

## PAVEMENT SUBGRADE PERFORMANCE STUDY

### **Test Section 710**

Subgrade AASHTO soil borderline between

types A-6 and A-7-6 at wet of optimum (21%)

By

Edel R. Cortez<sup>(1)</sup> Vincent C. Janoo<sup>(1)</sup>

| Subgrade            | AASHTO Soil Type          |                           |                           |          |                   |                  |
|---------------------|---------------------------|---------------------------|---------------------------|----------|-------------------|------------------|
| Moisture<br>Content | A-2-4                     | A-4                       | A-6                       |          | A-                | 7-5              |
| M1                  | Optimum<br>10 %<br>TS 701 | Optimum<br>17 %<br>TS 702 | Optimum<br>16 %<br>TS 709 |          | Opti<br>20.<br>TS | mum<br>4%<br>712 |
| M2                  | 12 %<br>TS 707            | 19 %<br>TS 704            | 19 %<br>TS 708            | 21<br>TS | %<br>710          |                  |
| М3                  | 15 %<br>TS 703            | 23 %<br>TS 705            | 22%<br>TS 706             |          | 25<br>TS          | 5%<br>711        |

<sup>1</sup> U.S. Army Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755, United States

#### **EXECUTIVE SUMMARY**

This report is one of a series of reports on the pooled-fund research project titled Subgrade Performance Study (SPR-208). The hypothesis for this study is that the failure criterion depends on the subgrade soil type and the in-situ moisture content. Many of the current mechanistic design procedures incorporate the results from AASHO Road Tests conducted in the late nineteen fifties. However, the AASHO Road Tests were all conducted on only one soil type (AASHTO type A-6). The tests results reflect the combined effect of traffic loads and seasonal variations. Applying failure criteria based on the AASHO Road Tests to other soil types, at different moisture contents and different climate creates much uncertainty.

In recent decades much progress has been achieved in computer technology, and new sensors allow reliable in-situ stress and strain measurements. The authors recognized the new opportunities brought by these technological advances to be able to develop more reliable pavement failure criteria that consider the effects of subgrade soil type and moisture condition.

Transportations agencies from several US states are contributing to a research initiative that will develop the bases for new pavement failure criteria that is adequate for the most common subgrade soil types found in the United State at various soil moisture contents. As part of the research program, four subgrade soils were selected for testing in the Frost Effects Research Facility (FERF). Each subgrade soil was to be constructed at three moisture contents, with one at or near optimum density and moisture content. The test sections consisted of 75 mm of asphalt concrete, 229 mm of crushed base and 3 m of the test subgrade soil type at pre-determined moisture content. The current test section was named Test Section 710. It was intended to represents the case of a subgrade soil AASHTO type A-7-6, but a discrepancy was found between Atterberg limit test results from the limited field samples and those from the actual soil delivered at the FERF. The actual soil classification for this subgrade soil was a borderline between A-6 and A-7-6. A new source of soil classified as AASHTO A-7-5 was later identified and used for Test Sections 711 and 712. For this soil, the optimum moisture content was 17 percent. According to the Unified Soil Classification System, the subgrade soil was type CL (low liquid limit, clay).

Accelerated traffic was applied by means of a Heavy Vehicle Simulator (HVS). Each test window was subjected to one of various load levels. The traffic load was varied for each test window, ranging from 20 to 40 kN (4.5 to 9 kips). The load was applied through a dual truck tire assembly representing a half axle of a standard truck. Therefore, a 40-kN (9-kip) load is equivalent to an 80 kN (18-kip) load applied with a complete truck axle. The tire pressures were kept at 689 kPa (100 psi).

The test section was built inside the FERF testing facility, therefore the moisture and temperature conditions were controlled. The test section contained six test windows. Each test window was approximately 6.0 m long and 1 m wide. Loading was applied unidirectionally at an average speed of 12 km/hr. The test windows were subjected to about 600 load repetitions per hour. The HVS applied traffic 23 hours per day. The remaining hour was used for maintenance.

Stress, strain, and surface rut measurements were taken periodically. Stress and strain sensors were located at various depths in the base course and the subgrade. Permanent strain (while no traffic was occurring) and dynamic strain (during the passing of the tire assembly)

were measured at continuous layers from the asphalt surface down to a depth of 1.52 m. This configuration provided a distribution and a summation of deformations that enabled calibration of the deformation measurements with the surface rutting measured with a laser profilometer.

This report contains a description of the test section, construction, instrumentation, and pavement response to accelerated traffic.

# CONTENTS

| DESCRIPTION OF THE TEST SECTION                         |    |
|---------------------------------------------------------|----|
| MATERIAL PROPERTIES                                     |    |
| CONSTRUCTION OF THE TEST SECTION                        | 7  |
| TRAFFIC TESTING                                         |    |
| TRAFFIC LOADING                                         |    |
| TEMPERATURE AND MOISTURE DURING TRAFFIC                 |    |
| SURFACE RUTTING                                         |    |
| DEFORMATIONS AND STRAINS                                |    |
| a) Permanent Deformations and Strains                   |    |
| b) Dynamic Deformations and Strains                     |    |
| FORENSIC EVALUATION                                     |    |
| Forensic Observations                                   |    |
| SUMMARY AND CONCLUSIONS                                 |    |
| APPENDIX A: SURFACE PROFILE TEST RESULTS                | 40 |
| APPENDIX B: PERMANENT DEFORMATION & STRAIN TEST RESULTS |    |
| APPENDIX C DYNAMIC DISPLACEMENT and STRAIN TEST RESULTS | 64 |

## INTRODUCTION

As part of an international study on pavement subgrade performance, several fullscale test sections were constructed in the Frost Effects Research Facility (FERF) at the U.S. Army Cold Regions Research & Engineering Laboratory (CRREL) in Hanover, New Hampshire. CRREL is a component of the US Army Corps of Engineers Research and Engineering Center. The tests were conducted indoors at approximately 20 °C (68 °F). They were instrumented with stress cells, strain gages, moisture gages, and temperature sensors. The test sections were subjected to accelerated loading using CRREL's Heavy Vehicle Simulator (HVS). Pavement failure was defined at 12.5 mm (0.5 in.) surface rut depth, or the development of asphalt cracks 9.5 mm (3/8 in.) wide. Surface rut depth measurements were taken periodically during the accelerated load tests. At the same time, subsurface stress and strain measurements were also taken. A detailed overview of the project can be found in Janoo et al (2001). The test sections consisted of a 76-mm (3 in.) asphalt concrete (AC) layer, a 229-mm (9 in.) crushed gravel base and 3 m (10 ft) of subgrade soil. All the test sections in this research project were alike in geometry, instrumentation, and materials, except for the subgrade soil type and moisture content. The test sections were constructed using several subgrade soil types conditioned at various moisture contents. For each test section, provisions were made to maintain the temperature and moisture content as constant as possible. The test matrix for this study is shown in the table below.

| Subgrade            | AASHTO Soil Type          |                           |                           |                              |                                   |           |
|---------------------|---------------------------|---------------------------|---------------------------|------------------------------|-----------------------------------|-----------|
| Moisture<br>Content | A-2-4                     | A-4                       | A-6                       |                              | A-                                | 7-5       |
| M1                  | Optimum<br>10 %<br>TS 701 | Optimum<br>17 %<br>TS 702 | Optimum<br>16 %<br>TS 709 |                              | Optimum<br>20.4%<br>TS 712        |           |
| M2                  | 12 %<br>TS 707            | 19 %<br>TS 704            | 19 %<br>TS 708            | 21<br>TS<br>Border<br>A-6 an | .%<br>710<br>line soil<br>d A-7-6 |           |
| M3                  | 15 %<br>TS 703            | 23 %<br>TS 705            | 22%<br>TS 706             |                              | 25<br>TS                          | 5%<br>711 |

| Table 1. Experimental test matrix | x. |
|-----------------------------------|----|
|-----------------------------------|----|

This reports deals with the construction, accelerated traffic testing, and pavement response of Test Section 710. As shown in Table 1, the subgrade soil in this test section was classified as AASHTO borderline between soil types A-6 and A-7-6 conditioned to 21 percent gravimetric moisture content.

### **DESCRIPTION OF THE TEST SECTION**

The test section consists of a 76-mm (3-in) hot mixed asphalt (HMA) layer, a 229-mm (9-in) crushed gravel base course, and 3 m of subgrade soil. The subgrade soil was classified as borderline between AASHTO soil types A-6 and A-7-6. This soil was conditioned to 21 percent gravimetric moisture content. According to the modified Proctor test results, the optimum moisture content for this soil was 17 percent. The laboratory CBR test results indicate that at 21 percent moisture content, this soil had a CBR of 2.3 percent, i.e., a soft soil.

The test section was divided into six test windows. A test window is the area where traffic is applied. An effective test window was 0.91 m (3 ft) wide by 6.08 m (20 ft.) long, excluding acceleration and deceleration areas. The thickness and material properties for all test windows were intended to be constant, but the traffic load was set to one of several values for each of the test windows.

Each test window was instrumented with embedded sensors to measure in-situ stress, strain, moisture and temperature at various locations within the pavement structure. Dynatest® stress cells were used to measure stress in the subgrade soil. Geokon® stress cells were embedded in the unbound base course. Emu coils were installed in stacks able to measure displacement between coil pairs in vertical, longitudinal and transverse directions. Vertical displacements were measured in ten layers to a depth of approximately 1.52 m (5 feet). Strains were deducted from the displacement measurements. Vitel Hydra® sensors were used to record volumetric soil moisture content and temperature in the base course and subgrade during the accelerated traffic tests. Additionally, strings of thermocouples were used to record subgrade, base, asphalt and air temperatures.

The test section was built indoors where the temperature and soil moisture were controlled. The test basin where the test section was built consisted of 3 concrete walls, a concrete floor and an access ramp also made of concrete.

Typical construction equipment was used to build the test sections, but the quality control testing was more rigorous than is common in regular construction.



Figure 1 b. Transversal cross section.

### **MATERIAL PROPERTIES**

Laboratory tests were conducted on representative samples of the subgrade soil and the base course soil. The battery of tests included modified proctor, grain size distribution, specific gravity, liquid and plastic limits, and hydrometer tests.

Figure 1 shows grain size distributions for the subgrade soil and for the base course soil. The subgrade soil has approximately 99 % passing the 0.074-mm sieve. The average liquid limit (LL) and plasticity index (PI) of the soil was 40.2 % and 21 % respectively. The average specific gravity of the subgrade soil was 2.72. According to the American Association of Highway & Transportation Officials (AASHTO) soil classification system, the subgrade soil was borderline between soil types A-6 and A-7-6. According to the Unified Soil Classification System, the subgrade soil was type CL (low liquid limit clay).

The base course material was made of unbound crushed stone. It was classified as an AASHTO type A-1 soil. According to the Unified Soil Classification System, the base course soil was type GP-GM (mix of poorly graded gravel and silty gravel). About 11 percent by weight of the base course soil particles passed through the sieve 0.074-mm (#200) sieve. The fines were classified as non-plastic.



Figure 2. Grain size distribution for the subgrade soil and base course soils.

Samples were collected from various parts of the stockpiles. Laboratory tests were conducted to determine the optimum moisture content and maximum density for the base course and subgrade soils using the AASHTO test procedure, "*The Moisture-Density Relations of Soils Using a 5.5 lb (2.5 kg) Rammer and a 12 in. (305 mm) Drop* (T 99-90)". California Bearing Ratio (CBR) test were also conducted on representative samples of the subgrade soil. The optimum density and moisture content of the subgrade soil was 1800 kg/m<sup>3</sup> (112.5 pcf) and 17 % respectively. The subgrade was conditioned to an average of 20.7 percent gravimetric moisture content during construction. The laboratory CBR for this moisture content was 2.3 percent. The subgrade moisture content measured during the forensic evaluation after the traffic tests was on average 19.5 percent which would correspond to a CBR value of 4 percent.



Figure 3. Modified Proctor and CBR test results for the subgrade soil



Figure 4. Base course modified Proctor test result.

The modified Proctor test results shown in Figure 4 indicate that the optimum gravimetric moisture content of the base course material was 6 percent and the maximum density was 2237 kg/m<sup>3</sup> (139.5 pcf). Obtaining this moisture content with high hydraulic conductivity materials is difficult in practice. The average moisture content of the base course material during construction was 4.6 percent. The average moisture content of the base course material during the forensic evaluation was 2.3 percent. Apparently, the moisture content in the base course diminished gradually during the period of traffic testing.

| AASHTO                               | Borderline A-6/A-7-6 |
|--------------------------------------|----------------------|
| USCS                                 | CL                   |
| Spec. Gravity                        | 2.72                 |
| LL (%)                               | 40.2                 |
| PI                                   | 21                   |
| Optimum moisture content (%)         | 17                   |
| Maximum Density (kg/m <sup>3</sup> ) | 1800                 |
| % passing #10                        | 99                   |
| % passing #200                       | 99                   |

Table 2. Summary of properties of the subgrade soil used in Test Section 710.

The asphalt concrete material of the binder course conformed to the Vermont Type II standard, with 19-mm maximum aggregate particle size and 4.5% of asphalt binder PG-58-34. The asphalt concrete material of the wearing course conformed to the Vermont Type III standard, with 13-mm maximum aggregate particle size and 5.3% of asphalt binder PG-58-34. The nominal thickness of the binder course was 51 mm. The nominal thickness of the wearing course was 25 mm.

### CONSTRUCTION OF THE TEST SECTION

The subgrade was built in layers 150 mm (6 inches) thick. The soil was first placed at a moisture condition lower than the target moisture content. The soil was rototilled and moisture was gradually added until reaching the target. Then, the soil was compacted with four passes of a 10-Ton (9,072-kg) steel roller in static mode. Moisture and density quality control measurements were taken using a nuclear gauge. Additional roller compacting was applied until the density was at least 95 percent of the modified proctor density for the given moisture content.

The base course was placed in 2 layers 114.3 mm (4.5 inches) thick for a total of 228.6 mm (9 inches). Finally, the AC layer was placed in two lifts for a total of 76 mm (3 inches).

#### **CONSTRUCTION QUALITY CONTROL**

During the construction of the subgrade, a series of tests were conducted on each of the compacted layers. Measurements included layer thickness taken with a survey level, and moisture/density measurements taken with a nuclear gauge. Falling weight deflectometer (FWD) tests were conducted on top of the asphalt concrete prior to traffic testing.

The mean moisture content of the test subgrade was 20.7 percent with a COV of 4.0 percent. The average moisture content of the base was 4.6 percent with a COV of 10.3 percent

The mean dry density of the subgrade was 1697 kg/m<sup>3</sup> (105.9 pcf) with a COV of 1.5 percent. The mean dry density of the base course was 2284 kg/m<sup>3</sup> (142.6 pcf) with a COV of 1.35 percent. The mean density of the AC was 2304 kg/m<sup>3</sup> (143.8 pcf) with a COV of 2.2 percent.



Figure 5. Subgrade moisture content.



Figure 6. Base course moisture content.



Figure 7. Subgrade density.



Figure 8. Base Course density.

## INSTRUMENTATION

Instrumentation for measuring stress, strain, temperature, and moisture content were installed in the pavement structure during construction of the test section. More details about the instrumentation can be found in Janoo et al., 2002. The locations of the gages in the test section were similar to those in previous test sections.

Displacement measurements were made in the base and subgrade by means of Emu coils. Strain can be deducted from displacement measurements between coil pairs in either coaxial or co-planar arrangements. The sensors were placed 150 mm center to center. Displacements were measured in the longitudinal (x), transverse (y), and vertical (z) direction of loading. Displacements in the vertical direction were measured to a depth of 1.52 m.



Figure 9. Emu coils in a co-planar arrangement to measure longitudinal and transverse displacements. A US 25-cent coin is included for scale reference.

A triaxial Dynatest® stress cell set was installed at a depth of 76 mm (3 in.) below the top of the subgrade in all test windows. In Test Windows 2 and 5 an additional triaxial stress cell set was installed at a depth of 381 mm (15 in.) below the top of the subgrade. The diameter of the Dynatest® stress cells was 76 mm (3 in.).

Geokon® stress cells were installed in the middle thickness of the base course in each of Test Windows 2 and 5 in triaxial sets. In Test Window 6 Geokon stress cells were installed to measure only vertical stress at depths 51 mm (2 in.) below the bottom of the asphalt, at 25.4 mm (1 in.) above the base course-subgrade interface, and 127 mm (5 in.) below the top of the subgrade.



Figure 10. Dynatest® stress cell used in the subgrade.



Figure 11. Geokon® stress cell used in the base course and subgrade.

