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[bookmark: _Toc464204266]EXECUTIVE SUMMARY
The purpose of the research being performed is to provide the benefit of the full performance-based probabilistic earthquake hazard analysis, without requiring special software, training, and experience. To do this, full performance based probabilistic methods will be created to calculate liquefaction triggering, liquefaction-induced settlements, and liquefaction-induced lateral spread based on Cone Penetration Test (CPT) data. Currently, a computer tool is being developed to perform the full performance based probabilistic method calculations. This report provides and update of the Quarter 1 Year 1 progress of development of the computer tool, addressing Tasks 1, 2 3 and 4 of the TPF-5(338) research contract. 
The main focus of Quarter 1 has been the development of the tool to run site-specific performance-based liquefaction analysis, CPTLiquefY. To do this, framework from the previous performance-based Standard Penetration Test (SPT) research was followed. As such, Kramer and Mayfield (2007) was referenced for performance-based calculations, but adjusted to incorporate CPT data, rather than SPT. In order to calculate Cyclic Resistance Ratio (CRR), procedure laid out by Robertson and Wride (1998) and Robertson (2009) were followed. Pseudo-probabilistic calculations were also incorporated, with options to follow procedures set forth by Ku et al. (2011) or Boulanger and Idriss (2014). In order to calculate other liquefaction hazards, procedures laid out by Zhang et al. (2004) were followed for lateral displacement and procedures laid out by Juang et al. (2013) were followed for liquefaction settlement.
CPTLiquefY is being built using C++ (rather than VBA) for faster computation. Currently in development, CPTLiquefY has the ability to calculate CRR, and pseudo-probabilistic calculations of CSR and FSL. Comparing results to CLiq v2.0, CPTLiquefY is accurate within 99%, and work is being done to correct small sources of error. The full performance-based liquefaction triggering procedure is currently in development in CPTLiquefY, as well as the implementation the 2014 USGS deaggregation update. Following these steps, performance-based analysis of lateral displacement and liquefaction settlement will be incorporated into CPTLiquefY.


[bookmark: _Toc259781263][bookmark: _Toc263867752]	
[bookmark: _Toc273506404][bookmark: _Toc464204267]
  INTRODUCTION
[bookmark: _Toc259781264][bookmark: _Toc263867753][bookmark: _Toc273506405][bookmark: _Toc464204268]  Problem Statement
The purpose of phase one, of two, of the research being performed is to develop software that calculates a full performance-based probabilistic earthquake hazard analysis, to determine liquefaction triggering, lateral spread displacements, and post-liquefaction free-field settlements. To do this, equations and relationships derived from empirical models are used to determine the soil characteristics from a Cone Penetration Test, CPT, as well as determine the behavior of the given soil during and after a seismic event. This is all accomplished using code written in Visual C++ to automate these procedures.
[bookmark: _Toc464204269]  Objectives
The objective of this report is to introduce the original models used to determine the earthquake hazards (i.e. liquefaction triggering, lateral spread displacement, post-liquefaction settlement), demonstrate how these models are applied in the full performance-based procedure, and report on the progress made in the development of the software, addressing Tasks 1, 2, 3 and 4 of the TPF-5(338) research contract.
[bookmark: _Toc259781265][bookmark: _Toc263867754][bookmark: _Toc273506406][bookmark: _Toc464204270]  Scope
The tasks to be performed in this phase of research will be: developing software that calculates soil characteristics from a CPT and automates the full model for liquefaction triggering, lateral spread displacement, post-liquefaction settlement.
The research conducted for this report will contain the following:
· Introduction
· Empirical Models Used for Liquefaction Hazards
· Integration of Models into Software
· Progress in Development of Full Tool
· Conclusions
· Appendices
[bookmark: _Toc259781267][bookmark: _Toc263867756][bookmark: _Toc273506408][bookmark: _Toc464204271]
  LIQUEFACTION TRIGGERING EVALUATION USING THE CPT
[bookmark: _Toc259781268][bookmark: _Toc263867757][bookmark: _Toc273506409][bookmark: _Toc464204272]  Overview
This section describes the use of the CPT in the procedure for evaluating liquefaction triggering as well as lateral displacement and liquefaction settlement. The models being used are introduced and the procedure is then set forth.
[bookmark: _Toc259781270][bookmark: _Toc263867759][bookmark: _Toc464204273] Liquefaction Triggering Evaluation 
This section will provide the necessary background to understand the liquefaction triggering procedure. A brief discussion regarding empirical liquefaction triggering models will be provided, followed by a discussion of performance-based implementation of those models.
[bookmark: _Toc464204274] Empirical Liquefaction Triggering Models
When dealing with liquefaction hazard evaluation, most professionals rely upon site-specific liquefaction triggering assessment for use in design. One of the most widely used methods of assessment in engineering practice today is the simplified empirical procedure (Seed (1979); Seed and Idriss (1971): Seed and Idriss (1982); Seed et al. (1985). According to this simplified procedure, liquefaction triggering is evaluated by comparing the seismic loading of the soil to the soil’s resistance to liquefaction triggering. Seismic loading is typically characterized using a cyclic stress ratio, CSR, which is computed as: 

