
149614	-61.55	-64.98	-53.86						

Table D-1. Measured vertical stress as a function of load repetition.

			Loi	ngitudinal str	ress (I	kPa)	
Load repetit	tions	Position	n 1	Position	2	Position	3
		-	Z = 5(00 mm			
10	-	21.45		-26.41		-25.59	Ţ
500	-	20.75		-25.11		-24.80	
1000	-	16.63		-25.52		-25.07	
2500	-	24.41		-29.16		-28.90	
5000	-	21.75		-26.38			
10000	-	21.87		-26.55		-24.69	
27260	-	19.36		-19.43		-22.89	
51400	-	17.96		-18.00			
103455	-	11.39		-15.60		-15.48	
149614	-	11.40		-15.64		-14.43	
		Z = 92	29 mn	n			
10	-	12.17		-13.58		-12.82	
500	-	12.35		-13.67		-12.74	
1000	-	10.23		-14.33		-13.17	
2500	-	15.22		-16.45		-15.01	
5000	-	13.84		-15.28		-13.66	
10000	-14.49			-15.80		-13.54	
27260	-13.96			-13.96		-14.41	
51400	-15.31			-15.34		-14.78	
103455	-11.34			-13.42		-12.97	
149614	-	10.63		-12.19	-11.65		

Table D-2. Measured longitudinal stress as a function of load repetition.

D-3. Measured transverse stress as a function of load repetition.

Load	Trans	verse stress	(kPa)
repetitions	Position 1	Position 2	Position 3
10	-18.41	-28.83	-34.75
500	-14.99	-25.70	-34.77
1000	-12.19	-26.38	-35.21
2500	-18.45	-32.22	-40.58
5000	-16.10	-27.39	-37.51
10000	-13.98	-25.92	-36.40
27260	-10.59	-23.12	-36.56
51400	-10.56	-24.55	-39.03
103455	-5.04	-19.86	-35.65
149614	-4.13	-18.90	-30.04

Depth (mm)	0	500	1000	2500	5000	10000	27260	51400	103455	149614
				Po	osition 1					
229 (Base)	-1418	-1491	-1464	-1680	-1558	-1649	-1692	-1818	-958	-1454
381	-1124	-1209	-1191	-1352	-1233	-1285	-1306	-1390	-1388	-1275
533	-488	-811	-818	-932	-874	-935	-959	-1045	-1064	-955
686	-388	-504	-518	-605	-642	-616	-653	-629	-721	-678
840	-383	-450	-456	-536	-517	-567	-455	-640	-649	-603
992	-247	-304	-321	-372	-359	-384	-410	-447	-454	-431
1143	-143	-260	-262	-314	-293	-329	-354	-387	-397	-385
				Po	osition 2					
229 (Base)	-1519	-1559	-1584	-1753	-1719	-1728	-1874	-2307	-2928	-1556
381	-1172	-1204	-1225	-1350	-1287	-1306	-1362	-1452	-1450	-1302
533	-570	-888	-918	-1027	-1003	-1041	-1099	-1183	-1191	-1054
686	-454	-564	-583	-679	-727	-726	-737	-796	-809	-732
840	-428	-487	-501	-570	-570	-600	-652	-704	-708	-656
992	-279	-323	-336	-385	-384	-402	-430	-482	-484	-449
1143	-240	-274	-281	-331	-324	-342	-383	-414	-417	-396
				Po	osition 3					
229 (Base)	-1426	-1430	-1511	-1683	-1643	-1569	-1772	-1807	-1354	-1279
381	-949	-993	-1048	-1142	-1098	-1076	-1139	-1192	-1196	-966
533	-508	-753	-801	-893	-881	-882	-958	-1019	-1035	-867
686	-439	-483	-522	-579	-588	-593	-647	-685	-695	-594
840	-362	-410	-453	-515	-506	-527	-579	-614	-625	-540
992	-298	-322	-347	-393	-379	-386	-424	-449	-454	-345
1143	-225	-243	-262	-309	-296	-302	-340	-370	-381	-346

Table D-4. Maximum dynamic vertical strain as a function of load repetition and depth.

Depth (mm)	0	500	1000	860	5000	10000	27260	51400	103455	149614
				Stra	in A					
150 (Base)	-276	-278	-232	-256	-239	-253	-253	-314	-398	-276
305	-209	-202	-201	-248	-232	-254	-282	-341	-382	-209
457	-114	-122	-140	-167	-154	-178	-189	-229	-251	-114
610	-67	-47	-62	-84	-62	-75	-98	-119	-132	-67
762	-44	-48	-52	-56	-53	-63	-54	-81	-103	-44
918	-26	-41	-31	-33	-33	-	-50	-48	-62	-26
1067	-	-	-	-	-	-	-	-	-	-
				Stra	in B					
150 (Base)	489	593	686	569	693	481	692	813	1250	263
305	291	294	303	370	377	412	516	593	663	502
457	144	129	127	171	175	186	232	272	324	351
610	144	346	189	215	540	502	286	155	317	283
762	112	128	133	168	162	191	161	242	253	250
918	72	85	69	89	91	-	150	159	181	-
1067	-	-	-	-	-	-	-	-	-	-
				Stra	in C					
150 (Base)	-575	-177	-147	-133	-125	-181	-95	-251	-524	-372
305	-46	-43	-47	-71	-66	-65	-66	-59	-68	-64
457	-35	-48	-66	-77	-64	-76	-61	-76	-82	-75
610	-39	37	-30	-45	160	42	-38	-244	-144	-95
762	-45	-37	-37	-42	-43	-36	-26	-56	-51	-67
918	-33	-42	-98	-44	-44	-	-41	-54	-43	-
1067	-	-	-	-	-	-	-	-	-	-

Table D-5a. Maximum dynamic longitudinal strain as a function of load repetition and depth (Position 1).

