TRANSPORTATION POOLED FUND PROGRAM QUARTERLY PROGRESS REPORT

Lead Agency (FHWA or State DOT): ____Kansas DOT_____

INSTRUCTIONS:

Project Managers and/or research project investigators should complete a quarterly progress report for each calendar quarter during which the projects are active. Please provide a project schedule status of the research activities tied to each task that is defined in the proposal; a percentage completion of each task; a concise discussion (2 or 3 sentences) of the current status, including accomplishments and problems encountered, if any. List all tasks, even if no work was done during this period.

Transportation Pooled Fund Program Project #		Transportation Pooled Fund Program - Report Period:		
TPF-5(328)		□Quarter 1 (January 1 – March 31)		
		Quarter 2 (April 1 –	June 30)	
		⊠Quarter 3 (July 1 – S	September 30)	
		Quarter 4 (October	1 – December 31)	
Project Title: Strain-based Fatigue Crack Monitoring of St	teel Bridges	using Wireless Elast	omeric Skin Sensors	
Project Manager: Susan Barker, P.E. Phone: (785) 291-3847 E-mail: SusanB@ksdot.org				
Project Investigator: Li Jian Phone: 785-864-6850 E-mail: jianli@ku.edu				
Lead Agency Project ID: C	Other Project	t ID (i.e., contract #):	Project Start Date:	
RE-0699-01			9/2015	
•	Current Proje 3/31/2018	ect End Date:	Number of Extensions: N.A.	
			1	

Project schedule status:

$oxtimes$ On schedule \Box On revised schedule	☐ Ahead of schedule	Behind schedule
--	---------------------	-----------------

Overall Project Statistics:

Total Project Budget	Total Cost to Date for Project	Total Percentage of Work Completed	
\$405,000	\$ 98,890.09	33%	

Quarterly Project Statistics:

Total Project Expenses	Total Amount of Funds	Percentage of Work Completed	
This Quarter	Expended This Quarter	This Quarter	
\$ 32,101.57	\$ 32,101.57	8%	

Project Description:

ISU Progress:

The main objective of this proposed research is to provide state DOTs a practical and cost-effective long-term fatigue crack monitoring methodology using a wireless elastomeric skin sensor network. This research is intended to demonstrate the value-added of fatigue crack monitoring of steel bridges using wireless skin sensors over the traditional bridge inspection.

Progress this Quarter (includes meetings, work plan status, contract status, significant progress, etc.):

Table 1 - produced sensors

	00113
	61-6
Under this task, fatigue crack sensors are to be	64
produced with an approximate thickness of 100-200	65
µm to enhance the mechanical robustness under	66
harsh environment. Acceptable range of capacitance is	67
800-1000 pF. The anticipated number of sensors is	68
150 to 200 for the duration of the project. Fabricated	69
sensors are listed in Table 1.	70
KU Progress:	71
KO Flogless.	72
The KU team carried out four tasks during this guarter,	73
including 1) a replicated test of the SEC sensor to	74
investigate the reduced signal amplitude when a lower	75
load is applied for measurement than for generating	76

load is applied for measurement than for generating the crack, as reported in the last quarterly report; 2) an investigation of signal processing strategy for more realistic traffic loading; 3) a numerical methodology to predict the SEC's response with different sizes of sensing area, and 4) experimental test to understand the threshold of stress range for crack detection using the SEC sensor.

UA Progress:

During this quarter, the UA team evaluated the performance of the capacitive strain sensor board when it is used with smaller-size (i.e. 1 in x 1 in) SEC sensors. Although the coverage area of the SEC sensor becomes smaller, the lower nominal capacitance of the mini SEC sensor makes the

		Capacitance	Dielectr	ric Thickness	Resistance
Sensor	Date cast:	(pF)	(mm)	std dev	(kOhm)
61-63		In	fo not ava	ailable	
64	5/8/2016	823	0.162	0.0058	17.8
65	5/8/2016	792	0.168	0.0075	18.3
66	5/8/2016	796	0.163	0.0067	18.0
67	5/8/2016	826	0.157	0.0085	17.5
68	5/8/2016	800	0.165	0.0085	18.2
69	5/8/2016	863	0.144	0.0094	17.4
70	5/8/2016	854	0.168	0.0071	17.2
71	5/8/2016	813	0.152	0.0034	18.2
72	5/8/2016	886	0.153	0.0053	16.9
73	5/8/2016	867	0.150	0.0071	17.4
74	5/8/2016	848	0.156	0.0101	17.7
75	6/14/2016	829	0.158	0.0048	18.2
76	6/14/2016	847	0.151	0.0091	18.2
77	6/14/2016	801	0.162	0.0053	19.7
78	6/14/2016	839	0.151	0.0080	18.8
79	6/14/2016	830	0.147	0.0067	18.9
80	6/14/2016	855	0.156	0.0076	18.3
81	6/14/2016	828	0.159	0.0076	19.3
82	6/15/2016	800	0.160	0.0071	18.9
83	6/15/2016	827	0.151	0.0080	18.5
84	6/15/2016	820	0.155	0.0053	18.6
85	6/15/2016	823	0.147	0.0033	18.2
86	6/15/2016	848	0.150	0.0047	17.4
87	6/16/2016	839	0.159	0.0039	18.6
88	6/16/2016	804	0.154	0.0050	19.8
89	6/16/2016	814	0.161	0.0046	18.8
90	6/16/2016	841	0.153	0.0067	18.3