Vitel Hydra<sup>®</sup> soil moisture probes were used to measure the moisture content in the base and subgrade during the traffic tests. The outputs from the sensors were calibrated in-situ by means of direct sampling and oven dry tests conducted during construction and forensic evaluation. Moisture sensors were located at three depths at each of three horizontal locations. The moisture sensors were located in the base course at depths 76 mm (3 in.) below the top of the base course, 305 mm (12 in.) and 508 mm (20 in.) below the top of the subgrade. The Vitel Hydra<sup>®</sup> soil moisture probes measure soil moisture indirectly through measuring the dielectric constant of the materials between its sensing rods and converting four electronic signals into volumetric moisture content according to laboratory calibrations. Volumetric moisture content is then converted into gravimetric moisture content by means of the specific gravity of the soil. The laboratory calibrations were later corrected to ensure agreement with the more

reliable oven dry measurements conducted during construction and during the forensic evaluation.



Figure 12. Vitel Hydra moisture sensor.

Subsurface temperatures were taken using thermocouple sensors. The thermocouples have an accuracy of  $\pm 0.5$  °C. The subsurface temperature sensors were installed at three locations within the test section.

## **TRAFFIC TESTING**

The test windows were subjected to accelerated traffic loads using CRREL's Heavy Vehicle Simulator (HVS).

The following tests were conducted:

- 1. Prior to the accelerated load tests, FWD measurements were conducted on the surface of the AC layer at locations in a representative grid arrangement.
- 2. Initial transverse profiles of each test window were measured using a laser profilometer. The laser source and sensor were located 45 cm (1.5 ft.) above the pavement surface. Each cross section was composed of 256 measurements spaced at 9-mm (3/8-in.) intervals. Twenty profilometer transverse cross section measurements at 0.3-m (1-ft.) intervals were taken at each window. Surface profile measurements were made at each traffic stop to define the progression of surface rutting throughout the traffic tests. Rut depth was defined as the difference between the surface depth at a given number of passes and the corresponding depth measured at zero passes. A typical surface rut measurement and the definition of maximum rut depth are shown in Figure

15. Traffic testing was terminated when the average maximum surface rut depth of 12.5 mm was reached or exceeded.

3. In addition to the profilometer measurements, elevation measurements were conducted with a rod and level prior to the start and at the end of the traffic tests for each test window. Elevations were monitored at locations were the profilometer legs were placed during profilometer measurements to detect any potential change in elevation that would affect the profile measurements. In addition, the elevation of the projection of vertical ɛmu stack on the asphalt surface was also monitored with a rod and level system. The results from the level surveys indicated that the profilometer leg points were stationary throughout the test.



Figure 13. Laser profilometer.



Figure 14. Locations for profile measurements in a test window.



Figure 15. Definition of rut depth

- 4. Subsurface stress and displacement measurements conducted in the vertical, longitudinal, and transverse directions relative to the direction of traffic. The measurements were conducted at various pass levels to define their progression throughout the traffic tests. The displacement measurements were conducted dynamically upon the passing of tire traffic, and also statically when no traffic was occurring. The dynamic measurements were intended to measure resilient deformation traffic load applications. The static measurements were intended to measure permanent deformation.
- 5. In addition to the smu coils embedded in the pavement, a mobile coil was placed on top of the asphalt over the vertical stack of embedded smu coils as shown in Figure 16. This provided a means to measure the vertical permanent deformation in the asphalt layer.



Figure 16. Measuring displacement between the AC surface and the top of the base course.

### TRAFFIC LOADING

Traffic loading was applied by means of CRREL's Heavy Vehicle Simulator (HVS). The tire assembly was a dual-tire standard truck half axle. The traffic speed was 12 km/hr. The traffic was allowed to wander across a width of 0.91 m (3 ft.). The mean applied loads are summarized in Table 3. The tire pressure was set to 690-kPa (100 psi).

|             | Applied Loads |      |  |  |  |
|-------------|---------------|------|--|--|--|
| Test Window | kips          | kN   |  |  |  |
| 708C1       | 6.0           | 27.0 |  |  |  |
| 708C2       | 9.0           | 40.0 |  |  |  |
| 708C3       | 4.6           | 20.5 |  |  |  |
| 708C4       | 9.0           | 40.0 |  |  |  |
| 708C5       | 4.5           | 20.0 |  |  |  |
| 708C6       | 7.5           | 33.4 |  |  |  |

Table 3. Mean semi-axial loads on test windows

| Table 4. | Sequence | of HVS | tests on | test | windows |
|----------|----------|--------|----------|------|---------|
|----------|----------|--------|----------|------|---------|

| Window | Start       | End         |
|--------|-------------|-------------|
| 710C1  | 12-Jan-2004 | 22-Jan-2004 |
| 710C2  | 11-Feb-2004 | 13-Feb-2004 |
| 710C3  | 05-Feb-2004 | 09-Feb-2004 |
| 710C4  | 26-Jan-2004 | 27-Jan-2004 |
| 710C5  | 28-Jan-2004 | 02-Feb-2004 |
| 710C6  | 18-Feb-2004 | 04-Mar-2004 |

### **TEMPERATURE AND MOISTURE DURING TRAFFIC**

The mean air temperatures and the coefficient of variation (COV) in the test sections during the time of HVS testing are presented in Table 5. The subsurface temperatures during the traffic tests were approximately constant at 18.0°C.

| Window | Temperature (°C) | COV (%) |
|--------|------------------|---------|
| 710C1  | 17.13            | 1.57    |
| 710C2  | 17.60            | 1.13    |
| 710C3  | 17.44            | 1.05    |
| 710C4  | 17.73            | 1.22    |
| 710C5  | 17.25            | 0.98    |
| 710C6  | 16.96            | 1.61    |

| Table 5. | Mean air | • temneratures      | during | traffic         | testing | of the  | e test 1 | vindows. |
|----------|----------|---------------------|--------|-----------------|---------|---------|----------|----------|
| Laure J. | mucan an | <i>icmperatures</i> | anning | <i>in appre</i> | icounts | 01 1110 |          | ruuons.  |

Vitel<sup>®</sup> moisture sensors were installed in the base course and in the subgrade in this test section. The Vitel<sup>®</sup> moisture sensors generate four voltages of which the first three are used to determine the dielectric constant of the moist soil inside the probe zone. The manufacturer of the sensors provides a function based on laboratory correlations to convert dielectric constant to volumetric moisture content. The fourth voltage is used to determine the temperature needed to correct for the effect of temperature on the apparent dielectric measurements. In these tests, it was found that the 4<sup>th</sup> voltage measurements were erroneous, and the mean temperatures from thermocouple measurements were used instead. The volumetric moisture contents were converted into gravimetric moisture contents by dividing the volumetric moisture contents by 2.70 for the specific gravity of the base or by 2.72 for the subgrade. The measurements obtained from these sensors in the base course were consistent with those obtained by the oven-dry method during construction and during the forensic evaluation. The moisture measurements obtained from these sensors in the subgrade were higher than those obtained from oven dry measurements during the construction and forensic exploration stages. A comparison of the oven dry moisture contents between the construction and the forensics exploration reveals that the moisture condition of the subgrade remained practically constant. The signals obtained from the Vitel sensors were also almost constant throughout the traffic tests but showed significant bias. Because of uncertainty on the proper scale of the Vitel measurements, we will rely on the oven dry and nuclear gauge measurements conducted during the construction and the forensic stages to define the moisture content of the subgrade during the traffic tests. Because the Vitel business was purchase by another company, and now technical support is very limited, we plan to discontinue the use of Vitel sensors for future test sections and replace them with alternative sensors. Table 6 presents the moisture content during the traffic tests deducted from the average of the values measured during the construction (before traffic) and during the forensic evaluation (after traffic). The moisture measurements obtained with Vitel sensors embedded in the base course did agree with those obtained by the oven dry method. Table 7 shows the average moisture content for the base course during traffic testing.

| Depth (mm)  | 457  | 762  | 457      | 762         | 457  | 762  |
|-------------|------|------|----------|-------------|------|------|
| Test Window |      |      | Moisture | Content (%) | )    |      |
| 710C1       | 21.4 | 21.0 | 20.8     | 21.4        | 21.1 | 20.8 |
| 710C2       | 20.8 | 21.2 | 20.4     | 21.6        | 21.2 | 21.0 |
| 710C3       | 21.6 | 20.6 | 21.0     | 21.4        | 21.2 | 20.6 |
| 710C4       | 21.2 | 20.8 | 21.2     | 20.8        | 21.2 | 20.4 |
| 710C5       | 20.6 | 20.4 | 20.8     | 21.4        | 21.4 | 21.2 |
| 710C6       | 20.4 | 21.0 | 20.6     | 20.8        | 21.2 | 21.4 |

| Table 6. Average moisture content in th | e subgradesubgrade du | ring HVS testing. |
|-----------------------------------------|-----------------------|-------------------|
|-----------------------------------------|-----------------------|-------------------|

Table 7. Moisture content in base course during HVS testing 76 mm (3 in) belowbottom of asphalt.

| Test Window | Moisture Content (%) |  |
|-------------|----------------------|--|
| 710C1       | 3.4                  |  |
| 710C2       | 3.6                  |  |
| 710C3       | 3.5                  |  |
| 710C4       | 3.8                  |  |
| 710C5       | 3.8                  |  |
| 710C6       | 3.9                  |  |

### SUMMARY OF RESULTS

#### SURFACE RUTTING

Transverse surface profile measurements were taken periodically during testing. . The rut depth was calculated as the difference between the profile measurements taken at the pass level and the profile measurements taken prior to testing. Profile measurements were taken every 305-mm starting from one end of the test window (within the constant speed zone) for a total of 20 locations.

The maximum rut depths from transverse profile measurements were used to develop the longitudinal profile. The longitudinal rut depth in various test windows as a function of load repetitions are presented in Figures 17 to 22. It can be seen that it did not take many passes to exceed a surface rut of 12.5 mm (1/2 inch). According to laboratory CBR and in-situ moisture tests, the subgrade had a CBR of 2.3 percent.



Figure 17. Longitudinal progression of surface rutting in Test Window C1.



Figure 18. Longitudinal progression of surface rutting in Test Window C2.



Figure 19. Longitudinal progression of surface rutting in Test Window C3.



Figure 20. Longitudinal progression of surface rutting in Test Window C4.



Figure 21. Longitudinal progression of surface rutting in Test Window C5.



Figure 22. Longitudinal progression of surface rutting in Test Window C6.

The progressions of rut depths as a function of load repetitions in the various windows are presented in Figure 23. In general, as the applied load increased so did the rate of rut depth with the exception of 710C6 where under 33 kN loading the rut developed were similar to that created by 40 kN load. One possible explanation for this behavior is that when the applied load exceeded 33 kN the subgrade failed and any additional load will not create any more rutting. The average rut depth as a function of applied load was used to determine the number of load repetitions to reach the failure rut depth of 12.7 mm.



#### Figure 23. Rut depth progressions as function of load repetitions.

The estimated load repetitions were then used with the appropriate power equations to estimate the failure stresses and strains shown in Table 8.

#### Table 8. Load Repetitions to reach failure of 12.7 mm

| Load (kN) | А      | b     | $\mathbf{R}^2$ | N failure |
|-----------|--------|-------|----------------|-----------|
| 20        | 0.2698 | 5.323 | 0.89           | 186,257   |
| 27        | 1.059  | 4.007 | 0.98           | 26,316    |
| 40        | 25.418 | 1.820 | 0.99           | 2,521     |



Figure 24 Load repetitions as a function of rut depth.

### **DEFORMATIONS AND STRAINS**

### a) Permanent Deformations and Strains

Permanent deformation measurements were collected in the base and subgrade. During the test, a mobile surface  $\varepsilon$ mu coil was paired with a coil embedded just below the bottom of the asphalt concrete (AC) to measure the vertical deformation that occurred in the asphalt layer with increasing load repetitions. Stacks of  $\varepsilon$ mu coils in triaxial arrangements were embedded in the base and subgrade to a sufficient depth to define the permanent and resilient deformations that occurred with traffic. Strain was inferred from the deformation measurements between pairs of  $\varepsilon$ mu coils. Extensive measurements of permanent and resilient deformations in the base course and in the subgrade are shown in the tables in Appendix B.

The vertical permanent deformations on the top of the subgrade as a function of load repetitions are shown in Figure 25. The deformations were compressive and there appears to be correlation between applied load and permanent deformation. It should also be noted that there is a significant difference between the measured sum of deformations from the coil measurements and the surface rut measurements. In all the test windows in Test Section 710, the sum of coil deformations was smaller than the surface rut measurements. In previous tests, the differences were smaller than those of this test section.



Figure 25. Permanent deformation at 76 mm below the top of subgrade layer

### b) Dynamic Deformations and Strains

As with previous test sections, triaxial dynamic displacements were measured with the ɛmu coil gages in the base and subgrade. The vertical displacements were compressive, whereas the peak longitudinal and transverse displacements were tensile. In general, the greater the load, the greater was the displacement. The change in dynamic vertical strain as a function of load repetition is presented in Figure 26. Power curves were fitted to the data and the coefficients are presented in Table 9.



Figure 26. Peak dynamic vertical strains of subgrade as function of load repetitions

| Test<br>Windows | Load<br>(kN) | А    | n      | $\mathbf{R}^2$ |
|-----------------|--------------|------|--------|----------------|
| C1              | 27           | 4728 | 0.0579 | 0.79           |
| C2,C4           | 40           | 7804 | 0.0643 | 0.86           |
| C3, C5          | 20           | 4323 | 0.0396 | 0.76           |

Table 9. Power curve coefficients for the dynamic vertical strains

## FORENSIC EVALUATION

A forensic evaluation was conducted to establish the condition of the pavement structure at the end of the traffic tests. Two trenches were cut across the test windows. One trench was excavated across test windows 1, 2, and 3 on the south region of the test section. This trench will be referred to as the "South Trench". Another trench was excavated in the north region of the test section. This trench cut across test windows 4, 5,

and 6. The trenches had to be carefully located to avoid damaging the embedded sensors and wires.

The areas of the trenches were marked with paint over the asphalt pavement. A dry saw was used to neatly cut the asphalt concrete layers so that reliable layer thickness measurements could be made. Rod and level elevation measurements were taken at 0.20-m (8-in) spacing along the edge of the trenches.



Figure 27. Location of the forensic trenches in Test Section 710



Figure 28. Forensic trenches..

As soon as the asphalt layer was removed from the trenches, base course samples were collected to determine moisture content by the oven-dry method.

Moisture and density measurements were conducted in the base course and in the upper subgrade in the trenches down to a depth of 0.61 m (2 ft.) below the top of the subgrade. Vane shear and dynamic cone penetrometer measurements were conducted at each soil layer in the forensic trenches including each of the test windows. Layer thickness measurements were conducted on the sides of the trenches.



Figure 29. Moisture content in the base and upper subgrade in the south trench.



Figure 30. Moisture content in the base and upper subgrade in the north trench.



Figure 31. Density measurements in the base and upper subgrade in the south trench.



Figure 32. Density measurements in the base and upper subgrade in the north trench.



Figure 33. Vane shear measurements in the upper subgrade in the south trench.


Figure 34. Vane shear measurements in the upper subgrade in the north trench.



Figure 35. Layer thickness measurements across Test Window C1.



Figure 36. Layer thickness measurements across Test Window C2.



Figure 37. Layer thickness measurements across Test Window C3.



Figure 38. Layer thickness measurements across Test Window C4.



Figure 39. Layer thickness measurements across Test Window C5.



Figure 40. Layer thickness measurements across Test Window C6.

Nuclear moisture and density measurements were taken in the trenches at each layer. The measurements were conducted in the direct mode, i.e., the probe was inserted 0.15 m (6 in.) into the soil. The measurement represents the region of soil between the inserted nuclear source and the receiver in the box of the apparatus. Drive cylinder tests samples were taken in the same volume where the nuclear gauge measurements were taken.

#### **Forensic Observations**

Surface rutting at the end of traffic testing in Test Window 710c1 was as expected. No visible crack was observed.

By the end of traffic testing Test Window 710c2 a transverse crack 10-mm (3/8in.) wide and covering the entire width of the test window had developed near the acceleration zone at the south end of the test window. The surface course of the asphalt had apparently delaminated from the lower asphalt course and shoving was evidenced by distortion of the paint lined marking the end of the effective test window. It appears that the crack had originated in the neighboring Test Window 710c3 that had been traffic tested earlier, and it grew into Test Window 710c2 during trafficking.

During the forensic exploration, it was observed that the bond between the two asphalt layers was weak at most locations, and the layers were separated in the region where large cracks and shoving had been observed during trafficking. Test Window 710c3 had significant asphalt delamination.