[bookmark: ZEqnNum681516]			 					       





where  is the equivalent uniform cyclic shear stress,  is the effective vertical stress in the soil,  is the peak ground surface acceleration as a fraction of gravity,  is the total vertical stress in the soil, and  is a shear stress reduction coefficient.
Soil resistance to liquefaction triggering is characterized by performing some in-situ soil test (e.g., cone penetration resistance, standard penetration resistance, shear wave velocity, etc.) and comparing its results to those from documented case histories of liquefaction triggering. Based on observation and/or statistical regression, a function for the in-situ test can be delineated that separates the “liquefaction” case histories from the “non-liquefaction” case histories. This delineated boundary is referred to as the cyclic resistance ratio, CRR, and represents the unique combinations of CSR and in-situ soil test values at which liquefaction triggers.   

Engineers and geologists commonly quantify liquefaction triggering using a factor of safety against liquefaction triggering, . This parameter is calculated as:

[bookmark: ZEqnNum404908] 						           		       




Kramer and Mayfield (2007) and Mayfield et al. (2009) introduced an alternative method to quantifying liquefaction triggering. If using the cone penetration test (CPT), then CRR is a function of cone tip resistance, which is the clean sand-equivalent, corrected CPT cone tip resistance for the soil layer. However, for a given level of seismic loading (i.e., CSR), the CPT resistance required to resist or prevent liquefaction, , can be back-calculated from the CRR function. This term  can be used to compute  using a modified form of Equation  as:

 							       

where  denotes that CRR is a function of given value of CPT resistance, (qc1N)cs. 
[bookmark: _Ref389810583][bookmark: _Toc463716883][bookmark: _Toc464204275] Performance-Based Liquefaction Triggering Assessment




Simplified empirical liquefaction triggering procedures require the selection of seismic loading parameters (i.e., peak ground surface acceleration, , and moment magnitude,) to characterize a representative or design earthquake. When analyzing the liquefaction hazard from a single seismic source, the process of selecting seismic loading parameters is relatively straight-forward and simple. However, few seismic environments exist where only a single seismic source can contribute to liquefaction hazard. In more complex seismic environments, seismic hazard is usually calculated with a probabilistic seismic hazard analysis (PSHA), which often produces a wide range of seismic loading parameter combinations, each associated with a different likelihood of occurrence. Despite the wide variety of possible seismic loading parameter combinations produced by a PSHA, engineers must select a single set of seismic loading parameters that adequately characterize the complex seismicity of the site. Conventional approaches to liquefaction triggering assessment typically utilize the deaggregation results associated with the PSHA for  at a targeted hazard level or return period to obtain that single set of seismic loading parameters. Engineers select either the median or mean moment magnitude from the deaggregation results, and subsequently couple this selected magnitude with the  value associated with the targeted return period. Unfortunately, these conventional approaches were shown by Kramer and Mayfield (2007) to introduce bias into the computed liquefaction triggering hazard. 




Potential biases introduced into the liquefaction triggering assessment through the improper and/or incomplete utilization of probabilistic ground motions and liquefaction triggering models could be reduced through the implementation of a performance-based approach (Franke et al. (2014; Kramer and Mayfield (2007)) presented such an approach, which utilized the probabilistic framework for performance-based earthquake engineering (PBEE) developed by the Pacific Earthquake Engineering Research Center (Cornell and Krawinkler (2000; Deierlein et al. (2003; Krawinkler (2002)). This implementation of the PEER PBEE framework assigned the joint occurrence of  and  as an intensity measure, and either  or  as the engineering demand parameter. 

Kramer and Mayfield (2007) demonstrated that a hazard curve for  could be developed using the following relationship:

[bookmark: ZEqnNum412406] 					       











where  is the mean annual rate of not exceeding some given value of factor of safety, ;  is the conditional probability that the actual factor of safety is less than  given peak ground surface acceleration  and moment magnitude ;  is the incremental joint mean annual rate of exceedance for  and ; and  and are the number of magnitude and peak ground acceleration increments into which the intensity measure “hazard space” is subdivided. 
The conditional probability component of Equation  can be solved with any selected probabilistic liquefaction triggering relationship, but that relationship must be manipulated to compute the desired probability.  Future work on this project will include the manipulation of these relationships to produce equations to calculate the conditional probability of liquefaction based on CPT parameters. 
[bookmark: _Toc464204276] Ku et al. (2011) Probabilistic Model
The Ku et al. (2011) probabilistic approximation procedure is a simple way to bring the values calculated from the Robertson and Wride (1998) and Robertson (2009) procedure into the realm of probability.  From this model the CRR and CSR values can be taken from the Robertson and Wride (1998) or the Robertson (2009) procedure and the FSL can be approximated for each measured depth of the CPT. 
When using the Ku et al. (2011) procedure, the CRR evaluated previously in the Robertson and Wride (1998) or the Robertson (2009) procedure is used. The equation for PL from Ku et al. (2011) is shown in Equations . When the PL is  0.35, the Ku et al. (2011) model coincides with the Robertson and Wride (1998) deterministic curve as seen in Figure 2.2. 