Depth (mm)	0	500	1000	860	5000	10000	27260	51400	103455	149614
				Stra	in A					
150 (Base)	-344	-338	-306	-315	-255	-294	-338	-829	-160	-446
305	-208	-201	-226	-240	-248	-252	-295	-344	-401	-398
457	-112	-142	-147	-167	-174	-187	-222	-255	-271	-197
610	-73	-73	-73	-86	-120	-176	-98	-118	-133	-113
762	-37	-41	-56	-60	-57	-70	-92	-95	-111	-84
918	-47	-30	-35	-42	-35	-	-53	-57	-59	-
1067	-	-	-	-	-	-	-	-	-	-
				Stra	in B					
150 (Base)	747	731	749	709	853	743	788	572	2234	468
305	291	298	319	382	388	451	559	662	728	488
457	143	130	137	184	191	218	270	322	365	388
610	131	191	192	218	172	187	312	374	343	297
762	126	138	154	174	179	193	219	264	262	267
918	16	90	61	66	89	-	158	180	206	-
1067	-	-	-	-	-	-	-	-	-	-
				Stra	in C					
150 (Base)	-189	-531	-163	-169	-110	-171	-143	-501	-754	-364
305	-64	-66	-67	-94	-80	-82	-78	-78	-81	-55
457	-50	-84	-90	-92	-89	-87	-95	-100	-93	-78
610	-89	-27	-42	-56	-88	-251	-39	-14	-65	-65
762	-34	-44	-40	-46	-43	-54	-60	-49	-54	-65
918	-30	-41	-29	-47	-50	-	-48	-48	-40	-
1067	-	-	-	-	-	-	-	-	-	-

Table D-5b. Maximum dynamic longitudinal strains as a function of load repetition and depth (Position 2).

Depth (mm)	0	500	1000	2500	5000	10000	27260	51400	103455	149614		
Strain A												
150 (Base)	-304	-238	-249	-268	-261	-228	-241	-217	-	-298		
305	-161	-144	-164	-203	-201	-209	-244	-286	-336	-323		
457	-140	-92	-95	-118	-119	-119	-158	-194	-211	-166		
610	-72	-69	-64	-95	-88	-85	-101	-117	-128	-105		
762	-66	-61	-64	-77	-72	-78	-83	-98	-102	-76		
918	-58	-37	-52	-80	-69	-	-79	-73	-92	-71		
1067	-	-	-	-	-	-	-	-	-	-		
Strain B												
150 (Base)	708	735	720	664	733	628	629	689	-	423		
305	230	235	252	312	338	354	476	544	607	286		
457	37	146	165	195	215	230	253	307	342	280		
610	116	153	218	208	171	232	236	268	276	218		
762	126	133	160	182	184	185	218	240	258	196		
918	34	93	68	70	64	-	139	153	163	507		
1067	-	-	-	-	-	-	-	-	-	-		
					Strain	С						
150 (Base)	-183	-154	-144	-129	-126	-120	-130	-235	-	-197		
305	-79	-67	-89	-90	-75	-89	-71	-66	-60	-144		
457	-98	-46	-43	-48	-47	-46	-56	-62	-59	-42		
610	-32	-34	6	-14	-86	-24	-36	-30	-50	-75		
762	-43	-29	-35	-41	-42	-38	-38	-50	-42	-91		
918	-29	-49	-44	-60	-67	-	-60	-71	-76	42		
1067	-	-	-	-	-	-	-	-	-	-		

Table D-5c. Maximum dynamic longitudinal strain as a function of load repetitionand depth (Position 3).

Depth (mm)	0	500	1000	2500	5000	10000	27260	51400	103455	149614	
Position 1											
150	575	630	699	577	-	281	-	589	-	1450	
305	-	-	96	109	112	132	181	243	245	191	
457	140	111	109	152	150	170	148	241	241	226	
610	188	202	203	241	315	264	278	339	340	328	
762	102	112	121	138	137	152	132	196	195	175	
918	93	104	105	125	119	134	135	158	173	159	
1067		65	73	88	81	86	103	118	123	131	
Position 2											
150	619	658	639	973	527	485	-	215	-	1257	
305	-	-	96	116	130	154	194	213	231	191	
457	122	96	100	128	123	149	185	222	230	225	
610	175	185	197	228	194	221	265	304	318	303	
762	97	105	119	129	126	146	168	191	190	180	
918	88	94	95	109	113	113	122	147	154	155	
1067	75	64	71	78	76	88	100	107	114	110	
				Pos	sition 3						
150	390	720	729	860	688	406		639		690	
305			96	106	99	116	174	198	226	129	
457		61	77	96	104	119	154	172	181	138	
610		144	132	160	162	159	200	210	225	197	
762		113	68	91	88	95	118	136	141	119	
918		115	51	58	67	53	87	106	98	82	
1067			57	61	64	70	69	92	95	88	

Table D-6. Maximum dynamic transverse strain as a function of load repetition and depth.