A transverse crack 11-mm (7/16-in.) wide developed across Test Window 710c4. There was also some delamination of the asphalt layers at Test Windows 710c5. Test Window 710c6 also developed shoving that began with apparent shear failures in the asphalt at the lateral boundaries for a length about 0.91 m (3 ft).

The moisture content measurements obtained during the forensic exploration indicate that there was no measurable loss of moisture in the subgrade during the traffic loading period. However, the moisture content near the top of the base course decreased significantly during this period.

The asphalt thickness measurements taken on one side of the trenches show no difference between the traffic areas and the areas outside the test windows, but weak bond between the asphalt layers was evidenced by some shoving and cracking at several locations.

The thickness of the base course had some significant deviation from the design thickness of 230 mm (9 in.). Except for Test Windows 710c3, 710c6, the base course was thinner than specified.

The Vane shear tests suggest slightly lower shear strength at the sides of the test windows.

#### SUMMARY AND CONCLUSIONS

Accelerated pavement testing (APT) was conducted on a test section with a subgrade soil that was classified as borderline between AASHTO types A-6 and A-7-6. The subgrade was built at 21 percent moisture content for a soil with optimum moisture content of 17 percent via modified Proctor tests. At this moisture condition, the laboratory CBR was found to be 4 percent. This is a weak subgrade soil.

The subgrade layer was instrumented with stress, strain, temperature and moisture sensors.

The test section was divided into 6 test windows. Accelerated pavement testing was conducted over a period of 2.5 months. During the accelerated pavement testing, dynamic stresses, dynamic and permanent strains, and surface rut depth measurements were collected at given loading intervals. Stress measurements were collected in all of the six test windows. However, the data from the subgrade was poor and not used in the analysis. Strain measurements were collected in all six windows to a depth of 1.2-m into the subgrade. Stress and strain measurements were made in the vertical, longitudinal and transverse directions of loading. Temperature and moisture measurements were made every 4 hours during the tests. The test loads varied between 20 to 40-kN (4.5 to 9 kips). The average tire pressure was 690-kPa (100 psi). The load was applied by means of a standard dual truck tire assembly that constituted half of a truck axle. Therefore, for example, 40 kN (9 kips) is equivalent to a full axial load of 80 kN (18 kips).

The dynamic strains at failure are compared with the current Asphalt Institute and Shell subgrade failure criterions. In addition to the strain measurements from this test sections, Figure 41 shows those from other test sections in this research project and compares them to the Shell and Asphalt Institute failure criteria. Note that these results were measured at 12 km/hr. To be able to compare with the results from the AASHO Road tests, where the test speed was 48 km/hr, a correction factor was applied to the strain data. The correction factors were developed based on results from MnRoad (Dai and Van Deusen, 1998, Janoo, et al, 2002). The test results were multiplied by factors of 0.63 and 0.48 for speeds of 48 km/hour (AASHO Road Test) and 88 km/hour (highway) respectively.

The following equation relates the allowable number of load repetitions  $N_d$  to limit rutting on top of the subgrade to the vertical strain modified by two constants.

$$N_d = f_4 \left( \varepsilon_v \right)^{-f^5}$$
 (Equation 1)

where the coefficients  $f_4$ ,  $f_5$  are 0.3224 and -0.4734 for highway speeds.



Figure 41. Effect of soil type on the subgrade failure criterion

#### REFERENCE

Dai, S.T., D.Van Deusen, D.Rettner and G.Cochran. "Investigation of Flexible Pavement Response to Truck Speed and FWD Load Through Instrumented Pavements", Proceedings of the 8th International Conference on Flexible Pavements. Seattle, Washington, pp.141-160. 1997.

Hilderbrand & Irwin, "Theoretical Analysis of Pavement Test Sections in the FERF", Internal Report, 1994.

Janoo, V., L. Irwin, R. Eaton, and R. Haehnel, "Pavement Subgrade Performance Study: Project Overview, ERDC Report TR15, 2002.

Test Section 710 AASHTO A-6/A-7-6 subgrade soil at 21 % gravimetric moisture content

# APPENDIX A

# SURFACE PROFILE TEST RESULTS

| Dog/Dogg | 250    | 1000   | 2500   | 5000      | 10000    | 25000   | 50000   |
|----------|--------|--------|--------|-----------|----------|---------|---------|
| POS/Pass |        |        | Maximu | m Rut Dep | oth (mm) |         |         |
| 1        | -2.802 | -0.733 | -5.755 | -4.031    | -5.256   | -9.174  | -11.782 |
| 2        | -2.198 | -1.638 | -4.685 | -6.166    | -5.916   | -8.951  | -13.808 |
| 3        | -2.419 | -2.788 | -4.749 | -5.647    | -5.879   | -11.671 | -12.569 |
| 4        | -3.039 | -4.637 | -5.090 | -5.733    | -7.594   | -11.257 | -14.374 |
| 5        | -3.314 | -4.455 | -4.985 | -5.767    | -7.108   | -11.106 | -13.081 |
| 6        | -3.327 | -5.673 | -6.812 | -6.295    | -8.578   | -13.099 | -15.645 |
| 7        | -5.555 | -7.298 | -9.033 | -10.444   | -11.789  | -13.887 | -17.504 |
| 8        | -1.533 | -3.475 | -4.591 | -4.402    | -6.995   | -12.172 | -13.853 |
| 9        | -3.277 | -4.066 | -2.997 | -4.942    | -5.323   | -9.689  | -15.627 |
| 10       | -2.293 | -3.104 | -4.526 | -4.559    | -4.828   | -9.554  | -13.408 |
| 11       | -2.547 | -3.392 | -4.202 | -4.706    | -5.075   | -9.771  | -13.279 |
| 12       | -1.877 | -2.770 | -4.355 | -5.165    | -6.336   | -9.454  | -14.734 |
| 13       | -3.663 | -4.168 | -5.687 | -4.801    | -5.915   | -11.004 | -12.459 |
| 14       | -3.269 | -3.881 | -4.105 | -4.082    | -5.348   | -8.257  | -11.452 |
| 15       | -2.314 | -3.169 | -4.159 | -5.810    | -6.910   | -11.559 | -13.689 |
| 16       | -1.127 | -3.192 | -4.355 | -5.869    | -7.122   | -11.585 | -14.709 |
| 17       | -3.758 | -3.701 | -5.253 | -6.489    | -7.314   | -10.988 | -13.648 |
| 18       | -3.531 | -4.000 | -6.093 | -7.156    | -8.593   | -12.340 | -17.187 |
| 19       | -3.098 | -3.364 | -4.614 | -5.895    | -6.551   | -14.352 | -15.076 |
| 20       | -2.330 | -3.506 | -4.825 | -5.424    | -6.351   | -9.565  | -12.089 |

# Table A1. Surface rut measurements in 710C1

| Dog/Dogg | 100    | 500    | 1000      | 1700      | 3000     |
|----------|--------|--------|-----------|-----------|----------|
| FOS/Fass |        | Maxim  | um Rut De | epth (mm) |          |
| 1        | -1.694 | -7.149 | -10.527   | -14.538   | -16.5521 |
| 2        | -1.712 | -5.036 | -8.673    | -11.668   | -13.4945 |
| 3        | -1.863 | -4.421 | -6.257    | -9.172    | -12.1489 |
| 4        | -0.294 | -3.592 | -5.749    | -9.252    | -10.7585 |
| 5        | -2.264 | -3.637 | -5.856    | -8.619    | -11.8189 |
| 6        | -1.729 | -5.776 | -7.603    | -11.035   | -13.8158 |
| 7        | -2.317 | -5.553 | -8.388    | -10.384   | -13.1915 |
| 8        | -2.727 | -5.188 | -7.603    | -9.947    | -13.994  |
| 9        | -1.141 | -5.134 | -6.810    | -10.322   | -13.2099 |
| 10       | -2.585 | -5.437 | -7.478    | -10.357   | -13.4322 |
| 11       | -2.727 | -5.304 | -6.703    | -9.796    | -10.5266 |
| 12       | -2.113 | -3.841 | -5.348    | -7.950    | -9.16273 |
| 13       | -1.346 | -3.931 | -5.161    | -7.300    | -8.44109 |
| 14       | -4.055 | -4.920 | -7.130    | -7.942    | -10.5266 |
| 15       | -2.924 | -5.767 | -8.084    | -10.224   | -12.4253 |
| 16       | -1.836 | -5.277 | -6.685    | -8.664    | -12.0422 |
| 17       | -3.022 | -4.314 | -6.284    | -8.183    | -11.3288 |
| 18       | -2.656 | -4.011 | -6.168    | -6.855    | -10.5803 |
| 19       | -2.005 | -3.173 | -5.998    | -7.327    | -10.295  |
| 20       | -1.658 | -3.957 | -5.330    | -7.202    | -9.34091 |

# Table A 2. Surface rut measurements in 710C2

| Dec/Decc | 250    | 1000   | 5000      | 5001     | 10000   |
|----------|--------|--------|-----------|----------|---------|
| FOS/Fass |        | Maximu | m Rut Dep | oth (mm) |         |
| 1        | -1.988 | -3.342 | -5.945    | -5.472   | -5.972  |
| 2        | -2.388 | -4.439 | -6.435    | -4.715   | -4.341  |
| 3        | -0.544 | -3.156 | -4.483    | -2.772   | -3.868  |
| 4        | -1.827 | -2.683 | -3.547    | -3.022   | -4.930  |
| 5        | -2.166 | -3.485 | -4.465    | -4.501   | -6.328  |
| 6        | -2.050 | -3.512 | -6.106    | -4.439   | -5.954  |
| 7        | -2.380 | -3.262 | -5.161    | -4.760   | -6.480  |
| 8        | -3.280 | -4.742 | -6.212    | -2.211   | -6.837  |
| 9        | -1.622 | -3.307 | -4.983    | -3.156   | -4.564  |
| 10       | -2.121 | -2.487 | -4.011    | -2.237   | -4.983  |
| 11       | -1.560 | -2.549 | -3.735    | -2.015   | -4.145  |
| 12       | -2.077 | -2.594 | -4.207    | -2.558   | -4.662  |
| 13       | -2.576 | -2.273 | -3.708    | -2.175   | -4.510  |
| 14       | -1.587 | -1.346 | -3.245    | -1.524   | -3.619  |
| 15       | -1.480 | -1.899 | -3.886    | -1.890   | -20.786 |
| 16       | -1.417 | -2.442 | -2.175    | -2.211   | -3.770  |
| 17       | -1.952 | -2.638 | -2.870    | -1.685   | -4.261  |
| 18       | -0.990 | -1.703 | -2.701    | -1.515   | -3.539  |
| 19       | -1.613 | -1.676 | -2.959    | -1.524   | -3.120  |
| 20       | -0.793 | -1.150 | -2.398    | -1.247   | -5.045  |

# Table A 3. Surface rut measurements in 710C3

| Dog/Dogg | 250       | 1000           |
|----------|-----------|----------------|
| FUS/Fass | Maximum H | Rut Depth (mm) |
| 1        | -1.616    | -6.447         |
| 2        | -3.900    | -7.148         |
| 3        | -2.478    | -6.789         |
| 4        | -3.325    | -8.893         |
| 5        | -3.942    | -9.112         |
| 6        | -5.547    | -9.787         |
| 7        | -3.668    | -9.368         |
| 8        | -4.403    | -9.536         |
| 9        | -5.626    | -11.209        |
| 10       | -4.672    | -11.495        |
| 11       | -3.819    | -9.288         |
| 12       | -3.935    | -8.104         |
| 13       | -4.259    | -8.657         |
| 14       | -2.969    | -7.603         |
| 15       | -4.944    | -9.888         |
| 16       | -3.947    | -8.665         |
| 17       | -3.960    | -8.333         |
| 18       | -4.205    | -8.882         |
| 19       | -3.152    | -7.012         |
| 20       | -1.565    | -7.381         |

# Table A4. Surface rut measurements in 710C4

| Dog/Dogg | 250    | 500      | 1000       | 5000   |
|----------|--------|----------|------------|--------|
| F08/F888 | Ma     | ximum Ru | t Depth (1 | nm)    |
| 1        | -5.099 | -3.958   | -4.314     | -6.328 |
| 2        | -6.569 | -12.122  | -5.375     | -7.264 |
| 3        | -6.489 | -6.935   | -4.269     | -7.906 |
| 4        | -4.038 | -5.045   | -4.786     | -7.398 |
| 5        | -5.571 | -3.842   | -4.519     | -6.685 |
| 6        | -4.778 | -6.275   | -6.872     | -9.778 |
| 7        | -4.590 | -3.637   | -4.216     | -5.018 |
| 8        | -4.350 | -6.338   | -6.230     | -7.193 |
| 9        | -3.654 | -4.047   | -2.086     | -6.525 |
| 10       | -1.203 | -2.585   | -4.296     | -4.448 |
| 11       | -5.116 | -5.838   | -6.676     | -7.942 |
| 12       | -4.002 | -4.626   | -4.688     | -8.370 |
| 13       | -4.974 | -4.287   | -5.366     | -6.792 |
| 14       | -2.139 | -4.466   | -3.556     | -4.350 |
| 15       | -4.421 | -5.152   | -4.555     | -7.336 |
| 16       | -4.911 | -4.278   | -5.669     | -5.419 |
| 17       | -4.599 | -5.972   | -4.385     | -6.453 |
| 18       | -4.697 | -4.608   | -2.826     | -3.369 |
| 19       | -1.203 | -1.533   | -1.052     | -1.979 |
| 20       | -6.284 | -3.663   | -4.474     | -6.899 |

# Table A 5. Surface rut measurements in 710C5

| Dec/Decc | 250    | 1000      | 4240     |
|----------|--------|-----------|----------|
| POS/Pass | Maximu | m Rut Dep | oth (mm) |
| 1        | -3.922 | -5.491    | -6.480   |
| 2        | -4.171 | -7.104    | -8.182   |
| 3        | -5.366 | -7.452    | -8.904   |
| 4        | -5.517 | -8.441    | -11.061  |
| 5        | -7.104 | -9.894    | -10.972  |
| 6        | -7.166 | -9.216    | -13.049  |
| 7        | -7.024 | -10.152   | -10.919  |
| 8        | -5.045 | -8.914    | -9.012   |
| 9        | -5.482 | -7.942    | -9.983   |
| 10       | -5.651 | -7.416    | -10.562  |
| 11       | -7.532 | -9.769    | -12.791  |
| 12       | -4.902 | -7.906    | -8.575   |
| 13       | -5.214 | -7.728    | -10.705  |
| 14       | -4.956 | -7.399    | -11.445  |
| 15       | -4.983 | -7.086    | -9.199   |
| 16       | -4.100 | -7.951    | -11.266  |
| 17       | -4.484 | -6.659    | -10.518  |
| 18       | -4.706 | -5.285    | -7.603   |
| 19       | -3.227 | -4.724    | -7.924   |
| 20       | -3.547 | -5.009    | -7.647   |

 Table A 6.
 Surface rut measurements in 710C6

Test Section 710 AASHTO A-6/A-7-6 subgrade soil at 21 % gravimetric moisture content