Wheatstone bridge of the sensor board better balanced, allowing higher gain of signal. Higher gain signals are expected to have less noise and more sensitive to low-level strain signal from structures.

Arizona team has improved the capacitive strain sensor board to be used for grounded configuration of SEC sensor to achieve less noise, and conducted series of shear building tests on the shake table to evaluate the performance.

Anticipated work next quarter:

ISU: The objective of the next quarter is to produce 45 additional sensors, for a total of 105 sensors. The production of sensors will continue until KU provides results from testing, which could lead to additional optimization (Task 2). Technical support (Task 3) is being provided to KU on a continuous basis, as well as discussion and feedback (Task 4).

KU: KU team will continue to finish the threshold test in the next quarter, and experimentally verify the proposed data processing strategy under more realistic traffic loading.

UA: In the next quarter, the University of Arizona team will focus on the prototype design of the improved capacitive strain sensor board for the grounded SEC configuration and the interface board to be used with the wireless sensor platform.

Significant Results:

Part one: Fatigue crack detection with the SEC sensor

The KU team performed four tasks in this quarter, including a replicated experimental test of the SEC sensor; an investigation on more realistic traffic loads; a numerical simulation for predicting the sensor's response under different sensing sizes, and a threshold test of the sensor.

The first task is the replicated test. The purpose of this test is to confirm the phenomenon observed in the previous test. Last quarter, the sensor was tested on a compact specimen with different stress ratios. The sensor's ability of crack monitoring is represented in terms of the damage index vs. crack length. In the result, we found an outlier when R = 0.1. The test was repeated to confirm the occurrence of the outlier when R is 0.1 during measurement, which is lower than R = 0.6 for propagating the crack.

The replicated test was performed using the same loading protocol as the one in the last quarter. Fig. 1 shows the loading protocol, where the crack was generated under a higher stress ratio (R = 0.6). During the test, the actuator was paused under each 1/16 in. of crack growth, and data were collected using three different levels of stress ratio (R = 0.1, 0.4, and 0.6).

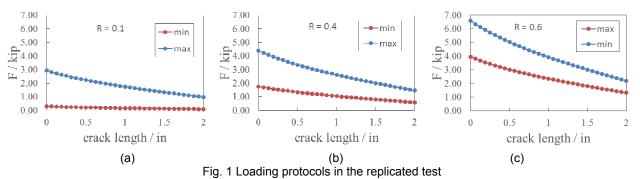
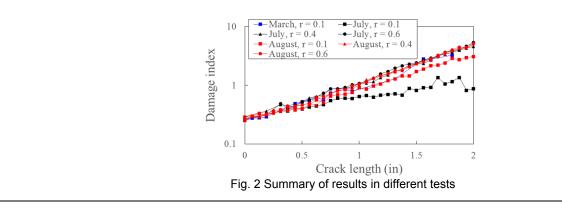



Fig. 2 summarizes the results of the replicated test and compares the new data with old test results. The blue line is the test result in March, where both the crack propagation and data collection were conducted using R = 0.1; the black lines are the results in August (last quarter), where an outlier is found when R = 0.1; the red lines are the replicated test results.

As shown in Fig. 2, most test results fit in a single straight line, indicating the sensor is able to monitor the crack propagation by showing consistent increase of the damage index. However, two outliers can be found in the figure, one from the original test in August and the other from the replicated test in this quarter. It confirms that the sensor produces lower damage index under a lower stress ration (R = 0.1) in these two tests. A possible explanation is the SEC experienced plastic deformation within the crack region under R = 0.6. When the load ratio is lowered, the sensor within the crack region is not able to return to its original size, leading to lower signal output at the loading frequency.

The second task of the KU team is investigation of SEC sensor under realistic traffic load. So far, periodic sine waves have been used in the loading protocols. To implement the SEC sensor to steel bridges, the sensor's crack detection ability needs to be verified under a more complex traffic load. Typically, a realistic traffic load would include a series of cycles caused by vehicles with different weights and speeds, leading to different peak-to-peak amplitude and duration of each cycle.