_

Depth (mm)	10	500	1000	2500	5000	10000	27260	51400	103455	135000	135230	149614
Vertical												
Surface	0 000	-1 245	-1 354	-1 618	-1 885	-2 064	-2 521	-3 562	-5 093	-4 528		-3 809
229	0.000	-1.021	-1.199	-1.438	-1.551	-1.856	-2.138	-2.887	-4.254	-3.165	-3,137	-4.012
381	0.000	-1.108	-1.383	-1.626	-1.777	-2.058	-2.456	-2.533	-3.612	-3.832	-3.788	-4.336
533	0.000	-0.402	-0.495	-0.481	-0.470	-0.236	-0.639	-0.456	-0.996	-1.384	-1.354	
686	0.000	-0.133	-0.082	0.455	-0.023	0.456	-0.200	-0.334	-1.006	-0.943	-0.911	-1.206
840	0.000	-0.166	-0.115	-0.052	0.052	0.033	-0.031	0.210	-0.717	-0.759	-0.696	-1.507
992	0.000	-0.081	-0.109	-0.075	0.019	0.007	0.006	0.226	-0.165	-0.538	-0.403	-0.867
1143	0.000	-0.208	-0.264	-0.223	-0.081	0.036	0.064	0.312	-0.097	-0.466	-0.384	
Longitudinal												
150	0.000	0.044	0.165	0.294	0.270	0.194	0.320	-0.023	-0.759	0.332	0.289	-0.564
305	0.000	-0.097	-0.092	-0.033	-0.065	-0.019	0.016	0.292	-0.183	-0.273	-0.295	
457	0.000	0.005	0.076	0.161	0.084	0.018	0.036	0.367	-0.273	-0.231	-0.270	-0.570
610	0.000	-0.455	-0.632	2.482	-0.834	2.612	0.094	0.029	0.029	-1.179	-1.309	
762	0.000	-0.155	-0.124	-0.079	-0.102	0.002	0.054	0.336	-0.202	-0.291	-0.338	0.129
918	0.000	0.668	1.539	1.950	2.000	1.645	-0.794	-0.017	-0.594			
					-	Transvers	e					
150	0.000	0.851	1.145	1.285	3.934			2.863				
305	0.000	0.442	0.586	0.699	0.637	0.572	0.747	1.116	0.593	0.674	0.654	0.799
457	0.000	0.277	0.392	0.513	0.453	0.414	0.513	0.914	0.342	0.441	0.413	0.496
610	0.000	0.119	0.221	0.663	0.211	0.611	0.304	0.348	0.003	0.196	0.170	0.387
762	0.000	0.033	0.108	0.124	0.127	0.265	0.375	0.737	0.274	0.213	0.224	0.537
918	0.000	0.059	0.091	0.202	0.121	0.069	0.109	0.368	0.214	-0.066	-0.002	0.133
1067	0.000	-0.074	-0.127	-0.035	-0.071	-0.046	0.033	0.373	0.133	-0.229	-0.142	0.015

Table D-7. Permanent deformation (mm) as a function of load repetition.

Depth (mm)	10	500	1000	2500	5000	10000	27260	51400	103455	135000	135230	149614
Vertical												
Surface (Base)	0.00	-0.68	-0.74	-0.89	-1.03	-1.13	-1.38	-1.95	-2.79	-2.48		-2.09
229 (Base)	0.00	-0.64	-0.76	-0.91	-0.98	-1.17	-1.35	-1.82	-2.68	-2.00	-1.98	-2.53
381	0.00	-0.82	-1.02	-1.20	-1.32	-1.52	-1.82	-1.88	-2.67	-2.84	-2.80	-3.21
533	0.00	-0.30	-0.37	-0.36	-0.35	-0.18	-0.47	-0.34	-0.74	-1.03	-1.01	0.00
686	0.00	-0.09	-0.05	0.29	-0.01	0.29	-0.13	-0.21	-0.64	-0.60	-0.58	-0.77
840	0.00	-0.11	-0.08	-0.03	0.03	0.02	-0.02	0.14	-0.47	-0.50	-0.46	-0.99
992	0.00	-0.06	-0.08	-0.05	0.01	0.00	0.00	0.16	-0.12	-0.38	-0.28	-0.61
1143	0.00	-0.15	-0.19	-0.16	-0.06	0.03	0.05	0.22	-0.07	-0.33	-0.27	
Longitudinal												
150 (Base)	0.00	0.03	0.10	0.18	0.17	0.12	0.20	-0.01	-0.47	0.20	0.18	-0.35
305	0.00	-0.06	-0.06	-0.02	-0.04	-0.01	0.01	0.19	-0.12	-0.18	-0.19	0.00
457	0.00	0.00	0.05	0.10	0.05	0.01	0.02	0.23	-0.17	-0.14	-0.17	-0.35
610	0.00	-0.31	-0.43	1.69	-0.57	1.78	0.06	0.02	0.02	-0.80	-0.89	0.00
762	0.00	-0.09	-0.07	-0.05	-0.06	0.00	0.03	0.20	-0.12	-0.18	-0.20	0.08
918	0.00	0.40	0.92	1.16	1.19	0.98	-0.47	-0.01	-0.35			
					Trans	verse						
150 (Base)	0.00	0.51	0.69	0.77	2.36	0.00	0.00	1.72	0.00	0.00	0.00	0.00
305	0.00	0.26	0.35	0.41	0.38	0.34	0.44	0.66	0.35	0.40	0.39	0.47
457	0.00	0.17	0.24	0.31	0.28	0.25	0.31	0.56	0.21	0.27	0.25	0.30
610	0.00	0.07	0.14	0.41	0.13	0.38	0.19	0.21	0.00	0.12	0.10	0.24
762	0.00	0.02	0.07	0.08	0.08	0.16	0.23	0.45	0.17	0.13	0.14	0.33
918	0.00	0.04	0.06	0.12	0.07	0.04	0.07	0.22	0.13	-0.04	0.00	0.08
1067	0.00	0.51	0.69	0.77	2.36	0.00	0.00	1.72	0.00	0.00	0.00	0.00