		        

[image: ]
[bookmark: _Toc464204304]Figure 2.2 Probabilistic contours at various levels derived from the probabilistic Robertson and Wride (1998) model, as found in Ku et al. (2011).
[bookmark: _Toc464204277] Boulanger and Idriss (2014) Probabilistic Model
An alternate procedure for CRR and CSR was presented in by Boulanger and Idriss (2014).  This procedure differs from the Robertson and Wride (1998) or the Robertson (2009) procedure in that it calculates the CRR based on the measured resistance values and the fines content (FC) of the soil.  The model used in this procedure also takes into account a more recently updated database of CPT earthquake case histories.
Equations  -  present a simplification of the method for calculating CRR in a deterministic procedure used by Boulanger and Idriss (2014).  Equation  shows the level of uncertainty (εln(R)). The level of uncertainty is then broken up into two parts in the final equation, where it is the sum of the standard deviation (σln(R)) and the inverse of the standard cumulative normal distribution of probability of liquefaction (ф-1(PL)). For our pseudo-probabilistic calculation to be equivalent to the deterministic correlation, the standard deviation is set to 0.2 and the PL is set to 16% (per instructions in Boulanger and Idriss (2014)).

		    	      

						      

	      


[bookmark: _Toc464204278] Robertson and Wride (2009) Procedure
When calculating the CRR for a CPT profile, the procedure laid out by Robertson and Wride (1998) as well as Robertson (2009) is followed. This procedure takes the available information from the CPT sounding: tip resistance (qc), sleeve friction (fs), pore pressure (u), and depth. An estimate of water table depth is also needed to determine the effective overburden stress (σ’v). Calculations of the stress exponent, n, are iterated until the difference converges to a value less than 0.01. Further intermediate calculates such as the soil behavior type index, Ic, and the correction factor, Kc, are found following the steps set out by the chart in Figure 2.1. Once the equivalent clean sand normalized CPT penetration resistance, Qtncs ((qc1N)cs) in Robertson and Wride (1998)), is determined the CRR of that soil increment is then calculated. 
[image: ]
[bookmark: _Ref463890971][bookmark: _Ref463890960][bookmark: _Toc464204305]Figure 2.1 Flowchart for calculating CRR according to Robertson (2009).
[bookmark: _Toc464204279] Pseudo-Probabilistic Liquefaction Triggering Assessment
The conventional standard of practice for liquefaction triggering assessment quantifies seismic loading using probabilistic ground motion estimates, but from a single return period. The probabilistic seismic loading is quantified as a single, representative earthquake with an acceleration equal to the probabilistic acceleration corresponding to the targeted hazard level or return period, and an earthquake magnitude taken from the probabilistic deaggregation of the ground motion. However, several significant errors and/or poor assumptions are made when applying this type of approach, which has been termed the pseudoprobabilistic approach (Rathje and Saygili 2008). First, the approach typically assumes that the return period associated with the ground motion translates directly to the return period of the computed liquefaction hazard. This assumption is not correct. Second, the approach assumes that only one return period of ground motion is contributing to liquefaction hazard, which is also incorrect. Third, the approach assumes that the probabilistic acceleration can be reasonably represented using a single scenario earthquake, which may or may not be true. Fourth, the pseudoprobabilistic approach tends to significantly overpredict liquefaction hazards in areas of low to moderate seismicity where a single, large earthquake source that is located within 500 km of the site dominates the seismic hazard. Finally, the pseudoprobabilistic approach has been shown to produce inconsistent estimates of liquefaction hazard across different seismic environments and/or return periods (Kramer and Mayfield 2007; Mayfield et al. 2009). 
Given the significant body of previous research that has proven the pseudoprobabilistic approach to be incorrect and inconsistent, no attempt will be given to demonstrate such in this report. However, future quarterly reports will evaluate the pseudoprobabilistic methods and compare them against the performance-based methods developed through this research. Furthermore, while the pseudoprobabilistic approach is being described relative to the assessment of liquefaction triggering, it is also just as erroneous and inconsistent when applied to the evaluation of other liquefaction-related hazards such as lateral spread or post-liquefaction free-field settlement. 
[bookmark: _Toc464204280] Lateral Displacement Evaluation 
This section will provide the necessary background to understand the lateral displacement procedure. A brief discussion regarding the Zhang et al. (2004) model will be provided, followed by a discussion of performance-based implementation of this model. The term lateral displacement, or lateral spread, describes the horizontal deformations of a site located on sloping ground or near a free-face due to seismically induced soil liquefaction. These deformations can range from a few millimeters to several meters. Structures near open bodies of water are particularly at risk to this seismic hazard.
[bookmark: _Toc464204281] Lateral Displacement Empirical Model
The lateral displacement procedure presented by Zhang et al. (2004) demonstrates a calculation of the lateral displacement caused by each soil increment in a CPT sounding. In this procedure, ((qc1N)cs from Robertson and Wride (1998) is used to calculate the relative density, DR, following Tatsuoka et al. (1990). Lateral displacement is directly related to the maximum horizontal cyclic shear strain, γmax, and the relationship between γmax, DR, and FSL, as presented by Zhang et al. (2004) is displayed in Figure 2.3. 
[image: ]
[bookmark: _Ref464190408][bookmark: _Ref464190396][bookmark: _Toc464204306]Figure 2.3 The relationship between γmax, DR, and FSL as presented by Zhang et al. (2004).
	With γmax known for each increment of the CPT sounding, the lateral displacement index, LDI, can be determined using the following relationship:

 									      
which shows LDI as the integral of γmax, increasing from the smallest value at zmax (the deepest liquefiable layer) to the highest value at the ground surface. With a known LDI, the actual lateral displacement, LD (also known as the horizontal displacement, DH) which is the amount of displacement or spread seen at the ground surface, can be calculated as a function of the site’s geometry. LD is dependent upon three variables (other than LDI): the ground slope, S, the free face height H, and the distance from toe of the free face, L. The three cases for site geometry are seen in Figure 2.4.
[image: ]
[bookmark: _Ref464191572][bookmark: _Toc464204307]Figure 2.4 The three cases for site geometry when determining lateral displacement.
LD is then determined using one of two equations. Case 1 uses Equation  and Case 2 uses Equation . Referring to sites with a geometry as found in Case 3, Zhang et al. (2004) states that the data points for the case histories for a gently sloping ground with free face (Case 3) lie generally within the scatter of results for nearly level ground with a free face (Case 2). Therefore, sites with a geometry as found in Case 3 will also use Equation .

[bookmark: ZEqnNum879751]									      

[bookmark: ZEqnNum296840]								      
[bookmark: _Toc464204282] Performance-Based Lateral Displacement Procedure
With a hazard curve of FSL for liquefaction triggering created, a similar procedure can be done with lateral displacement, using the framework from the Zhang et al. (2004) procedure. A hazard curve for LDI can be created using the following relationship:

[bookmark: ZEqnNum688259]					      




where  is the mean annual rate of not exceeding some given value of lateral displacement index, LDI*;  is the conditional probability that the actual lateral displacement index, LDI,  is less than LDI* given a factor of safety against liquefaction FSL, and a corrected cone tip resistance, qc1Ncs; is the incremental annual rate of exceedance for FSL, as found in the performance-based liquefaction triggering assessment; andis the number of factor of safety increments into which the intensity measure “hazard space” is subdivided. Using the Equation , the LDI (as well as the DH) can be calculated at specified site, with a certain soil profile from a CPT sounding for any given return period. 
[bookmark: _Toc464204283] Liquefaction-Induced Settlement Evaluation
This section describes various methods and procedures to calculate liquefaction induced volumetric strains and subsequently vertical settlements in liquefied soils. To calculate a soil layer’s vertical settlement, caused by liquefaction, volumetric strains are calculated and multiplied by soil layer thickness. The Ishihara and Yoshimine (1992) deterministic settlement calculation method will be addressed, as well as the Juang et al. (2013) probabilistic method will be addressed. Finally, the performance-based approach will be discussed.
[bookmark: _Toc464204284] Liquefaction-Induced Settlement Ishihara and Yoshimine (1992) Procedure
Ishihara and Yoshimine (1992) produced a deterministic method to calculate the volumetric strains in liquefiable soils based on CPT input data. First, a factor of safety against liquefaction (FSL) is obtained for each layer. A relative density is also calculated for each layer, using:

								      
where qc is the cone tip resistance and σ’v is the vertical effective stress. Using FSL, maximum shear strain (γmax), and calculated DR for each layer, Ishihara and Yoshimine (1992) developed a relationship between the calculated values and volumetric strain. Curves were developed to display this relationship, as seen in Figure 2.5.
[image: ]
[bookmark: _Ref464201095][bookmark: _Ref464199658][bookmark: _Toc464204308]Figure 2.5 The relationship between FSL, γmax, and DR as presented by Ishihara and Yoshimine (1992)
Using the developed curves, volumetric strain can be determined for each soil layer. Each layer’s volumetric strain is multiplied by the layer’s thickness, resulting in the vertical liquefaction-induced settlement (Sp) of each layer. Finally, each layer’s settlement is summed together to calculate the predicted total ground surface settlement, using the following equation:

[bookmark: ZEqnNum543047]										      	
Where εv is volumetric strain for the ith layer, N is number of layers, and ΔZi is the ith layer’s thickness.
[bookmark: _Toc464204285] Liquefaction-Induced Settlement Juang et al. (2013) Procedure
The Juang et al. (2013) procedure calculates liquefaction-induced settlements by applying a probabilistic approach to the deterministic Ishihara and Yoshimine (1992) method. The procedure also uses Equation  to calculate predicted vertical settlements, but adds probabilistic parameters by using the following equation:

									      	
where εv is volumetric strain for the ith layer, N is the number of layers, M represents a multiplicative model bias, INDi  represents an indicator of liquefaction occurring, and ΔZi is layer thickness for the ith layer. Volumetric strain is calculated by using a curve-fitted equation based on the Ishihara and Yoshimine (1992) curves (Figure 2.5), shown below:
	
	


Where: ao = 0.3773, a1 = -0.0337, a2 = 1.5672, a3 = -0.1833, bo = 28.45, b1 = -9.3372, b2 = 0.7975, q = qt1Ncs


The multiplicative model bias is calculated by calibrating their model back to the case histories’ data by matching means. Juang et al. (2013) presents the INDi variable as probability of liquefaction (PL) and is calculated by using Equation .

[bookmark: ZEqnNum249104]							     
	One significant disadvantage associated with the Juang et al. (2013) probabilistic model for CPT-based settlement prediction is that the model was based on the binomial assumption of settlement susceptibility. Engineers commonly consider a soil layer susceptible to post-liquefaction settlement if the soil layer has a sufficiently low factor of safety against liquefaction (usually less than 1.2 to 2.0). However, the Juang et al. (2013) model computes the probability that non-liquefied soil layers contribute to the settlement. The possibility of non-liquefied soil layers contributing to post-liquefaction settlements is technically greater than zero, but sufficiently low that most engineers neglect it. Furthermore, the consideration of this possibility greatly increases the mathematical difficulty of the Juang et al. model. Therefore, a study is currently underway to re-regress the Juang et al. model coefficients and model uncertainty so as to neglect the possible contribution of non-liquefied soil layers to post-liquefaction settlements. This revised model will be reported in a later progress report.
[bookmark: _Toc464204286] Performance-Based Liquefaction-Induced Settlement Procedure
With a hazard curve of FSL for liquefaction triggering created, a similar procedure can be done with liquefaction-induced settlement, using the framework from the Ishihara and Yoshimine (1992) and Juang et al. (2013) procedure. A hazard curve for volumetric strain (εv) can be created using the following relationship: 

[bookmark: ZEqnNum886090]						     




where  is the mean annual rate of not exceeding some given value of volumetric strain, εv*;  is the conditional probability that the actual volumetric strain, εv,  is less than εv * given a factor of safety against liquefaction FSL, and a corrected cone tip resistance, qt1Ncs; is the incremental annual rate of exceedance for FSL, as found in the performance-based liquefaction triggering assessment; andis the number of factor of safety increments into which the intensity measure “hazard space” is subdivided. Using the Equation, the εv (as well as the liquefaction-induced settlement) can be calculated at specified site, with a certain soil profile from a CPT sounding for any given return period. 