A revised damage index is proposed for more realistic traffic loads, as shown below:

∆th

damage index =
$$\sqrt{PSD_{SEC}} / \sqrt{PSD_{Load}}$$
 (Equation 1)

0.72

0.98

In which PSD_{SEC} is the power spectrum density (PSD) of the sensor's measurement, and PSD_{Load} is the PSD of the excitation load, which, in practical applications, can be represented by a sensor reading from uncracked region. The revised damage index is now looking at a particular frequency range, instead of one single frequency in the previous approach.

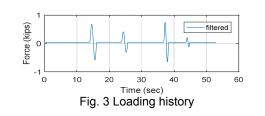
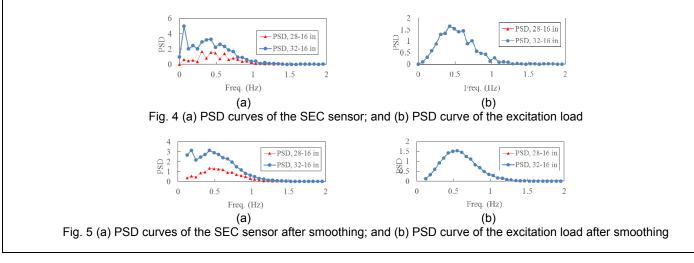

A preliminary experimental verification is conducted. A new loading protocol is created as shown in Table 1, which consists of four loading cycles. Each cycle has a different peak-to-peak amplitude and duration/fregency, simulating a different weight and speed of vehicle. Fig. 3 shows the time history of the excitation load.

Table 1 A new loading protocol for traffic load investigation			
Cycle	Peak-to-peak	Natural frequencies	
-	amplitude (Kips)	(Hz)	
1 st	0.52	0.5	
2 nd	0.3	0.55	
3rd	0.59	0.72	