 Table D-8. Permanent strain (%) as a function of load repetition.
Location	0	500	1000	2500	5000	27260	51400	103455	135230	149614
Pos 3	0	2.35	4.07	6.45	9.15	14.64	16.30	18.98	21.48	22.16
Pos 4	0	1.97	3.10	5.12	6.29	11.40	14.27	16.19	18.59	18.95
Pos 5	0	4.97	6.65	8.42	10.03	14.68	17.00	19.72	21.47	22.03
Pos 6	0	5.67	6.83	9.37	10.37	14.33	16.92	19.44	20.50	21.39
Pos 7	0	6.03	6.97	8.74	9.47	13.05	14.90	17.51	19.32	19.02
Pos 8	0	0.87	1.21	1.14	1.01	1.29	1.33	1.19	0.82	0.86
Pos 9	0	6.87	7.51	8.48	9.40	12.18	14.28	16.46	17.56	17.91
Pos 10	0	3.05	4.03	4.40	5.11	7.43	9.46	11.00	12.23	12.31
Pos 11	0	4.01	4.28	4.93	6.02	8.40	10.12	11.97	13.14	13.04
Pos 12	0	0.53	1.73	1.57	2.59	4.87	6.64	8.67	9.42	9.87
Pos 13	0	3.27	4.22	4.23	4.63	7.43	9.37	11.33	12.30	12.60
Pos 14	0	2.67	3.00	3.61	4.69	7.16	8.77	10.52	11.60	12.12
Pos 15	0	2.44	2.82	3.73	4.12	6.56	8.33	10.40	10.97	11.63
Pos 16	0	2.72	3.25	4.44	4.76	7.76	9.00	10.67	11.73	11.80
Pos 17	0	3.78	4.18	4.45	5.51	8.07	9.76	11.21	12.67	12.53
Pos 18	0	2.54	3.09	4.21	4.94	7.29	8.78	10.77	11.47	11.48
Pos 19	0	2.61	3.21	3.48	3.86	6.44	7.83	9.52	10.67	10.62
Pos 20	0	1.53	1.59	2.42	2.60	5.15	6.67	8.32	8.75	9.09
Pos 21	0	3.03	3.19	4.12	4.77	6.11	7.93	9.44	10.72	10.37
Pos 22	0	3.75	3.50	4.52	4.79	6.69	8.08	10.41	10.95	10.77

 Table D-9. Maximum surface rut (mm) as a function of longitudinal location and load application.

APPENDIX E: 701C3 RESULTS

	Vertical stress (kPa) Z = 500 mm								
Repetitions	Position 1	Position 2	Position 3						
10									
500									
1000									
2500									
5000									
15000									
30000		-318.97	-263.25						
40000		-311.34	-265.49						

Table E-1. Measured vertical stress as a functionof load repetition.

Table E-2. Measured longitudinal stress (uncorrected) as a function of load repetition.

	Longitudina	l stress (kPa)	Z = 500 mm
Repetitions	Position 1	Position 2	Position 3
10			
500			
1000	-10.86	-26.40	-23.07
2500	-10.86	-27.89	-23.62
5000	-10.86	-29.08	-25.21
15000	-10.86	-30.93	
30000	-15.87	-31.66	-26.18
40000	-15.87	-32.06	-26.73

Table E-3. Measured transverse stress as afunction of load repetition.

	Transverse	stress (kPa)	Z = 500 mm
Repetitions	Position 1	Position 2	Position 3
10			
500			
1000	-11.68	-20.22	-29.48
2500	-12.23	-20.57	-28.27
5000	-13.06	-20.50	-29.05
15000	-15.70	-21.55	
30000	-16.64	-22.19	-29.93
40000	-17.08	-22.04	-30.60