# **APPENDIX B**

# **PERMANENT DEFORMATION & STRAIN TEST RESULTS**

# Table B 1. Permanent deformation (mm) in 710C1 Image: Comparison of the second sec

| 710C1      |   | Load = 2 | 7 kN     |         |         |         |         |         |
|------------|---|----------|----------|---------|---------|---------|---------|---------|
|            |   | VERTIC   | AL DISPI | LACEME  | NT (mm) |         |         |         |
| Depth (mm) | 0 | 250      | 1000     | 2500    | 5000    | 10000   | 25000   | 50000   |
| Surface    | 0 | -0.1411  | -0.3514  | -0.7677 | -0.9051 | -1.1101 | -1.9160 | -2.3107 |
| 135        | 0 | -0.1166  | -0.3405  | -0.6105 | -0.8216 | -1.0745 | -1.8638 | -2.3944 |
| 250        | 0 | -0.1024  | -0.3511  | -0.6481 | -0.8628 | -1.1930 | -2.1522 | -2.7355 |
| 380        | 0 | -0.3007  | -0.5757  | -0.5053 | -0.6186 | -1.1288 | -1.6688 | -2.1088 |
| 535        | 0 | -0.0004  | -0.4388  | -0.5236 | -0.2363 | -0.5450 | -0.7910 | 0.3659  |
| 685        | 0 | 0.0248   | 0.5973   | 0.5858  | 0.6299  | 0.5332  | 0.5396  | -3.6387 |
| 840        | 0 | 0.0532   | 0.0608   | 0.0900  | 0.1664  | 0.1478  | 0.0133  | -0.0011 |
| 990        | 0 | 0.0165   | 0.1598   | -0.2382 | 0.1812  | 0.2897  | 0.0518  | 0.0430  |
| 1145       | 0 | 0.0120   | 0.1474   | -0.1891 | 0.1821  | 0.2621  | 0.0145  | 0.0092  |
| 1295       | 0 | 0.0308   | 0.1323   | -0.0169 | 0.1404  | 0.2017  | 0.0379  | 0.0466  |
| 1450       | 0 | 0.0391   | 0.2635   | 0.1946  | 0.1869  | 0.3507  | 0.0669  | 0.0652  |
|            |   | LONGIT   | UDINAL   | DISPLAC | CEMENT  | (mm)    |         |         |
| Depth (mm) | 0 | 250      | 1000     | 2500    | 5000    | 10000   | 25000   | 50000   |
| 76         | 0 | -0.0307  | -0.0130  | -0.0480 | -0.1455 | -0.1433 | -0.4161 | -0.5222 |
| 191        | 0 | 0.0158   | 0.0711   | 0.0782  | 0.0091  | -0.0140 | -0.3225 | -0.4372 |
| 305        | 0 | 0.0091   | 0.1097   | 0.0922  | 0.0853  | 0.1028  | -0.1926 | -0.2577 |
| 457        | 0 | -0.0015  | 0.1086   | 0.1023  | 0.1043  | 0.1508  | -0.0022 | 0.0116  |
| 610        | 0 | 0.0200   | 0.5973   | 0.6185  | 0.5564  | 0.5699  | 0.5676  | -2.6909 |
| 762        | 0 | 0.0363   | 0.1279   | 0.1874  | 0.1116  | 0.1762  | 0.0232  | 0.0377  |
| 914        | 0 | 0.0101   | 0.1145   | 0.1157  | 0.1350  | 0.1948  | 0.0435  | 0.0377  |
|            |   | TRANS    | VERSE D  | ISPLACE | MENT (m | m)      |         |         |
| Depth (mm) | 0 | 250      | 1000     | 2500    | 5000    | 10000   | 25000   | 50000   |
| 76         | 0 | 0.1185   | 0.4825   | 0.7401  | 0.9683  | 1.2509  | 1.6209  | 1.8667  |
| 191        | 0 | 0.0674   | 0.3202   | 0.5160  | 0.6425  | 0.8629  | 1.1490  | 1.3686  |
| 305        | 0 | 0.0004   | 0.1038   | 0.1548  | 0.2206  | 0.2793  | 0.1997  | 0.2287  |
| 457        | 0 | -0.0080  | 0.0859   | 0.1042  | 0.1846  | 0.2328  | 0.2017  | 0.2364  |
| 610        | 0 | 0.0002   | 0.4975   | 0.5157  | 0.5233  | 0.4987  | 0.5396  | -2.5391 |
| 762        | 0 | 0.0187   | 0.0777   | 0.0891  | 0.1125  | 0.1378  | 0.0230  | 0.0182  |
| 914        | 0 | 0.0104   | 0.0828   | 0.1398  | 0.0832  | 0.1347  | 0.0259  | 0.0381  |

# Table B 2. Permanent deformation (mm) in 710C2 (STACKA)

| 710C2      |   | Load = 40 | ) kN     |         |           |         |
|------------|---|-----------|----------|---------|-----------|---------|
|            |   | VERTICA   | AL DISPL | ACEMEN  | JT (mm)   |         |
| Depth (mm) | 0 | 100       | 500      | 1000    | 1700      | 3000    |
| Surface    | 0 | -0.1589   | -0.6308  | 0.0000  | 0.3204    | -0.1589 |
| 134        | 0 | -0.2807   | -1.0497  | -1.5297 | -1.8149   | -2.2451 |
| 248        | 0 | -0.3061   | -1.2658  | -1.8613 | -2.2593   | -3.1085 |
| 381        | 0 | -0.2827   | -0.9874  | -1.4927 | -1.8928   | -2.9056 |
| 534        | 0 | -0.1298   | -0.5436  | -0.8526 | -1.0884   | -1.8128 |
| 686        | 0 | -0.0376   | -0.1822  | -0.1994 | -0.2792   | -0.5798 |
| 838        | 0 | -0.0015   | -0.0538  | -0.0843 | -0.0800   | -0.2356 |
| 991        | 0 | 0.0412    | 0.0048   | 0.0115  | 0.0077    | -0.0299 |
| 1143       | 0 | 0.0554    | 0.0196   | 0.0092  | 0.0234    | -0.0060 |
| 1296       | 0 | -0.0133   | -0.0495  | -0.0565 | -0.0449   | -0.0830 |
| 1448       | 0 | 0.0189    | -0.0333  | -0.0246 | -0.0351   | -0.0644 |
|            |   | LONGIT    | UDINAL   | DISPLAC | EMENT (   | (mm)    |
| Depth (mm) | 0 | 100       | 500      | 1000    | 1700      | 3000    |
| 76         | 0 | -0.0630   | -0.1303  | -0.1646 | -0.1330   | -0.1310 |
| 191        | 0 | -0.0236   | -0.0625  | -0.0300 | -0.0219   | -0.0512 |
| 305        | 0 | -0.0137   | 0.0469   | 0.1280  | 0.2057    | 0.2543  |
| 457        | 0 | -0.0120   | 0.0128   | 0.0234  | 0.0451    | 0.0740  |
| 610        | 0 | -0.0056   | -0.0716  | -0.0696 | -0.0714   | -0.0318 |
| 762        | 0 | 0.0088    | -0.0279  | -0.0333 | -0.0282   | -0.0435 |
| 914        | 0 | -0.0054   | -0.0464  | -0.0384 | -0.0361   | -0.0406 |
|            |   | TRANSV    | ERSE DI  | SPLACEN | /IENT (mi | n)      |
| Depth (mm) | 0 | 100       | 500      | 1000    | 1700      | 3000    |
| 76         | 0 | 0.2010    | 0.5186   | 0.6647  | 0.8350    | 1.1104  |
| 191        | 0 | 0.2194    | 0.6111   | 0.8507  | 0.9704    | 1.3261  |
| 305        | 0 | 0.0803    | 0.2787   | 0.4942  | 0.6364    | 1.0612  |
| 457        | 0 | 0.0385    | 0.1739   | 0.2677  | 0.3340    | 0.6314  |
| 610        | 0 | 0.0192    | -0.0153  | 0.0033  | 0.0021    | 0.0951  |
| 762        | 0 | 0.0361    | 0.0187   | 0.0187  | 0.0341    | 0.0694  |
| 914        | 0 | 0.0286    | 0.0024   | 0.0057  | 0.0025    | 0.0106  |

# Table B2b. Permanent deformation (mm) in 710C2 (STACK B) Particular

| 710C2      |                            | Load = 4 | 0 kN        |          |          |          |  |  |  |
|------------|----------------------------|----------|-------------|----------|----------|----------|--|--|--|
|            | VERTICAL DISPLACEMENT (mm) |          |             |          |          |          |  |  |  |
|            |                            | Loa      | d Repetitio | ons      |          |          |  |  |  |
| Depth (mm) | 0                          | 100      | 500         | 1000     | 1700     | 3000     |  |  |  |
| Surface    | 0                          | -0.1379  | -0.5472     | -1.0832  | -1.2594  | -1.4780  |  |  |  |
| 134        | 0                          | 20.5111  | 29.8771     | 12.2810  | 32.2661  | 30.6423  |  |  |  |
| 248        | 0                          | -0.2022  | -0.9217     | -1.3401  | -1.6331  | -2.0458  |  |  |  |
| 381        | 0                          | -0.1635  | -0.8562     | -1.3592  | -1.7210  | -2.2423  |  |  |  |
| 534        | 0                          | -0.2729  | -1.1103     | -1.5215  | -1.7560  | -2.1336  |  |  |  |
|            |                            | LONGIT   | UDINAL      | DISPLAC  | CEMENT   | (mm)     |  |  |  |
|            |                            | Loa      | d Repetitio | ons      |          |          |  |  |  |
| Depth (mm) | 0                          | 100      | 500         | 1000     | 1700     | 3000     |  |  |  |
| 76         | 0                          | 0.1137   | 0.2063      | 0.1921   | -0.1425  | 0.4011   |  |  |  |
| 191        | 0                          | 1.1275   | 5.7765      | 8.3610   | 10.1512  | 9.8731   |  |  |  |
| 305        | 0                          | 0.4500   | 2.7426      | 4.5995   | 6.0093   | 8.0862   |  |  |  |
| 457        | 0                          | 0.0875   | 0.3068      | 0.3957   | 0.4393   | 0.5849   |  |  |  |
| 610        | 0                          | 0.0112   | -0.1046     | -0.2392  | -0.2302  | -0.2355  |  |  |  |
|            |                            | TRANS    | VERSE DI    | SPLACE   | MENT (m  | m)       |  |  |  |
|            |                            | Loa      | d Repetitio | ons      |          |          |  |  |  |
| Depth (mm) | 0                          | 100      | 500         | 1000     | 1700     | 3000     |  |  |  |
| 76         | 0                          | -0.7458  | -1.1306     | -0.4323  | -0.9780  | -0.9189  |  |  |  |
| 191        | 0                          | -5.5027  | -21.2774    | -30.0855 | -35.0861 | -40.8596 |  |  |  |
| 305        | 0                          | 0.6626   | 3.3716      | 5.6614   | 7.2805   | 9.5378   |  |  |  |
| 457        | 0                          | 0.2632   | 0.8295      | 1.1275   | 1.2663   | 1.5769   |  |  |  |
| 610        | 0                          | 0.1212   | 0.1394      | 0.1239   | 0.1805   | 0.2772   |  |  |  |

# Table B3. Permanent deformation (mm) in 710C3

| 710C3      |   | Load = 20 | ) kN     |         |          |         |
|------------|---|-----------|----------|---------|----------|---------|
|            |   | VERTICA   | AL DISPL | ACEMEN  | NT (mm)  |         |
| Depth (mm) | 0 | 250       | 500      | 1000    | 5000     | 10000   |
| Surface    | 0 | -0.2751   | -1.0865  | -1.2640 | -1.2640  | -1.6160 |
| 133        | 0 | -0.3908   | -0.6057  | -0.8287 | -1.4468  | -1.6771 |
| 248        | 0 | -0.1945   | -0.3157  | -0.4393 | -0.9010  | -1.4819 |
| 381        | 0 | -0.2384   | -0.3500  | -0.3377 | 12.2199  | -0.8075 |
| 533        | 0 | -0.0571   | -0.0575  | -0.0763 | -0.0615  | -0.1105 |
| 686        | 0 | -0.0665   | -0.0775  | -0.1214 | -0.0773  | -0.1731 |
| 838        | 0 | 0.0051    | -0.0354  | 0.0060  | 0.0854   | 0.0368  |
| 991        | 0 | -0.0153   | -0.0166  | 0.0017  | 0.0894   | 0.3744  |
| 1143       | 0 | -0.0060   | -0.0144  | 0.0007  | 0.0895   | 0.1942  |
| 1295       | 0 | 0.0020    | 0.0018   | 0.0079  | 0.0889   | 0.1743  |
| 1448       | 0 | -0.0084   | -0.0080  | -0.0142 | 0.0871   | 0.3279  |
|            |   | LONGIT    | UDINAL   | DISPLAC | EMENT (  | (mm)    |
| Depth (mm) | 0 | 250       | 500      | 1000    | 5000     | 10000   |
| 76         | 0 | -0.0302   | -0.0519  | -0.0439 | -0.0514  | -0.0461 |
| 191        | 0 | -0.0394   | -0.0368  | -0.0061 | 0.0444   | -0.0530 |
| 305        | 0 | -0.0329   | -0.0498  | -0.0615 | -0.0179  | 0.0440  |
| 457        | 0 | -0.1149   | -0.2158  | -0.1151 | -0.1206  | -0.1297 |
| 610        | 0 | -0.0269   | -0.0230  | -0.0250 | 0.0418   | 0.0352  |
| 762        | 0 | -0.0051   | -0.0189  | 0.0043  | 0.0593   | 0.0527  |
| 914        | 0 | -0.0440   | -0.0578  | -0.0476 | 0.0273   | -0.0113 |
|            |   | TRANSV    | ERSE DI  | SPLACEN | MENT (mi | n)      |
| Depth (mm) | 0 | 250       | 500      | 1000    | 5000     | 10000   |
| 76         | 0 | 0.3596    | 0.4338   | 0.5989  | 1.0260   | 1.1907  |
| 191        | 0 | 0.1309    | 0.1661   | 0.2674  | 0.5222   | 0.5787  |
| 305        | 0 | 0.0303    | 0.0147   | 0.0349  | 0.1714   | 0.1583  |
| 457        | 0 | -0.1655   | -0.4614  | -0.1873 | -0.2692  | -0.3585 |
| 610        | 0 | 0.0005    | -0.0129  | -0.0061 | 0.0483   | 0.0294  |
| 762        | 0 | 0.0172    | -0.0134  | 0.0094  | 0.0423   | 0.0000  |
| 914        | 0 | 0.0009    | -0.0018  | -0.0010 | 0.0036   | 0.0013  |

| 710C4      |   | Load = 40 | Load = 40  kN |                 |  |  |
|------------|---|-----------|---------------|-----------------|--|--|
|            |   | VERTICA   | L DISPLA      | CEMENT (mm)     |  |  |
| Depth (mm) | 0 | 250       | 1000          |                 |  |  |
| Surface    | 0 | -0.1298   | -0.2590       |                 |  |  |
| 133        | 0 | 0.6392    | GF            |                 |  |  |
| 248        | 0 | -0.7353   | -1.6079       |                 |  |  |
| 381        | 0 | -0.6173   | -1.7282       |                 |  |  |
| 533        | 0 | -0.9746   | -2.0801       |                 |  |  |
| 686        | 0 | 0.0438    | -0.1991       |                 |  |  |
| 838        | 0 | 0.1129    | 0.0192        |                 |  |  |
| 991        | 0 | 0.1698    | 0.1681        |                 |  |  |
| 1143       | 0 | 0.1683    | 0.0550        |                 |  |  |
| 1295       | 0 | 0.1536    | 0.0586        |                 |  |  |
| 1448       | 0 | 0.1843    | 0.1499        |                 |  |  |
|            |   | LONGITU   | DINAL DI      | SPLACEMENT (mm) |  |  |
| Depth (mm) | 0 | 250       | 1000          |                 |  |  |
| 76         | 0 | -5.9508   | GF            |                 |  |  |
| 191        | 0 | -7.9014   | -8.1772       |                 |  |  |
| 305        | 0 | -0.0192   | -0.2683       |                 |  |  |
| 457        | 0 | 1.5050    | 1.3857        |                 |  |  |
| 610        | 0 | 1.9786    | 1.9374        |                 |  |  |
| 762        | 0 | 5.0422    | 4.9860        |                 |  |  |
| 914        | 0 | 5.5575    | 5.5291        |                 |  |  |
|            |   | TRANSVE   | RSE DISF      | PLACEMENT (mm)  |  |  |
| Depth (mm) | 0 | 250       | 1000          |                 |  |  |
| 76         | 0 | 1.6162    | GF*           |                 |  |  |
| 191        | 0 | 7.9706    | 8.3956        |                 |  |  |
| 305        | 0 | 0.5193    | 0.8851        |                 |  |  |
| 457        | 0 | -6.0160   | -5.8752       |                 |  |  |
| 610        | 0 | -1.6878   | -1.6435       |                 |  |  |
| 762        | 0 | -0.0125   | -0.0571       |                 |  |  |
| 914        | 0 | -0.4494   | -0.5307       |                 |  |  |