[bookmark: _Toc464204287] CPTLiquefY DEVELOPMENT 
[bookmark: _Toc259781277][bookmark: _Toc263867766][bookmark: _Toc273506420][bookmark: _Toc464204288]  Overview
For the previously mentioned analysis of the CPT sounding, a computer program is in development named CPTLiquefY. When complete, CPTLiquefY will be used to calculate the full performance-based method for determining soil liquefaction and liquefaction-induced hazards based on CPT soundings.
In the previous SPT work, PBLiquefY was built within the framework of Microsoft Excel, using its own functionality as well as programming in Visual Basic (VBA), however CPTLiquefY has been coded in Microsoft Visual Studio using C++. While VBA worked well for PBLiquefY, it would not work well for CPTLiquefY because of VBA’s inability to effectively handle heavy amounts of data calculations. VBA worked well for PBLiquefY because a SPT data set is limited to about 15-25 depth measurements per location. CPT data sets, however, are several times larger with about 100-300 depth measurements per location, which leads to an exponential increase in the amount of required calculations. For this reason, it was decided that a more efficient program be developed for the CPT analysis. CPTLiquefY is built through Microsoft Visual Studio, an Integrated Development Environment (IDE) for various programming languages. Visual C++ was chosen as the programming language for the speed and rigor C++ provides, as well as the useful Graphical User Interface (GUI) Visual C++ contributes to C++. 
[bookmark: _Toc464204289][bookmark: _Toc259781291][bookmark: _Toc263867780]  Current Progress in CPTLiquefY 
[bookmark: _Toc259781279][bookmark: _Toc263867768][bookmark: _Toc464204290] Launching the Program and Soil Info Tab
When CPTLiquefY is launched, the view in Figure 3.1 is visible to the user. As seen, there are tabs for Soil Info, Pseudo-Probabilistic, Full-Probabilistic User Inputs, Liquefaction Triggering Results, Settlement Results, Lateral Spread Results, Export, and Batch Run. Currently, Soil Info and Pseudo-Probabilistic are fully functional, with Full-Probabilistic nearing completion. The Export and Batch Run tabs are also functional, but will need adjustments once the Full-Probabilistic and the other hazard tabs are completed.
[image: ]
[bookmark: _Ref463891934][bookmark: _Toc464204309]Figure 3.1 Initial view of CPTLiquefY, showing the Soil Info tab.
Once the user starts the program, the program will open to Soil Info tab as show above (Figure 3.1). To upload a specific CPT sounding, the “Browse for CPT File” button is clicked and users are able to browse for a CSV file with CPT data (depth, qc, fs, and u). The user can then select the input units, which will then be converted into uniform metric units for ease of calculation. An estimate of the depth of the water table is also needed from the user to be used in the calculation of effective stress, σ’v and each layer’s susceptibility to liquefaction. Once all user inputs are complete, the calculation of the CRR can be performed. To do this, a CRR calculation method must be selected. The current options are Robertson (2010) (which follows Robertson (2009)), and NCEER (1998) (which follows Robertson and Wride (1998)). The other two options (Idriss Boulanger (2008) and Moss et al. (2006)) are currently placeholders and may be added in the future. Once the user has selected a method, the “Calculate” button may be selected and all calculations will be performed through the CRR calculation. When the CRR calculation is complete, the table is populated and all of the preliminary calculations are seen, up to the CRR. This can be seen in Figure 3.2.
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[bookmark: _Ref463892585][bookmark: _Toc464204310]Figure 3.2 View after running calculations on Soil Info tab in CPTLiquefY.
To be able to run unique analyses, an Advanced Option section was created to allow for adjustments to the default values. To access the Advanced Options section, the user clicks the “Advanced Options” button on the Soil Info tab. When the Advanced Options window is opened, the user will see the dialog box shown in Figure 3.3, which currently displays the default values. 
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[bookmark: _Ref463892130][bookmark: _Toc464204311]Figure 3.3 Display of the Advanced Options dialog box in CPTLiquefY.
There are many variables, methods, and options that can be adjusted in the Advanced Options window. The net area ratio (a) is a function of the geometry of the probe itself, and is used in determining the corrected cone tip resistance (qt). The reference pressure (Pa) is used in the Robertson (2009) procedure in correcting the cone tip resistance for overburden stress (Qtn). Kα is the initial shear stress correction factor and Kσ is the overburden stress correction factor. Since the unit weight is unknown, it is either set at a constant unit weight, or it can be estimated using a correlation from the cone time resistance and sleeve friction Robertson and Cabal (2010). CN, the overburden correction factor can be seen in the procedure for Robertson (2009), it is recommended to be limited to either 2.0 or 1.7, depending on which procedure is being run. Similarly, it is recommended that the soil behavior type index. Ic, be limited to approximately 2.6 (after an Ic value of 2.6 the soil is classified as a clay and is much less likely to experience liquefaction). Also, an option is available to limit the depth at which the liquefaction analysis calculations are made. Ahmadi and Robertson (2005) discusses the need to account for thin-layer and transition zone effects on CPT qc measurement. Following Robertson (2011), CPTLiquefY is able to make adjustments for these thin layers which can affect the accuracy of the CPT data.
[bookmark: _Toc464204291] Pseudo-Probabilistic Tab
CPTLiquefY has the ability to run a pseudo-probabilistic analysis by combining the deterministic liquefaction method with probabilistic values obtained from the United States Geologic Survey (USGS) deaggregation website. By connecting with the USGS website, a deaggregation can be accessed and used to input magnitude, ground motion and contribution. It should be noted that a new offline USGS tool is in progress and will be discussed in a later section. By inputting the location (latitude and longitude), the probability of exceedance, the USGS year, and whether to use the mean or modal magnitude, the deaggregation can be accessed. 
The user can then select to run either or both models to calculate a pseudo-probabilistic FSL. The models include the Ku et al. (2011) and the Boulanger and Idriss (2014) methods. A description of each model can be found previously in Section 2.
An amplification factor (Fa) must also be calculated to convert the PGA value, from USGS, into an amax value for calculations. This can be done by entering a specific Fa, using the AASHTO/ASCE 7-10 method and selecting a site class, using the Stewart et al. (2003) method and selecting a site class, or it can be done using Stewart et al. (2003) with site specific values. A display of the Pseudo Probabilistic tab can be seen in Figure 3.4.
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[bookmark: _Ref463892285][bookmark: _Toc464204312]Figure 3.4 View of Pseudo Probabilistic tab once calculations are complete.
[bookmark: _Toc464204292] Full Probabilistic User Inputs Tab
To run a Full Probabilistic calculation, the user navigates to the Full Probabilistic User Inputs tab. The Full Probabilistic method is not yet complete, but currently does all of the preliminary setup and calculations needed for a Full Performance Based Probabilistic method. Figure 3.5 below shows the current Full Probabilistic User Inputs tab after the “Load Source Data” button has been clicked. Once clicked, the program goes online to the USGS site and downloads the distance, magnitude, and contribution values for all possible seismic sources for that site at a range of return periods. This source data is displayed in the window once completed, as shown in Figure 3.5.
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[bookmark: _Ref463892393][bookmark: _Toc464204313]Figure 3.5 View of Full Probabilistic User Inputs tab once initial calculations are complete.
[bookmark: _Toc464204293]3.3 Validations of CPTLiquefY 
To verify the accuracy of the calculations, CPTLiquefY Soil Info tab and Pseudo Probabilistic tab calculations have been validated with CLiq v.2.0. CLiq v.2.0 is a tool developed by Dr. Peter Robertson and is trusted in its calculations. Calculated values from CPTLiquefY are being compared directly with values calculated by CLiq using the same CPT data set. In order to ensure accuracy, two soil profiles were run through both programs. Validations for other tabs were not completed as this is the first software available to run performance-based calculations based on the CPT.
[bookmark: _Toc464204294]3.3.1 Validation of the Soil Info Tab
Upon completing the coding process, a spreadsheet was built that would compare each calculated variable from the outputs of CPTLiquefY and CLiq. The goal is to match each of the values within 5%. For the first tab this includes any preliminary calculations included in the Robertson and Wride (1998) or Robertson (2009) procedure, up through the calculation of CRR. Initial validations indicated adjustments that had to be made. After making modifications to the code to better follow the literature and mimic CLiq, the values were able to successfully match. The Qtncs value is the final corrected cone tip resistance. The comparison of the two programs with this variable can be seen in Figure 3.6.