Depth (mm)	500	1000	2500	5000	15000	30000	40000
			Positio	n 1			
229(Base)	-1321	-4301	-4301	-4557	-5917	-5633	-1641
381	-1030						-1402
533		-832	-1266	-1677		-1774	-1240
686							
840	-442	-491	-525	-553	-599	-651	-720
992	-304	-344	-362	-381	-426	-455	-550
1143	-248	-269	-290	-299	-332	-365	
			Positio	n 2			
229 (Base)	-1295	-3878	-4162	-4581	-5866	-4805	-1440
381	-1138						-1284
533		-751	-1213	-1624	-1977	-1821	-1155
686							
840	-512	-548	-589	-635	-700	-740	-710
992	-264	-375	-403	-430	-480	-508	-547
1143	-271	-307	-322	-339	-422	-406	-395
			Positio	n 3			
229 (Base)	-1179	-3577	-4112	-4463	-5854	-4578	-593
381	-975						-742
533		-773	-1212	-1545	-1956	-1760	-800
686							
840	-476	-521	-545	-582	-650	-422	-570
992	-357	-384	-402	-432	-471	-395	-437
1143	-280	-285	-311	-332	-362	-374	-326

Table E-4. Change in vertical dynamic strain as a function of depth andload repetition.

Depth (mm)	0	500	1000	860	5000	10000	27260	51400	103455	149614
					Strain	Ą				
150 (Base)	-214	-217	-226	-229	-306	-2927	-22842	-214	-217	-226
305										
457	-134	-136	-142	-152	-194	-206	-139	-134	-136	-142
610										
762	-35	-40	-40	-38	-49	-53	-6	-35	-40	-40
918	-18	-25	-28	-29	-34	-37	-9	-18	-25	-28
1067	-14	-14	-19	-19	-30	-26	-12	-14	-14	-19
Strain B										
150 (Base)	556	438	374	313	441	2282	2606	556	438	374
305										
457	484	248	279	306	1034	415	385	484	248	279
610										
762	122	169	186	204	220	244	256	122	169	186
918	122	138	135	152	162	181	182	122	138	135
1067	96	104	121	121	134	147	132	96	104	121
					Strain (C				
150 (Base)	-214	-217	-226	-229	-306	-2927	-22842	-214	-217	-226
305										
457	-134	-136	-142	-152	-194	-206	-139	-134	-136	-142
610										
762	-35	-40	-40	-38	-49	-53	-6	-35	-40	-40
918	-18	-25	-28	-29	-34	-37	-9	-18	-25	-28
1067	-14	-14	-19	-19	-30	-26	-12	-14	-14	-19

Table E-5a. Maximum dynamic longitudinal subgrade strain as a function of load repetition and depth (Position 1).

Depth (mm)	0	500	1000	2500	5000	10000	27260	51400	103455	149614
				S	Strain A					
150 (Base)	-219	-217	-274	-268	-333			-219	-217	-274
305										
457	-147	-149	-150	-165	-209	-220	-18	-147	-149	-150
610										
762	-43	-38	-51	-41	-60	-62	-18	-43	-38	-51
918	-30	-30	-43	-34	-37	-41	-10	-30	-30	-43
1067										
				S	Strain B					
150 (Base)	532	482	426	388	485			532	482	426
305										
457	257	304	333	378	443	500	450	257	304	333
610										
762	169	185	208	222	268	280	253	169	185	208
918	93	132	133	163	189	202	184	93	132	133
1067										
				S	Strain C					
150 (Base)	-68	-136	-171	-142	-145			-68	-136	-171
305										
457	-76	-71	-73	-80	-111	-93	-72	-76	-71	-73
610										
762	-68	-71	-70	-87	-68	-80	-31	-68	-71	-70
918	-26	-27	-42	-33	-29	-29	-20	-26	-27	-42
1067										

Table E-5b. Maximum dynamic longitudinal subgrade strain as a function of load repetition and depth (Position 2).

		•			-						
Depth (mm)	0	500	1000	2500	5000	10000	27260	51400	103455	149614	
					Strain	A					
150 (Base)	-139	-128	-172	-202	-227			-139	-128	-172	
305											
457	-141	-166	-145	-177	-206	-229	-27	-141	-166	-145	
610											
762	-91	-68	-71	-77	-89	-50	-18	-91	-68	-71	
918	-48	-63	-61	-69	-74	-66	-53	-48	-63	-61	
1067	-24	-24	-30	-33	-36	-40	-10	-24	-24	-30	
Strain B											
150 (Base)	399	422	476	298	387			399	422	476	
305											
457	287	460	346	373	453	492	373	287	460	346	
610											
762	139	175	184	212	245	193	201	139	175	184	
918	114	113	118	141	152	155	123	114	113	118	
1067	111	126	126	131	147	149	85	111	126	126	
					Strain	С					
150 (Base)	-9	-76	-89	-101	-79			-9	-76	-89	
305											
457	-89	-89	-67	-317	-89	-426	-22	-89	-89	-67	
610											
762	-110	-86	-88	-93	-84	-85	-88	-110	-86	-88	
918	-50	-45	-60	-46	-55	-56	-58	-50	-45	-60	
1067	-24	-28	-33	-34	-31	-36	-36	-24	-28	-33	

Table E-5c. Maximum dynamic longitudinal subgrade strain as afunction of load repetition and depth, (Position 3).