# Table B4. Permanent deformation (mm) in 710C4 Image: Comparison (mm) in 710C4

\*GF – Gage Failure

# Table B5. Permanent deformation (mm) in 710C5 (STACKA)

| 710C5      |   | Load = 20 | ) kN     |         |          |     |
|------------|---|-----------|----------|---------|----------|-----|
|            |   | VERTICA   | AL DISPL | ACEMEN  | NT (mm)  |     |
| Depth (mm) | 0 | 250       | 500      | 1000    | 5000     |     |
| Surface    | 0 | -0.0843   | -0.5027  | -0.5027 | -0.8333  |     |
| 134        | 0 | -0.2684   | -0.3265  | -0.4536 | -0.8197  |     |
| 248        | 0 | -0.2090   | -0.2434  | -0.3269 | -0.5935  |     |
| 381        | 0 | -0.2225   | -0.2008  | -0.3066 | -0.5106  |     |
| 534        | 0 | -0.1333   | -0.0988  | -0.1122 | -0.1499  |     |
| 686        | 0 | -0.2407   | -0.2159  | -0.2401 | -0.2392  |     |
| 838        | 0 | -0.2193   | -0.2000  | -0.2222 | -0.2005  |     |
| 991        | 0 | -0.0507   | -0.0618  | -0.0508 | -0.0267  |     |
| 1143       | 0 | -0.1027   | -0.0943  | -0.0961 | -0.0850  |     |
| 1296       | 0 | -0.1135   | -0.0805  | -0.1236 | -0.0894  |     |
| 1448       | 0 | -0.2667   | -0.2466  | -0.2616 | -0.2566  |     |
|            |   | LONGIT    | UDINAL   | DISPLAC | EMENT (n | ım) |
| Depth (mm) | 0 | 250       | 500      | 1000    | 5000     |     |
| 76         | 0 | -0.1927   | -0.1787  | -0.2076 | -0.1807  |     |
| 191        | 0 | -0.0716   | -0.0988  | -0.1433 | -0.1320  |     |
| 305        | 0 | -0.0713   | -0.0637  | -0.0963 | -0.0504  |     |
| 457        | 0 | -0.0807   | -0.0559  | -0.0548 | -0.0416  |     |
| 610        | 0 | -0.0579   | -0.0512  | -0.0695 | -0.0470  |     |
| 762        | 0 | -0.1648   | -0.1534  | -0.1754 | -0.1511  |     |
| 914        | 0 | -0.0503   | -0.0570  | -0.0564 | -0.0338  |     |
|            |   | TRANSV    | ERSE DI  | SPLACEN | MENT (mm | )   |
| Depth (mm) | 0 | 250       | 500      | 1000    | 5000     |     |
| 76         | 0 | -0.0474   | 0.0098   | 0.0845  | 0.3803   |     |
| 191        | 0 | 0.0068    | -0.0118  | -0.0260 | 0.0814   |     |
| 305        | 0 | -0.0026   | 0.0037   | -0.0116 | 0.1391   |     |
| 457        | 0 | -0.0538   | -0.0423  | -0.0423 | -0.0469  |     |
| 610        | 0 | -0.1495   | -0.1472  | -0.1655 | -0.1623  |     |
| 762        | 0 | -0.0152   | -0.0287  | -0.0277 | -0.0118  |     |
| 914        | 0 | -0.1616   | -0.1560  | -0.1666 | -0.1536  |     |

# Table Bb. Permanent deformation (mm) in 710C5 (STACK B)

| 710C5      |   | Load = 20  kN |            |           |          |  |  |
|------------|---|---------------|------------|-----------|----------|--|--|
|            |   | VERTICAL      | DISPLACE   | EMENT (mn | n)       |  |  |
| Depth (mm) | 0 | 250           | 500        | 1000      | 5000     |  |  |
| Surface    | 0 | -0.0843       | -0.3360    | -0.4195   | -0.6684  |  |  |
| 134        | 0 | -20.0000      | -13.7023   | -11.9595  | -16.6020 |  |  |
| 248        | 0 | -0.2251       | -0.2593    | -0.3592   | -0.6807  |  |  |
| 381        | 0 | -0.1866       | -0.1978    | -0.2791   | -0.5738  |  |  |
| 534        | 0 | -0.2544       | -0.2434    | -0.3004   | -0.4456  |  |  |
|            |   | LONGITUI      | DINAL DISH | PLACEMEN  | T (mm)   |  |  |
| Depth (mm) | 0 | 250           | 500        | 1000      | 5000     |  |  |
| 76         | 0 | -3.4810       | -3.7884    | -3.8403   | -3.8441  |  |  |
| 191        | 0 | -0.1172       | 1.1216     | 2.8368    | 13.2745  |  |  |
| 305        | 0 | -1.8859       | -1.4379    | -1.2122   | 0.7767   |  |  |
| 457        | 0 | 0.5979        | 0.3730     | 0.2147    | -0.3135  |  |  |
| 610        | 0 | -0.5897       | -0.5333    | -0.6114   | -0.6415  |  |  |
|            |   | TRANSVEI      | RSE DISPLA | ACEMENT   | (mm)     |  |  |
| Depth (mm) | 0 | 250           | 500        | 1000      | 5000     |  |  |
| 76         | 0 | 11.2163       | 10.5155    | 9.2260    | 10.4356  |  |  |
| 191        | 0 | -1.7261       | 0.4088     | 2.8633    | 22.0016  |  |  |
| 305        | 0 | -3.0982       | -2.5570    | -2.0210   | 1.0425   |  |  |
| 457        | 0 | 0.4777        | 0.3971     | 0.3129    | 0.3155   |  |  |
| 610        | 0 | -1.2750       | -1.1425    | -1.1953   | -1.1117  |  |  |

# Table B6. Permanent deformation (mm) in 710C6

| 710C6      |   | Load = 33                  | kN        |                 |  |  |  |
|------------|---|----------------------------|-----------|-----------------|--|--|--|
|            |   | VERTICAL DISPLACEMENT (mm) |           |                 |  |  |  |
| Depth (mm) | 0 | 250                        | 1000      | 4240            |  |  |  |
| Surface    | 0 | -0.2749                    | -0.4114   | -0.4794         |  |  |  |
| 133        | 0 | -0.6513                    | -1.4056   | -2.2133         |  |  |  |
| 248        | 0 | -0.9316                    | -1.5794   | -2.4825         |  |  |  |
| 381        | 0 | -0.7416                    | -1.0781   | -1.4467         |  |  |  |
| 533        | 0 | -0.1513                    | -0.0950   | -0.1350         |  |  |  |
| 686        | 0 | -0.1015                    | -0.0027   | -0.0254         |  |  |  |
| 838        | 0 | -0.1223                    | -0.0191   | -0.0725         |  |  |  |
| 991        | 0 | -0.0268                    | 0.1148    | 0.1827          |  |  |  |
| 1143       | 0 | -0.0256                    | 0.1124    | 0.2029          |  |  |  |
| 1295       | 0 | -0.0232                    | 0.1147    | 0.1672          |  |  |  |
| 1448       | 0 | -0.0372                    | 0.0764    | 0.1294          |  |  |  |
|            |   | LONGITU                    | DINAL DI  | SPLACEMENT (mm) |  |  |  |
| Depth (mm) | 0 | 250                        | 1000      | 4240            |  |  |  |
| 76         | 0 | -0.0721                    | -0.1057   | -0.3761         |  |  |  |
| 191        | 0 | -0.0008                    | 0.0474    | -0.0442         |  |  |  |
| 305        | 0 | -0.0443                    | -0.0218   | -0.1296         |  |  |  |
| 457        | 0 | -0.0244                    | 0.0897    | 0.1710          |  |  |  |
| 610        | 0 | -0.0287                    | 0.0743    | 0.1141          |  |  |  |
| 762        | 0 | -0.0447                    | 0.0370    | 0.0563          |  |  |  |
| 914        | 0 | -0.0077                    | 0.0880    | 0.1240          |  |  |  |
|            |   | TRANSVE                    | ERSE DISP | LACEMENT (mm)   |  |  |  |
| Depth (mm) | 0 | 250                        | 1000      | 4240            |  |  |  |
| 76         | 0 | 0.6419                     | 1.2410    | 1.9928          |  |  |  |
| 191        | 0 | 0.6070                     | 0.9334    | 1.3387          |  |  |  |
| 305        | 0 | 0.4872                     | 0.7583    | 1.0135          |  |  |  |
| 457        | 0 | 0.0676                     | 0.1559    | 0.1922          |  |  |  |
| 610        | 0 | 0.0024                     | 0.0554    | 0.0775          |  |  |  |
| 762        | 0 | -0.0179                    | 0.0421    | 0.0467          |  |  |  |
| 914        | 0 | 0.0000                     | 0.0048    | 0.0052          |  |  |  |

•

#### Table B7. Permanent strains in 710C1

| 710C1      |   | Load = 27           | ' kN   |         |           |          |        |        |  |  |
|------------|---|---------------------|--------|---------|-----------|----------|--------|--------|--|--|
|            |   | VERTICAL STRAIN (%) |        |         |           |          |        |        |  |  |
| Depth (mm) | 0 | 250                 | 1000   | 2500    | 5000      | 10000    | 25000  | 50000  |  |  |
| Surface    | 0 | -0.135              | -0.337 | -0.737  | -0.869    | -1.066   | -1.839 | -2.218 |  |  |
| 135        | 0 | -0.114              | -0.332 | -0.595  | -0.801    | -1.047   | -1.816 | -2.334 |  |  |
| 250        | 0 | -0.105              | -0.361 | -0.667  | -0.888    | -1.228   | -2.215 | -2.815 |  |  |
| 380        | 0 | -0.215              | -0.412 | -0.362  | -0.443    | -0.809   | -1.195 | -1.510 |  |  |
| 535        | 0 | 0.000               | -0.281 | -0.336  | -0.151    | -0.349   | -0.507 | 0.235  |  |  |
| 685        | 0 | 0.017               | 0.409  | 0.401   | 0.431     | 0.365    | 0.369  | -2.490 |  |  |
| 840        | 0 | 0.035               | 0.040  | 0.060   | 0.110     | 0.098    | 0.009  | -0.001 |  |  |
| 990        | 0 | 0.011               | 0.108  | -0.161  | 0.122     | 0.195    | 0.035  | 0.029  |  |  |
| 1145       | 0 | 0.008               | 0.095  | -0.122  | 0.118     | 0.170    | 0.009  | 0.006  |  |  |
| 1295       | 0 | 0.023               | 0.097  | -0.012  | 0.103     | 0.149    | 0.028  | 0.034  |  |  |
| 1450       | 0 | 0.026               | 0.173  | 0.127   | 0.122     | 0.230    | 0.044  | 0.043  |  |  |
|            |   |                     |        | LONGITU | DINAL ST  | RAIN (%) |        |        |  |  |
| Depth (mm) | 0 | 250                 | 1000   | 2500    | 5000      | 10000    | 25000  | 50000  |  |  |
| 76         | 0 | -0.020              | -0.008 | -0.031  | -0.094    | -0.092   | -0.268 | -0.337 |  |  |
| 191        | 0 | 0.010               | 0.046  | 0.051   | 0.006     | -0.009   | -0.211 | -0.286 |  |  |
| 305        | 0 | 0.006               | 0.071  | 0.060   | 0.055     | 0.066    | -0.125 | -0.167 |  |  |
| 457        | 0 | -0.001              | 0.070  | 0.066   | 0.068     | 0.098    | -0.001 | 0.008  |  |  |
| 610        | 0 | 0.013               | 0.382  | 0.395   | 0.355     | 0.364    | 0.363  | -1.719 |  |  |
| 762        | 0 | 0.023               | 0.081  | 0.118   | 0.070     | 0.111    | 0.015  | 0.024  |  |  |
| 914        | 0 | 0.006               | 0.072  | 0.073   | 0.085     | 0.122    | 0.027  | 0.024  |  |  |
|            |   |                     |        | TRANSVE | ERSE STRA | AIN (%)  |        |        |  |  |
| Depth (mm) | 0 | 250                 | 1000   | 2500    | 5000      | 10000    | 25000  | 50000  |  |  |
| 76         | 0 | 0.073               | 0.299  | 0.459   | 0.600     | 0.775    | 1.004  | 1.157  |  |  |
| 191        | 0 | 0.044               | 0.210  | 0.338   | 0.421     | 0.566    | 0.753  | 0.897  |  |  |
| 305        | 0 | 0.000               | 0.067  | 0.101   | 0.143     | 0.182    | 0.130  | 0.149  |  |  |
| 457        | 0 | -0.005              | 0.056  | 0.068   | 0.120     | 0.151    | 0.131  | 0.154  |  |  |
| 610        | 0 | 0.000               | 0.323  | 0.335   | 0.340     | 0.324    | 0.351  | -1.650 |  |  |
| 762        | 0 | 0.012               | 0.049  | 0.056   | 0.070     | 0.086    | 0.014  | 0.011  |  |  |
| 914        | 0 | 0.006               | 0.047  | 0.079   | 0.047     | 0.077    | 0.015  | 0.022  |  |  |

•

| 710C2      |   | Load = 40  kN |                     |          |         |         |  |  |  |
|------------|---|---------------|---------------------|----------|---------|---------|--|--|--|
|            |   | VERTICA       | VERTICAL STRAIN (%) |          |         |         |  |  |  |
| Depth (mm) | 0 | 100           | 500                 | 1000     | 1700    | 3000    |  |  |  |
| Surface    | 0 | -0.1475       | -0.5853             | 0.0000   | 0.2972  | -0.1475 |  |  |  |
| 134        | 0 | -0.2525       | -0.9442             | -1.3759  | -1.6324 | -2.0194 |  |  |  |
| 248        | 0 | -0.2727       | -1.1279             | -1.6586  | -2.0132 | -2.7698 |  |  |  |
| 381        | 0 | -0.1805       | -0.6306             | -0.9534  | -1.2090 | -1.8558 |  |  |  |
| 534        | 0 | -0.0860       | -0.3602             | -0.5649  | -0.7212 | -1.2012 |  |  |  |
| 686        | 0 | -0.0226       | -0.1095             | -0.1199  | -0.1678 | -0.3485 |  |  |  |
| 838        | 0 | -0.0011       | -0.0407             | -0.0638  | -0.0605 | -0.1783 |  |  |  |
| 991        | 0 | 0.0287        | 0.0033              | 0.0080   | 0.0053  | -0.0209 |  |  |  |
| 1143       | 0 | 0.0363        | 0.0128              | 0.0060   | 0.0153  | -0.0039 |  |  |  |
| 1296       | 0 | -0.0098       | -0.0365             | -0.0417  | -0.0331 | -0.0612 |  |  |  |
| 1448       | 0 | 0.0121        | -0.0213             | -0.0157  | -0.0225 | -0.0412 |  |  |  |
|            |   | LONGIT        | UDINAL S            | STRAIN ( | %)      |         |  |  |  |
| Depth (mm) | 0 | 100           | 500                 | 1000     | 1700    | 3000    |  |  |  |
| 76         | 0 | -0.0410       | -0.0848             | -0.1071  | -0.0866 | -0.0853 |  |  |  |
| 191        | 0 | -0.0144       | -0.0380             | -0.0183  | -0.0134 | -0.0312 |  |  |  |
| 305        | 0 | -0.0084       | 0.0289              | 0.0790   | 0.1269  | 0.1569  |  |  |  |
| 457        | 0 | -0.0075       | 0.0080              | 0.0147   | 0.0283  | 0.0464  |  |  |  |
| 610        | 0 | -0.0034       | -0.0441             | -0.0428  | -0.0439 | -0.0196 |  |  |  |
| 762        | 0 | 0.0058        | -0.0184             | -0.0220  | -0.0186 | -0.0288 |  |  |  |
| 914        | 0 | -0.0036       | -0.0310             | -0.0256  | -0.0241 | -0.0271 |  |  |  |
|            |   | TRANSV        | ERSE ST             | RAIN (%) |         |         |  |  |  |
| Depth (mm) | 0 | 100           | 500                 | 1000     | 1700    | 3000    |  |  |  |
| 76         | 0 | 0.1261        | 0.3253              | 0.4169   | 0.5237  | 0.6965  |  |  |  |
| 191        | 0 | 0.1430        | 0.3982              | 0.5543   | 0.6323  | 0.8640  |  |  |  |
| 305        | 0 | 0.0529        | 0.1835              | 0.3253   | 0.4190  | 0.6986  |  |  |  |
| 457        | 0 | 0.0251        | 0.1133              | 0.1745   | 0.2177  | 0.4116  |  |  |  |
| 610        | 0 | 0.0124        | -0.0099             | 0.0021   | 0.0013  | 0.0614  |  |  |  |
| 762        | 0 | 0.0230        | 0.0119              | 0.0119   | 0.0217  | 0.0442  |  |  |  |
| 914        | 0 | 0.0194        | 0.0016              | 0.0039   | 0.0017  | 0.0072  |  |  |  |