0.59

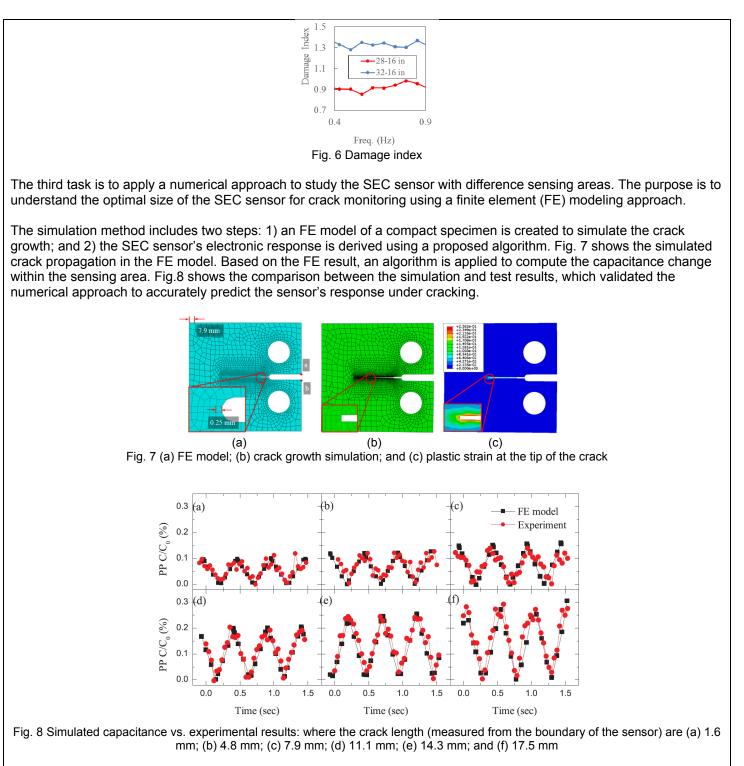
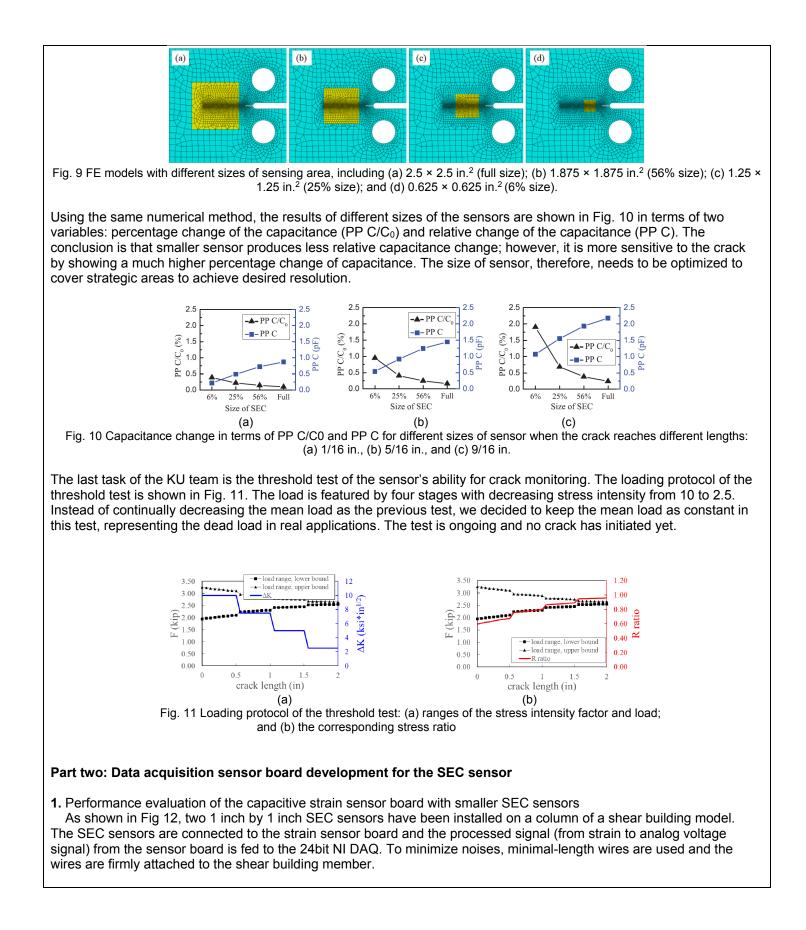
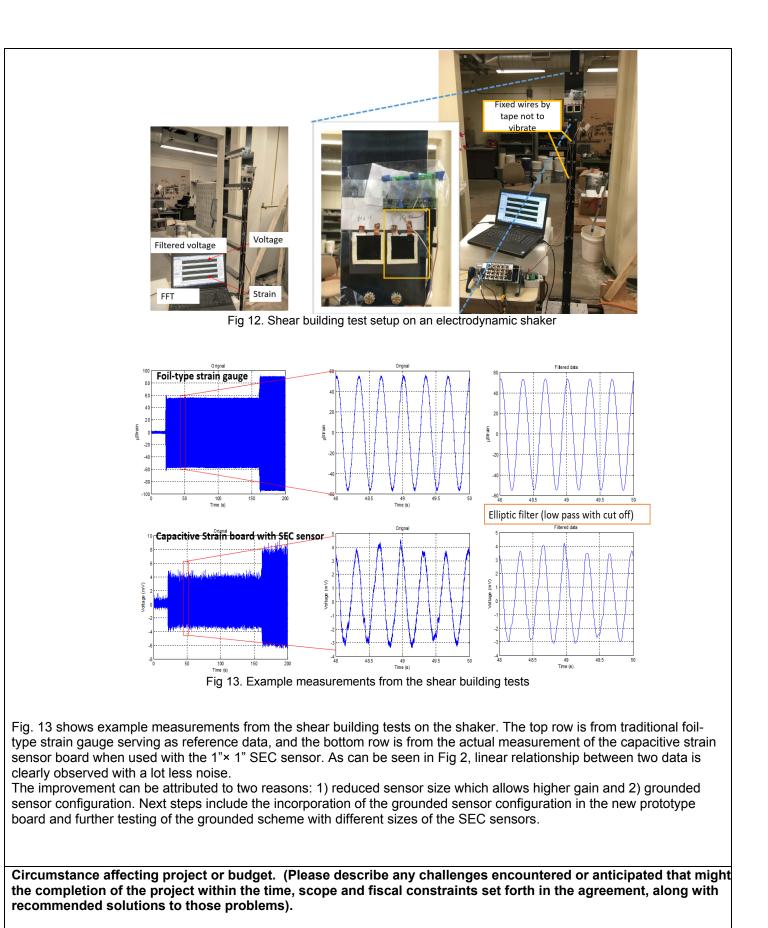

0.15

Table 1. A new leading protocol for traffic lead investigation




The aforementioned loading protocol has been applied to the compact specimen when the crack length reached 28/16 in and 32/16 in, respectively. Both SEC sensor's measurement and load measurement were collected. Then, PSD of these measurements are obtained, as shown in Fig.4. An averaging filter is applied to smooth these PSD curves (Fig. 5). Finally, based on Equation 1, the damage index can be computed for the frequency range where the PSD peak locates. The result in Fig. 6 clearly shows that the damage index under 32/16 in crack length is larger than 28/16 in crack length. verifying the sensor's ability to monitor crack growth under a more realistic traffic load.

Further FE analysis was carried out for different sensor sizes. As shown in Fig. 9, four different sizes of the sensor are investigated. Fig. 9a shows the standard size of the SEC sensor, which is the size used in current experimental tests, as well as two smaller sizes.

None.