Position	0	500	1000	2500	5000	15000	30000	40000
Pos 3	0	5.861	7.3601	9.6124	11.1821	14.0194	16.0865	17.3249
Pos 4	0	5.5451	6.7122	8.7618	10.5024	12.8178	14.9372	15.9162
Pos 5	0	5.3389	6.4818	8.441	9.6699	12.1796	13.8581	14.9312
Pos 6	0	4.591	5.8281	7.4865	9.0623	11.1651	13.0663	14.1624
Pos 7	0	4.5498	5.5445	7.6682	8.9565	11.435	12.7829	14.0257
Pos 8	0	4.2647	5.5171	7.2673	8.8899	10.9403	12.8906	14.0976
Pos 9	0	4.1574	5.1887	6.7879	8.0009	10.3834	11.9195	13.2718
Pos 10	0	3.4998	4.1122	5.9346	6.8523	9.3968	10.6263	11.6345
Pos 11	0	2.9681	4.5852	5.4084	6.7457	9.5104	11.8097	12.9807
Pos 12	0	2.5941	3.5051	5.3828	6.3885	8.5696	10.9539	12.0886
Pos 13	0	3.2887	3.9409	5.8914	7.4642	9.9952	11.5413	12.5595
Pos 14	0	2.5546	3.7535	5.161	6.6907	8.6908	10.492	11.5068
Pos 15	0	3.0903	3.803	5.2679	6.0798	8.4775	9.5593	10.7585
Pos 16	0	2.9869	3.8284	5.0389	5.9689	8.1518	9.7903	10.402
Pos 17	0	2.9557	4.0542	5.4404	6.9981	9.5652	11.1855	12.8011
Pos 18	0	2.7827	3.5924	5.443	7.0000	9.7376	11.1179	12.4476
Pos 19	0	3.0709	3.4355	5.1161	6.0762	8.6174	10.9196	11.8878
Pos 20	0	3.1094	3.3206	4.779	5.4473	7.6003	8.7801	9.9509

 Table E-7. Maximum surface rut (mm) as a function of longitudinal location and load repetition.

APPENDIX F: 701C4 RESULTS

Depth (mm)	0	500	1000	2500	5000	10000	22700	55000	95394	172526
				F	Position 1					
229 (Base)		-1168	-1243	-1294	-1538	-1349	-1445	-1290	-1269	-1621
381		-819	-417	-850	-970	-986	-1078	-987	-949	-1107
533		-588	-645	-690	-733	-774	-819	-770	-767	-909
686		-471	-480	-549	-583	-615	-660	-633	-639	-732
840		-358	-384	-433	-460	-486	-514	-489	-499	-585
992		-253	-278	-295	-325	-339	-358	-355	-365	-414
1143		-171	-190	-206	-219	-254	-261	-248	-259	-282
				F	osition 2					
229 (Base)		-1271	-1282	-1374	-1404	-1427	-1477	-1427	-1415	-1700
381		-909	-963	-1006	-1088	-1093	-1183	-1121	-1127	-1216
533		-672	-749	-778	-813	-847	-920	-884	-898	-1036
686		-527	-591	-614	-643	-702	-729	-712	-730	-811
840		-401	-433	-473	-491	-525	-571	-563	-574	-651
992		-275	-319	-330	-351	-372	-388	-403	-409	-459
1143		-218	-221	-548	-452	-251	-294	-281	-290	-324
				F	osition 3					
229 (Base)		-1291	-1283	-1374	-1445	-1404	-1438	-1441	-1418	-1665
381		-915	-933	-984	-1046	-1103	-1115	-1074	-1077	-1138
533		-657	-677	-734	-769	-807	-865	-826	-848	-952
686		-498	-550	-572	-598	-644	-675	-658	-674	-733
840		-370	-407	-432	-459	-481	-511	-514	-528	-585
992		-261	-341	-299	-327	-333	-370	-441	-393	-408
1143		-186	-208	-218	-229	-223	-275	-268	-284	-302

Table F-1. Maximum dynamic vertical subgrade strain as a function of loadrepetition and depth.

Depth (mm)	0	500	1000	2500	5000	10000	22700	55000	95394	172526
					Strain /	4				
150 (Base)		-459	-148	-162	-216	-173	-232	-220	-275	-278
305		-120	-63	-128	-147	-156	-179	-163	-192	-189
457		-77	-68	-91	-115	-123	-148	-136	-151	-163
610		-53	-51	-59	-76	-78	-85	-86	-100	-102
762		-38	-42	-51	-52	-66	-65	-71	-71	-83
918		-26	-25	-26	-21	-45	-39	-44	-39	-55
1067		-42	-31	-29	-28	-33	-24	-19	-28	-37
Strain B										
150 (Base)		588	381	335	420	390	458	566	848	598
305		211	132	292	259	307	400	374	369	525
457		197	207	249	271	305	355	326	320	463
610		164	160	205	231	252	297	271	270	401
762		141	122	146	169	178	202	198	201	258
918		92	90	117	123	316	136	143	142	170
1067		77	60	79	88	96	89	112	97	123
					Strain (С				
150 (Base)		-27	-170	-187	-141	-149	-124	-160	-125	-184
305		-68	-28	-78	-70	-73	-75	-1064	-70	-81
457		-59	-69	-73	-76	-76	-88	-83	-80	-98
610		-54	-60	-44	-62	-60	-68	-59	-59	-65
762		-35	-45	-44	-34	-48	-39	-30	-37	-47
918		-28	-29	-28	-58	-34	-41	-22	-25	-26
1067		-23	-33	-26	-21	-29	-25	-1	-15	-19

Table F-2a. Maximum dynamic longitudinal subgrade strain as a function of load repetition and depth (Position 1).