#### Table B8. Permanent strains in 710C2 (STACK A)

# Table B9b. Permanent strains in 710C2 (STACK B)

| 710C2      |   | Load = 40  kN |          |          |         |          |  |  |  |
|------------|---|---------------|----------|----------|---------|----------|--|--|--|
|            |   | VERTICA       | AL STRAI | N (%)    |         |          |  |  |  |
| Depth (mm) | 0 | 100           | 500      | 1000     | 1700    | 3000     |  |  |  |
| Surface    | 0 | -0.1495       | -0.5933  | -1.1744  | -1.3655 | -1.6025  |  |  |  |
| 134        | 0 | 1.8197        | 2.6507   | 1.0896   | 2.8626  | 2.7185   |  |  |  |
| 248        | 0 | -0.1791       | -0.8166  | -1.1873  | -1.4469 | -1.8124  |  |  |  |
| 381        | 0 | -0.1392       | -0.7289  | -1.1571  | -1.4650 | -1.9088  |  |  |  |
| 534        | 0 | -0.1907       | -0.7760  | -1.0634  | -1.2272 | -1.4912  |  |  |  |
|            |   | LONGITU       | UDINAL S | STRAIN ( | %)      |          |  |  |  |
| Depth (mm) | 0 | 100           | 500      | 1000     | 1700    | 3000     |  |  |  |
| 76         | 0 | 0.0323        | 0.0585   | 0.0545   | -0.0404 | 0.1138   |  |  |  |
| 191        | 0 | 0.3818        | 1.9560   | 2.8311   | 3.4373  | 3.3432   |  |  |  |
| 305        | 0 | 0.1441        | 0.8785   | 1.4734   | 1.9250  | 2.5902   |  |  |  |
| 457        | 0 | 0.0396        | 0.1388   | 0.1791   | 0.1988  | 0.2647   |  |  |  |
| 610        | 0 | 0.0045        | -0.0425  | -0.0972  | -0.0936 | -0.0957  |  |  |  |
|            |   | TRANSV        | ERSE ST  | RAIN (%) |         |          |  |  |  |
| Depth (mm) | 0 | 100           | 500      | 1000     | 1700    | 3000     |  |  |  |
| 76         | 0 | -0.1677       | -0.2542  | -0.0972  | -0.2199 | -0.2066  |  |  |  |
| 191        | 0 | -1.3984       | -5.4072  | -7.6456  | -8.9163 | -10.3836 |  |  |  |
| 305        | 0 | 0.2166        | 1.1023   | 1.8510   | 2.3803  | 3.1183   |  |  |  |
| 457        | 0 | 0.1050        | 0.3309   | 0.4498   | 0.5052  | 0.6291   |  |  |  |
| 610        | 0 | 0.0459        | 0.0528   | 0.0469   | 0.0684  | 0.1050   |  |  |  |

#### Table B10. Permanent strain in 710C3

| 710C3      | Load = 20  kN       |         |          |          |         |         |  |  |  |
|------------|---------------------|---------|----------|----------|---------|---------|--|--|--|
|            | VERTICAL STRAIN (%) |         |          |          |         |         |  |  |  |
| Depth (mm) | 0                   | 250     | 500      | 1000     | 5000    | 10000   |  |  |  |
| Surface    | 0                   | -0.2449 | -0.9673  | -1.1254  | -1.1254 | -1.4388 |  |  |  |
| 133        | 0                   | -0.3733 | -0.5786  | -0.7917  | -1.3823 | -1.6022 |  |  |  |
| 248        | 0                   | -0.1671 | -0.2711  | -0.3772  | -0.7737 | -1.2726 |  |  |  |
| 381        | 0                   | -0.1561 | -0.2292  | -0.2211  | 8.0023  | -0.5288 |  |  |  |
| 533        | 0                   | -0.0401 | -0.0404  | -0.0536  | -0.0432 | -0.0777 |  |  |  |
| 686        | 0                   | -0.0419 | -0.0489  | -0.0766  | -0.0488 | -0.1092 |  |  |  |
| 838        | 0                   | 0.0031  | -0.0217  | 0.0037   | 0.0524  | 0.0226  |  |  |  |
| 991        | 0                   | -0.0104 | -0.0113  | 0.0012   | 0.0608  | 0.2547  |  |  |  |
| 1143       | 0                   | -0.0040 | -0.0096  | 0.0004   | 0.0594  | 0.1289  |  |  |  |
| 1295       | 0                   | 0.0015  | 0.0013   | 0.0057   | 0.0638  | 0.1251  |  |  |  |
| 1448       | 0                   | -0.0054 | -0.0051  | -0.0091  | 0.0560  | 0.2108  |  |  |  |
|            |                     | LONGIT  | UDINAL S | STRAIN ( | %)      |         |  |  |  |
| Depth (mm) | 0                   | 250     | 500      | 1000     | 5000    | 10000   |  |  |  |
| 76         | 0                   | -0.0188 | -0.0324  | -0.0274  | -0.0321 | -0.0288 |  |  |  |
| 191        | 0                   | -0.0252 | -0.0235  | -0.0039  | 0.0284  | -0.0339 |  |  |  |
| 305        | 0                   | -0.0212 | -0.0320  | -0.0395  | -0.0115 | 0.0283  |  |  |  |
| 457        | 0                   | -0.0758 | -0.1423  | -0.0759  | -0.0796 | -0.0855 |  |  |  |
| 610        | 0                   | -0.0175 | -0.0150  | -0.0163  | 0.0272  | 0.0229  |  |  |  |
| 762        | 0                   | -0.0032 | -0.0121  | 0.0027   | 0.0378  | 0.0336  |  |  |  |
| 914        | 0                   | -0.0281 | -0.0369  | -0.0303  | 0.0174  | -0.0072 |  |  |  |
|            |                     | TRANSV  | ERSE ST  | RAIN (%) |         |         |  |  |  |
| Depth (mm) | 0                   | 250     | 500      | 1000     | 5000    | 10000   |  |  |  |
| 76         | 0                   | 0.2314  | 0.2792   | 0.3855   | 0.6603  | 0.7663  |  |  |  |
| 191        | 0                   | 0.0830  | 0.1053   | 0.1695   | 0.3310  | 0.3668  |  |  |  |
| 305        | 0                   | 0.0189  | 0.0092   | 0.0218   | 0.1068  | 0.0986  |  |  |  |
| 457        | 0                   | -0.1074 | -0.2993  | -0.1215  | -0.1746 | -0.2325 |  |  |  |
| 610        | 0                   | 0.0004  | -0.0084  | -0.0039  | 0.0313  | 0.0190  |  |  |  |
| 762        | 0                   | 0.0118  | -0.0092  | 0.0065   | 0.0291  | 0.0000  |  |  |  |
| 914        | 0                   | 0.0006  | -0.0013  | -0.0007  | 0.0026  | 0.0009  |  |  |  |

| 710C4 Load = 40 kN |   |                        |            |  |  |  |
|--------------------|---|------------------------|------------|--|--|--|
|                    |   | VERTICAL STR           | AIN (%)    |  |  |  |
| Depth (mm)         | 0 | 250                    | 1000       |  |  |  |
| Surface            | 0 | -0.1276                | -0.2546    |  |  |  |
| 133                | 0 | 0.6159                 | GF         |  |  |  |
| 248                | 0 | -0.6198                | -1.3555    |  |  |  |
| 381                | 0 | -0.3925                | -1.0989    |  |  |  |
| 533                | 0 | -0.6326                | -1.3502    |  |  |  |
| 686                | 0 | 0.0282                 | -0.1283    |  |  |  |
| 838                | 0 | 0.0750                 | 0.0128     |  |  |  |
| 991                | 0 | 0.1146                 | 0.1135     |  |  |  |
| 1143               | 0 | 0.1100                 | 0.0359     |  |  |  |
| 1295               | 0 | 0.1128                 | 0.0431     |  |  |  |
| 1448               | 0 | 0.1176                 | 0.0956     |  |  |  |
|                    |   | LONGITUDINAL STRAIN (% |            |  |  |  |
| Depth (mm)         | 0 | 250                    | 1000       |  |  |  |
| 76                 | 0 | -3.7129                | GF         |  |  |  |
| 191                | 0 | -4.8674                | -5.0373    |  |  |  |
| 305                | 0 | -0.0123                | -0.1719    |  |  |  |
| 457                | 0 | 0.9519                 | 0.8764     |  |  |  |
| 610                | 0 | 1.3410                 | 1.3130     |  |  |  |
| 762                | 0 | 3.2773                 | 3.2408     |  |  |  |
| 914                | 0 | 3.7200                 | 3.7010     |  |  |  |
|                    |   | TRANSVERSE             | STRAIN (%) |  |  |  |
| Depth (mm)         | 0 | 250                    | 1000       |  |  |  |
| 76                 | 0 | 1.0293                 | GF         |  |  |  |
| 191                | 0 | 5.2074                 | 5.4851     |  |  |  |
| 305                | 0 | 0.3308                 | 0.5638     |  |  |  |
| 457                | 0 | -3.7401                | -3.6526    |  |  |  |
| 610                | 0 | -1.1219                | -1.0925    |  |  |  |
| 762                | 0 | -0.0083                | -0.0378    |  |  |  |
| 914                | 0 | -0.2961                | -0.3497    |  |  |  |

#### Table B11. Permanent strain in 710C4

GF – Gage Failure

| 710C5      | Load = 20  kN       |         |          |          |         |  |  |  |
|------------|---------------------|---------|----------|----------|---------|--|--|--|
|            | VERTICAL STRAIN (%) |         |          |          |         |  |  |  |
| Depth (mm) | 0                   | 250     | 500      | 1000     | 5000    |  |  |  |
| Surface    | 0                   | -0.0770 | -0.4587  | -0.4587  | -0.7605 |  |  |  |
| 134        | 0                   | -0.2566 | -0.3121  | -0.4336  | -0.7837 |  |  |  |
| 248        | 0                   | -0.1695 | -0.1975  | -0.2652  | -0.4815 |  |  |  |
| 381        | 0                   | -0.1455 | -0.1314  | -0.2005  | -0.3339 |  |  |  |
| 534        | 0                   | -0.0847 | -0.0628  | -0.0713  | -0.0952 |  |  |  |
| 686        | 0                   | -0.1502 | -0.1347  | -0.1498  | -0.1492 |  |  |  |
| 838        | 0                   | -0.1510 | -0.1377  | -0.1530  | -0.1380 |  |  |  |
| 991        | 0                   | -0.0326 | -0.0398  | -0.0327  | -0.0172 |  |  |  |
| 1143       | 0                   | -0.0653 | -0.0600  | -0.0611  | -0.0541 |  |  |  |
| 1296       | 0                   | -0.0762 | -0.0541  | -0.0830  | -0.0600 |  |  |  |
| 1448       | 0                   | -0.1797 | -0.1662  | -0.1763  | -0.1730 |  |  |  |
|            |                     | LONGITU | UDINAL S | STRAIN ( | %)      |  |  |  |
| Depth (mm) | 0                   | 250     | 500      | 1000     | 5000    |  |  |  |
| 76         | 0                   | -0.1199 | -0.1113  | -0.1292  | -0.1125 |  |  |  |
| 191        | 0                   | -0.0463 | -0.0639  | -0.0926  | -0.0853 |  |  |  |
| 305        | 0                   | -0.0460 | -0.0411  | -0.0621  | -0.0325 |  |  |  |
| 457        | 0                   | -0.0497 | -0.0345  | -0.0338  | -0.0256 |  |  |  |
| 610        | 0                   | -0.0369 | -0.0327  | -0.0443  | -0.0300 |  |  |  |
| 762        | 0                   | -0.1059 | -0.0986  | -0.1126  | -0.0971 |  |  |  |
| 914        | 0                   | -0.0319 | -0.0361  | -0.0357  | -0.0214 |  |  |  |
|            |                     | TRANSV  | ERSE ST  | RAIN (%) |         |  |  |  |
| Depth (mm) | 0                   | 250     | 500      | 1000     | 5000    |  |  |  |
| 76         | 0                   | -0.0291 | 0.0060   | 0.0519   | 0.2336  |  |  |  |
| 191        | 0                   | 0.0044  | -0.0077  | -0.0170  | 0.0533  |  |  |  |
| 305        | 0                   | -0.0017 | 0.0024   | -0.0076  | 0.0907  |  |  |  |
| 457        | 0                   | -0.0365 | -0.0287  | -0.0287  | -0.0319 |  |  |  |
| 610        | 0                   | -0.0986 | -0.0971  | -0.1091  | -0.1070 |  |  |  |
| 762        | 0                   | -0.0098 | -0.0185  | -0.0179  | -0.0076 |  |  |  |
| 914        | 0                   | -0.1028 | -0.0992  | -0.1060  | -0.0977 |  |  |  |

#### Table B12. Permanent strain in 710C5 (STACKA)

| 710C5      |   | Load = 20  kN       |          |          |         |  |  |  |
|------------|---|---------------------|----------|----------|---------|--|--|--|
|            |   | VERTICAL STRAIN (%) |          |          |         |  |  |  |
| Depth (mm) | 0 | 250                 | 500      | 1000     | 5000    |  |  |  |
| Surface    | 0 | -0.0770             | -0.3066  | -0.3828  | -0.6100 |  |  |  |
| 134        | 0 | -2.2151             | -1.5176  | -1.3246  | -1.8388 |  |  |  |
| 248        | 0 | -0.2161             | -0.2489  | -0.3447  | -0.6533 |  |  |  |
| 381        | 0 | -0.1721             | -0.1824  | -0.2574  | -0.5292 |  |  |  |
| 534        | 0 | -0.1611             | -0.1541  | -0.1901  | -0.2821 |  |  |  |
|            |   | LONGIT              | UDINAL S | STRAIN ( | %)      |  |  |  |
| Depth (mm) | 0 | 250                 | 500      | 1000     | 5000    |  |  |  |
| 76         | 0 | -0.9662             | -1.0515  | -1.0659  | -1.0670 |  |  |  |
| 191        | 0 | -0.0336             | 0.3221   | 0.8146   | 3.8118  |  |  |  |
| 305        | 0 | -0.5551             | -0.4232  | -0.3568  | 0.2286  |  |  |  |
| 457        | 0 | 0.2131              | 0.1329   | 0.0765   | -0.1117 |  |  |  |
| 610        | 0 | -0.2460             | -0.2225  | -0.2551  | -0.2676 |  |  |  |
|            |   | TRANSV              | ERSE ST  | RAIN (%) |         |  |  |  |
| Depth (mm) | 0 | 250                 | 500      | 1000     | 5000    |  |  |  |
| 76         | 0 | 2.5380              | 2.3794   | 2.0876   | 2.3613  |  |  |  |
| 191        | 0 | -0.4319             | 0.1023   | 0.7164   | 5.5050  |  |  |  |
| 305        | 0 | -0.8764             | -0.7233  | -0.5717  | 0.2949  |  |  |  |
| 457        | 0 | 0.1976              | 0.1643   | 0.1294   | 0.1305  |  |  |  |
| 610        | 0 | -0.4603             | -0.4125  | -0.4315  | -0.4013 |  |  |  |

# Table B13b. Permanent strain in 710C5 (STACK B)

| 710C6      | Load = 33  kN |                     |           |          |  |  |  |
|------------|---------------|---------------------|-----------|----------|--|--|--|
|            |               | VERTICAL STRAIN (%) |           |          |  |  |  |
| Depth (mm) | 0             | 250                 | 1000      | 4240     |  |  |  |
| Surface    | 0             | -0.2657             | -0.3976   | -0.4633  |  |  |  |
| 133        | 0             | -0.6057             | -1.3071   | -2.0582  |  |  |  |
| 248        | 0             | -0.8156             | -1.3828   | -2.1733  |  |  |  |
| 381        | 0             | -0.4796             | -0.6972   | -0.9356  |  |  |  |
| 533        | 0             | -0.0937             | -0.0588   | -0.0836  |  |  |  |
| 686        | 0             | -0.0643             | -0.0017   | -0.0161  |  |  |  |
| 838        | 0             | -0.0813             | -0.0127   | -0.0482  |  |  |  |
| 991        | 0             | -0.0184             | 0.0790    | 0.1256   |  |  |  |
| 1143       | 0             | -0.0164             | 0.0717    | 0.1294   |  |  |  |
| 1295       | 0             | -0.0155             | 0.0767    | 0.1118   |  |  |  |
| 1448       | 0             | -0.0243             | 0.0500    | 0.0846   |  |  |  |
|            |               | LONGITU             | DINAL STI | RAIN (%) |  |  |  |
| Depth (mm) | 0             | 250                 | 1000      | 4240     |  |  |  |
| 76         | 0             | -0.0468             | -0.0685   | -0.2438  |  |  |  |
| 191        | 0             | -0.0005             | 0.0308    | -0.0287  |  |  |  |
| 305        | 0             | -0.0279             | -0.0138   | -0.0816  |  |  |  |
| 457        | 0             | -0.0152             | 0.0557    | 0.1063   |  |  |  |
| 610        | 0             | -0.0192             | 0.0498    | 0.0765   |  |  |  |
| 762        | 0             | -0.0281             | 0.0233    | 0.0354   |  |  |  |
| 914        | 0             | -0.0051             | 0.0581    | 0.0819   |  |  |  |
|            |               | TRANSVE             | RSE STRA  | IN (%)   |  |  |  |
| Depth (mm) | 0             | 250                 | 1000      | 4240     |  |  |  |
| 76         | 0             | 0.4153              | 0.8029    | 1.2893   |  |  |  |
| 191        | 0             | 0.3896              | 0.5992    | 0.8594   |  |  |  |
| 305        | 0             | 0.3156              | 0.4911    | 0.6564   |  |  |  |
| 457        | 0             | 0.0438              | 0.1009    | 0.1245   |  |  |  |
| 610        | 0             | 0.0016              | 0.0364    | 0.0509   |  |  |  |
| 762        | 0             | -0.0120             | 0.0283    | 0.0314   |  |  |  |
| 914        | 0             | 0.0000              | 0.0034    | 0.0037   |  |  |  |