[bookmark: _Ref463892482][bookmark: _Toc464204314]Figure 3.6 Comparsion of Qtncs values for CLiq and CPTLiquefY.
While the final corrected cone tip resistance matched 100%, there is still a slight difference in the calculation of CRR. In CLiq and in CPTLiquefY, when a soil increment is deemed non-liquefiable, it is assigned a CRR value of 4.0 to ensure in future calculations that it is not shown as susceptible to liquefaction. This assignment of the 4.0 value occurs in situations such as when the soil behavior type (Ic) is above 2.7 or when the soil layer is in a transition zone. Figure 3.7 shows the comparison of the CRR between the two programs. Note that the only inconsistencies are around the 4.0 value.


[bookmark: _Ref463892528][bookmark: _Toc464204315]Figure 3.7 Comparison of CRR values for CLiq and CPTLiquefY.
As mentioned, the only values that do not fall along the 1 to 1 line are values coinciding with a CRR value of 4.0. Dr. Peter Robertson and the developers of CLiq are being contacted to help better understand the calculations being run by CLiq and resolve these issues. While these differences are outside of our goal of matching within 5%, it should be noted that only a small portion of the soil increments are not aligned. Between the two soil profiles there are 699 increments, 9 of which are not matching. Therefore, only 1-2% of all CRR calculations done by CPTLiquefY are not matching those of CLiq.
[bookmark: _Toc464204295]3.3.2 Future Validation of the Soil Info Tab and the Pseudo-Probabilistic Tab
Validations of both the Soil Info tab and the Pseudo-Probabilistic Tab are still in progress. As mentioned, the Soil Info tab is near validation, with only a few adjustments needing to be made in the CRR calculation. 
By inputting the location parameters and the desired return period, CPTLiquefY receives deaggregation info from USGS. By inputting the received deaggregation values in to CLiq the outputs of the two programs can be compared, and CPTLiquefY can be validated. The values of CSR and FSL, and the two methods (Ku et al., and Idriss and Boulanger), are currently being compared between the two programs. As with the Soil Info tab, as discrepancies are found, Dr. Peter Robertson and the developers of CLiq will be contacted for assistance in better understanding the calculations.
[bookmark: _Toc464204296]3.4 Future work on CPTLiquefY 
[bookmark: _Toc464204297][bookmark: _Toc267522198][bookmark: _Toc267522199][bookmark: _Toc267522200][bookmark: _Toc267522201][bookmark: _Toc267522218][bookmark: _Toc267522220][bookmark: _Toc259781294][bookmark: _Toc263867783][bookmark: _Toc259781295][bookmark: _Toc263867784]3.4.1 Full Performance-Based Analysis of Liquefaction Triggering and Hazards
Current effort is being made to incorporate the full performance-based liquefaction triggering procedure, as outlined in Section 2.2.2. The Full Probabilistic User Inputs tab allows the user to load the necessary seismic source (deaggregation) data. Further functionality will be added in the future for the loading of other sources of seismic data.  Currently the options available to the user before the Full Probabilistic process is to include uncertainty in the calculation of amax hazard curves.  The level of uncertainty can also be adjusted.      
Once this is functional, a performance-based analysis of the other hazards will be incorporated. The lateral displacement analysis will follow the Zhang et al. (2004) procedure, and the liquefaction settlement will follow the Juang et al. (2013) procedure. With procedures incorporated into CPTLiquefY, it will be able to complete the full performance based liquefaction analysis. Once complete, the program will generate hazard curves for each hazard for a range of probability of exceedance at each soil layer that is susceptible to liquefaction.
[bookmark: _Toc464204298]3.4.2 USGS Offline Tool
Soon CPTLiquefY will no longer have go online to retrieve deaggregation data, but rather run a deaggregation from the desktop. For any probabilistic calculation, CPTLiquefY is currently accessing the USGS deaggregations online, with the most recent update being the 2008 deaggregation. USGS is currently working to put out the 2014 deaggregation update, but in an offline format. This offline format will allow the user to access the 2014 deaggregations (and the deaggregations of previous years) from their own machine, without going online. Integrating this into CPTLiquefY it will allow much faster calculations, as well as remove the dependency on internet access. A beta version is currently being applied to CPTLiquefY to ensure compatibility, with the goal of applying the full USGS 2014 deaggregation update to the program itself.