Depth (mm)	0	500	1000	2500	5000	10000	22700	55000	95394	172526
				S	train A					
150 (Base)		-201	-187	-190	-305	-1020	-296	-226	-272	-221
305		-124	-146	-129	-174	-174	-207	-203	-238	-179
457		-83	-75	-87	-124	-123	-154	-154	-167	-157
610		-60	-52	-66	-73	-73	-85	-92	-105	-113
762		-48	-48	-58	-55	-64	-80	-83	-85	-88
918		-21	-26	-36	-48	-38	-35	-39	-44	-55
1067		-	-	-	-	-	-	-	-	-
Strain B										
150 (Base)		520	463	435	970	2086	2107	495	709	630
305		207	190	288	291	350	403	415	413	593
457		237	241	274	310	354	423	395	416	554
610		181	194	230	256	275	325	309	334	455
762		136	146	156	179	194	230	223	232	294
918		102	92	115	123	136	162	154	164	192
1067		-	-	-	-	-	-	-	-	-
				S	train C					
150 (Base)		-190	-213	-226	-199	-821	-160	-239	-208	-231
305		-65	-110	-105	-105	-110	-106	-100	-95	-125
457		-59	-80	-85	-81	-87	-87	-91	-91	-119
610		-65	-77	-61	-63	-71	-71	-72	-68	-94
762		-40	-57	-55	-49	-56	-50	-51	-51	-58
918		-19	-46	-30	-33	-84	-28	-31	-24	-31
1067		-	-	-	-	-	-	-	-	-

Table F-2b. Maximum dynamic longitudinal subgrade strain as a function of load repetition and depth (Position 2).

Depth (mm)	0	500	1000	2500	5000	10000	22700	55000	95394	172526			
Strain A													
150 (Base)		-64	-87	-148	-113	-63	-189	-156	-216	-108			
305		-126	-138	-130	-158	-151	-174	-186	-204	-166			
457		-79	-92	-94	-103	-111	-130	-144	-149	-131			
610		-53	-52	-60	-63	-92	-89	-89	-99	-99			
762		-39	-50	-52	-45	-67	-68	-74	-80	-87			
918		-32	-39	-41	-40	-50	-61	-48	-60	-61			
1067		-24	-51	-42	-30	-30	-62	-29	-24	-36			
	Strain B												
150 (Base)		664	685	361	424	673	412	511	579	605			
305		204	222	236	236	281	379	373	395	504			
457		217	227	252	275	302	370	367	397	504			
610		174	156	225	241	237	294	282	302	386			
762		142	128	165	173	184	206	209	218	260			
918		77	74	95	95	102	120	108	132	173			
1067		73	34	86	75	96	67	118	115	117			
	Strain C												
150 (Base)		-22	-56	-142	-131	-150	-109	-179	-154	-130			
305		-101	-99	-107	-82	-95	-80	-85	-86	-120			
457		-64	-67	-84	-81	-93	-78	-80	-82	-98			
610		-61	-99	-56	-60	-80	-79	-69	-71	-83			
762		-31	-64	-40	-43	-47	-51	-49	-46	-50			
918		-35	-53	-39	-44	-45	-49	-59	-44	-48			
1067		-29	-82	-24	-27	-19	-78	-11	-10	-19			

Table F-2c. Maximum dynamic longitudinal subgrade strain as a function of load repetition and depth (Position 3).

Depth (mm)	0	500	1000	2500	5000	10000	22700	55000	95394	172526		
Position 1												
150		524	359	419	337	409	403	634	813	538		
305		221	165	305	249	296	350	329	312	358		
457		136	118	177	187	211	234	240	252	283		
610		151	134	176	200	201	237	234	238	309		
762		128	117	135	158	166	188	186	189	219		
918		85	83	94	268		123	120	102			
1067		71	60	77	37	80	93	97	89	99		
Position 2												
150		312	272	346	807	601	268	450	613	749		
305		126	97	155	141	210	226	240	252	266		
457		147	119	139	172	163	235	242	260	251		
610		161	151	184	198	219	241	239	220	298		
762		134	125	143	161	170	181	181	176	207		
918		91	84	100	266		121	118	74			
1067		70	66	74	72	83	90	101	76	87		
				F	Positior	n 3						
150		389	478	449	438	677	543	630	725	959		
305		188	219	218	231	252	290	315	326	347		
457		120	114	140	148	150	194	205	206	254		
610		129	110	161	172	162	211	214	225	284		
762		99	110	122	123	135	169	152	155	189		
918		74	48	88	137		90	67	106			
1067		52	48	76	25	64	62	79	77	88		

Table F-3. Maximum dynamic transverse strain as a function of load repetition and depth.