#### Table B14. Permanent strain in 710C6

Test Section 710 AASHTO A-6/A-7-6 subgrade soil at 21 % gravimetric moisture content

# **APPENDIX C**

# **DYNAMIC DISPLACEMENT AND STRAIN TEST RESULTS**

#### Table C 1. Maximum peak vertical strains in base & subgrade (TS710C1)

| 710C1      |       | Load = 27 | 7 kN  |          |            |          |       |       |
|------------|-------|-----------|-------|----------|------------|----------|-------|-------|
|            |       |           |       | VERTICAL | _ STRAIN ( | µstrain) |       |       |
| Depth (mm) | 0     | 250       | 1000  | 2500     | 5000       | 10000    | 25000 | 50000 |
| 135        | -2796 | -2826     | -2736 | -2647    | -2680      | -2610    | -2043 | -2900 |
| 250        | -3557 | -3313     | -3377 | -3406    | -3546      | -3493    | -3606 | -4359 |
| 380        | -8129 | -6499     | -7270 | -7298    | -7962      | -7801    | -7773 | -9639 |
| 535        | -2701 | -2720     | -2874 | -2912    | -3292      | -3027    | -2993 | -3703 |
| 685        | -1853 | -1623     | -1895 | -1703    | -1804      | -1602    | -1675 | -8636 |
| 840        | -751  | -764      | -840  | -757     | -755       | -732     | -783  | -890  |
| 990        | -506  | -431      | -421  | -389     | -339       | -396     | -444  | -357  |
| 1145       | -287  | -186      | -235  | -228     | -319       | -247     | -155  | -279  |
| 1295       | -208  | -276      | -285  | -258     | -267       | -249     | -220  | -283  |
| 1450       | -322  | -297      | -421  | -318     | -225       | -293     | -308  | -327  |

#### Table C 2. Maximum peak transverse strains in base & subgrade (TS710C1)

| ad = 27 kN |
|------------|
|            |

#### TRANSVERSE STRAIN (µstrain)

| Depth (mm) | 0    | 250  | 1000 | 2500 | 5000 | 10000 | 25000 | 50000 |
|------------|------|------|------|------|------|-------|-------|-------|
| 76         | 2356 | 2450 | 2604 | 2557 | 2668 | 2742  | 1711  | 2713  |
| 191        | 951  | 843  | 1061 | 1069 | 1233 | 1304  | 1277  | 1479  |
| 305        | 1514 | 1256 | 1420 | 1543 | 1427 | 1523  | 1550  | 1925  |
| 457        | 615  | 641  | 668  | 743  | 686  | 833   | 766   | 895   |
| 610        | 236  | 378  | 296  | 402  | 385  | 481   | 338   | 2394  |
| 762        | 372  | 373  | 359  | 418  | 439  | 437   | 332   | 371   |
| 914        | 133  | 130  | 133  | 125  | 109  | 123   | 109   | 123   |

# Table C 3. Maximum peak longitudinal strains in base & subgrade (TS710C1)

| 710C1      |      | Load = 27 | 7 kN |          |           |               |       |       |
|------------|------|-----------|------|----------|-----------|---------------|-------|-------|
|            |      |           |      | LONGITUD | INAL STRA | .IN (µstrain) | )     |       |
|            |      |           |      |          | (A)       | . ,           |       |       |
| Depth (mm) | 0    | 250       | 1000 | 2500     | 5000      | 10000         | 25000 | 50000 |
| 76         | -441 | -747      | -672 | -759     | -679      | -713          | -721  | -831  |
| 191        | -518 | -589      | -553 | -621     | -575      | -624          | -699  | -1015 |
| 305        | -831 | -727      | -826 | -787     | -978      | -1014         | -1043 | -1456 |
| 457        | -188 | -166      | -205 | -160     | -302      | -149          | -205  | -348  |
| 610        | -307 | -149      | -213 | -143     | -161      | -111          | -163  | -4339 |
| 762        | -64  | -49       | -63  | -47      | -57       | -51           | -77   | -57   |
| 914        | -49  | -52       | -49  | -55      | -56       | -53           | -58   | -58   |
|            |      |           |      |          | (B)       |               |       |       |
| Depth (mm) | 0    | 250       | 1000 | 2500     | 5000      | 10000         | 25000 | 50000 |
| 76         | 1631 | 1802      | 2089 | 2162     | 2475      | 2534          | 1914  | 3716  |
| 191        | 2214 | 2050      | 2531 | 2715     | 3169      | 3207          | 3358  | 4757  |
| 305        | 2904 | 2600      | 3036 | 3169     | 3251      | 3290          | 3369  | 4592  |
| 457        | 708  | 785       | 814  | 888      | 861       | 998           | 957   | 1200  |
| 610        | 350  | 541       | 472  | 576      | 585       | 682           | 522   | 2347  |
| 762        | 353  | 340       | 328  | 392      | 418       | 420           | 311   | 365   |
| 914        | 130  | 124       | 133  | 131      | 133       | 134           | 110   | 125   |
|            |      |           |      |          | (C)       |               |       |       |
| Depth (mm) | 0    | 250       | 1000 | 2500     | 5000      | 10000         | 25000 | 50000 |
| 76         | -350 | -286      | -274 | -228     | -292      | -199          | -341  | -312  |
| 191        | -307 | -428      | -412 | -477     | -451      | -421          | -479  | -705  |
| 305        | -289 | -545      | -568 | -551     | -804      | -677          | -748  | -846  |
| 457        | -195 | -219      | -225 | -218     | -333      | -163          | -221  | -299  |
| 610        | -316 | -173      | -261 | -156     | -225      | -169          | -244  | -4540 |
| 762        | -44  | -61       | -63  | -60      | -61       | -82           | -76   | -72   |
| 914        | -55  | -71       | -68  | -71      | -71       | -73           | -77   | -79   |

250

380

535

-2680

-3649

-5426

-2879

-4069

-5795

| 710C2      |                           | Load = 40  kN |         |         |         |         |  |  |  |
|------------|---------------------------|---------------|---------|---------|---------|---------|--|--|--|
| STACK A    | A                         |               |         |         |         |         |  |  |  |
|            | VERTICAL STRAIN (µstrain) |               |         |         |         |         |  |  |  |
|            |                           |               |         |         |         |         |  |  |  |
| Depth (mm) | 0                         | 100           | 500     | 1000    | 1700    | 3000    |  |  |  |
| 135        | -3016.6                   | -3241.3       | -3528.2 | -3399.5 | -3108   | -4114.5 |  |  |  |
| 250        | -4135.8                   | -4469.9       | -5042.3 | -5425.8 | -5138.3 | -5403.9 |  |  |  |
| 380        | -8289.7                   | -9097.3       | -11306  | -12605  | -12923  | -13727  |  |  |  |
| 535        | -4076.5                   | -4573.4       | -5659.3 | -6081.8 | -6018   | -6497.4 |  |  |  |
| 685        | -2331.5                   | -2504.8       | -3122.5 | -3594.2 | -3625.4 | -3866.4 |  |  |  |
| 840        | -1596.8                   | -1774         | -1874.3 | -2185.1 | -2197.3 | -2372.6 |  |  |  |
| 990        | -580.36                   | -627.28       | -778.74 | -885.03 | -763.11 | -880.46 |  |  |  |
| 1145       | -488.08                   | -530.89       | -598.91 | -619.25 | -627.49 | -649.76 |  |  |  |
| 1295       | -362.22                   | -356.6        | -411.96 | -427.05 | -422.99 | -444.92 |  |  |  |
| 1450       | -399.68                   | -378.86       | -473.43 | -617.69 | -470.07 | -501.97 |  |  |  |
|            |                           |               |         |         |         |         |  |  |  |
| STACK B    |                           |               |         |         |         |         |  |  |  |
| Depth (mm) | 0                         | 100           | 500     | 1000    | 1700    | 3000    |  |  |  |
| 135        | -46921                    | -30168        | -28578  | -19170  | -37478  | -25621  |  |  |  |

-2809

-4767

-6552

-2936

-5471

-7088

-2945

-5332

-7222

-2846

-5467

-7394

Table C 4. Maximum peak vertical strains in base & subgrade (TS710C2)

| 710C2<br>STACK A |                             | Load = 40  kN |      |      |      |      |  |  |  |
|------------------|-----------------------------|---------------|------|------|------|------|--|--|--|
| UNORA            | TRANSVERSE STRAIN (µstrain) |               |      |      |      |      |  |  |  |
| Depth (mm)       | 0                           | 100           | 500  | 1000 | 1700 | 3000 |  |  |  |
| 76               | 2049                        | 2218          | 1784 | 2222 | 1654 | 2357 |  |  |  |
| 191              | 1243                        | 1233          | 1403 | 1241 | 1278 | 1664 |  |  |  |
| 305              | 1659                        | 1731          | 2100 | 2091 | 2079 | 2301 |  |  |  |
| 457              | 775                         | 860           | 1003 | 1074 | 1120 | 1067 |  |  |  |
| 610              | 463                         | 580           | 745  | 753  | 779  | 838  |  |  |  |
| 762              | 233                         | 224           | 378  | 362  | 361  | 393  |  |  |  |
| 914              | 154                         | 150           | 172  | 169  | 198  | 201  |  |  |  |
| STACK B          |                             |               |      |      |      |      |  |  |  |
| Depth (mm)       | 0                           | 100           | 500  | 1000 | 1700 | 3000 |  |  |  |
| 76               | 5269                        | 4380          | 3362 | 3514 | 6601 | 6020 |  |  |  |
| 191              | 1038                        | 972           | 1143 | 1076 | 1112 | 976  |  |  |  |
| 305              | 504                         | 735           | 875  | 1293 | 906  | 909  |  |  |  |
| 457              | 342                         | 273           | 338  | 273  | 430  | 335  |  |  |  |
| 610              | 404                         | 416           | 335  | 483  | 344  | 584  |  |  |  |

#### Table C 5. Maximum peak transverse strains in base & subgrade (TS710C2)
| 710C2      | Load = 40  kN |      |          |           |              |       |
|------------|---------------|------|----------|-----------|--------------|-------|
| STACK A    |               |      |          |           |              |       |
|            |               |      | LONGITUE | DINAL STR | AIN (µstraiı | n)    |
|            |               |      |          | (A)       |              |       |
| Depth (mm) | 0             | 100  | 500      | 1000      | 1700         | 3000  |
| 76         | -246          | -286 | -370     | -413      | -283         | -429  |
| 191        | -566          | -622 | -746     | -978      | -822         | -993  |
| 305        | -656          | -789 | -1247    | -1517     | -1632        | -1986 |
| 457        | -189          | -236 | -450     | -444      | -524         | -623  |
| 610        | -145          | -154 | -159     | -257      | -357         | -338  |
| 762        | -76           | -80  | -98      | -106      | -106         | -119  |
| 914        | -49           | -91  | -116     | -89       | -64          | -65   |
|            |               |      |          |           |              |       |
|            |               |      |          | (B)       |              |       |
| Depth (mm) | 0             | 100  | 500      | 1000      | 1700         | 3000  |
| 76         | 1544          | 1889 | 1906     | 2313      | 2419         | 2963  |
| 191        | 2094          | 2337 | 3390     | 3841      | 4070         | 4983  |
| 305        | 3169          | 3651 | 4812     | 5441      | 5546         | 6281  |
| 457        | 1196          | 1313 | 1589     | 1833      | 1906         | 2015  |
| 610        | 667           | 816  | 1050     | 1154      | 1200         | 1406  |
| 762        | 233           | 258  | 324      | 356       | 369          | 405   |
| 914        | 142           | 170  | 182      | 141       | 217          | 201   |
|            |               |      |          |           |              |       |
|            |               |      |          | (C)       |              |       |
| Depth (mm) | 0             | 100  | 500      | 1000      | 1700         | 3000  |
| 76         | -519          | -625 | -315     | -216      | -213         | -451  |
| 191        | -344          | -410 | -483     | -664      | -493         | -633  |
| 305        | -534          | -658 | -884     | -1008     | -1035        | -1132 |
| 457        | -167          | -328 | -414     | -428      | -417         | -491  |
| 610        | -207          | -264 | -305     | -383      | -409         | -376  |
| 762        | -69           | -84  | -91      | -103      | -109         | -117  |
| 914        | -71           | -178 | -145     | -142      | -128         | -174  |

# Table C 6. Maximum peak longitudinal strains in base & subgrade (TS710C2)

| STACK B    |       |       |       |       |       |       |
|------------|-------|-------|-------|-------|-------|-------|
|            |       |       |       | (A)   |       |       |
| Depth (mm) | 0     | 100   | 500   | 1000  | 1700  | 3000  |
| 76         | -984  | -614  | -832  | -738  | -1275 | -1006 |
| 191        | -242  | -347  | -386  | -411  | -592  | -573  |
| 305        | -523  | -670  | -696  | -547  | -946  | -907  |
| 457        | -146  | -189  | -268  | -313  | -271  | -205  |
| 610        | -223  | -227  | -457  | -282  | -245  | -151  |
|            |       |       |       |       |       |       |
|            |       |       |       | (B)   |       |       |
| Depth (mm) | 0     | 100   | 500   | 1000  | 1700  | 3000  |
| 76         | 2005  | 1929  | 2587  | 2512  | 1966  | 2045  |
| 191        | 6862  | 7962  | 10539 | 12436 | 12008 | 13205 |
| 305        | 10081 | 11825 | 15380 | 19237 | 19217 | 20295 |
| 457        | 3446  | 3771  | 4483  | 5041  | 5226  | 5403  |
| 610        | 2144  | 2409  | 2448  | 3048  | 2748  | 2997  |
|            |       |       |       |       |       |       |
|            |       |       |       | (C)   |       |       |
| Depth (mm) | 0     | 100   | 500   | 1000  | 1700  | 3000  |
| 76         | -2254 | -1830 | -2286 | -1686 | -2275 | -2020 |
| 191        | -684  | -734  | -1096 | -1186 | -1297 | -1340 |
| 305        | -2081 | -1882 | -2630 | -2083 | -3144 | -3232 |
| 457        | -1543 | -1738 | -2073 | -2323 | -2284 | -2412 |
| 610        | -741  | -847  | -1294 | -1123 | -1401 | -1264 |

| Table C6. | Maximum peak | longitudinal | strains in b | base & | & subgrade ( | <i>TS710C2) – cont.</i> |
|-----------|--------------|--------------|--------------|--------|--------------|-------------------------|
|-----------|--------------|--------------|--------------|--------|--------------|-------------------------|

#### Table C7. Maximum peak vertical strains in base & subgrade (TS710C3)

710C3 Load = 20 kN

VERTICAL STRAIN (µstrain)

| Depth (mm) | 0     | 250   | 500   | 1000  | 5000  | 10000 |
|------------|-------|-------|-------|-------|-------|-------|
| 135        | -2690 | -2559 | -2478 | -2660 | -2583 | -80   |
| 250        | -1867 | -1994 | -2063 | -2084 | -2068 | -2009 |
| 380        | -5043 | -5651 | -5403 | -2718 | -5238 | -5003 |
| 535        | -1624 | -1930 | -2169 | -1740 | -1341 | -168  |
| 685        | -1278 | -1600 | -1666 | -1586 | -1481 | -1429 |
| 840        | -469  | -721  | -749  | -706  | -542  | -605  |
| 990        | -294  | -326  | -313  | -333  | -306  | -304  |
| 1145       | -204  | -258  | -238  | -228  | -249  | -235  |
| 1295       | -165  | -193  | -187  | -185  | -151  | -167  |
| 1450       | -221  | -389  | -392  | -341  | -214  | -245  |