[bookmark: _Toc273506440][bookmark: _Toc464204299]  CONCLUSIONS
[bookmark: _Toc273506441][bookmark: _Toc464204300]  Summary
The purpose of this phase of research being performed is to develop a full performance-based probabilistic earthquake hazard analysis tool which does computations based on CPT data. To accomplish this goal, framework from a similar project based on the SPT was followed, but modified to incorporate the CPT. The objective of this report was to discuss progress that has been made in the research of liquefaction procedures with the CPT being used, and the development of the full performance-based tool, CPTLiquefY.
[bookmark: _Toc259781296][bookmark: _Toc263867785][bookmark: _Toc464204301]  Progress and Challenges
Procedures from Kramer and Mayfield (2007), Robertson and Wride (1998) , Robertson (2009), as well as others were followed to begin the performance-based calculations using the CPT. CPTLiquefY currently has the ability to run CRR and pseudo-probabilistic calculations of CSR and FSL. Liquefaction triggering, lateral spread displacement, and liquefaction settlement calculations are in process of being integrated into the tool.
The current CRR calculation run by CPTLiquefY has been compared to those of CLiq. The CRR calculation was found to match in 99% of the soil layers. Current work is being done to determine discrepancies between CPTLiquefY and CLiq. Validation of pseudo-probabilistic calculations are currently being analyzed. Correspondence with CLiq developers is occurring to determine adjustments that need to be made.  
[bookmark: _Toc464204302]  Future Work
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Integration of the USGS 2014 deaggregation update is an upcoming task. This update will allow deaggregations to be accessed without accessing the internet, increasing speed of calculation, as well as convenience in not relying on internet connection. Full performance-based calculations of liquefaction triggering, lateral displacement and liquefaction settlement are the next additions to CPTLiquefY. These future additions are planned to be completed by the end of Quarter 2.
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Fig. 1. Relationship between maximum cyclic shear strain and factor
of safety for different relative densities D, for clean sands [based on
data from Ishihara and Yoshimine (1992) and Sced (1979)]
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Procedure for the evaluation of solliquefaction resistance (all solls), Robertson (2010)

Calcuation of soil resistance against liquefaction is performed according 1o the Robertson & Wride (1998) procedure. This
procedure used i the software, sightly differs from the one originaly published in NCEER-97-0022 (Proceecings of the NCEER
Workshop on Evaluation of Liquefaction Resistance of Solis). The revised procedure is presented below in the form of
flowcharti:

cpr
G i Ove, v, = 1 atm
all same unis s pa

¥

Initialstress exponent: n = 1.0; Calculate Qu Fy ke

7=0381(7,)+ 04 s["‘" ]70 15
».

ns10

Herate until change in n, An < 0.01

s

e

<100

1. =[347-1080, ) +(122410gF ¥

IFI < 164, Ko
When 1.64<1.<260
Ko~ 55810 - 0.403 1 21,63 17 + 33,751, - 17.88)
I 164 < L < 2.36 ANDF, <0.5%, set Ke = 1.0

0530, K,

* P Robertson, 2008, "Perfortance based eathauake design sing the CPT”, Keynote Lectre, Interations Gonfrence on
Performance-based Design n Earthauake Geotechnical Engineeing —fom case history o practc, 15-Tokyo, Jne 2009