Depth (mm)	10	500	1000	2500	5000	10000	22700	55000	95394	172526	
Vertical											
Surface	0.000	-0.282	-0.317	-0.657	-1.153	-1.527	-1.912	-2.324		-4.116	
229	0.000	-1.004	-1.217	-1.047	-0.559	-1.817	-1.852	-2.255	-2.472	-3.587	
381	0.000	0.577	1.032	0.531	-0.441	0.725	-0.174	-0.230	-0.594	-0.827	
533	0.000	0.283	0.232	0.294	0.014	-0.242	-0.535	-0.801	-1.094	-1.885	
686	0.000	0.669	0.642	0.732	0.493	0.414	0.088	-0.081	-0.226	-0.913	
840	0.000	0.494	0.492	0.589	0.369	0.299	-0.041	-0.165	-0.261	-0.970	
992	0.000	0.433	0.414	0.532	0.331	0.262	0.055	-0.077	-0.215	-0.842	
1143	0.000	0.177	0.216	0.284	0.121	0.066	-0.098	-0.166	-0.322	-0.809	
Longitudinal											
150	0.000	-2.858	-3.979	-4.016	-3.858	-4.278	-4.182	-3.987	-4.182	-4.657	
305	0.000	1.137	1.750	1.164	0.250	1.240	1.074	1.528	1.324	1.742	
457	0.000	0.449	0.521	0.450	0.399	0.173	0.215	0.345	0.212	-0.099	
610	0.000	0.639	0.644	0.572	0.551	0.330	0.340	0.466	0.357	0.054	
762	0.000	0.367	0.381	0.337	0.305	0.103	0.098	0.226	0.122	-0.176	
918	0.000	0.311	0.323	0.278	0.244	0.067	0.049	0.198	0.088	-0.252	
				Tr	ansverse	!					
150	0.000	-0.620	-0.248	-0.124	-0.502	1.615	0.752	-0.820	-1.056	-1.549	
305	0.000	1.260	1.876	1.335	0.522	1.534	1.398	1.721	1.539	2.002	
457	0.000	0.554	0.581	0.570	0.567	0.307	0.390	0.423	0.313	0.053	
610	0.000	0.704	0.717	0.663	0.653	0.488	0.502	0.482	0.383	7.399	
762	0.000	0.378	0.394	0.357	0.331	0.175	0.143	0.085	-0.009	-0.287	
918	0.000	0.000	0.035	-0.012	0.357		-0.039	-0.253	3.435		
1067	0.000	0.105	0.153	0.093	0.063	-0.074	-0.123	-0.206	-0.346	-0.702	

 Table F-4. Permanent deformation (mm) as a function of load repetition.

Location	10	500	1000	2500	5000	10052	22700	30000	55000	95394	172526
Pos 3	0	2.808	3.2647	4.1708	5.3142	6.0657	7.6005	7.9278	10.0411	11.1321	13.1473
Pos 4	0	3.5076	3.8696	4.5727	5.5077	6.4993	8.2796	8.8714	10.5314	12.368	14.8972
Pos 5	0	2.8811	3.1851	4.4081	5.578	6.3518	7.6117	8.2215	9.9092	12.226	15.0177
Pos 6	0	2.5321	3.5087	4.2681	5.5543	6.9261	7.908	8.5086	9.688	11.1007	14.7808
Pos 7	0	2.9953	3.9286	5.1315	5.7583	6.9454	8.6052	8.8748	10.5076	12.8443	14.9109
Pos 8	0	2.9047	3.4032	4.1093	5.235	6.4947	8.0227	8.2783	9.7976	11.4028	14.6041
Pos 9	0	2.8343	3.6732	4.3471	4.9003	5.5228	7.8489	8.2309	9.9439	11.5978	14.4327
Pos 10	0	2.6691	3.6313	4.7349	5.6961	6.5408	8.4364	8.8065	10.2707	11.9217	14.886
Pos 11	0	1.9656	2.9791	4.0234	4.6148	5.6714	7.8648	7.6874	8.683	10.5283	13.4281
Pos 12	0	2.8506	3.4845	5.0338	5.6984	6.6344	8.202	8.3443	9.8041	11.7018	13.6362
Pos 13	0	3.1734	3.3501	5.0202	5.6494	6.6704	8.635	8.8952	10.1154	11.7163	13.9755
Pos 14	0	2.8244	3.8988	4.671	5.9638	5.7214	7.2938	8.2649	9.3788	10.2957	14.4506
Pos 15	0	2.7472	3.2888	3.833	4.7405	5.6117	7.4437	7.799	7.9378	9.7388	12.6317
Pos 16	0	2.5826	3.1594	3.734	4.9045	5.553	7.5116	7.6848	8.7435	10.1101	12.8195
Pos 17	0	1.7756	3.2271	3.5975	4.1361	5.3214	7.1702	7.4582	7.9365	9.3837	11.9836
Pos 18	0	2.8692	2.6701	4.2864	4.6977	5.5499	7.6529	8.2176	8.4841	10.3749	13.0679
Pos 19	0	2.5274	3.6167	4.1928	5.0555	5.3802	7.0449	7.5475	8.0596	9.8425	12.5306
Pos 20	0	1.8064	2.2411	3.2615	4.8135	5.0452	6.8685	7.227	8.3281	9.5204	12.2526
Pos 21	0	2.9855	3.3448	4.5272	5.8556	6.3142	7.4466	7.7116	8.8455	10.2354	13.3467
Pos 22	0	1.1198	1.7082	3.0019	3.7515	3.6615	5.3702	5.5552	6.4984	6.6296	11.3877

Table F-5. Maximum surface rut (mm) as a function of longitudinal location and load repetition.