#### Table C8. Maximum peak transverse strains in base & subgrade (TS710C3)

710C3

Load = 20 kN

#### TRANSVERSE STRAIN (µstrain)

| Depth (mm) | 0    | 250  | 500  | 1000 | 5000 | 10000 |
|------------|------|------|------|------|------|-------|
| 76         | 1881 | 1596 | 1310 | 1834 | 1932 | 1982  |
| 191        | 495  | 636  | 572  | 702  | 692  | 773   |
| 305        | 515  | 918  | 948  | 856  | 852  | 940   |
| 457        | 182  | 335  | 261  | 77   | 119  | 123   |
| 610        | 163  | 215  | 256  | 236  | 193  | 180   |
| 762        | 162  | 106  | 142  | 109  | 170  | 133   |
| 914        | 7    | 8    | 16   | 9    | 7    | 10    |

710C3

|            |      |      | LONGITU | DINAL STR | RAIN (μstra | in)   |
|------------|------|------|---------|-----------|-------------|-------|
|            | _    |      |         | (A)       |             |       |
| Depth (mm) | 0    | 250  | 500     | 1000      | 5000        | 10000 |
| 76         | -197 | -128 | -144    | -142      | -139        | -118  |
| 191        | -303 | -229 | -268    | -243      | -319        | -311  |
| 305        | -466 | -445 | -481    | -513      | -485        | -490  |
| 457        | -93  | -114 | -136    | -381      | -518        | -1189 |
| 610        | -128 | -136 | -135    | -137      | -149        | -186  |
| 762        | -27  | -99  | -156    | -73       | -31         | -63   |
| 914        | -42  | -154 | -81     | -86       | -29         | -29   |
|            |      |      |         |           |             |       |
|            |      |      |         | (B)       |             |       |
| Depth (mm) | 0    | 250  | 500     | 1000      | 5000        | 10000 |
| 76         | 1583 | 1273 | 1179    | 1524      | 1781        | 1900  |
| 191        | 916  | 1172 | 1247    | 1383      | 1358        | 1545  |
| 305        | 1010 | 1650 | 1816    | 1837      | 1881        | 1935  |
| 457        | 230  | 525  | 473     | 50        | 124         | 101   |
| 610        | 275  | 370  | 441     | 418       | 389         | 400   |
| 762        | 148  | 107  | 154     | 91        | 157         | 112   |
| 914        | 77   | 105  | 184     | 108       | 74          | 117   |
|            |      |      |         |           |             |       |
|            |      |      |         | (C)       |             |       |
| Depth (mm) | 0    | 250  | 500     | 1000      | 5000        | 10000 |
| 76         | -721 | -426 | -261    | -543      | -745        | -778  |
| 191        | -173 | -201 | -232    | -275      | -330        | -294  |
| 305        | -482 | -506 | -522    | -595      | -573        | -533  |
| 457        | -236 | -139 | -257    | -841      | -798        | -1118 |
| 610        | -127 | -202 | -187    | -151      | -155        | -220  |
| 762        | -45  | -181 | -179    | -197      | -92         | -151  |
| 914        | -72  | -173 | -101    | -146      | -59         | -40   |

## Table C9. Maximum peak longitudinal strains in base & subgrade (TS710C3)

Load = 20 kN

### Table C2. Maximum peak vertical strains in base & subgrade (TS710C4)

710C4 Load = 40 kN

VERTICAL STRAIN (µstrain)

| Depth (mm) | 0     | 250    | 1000   |
|------------|-------|--------|--------|
| 135        | -4590 | GF     | GF     |
| 250        | -7982 | -9073  | -10401 |
| 380        | -8328 | -10068 | -9966  |
| 535        | -5194 | -5602  | -5909  |
| 685        | -2544 | -3076  | -3227  |
| 840        | -1147 | -1296  | -1348  |
| 990        | -763  | -887   | -1030  |
| 1145       | -760  | -878   | -890   |
| 1295       | -432  | -496   | -502   |
| 1450       | -293  | -466   | -391   |

#### Table C3. Maximum peak transverse strains in base & subgrade (TS710C4)

710C4

Load = 40 kN

TRANSVERSE STRAIN (µstrain)

| Depth (mm) | 0    | 250  | 1000 |
|------------|------|------|------|
| 76         | 3038 | 2956 | GF   |
| 191        | 4046 | 1622 | 1761 |
| 305        | 5301 | 2494 | 2402 |
| 457        | 1606 | 970  | 942  |
| 610        | 672  | 709  | 858  |
| 762        | 199  | 369  | 397  |
| 914        | 214  | 197  | 194  |

## Table C4. Maximum peak longitudinal strains in base & subgrade (TS710C4)

710C4 Load = 40 kN

| L          | .ONGITUE | DINAL STRA     | IN (μstrain) |
|------------|----------|----------------|--------------|
|            |          | (A)            |              |
| Depth (mm) | 0        | 250            | 1000         |
| 76         | -131     | -641           | GF           |
| 191        | -34      | -919           | -1184        |
| 305        | -42      | -1228          | -1349        |
| 457        | -71      | -490           | -646         |
| 610        | -78      | -338           | -323         |
| 762        | -94      | -124           | -165         |
| 914        | -57      | -127           | -132         |
|            |          |                |              |
|            |          | (B)            |              |
| Depth (mm) | 0        | 250            | 500          |
| 76         | 2386     | 3021           | GF           |
| 191        | 1223     | 5573           | 6695         |
| 305        | 1812     | 5984           | 6910         |
| 457        | 796      | 1638           | 1861         |
| 610        | 498      | 779            | 940          |
| 762        | 187      | 300            | 329          |
| 914        | 121      | 283            | 228          |
|            |          | $(\mathbf{C})$ |              |
| Depth (mm) | 0        | 250            | 500          |
| 76         | -152     | -47            | GE           |
| 191        | -42      | -389           | -564         |
| 305        | -115     | -640           | -791         |
| 457        | -57      | -265           | -360         |
| 610        | _71      | _203           | -286         |
| 762        | -95      | _110           | _174         |
| 914        | -55      | _177           | -1/4         |
| 714        | -00      | -144           | -140         |

| 710C5<br>STACK A | Load = 20  kN |          |            |          |        |  |
|------------------|---------------|----------|------------|----------|--------|--|
|                  |               | VERTICAL | _ STRAIN ( | μstrain) |        |  |
| Depth (mm)       | 0             | 250      | 500        | 1000     | 5000   |  |
| 135              | -1835         | -1836    | -1766      | -1583    | -1856  |  |
| 250              | -2363         | -2293    | -2325      | -2380    | -2448  |  |
| 380              | -5305         | -5270    | -5521      | -5918    | -5947  |  |
| 535              | -1518         | -1368    | -1488      | -1717    | -1673  |  |
| 685              | -915          | -890     | -959       | -996     | -980   |  |
| 840              | -536          | -495     | -541       | -548     | -555   |  |
| 990              | -306          | -357     | -360       | -342     | -396   |  |
| 1145             | -267          | -276     | -226       | -276     | -304   |  |
| 1295             | -256          | -319     | -244       | -299     | -266   |  |
| 1450             | -196          | -249     | -238       | -248     | -240   |  |
| STACK B          |               |          |            |          |        |  |
| Depth (mm)       | 0             | 250      | 500        | 1000     | 5000   |  |
| 135              | -12328        | -12895   | -10358     | -11078   | -10945 |  |
| 250              | -1755         | -1759    | -1816      | -1811    | -1898  |  |
| 380              | -2073         | -1964    | -2049      | -2133    | -2250  |  |
| 535              | -3237         | -3308    | -3503      | -3791    | -4016  |  |

## Table C13. Maximum peak vertical strains in base & subgrade (TS710C5)

## Table C14. Maximum peak transverse strains in base & subgrade (TS710C5)

| 710C5      |   | Load = 20            | ) kN |      |  |
|------------|---|----------------------|------|------|--|
| STACK A    |   |                      |      |      |  |
|            |   | TRANSVERSE STRAIN (μ |      |      |  |
| Depth (mm) | 0 | 250                  | 500  | 1000 |  |

| Depth (mm) | 0    | 250  | 500  | 1000 | 5000 |
|------------|------|------|------|------|------|
| 76         | 1543 | 1667 | 1600 | 1590 | 1787 |
| 191        | 509  | 573  | 633  | 681  | 770  |
| 305        | 759  | 785  | 917  | 1019 | 1086 |
| 457        | 224  | 330  | 326  | 283  | 345  |
| 610        | 179  | 179  | 193  | 229  | 255  |
| 762        | 56   | 173  | 121  | 135  | 125  |
| 914        | 86   | 80   | 90   | 90   | 80   |
| STACK B    |      |      |      |      |      |
| Depth (mm) | 0    | 250  | 500  | 1000 | 5000 |
| 76         | 3277 | 2792 | 2767 | 2472 | 3273 |
| 191        | 2890 | 2717 | 2930 | 2629 | 3336 |
| 305        | 1124 | 1094 | 935  | 1069 | 1311 |
| 457        | 393  | 203  | 366  | 369  | 538  |
| 610        | 515  | 619  | 558  | 470  | 603  |

## Table C15. Maximum peak longitudinal strains in base & subgrade (TS710C5)

| 710C5      | Load = 20  kN |                               |      |      |      |
|------------|---------------|-------------------------------|------|------|------|
| STACK A    |               |                               |      |      |      |
|            |               | LONGITUDINAL STRAIN (µstrain) |      |      |      |
|            |               | (A)                           |      |      |      |
| Depth (mm) | 0             | 250                           | 500  | 1000 | 5000 |
| 76         | -108          | -126                          | -123 | -122 | -268 |
| 191        | -196          | -252                          | -246 | -220 | -292 |
| 305        | -518          | -554                          | -531 | -640 | -654 |
| 457        | -153          | -56                           | -108 | -163 | -108 |
| 610        | -93           | -112                          | -140 | -115 | -58  |
| 762        | -53           | -48                           | -59  | -60  | -54  |
| 914        | -61           | -68                           | -75  | -71  | -82  |
|            |               |                               |      |      |      |
|            |               |                               | (B)  |      |      |
| Depth (mm) | 0             | 250                           | 500  | 1000 | 5000 |
| 76         | 990           | 1079                          | 1125 | 1153 | 1435 |
| 191        | 1016          | 1111                          | 1244 | 1381 | 1554 |
| 305        | 1544          | 1573                          | 1729 | 1870 | 1964 |
| 457        | 355           | 489                           | 487  | 459  | 589  |
| 610        | 194           | 231                           | 217  | 246  | 318  |
| 762        | 96            | 102                           | 111  | 102  | 114  |
| 914        | 100           | 82                            | 85   | 92   | 66   |
|            |               |                               |      |      |      |
|            |               |                               | (C)  |      |      |
| Depth (mm) | 0             | 250                           | 500  | 1000 | 5000 |
| 76         | -140          | -243                          | -212 | -179 | -399 |
| 191        | -147          | -128                          | -129 | -118 | -161 |
| 305        | -378          | -366                          | -370 | -412 | -411 |
| 457        | -191          | -66                           | -122 | -175 | -132 |
| 610        | -111          | -137                          | -139 | -131 | -114 |
| 762        | -54           | -55                           | -56  | -54  | -59  |
| 914        | -92           | -123                          | -75  | -78  | -69  |

# Table C15. Maximum peak longitudinal strains in base & subgrade (TS710C5) – cont.

| 710C5      | Load = 20  kN                 |       |       |       |       |  |
|------------|-------------------------------|-------|-------|-------|-------|--|
| STACK B    | 5                             |       |       |       |       |  |
|            | LONGITUDINAL STRAIN (µstrain) |       |       |       |       |  |
|            |                               |       | (A)   |       |       |  |
| Depth (mm) | 0                             | 250   | 500   | 1000  | 5000  |  |
| 76         | -1436                         | -933  | -878  | -831  | -1114 |  |
| 191        | -849                          | -1416 | -844  | -1169 | -980  |  |
| 305        | -784                          | -1017 | -913  | -1274 | -501  |  |
| 457        | -527                          | -528  | -404  | -478  | -253  |  |
| 610        | -195                          | -141  | -191  | -163  | -215  |  |
|            |                               |       |       |       |       |  |
|            | (B)                           |       |       |       |       |  |
| Depth (mm) | 0                             | 250   | 500   | 1000  | 5000  |  |
| 76         | 2424                          | 2360  | 2703  | 2797  | 2955  |  |
| 191        | 4096                          | 4494  | 4790  | 4384  | 5149  |  |
| 305        | 7937                          | 7707  | 8322  | 9009  | 10258 |  |
| 457        | 3996                          | 3851  | 4212  | 4288  | 4142  |  |
| 610        | 1241                          | 1337  | 1309  | 1297  | 1129  |  |
|            |                               |       |       |       |       |  |
|            | (C)                           |       |       |       |       |  |
| Depth (mm) | 0                             | 250   | 500   | 1000  | 5000  |  |
| 76         | -897                          | -1646 | -571  | -1110 | -1531 |  |
| 191        | -4520                         | -5270 | -5548 | -4317 | -6079 |  |
| 305        | -2071                         | -2246 | -2196 | -2385 | -2339 |  |
| 457        | -1673                         | -2002 | -1979 | -2123 | -1976 |  |
| 610        | -590                          | -491  | -666  | -684  | -829  |  |

#### Table C16. Maximum peak vertical strains in base & subgrade (TS710C6)

710C6 Load = 33 kN

VERTICAL STRAIN (µstrain)

| Depth (mm) | 0      | 250    | 1000   | 4240   |
|------------|--------|--------|--------|--------|
| 135        | -3780  | -3705  | -3259  | -3401  |
| 250        | -4157  | -3576  | -3015  | -2943  |
| 380        | -11988 | -12085 | -10023 | -10120 |
| 535        | -4018  | -3948  | -3086  | -3247  |
| 685        | -2448  | -2382  | -1841  | -2024  |
| 840        | -1581  | -1660  | -1324  | -1272  |
| 990        | -766   | -727   | -547   | -702   |
| 1145       | -568   | -526   | -415   | -493   |
| 1295       | -425   | -363   | -370   | -404   |
| 1450       | -539   | -534   | -409   | -388   |
|            |        |        |        |        |

#### Table C17. Maximum peak transverse strains in base & subgrade (TS710C6)

#### TRANSVERSE STRAIN (µstrain)

| Depth (mm) | 0    | 250  | 1000 | 4240 |
|------------|------|------|------|------|
| 76         | 2117 | 2142 | 2198 | 2130 |
| 191        | 1353 | 1366 | 1175 | 1285 |
| 305        | 2158 | 2111 | 1673 | 1845 |
| 457        | 978  | 1064 | 822  | 830  |
| 610        | 547  | 557  | 453  | 390  |
| 762        | 366  | 318  | 259  | 281  |
| 914        | 16   | 14   | 10   | 10   |

## Table C18. Maximum peak longitudinal strains in base & subgrade (TS710C6)

| 710C6      |       | Load = 33 kN                  |       |       |  |
|------------|-------|-------------------------------|-------|-------|--|
|            |       | LONGITUDINAL STRAIN (ustrain) |       |       |  |
|            |       |                               | (A)   |       |  |
| Depth (mm) | 0     | 250                           | 1000  | 4240  |  |
| 76         | -123  | -126                          | -136  | -166  |  |
| 191        | -638  | -742                          | -600  | -608  |  |
| 305        | -1740 | -1723                         | -1360 | -1396 |  |
| 457        | -355  | -286                          | -220  | -310  |  |
| 610        | -174  | -186                          | -134  | -164  |  |
| 762        | -97   | -111                          | -105  | -86   |  |
| 914        | -36   | -34                           | -36   | -45   |  |
|            |       |                               |       |       |  |
|            |       |                               | (B)   |       |  |
| Depth (mm) | 0     | 250                           | 1000  | 4240  |  |
| 76         | 1918  | 2416                          | 2342  | 2450  |  |
| 191        | 2748  | 3316                          | 2833  | 2834  |  |
| 305        | 4805  | 4988                          | 4059  | 4130  |  |
| 457        | 1167  | 1307                          | 981   | 1114  |  |
| 610        | 586   | 591                           | 434   | 466   |  |
| 762        | 326   | 282                           | 246   | 271   |  |
| 914        | 127   | 124                           | 96    | 90    |  |
|            |       |                               |       |       |  |
|            |       |                               | (C)   |       |  |
| Depth (mm) | 0     | 250                           | 1000  | 4240  |  |
| 76         | -178  | -192                          | -475  | -540  |  |
| 191        | -282  | -390                          | -376  | -381  |  |
| 305        | -787  | -914                          | -785  | -910  |  |
| 457        | -258  | -188                          | -217  | -261  |  |
| 610        | -208  | -237                          | -195  | -225  |  |
| 762        | -162  | -204                          | -178  | -116  |  |
| 914        | -64   | -61                           | -51   | -69   |  |