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Executive Summary 
 

This is a “how-to” guidebook for states that are developing jurisdiction-specific safety performance 
functions (SPFs).  The guidebook discusses the issues associated with the development of jurisdiction-
specific SPFs and provides a step-by-step procedure that states can use to develop jurisdiction-specific 
SPFs. 

The guidebook starts with a brief overview of other documents being developed by FHWA and NCHRP to 
facilitate the implementation of the HSM.  This is followed by a brief discussion of “What are SPFs”.  This 
is then followed by a discussion on how SPFs are used for different applications, i.e., network screening, 
project level analysis, and determining the safety effect of improvements – examples are provided to 
illustrate these three applications.   

Next, there is a discussion of the statistical issues associated with the development of jurisdiction-
specific SPFs.  This section was written for readers with more than a basic understanding of statistics. 
We feel that such a discussion is essential and serves as a useful introduction to the next section that 
discusses the steps involved in developing SPFs.  The following statistical issues are discussed: 

• Overdispersion 
• Selection of Explanatory Variables 
• Functional form of the Model and the Explanatory Variables 
• Overfitting of SPFs 
• Correlation among Explanatory Variables 
• Homogenous Segments and Aggregation 
• Presence of Outliers 
• Endogenous Explanatory Variables 
• Estimation of SPFs for Different Crash Types and Severities 
• Goodness of Fit 

This is followed by a step-by-step approach that can be used to develop jurisdiction-specific SPFs.  The 
steps are presented in the context of the purpose (or application) of the SPF, i.e., network screening, 
project level analysis, and determining the safety effect of improvements.  The following steps are 
discussed: 

• Step 1 – Determine use of SPF  
• Step 2 – Identify facility type 
• Step 3 – Compile necessary data 
• Step 4 – Prepare and cleanup database 
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• Step 5 – Develop the SPF 
• Step 6 – Develop the SPF for the base condition 
• Step 7 – Develop CMFs for specific treatments 
• Step 8 – Document the SPFs 

Recent developments in SPF development are discussed next.  The following topics are discussed: 

• Variance of Crash Estimates Obtained from SPFs 
• Temporal and Spatial Correlation 
• Other Model Forms 
• Generalized Additive Models 
• Random-parameters Models 
• Bayesian Estimation Methods 

A brief overview of software tools is provided in the last section.  The guidebook concludes with a list of 
references. 
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1. Background and Context 
 

This is a “how-to” guidebook for states that are developing jurisdiction-specific safety performance 
functions (SPFs).  The guidebook discusses the issues associated with the development of jurisdiction-
specific SPFs and provides a step-by-step procedure that states can use to develop jurisdiction-specific 
SPFs. 

This document is part of a series of documents currently being developed by the Federal Highway 
Administration (FHWA) and the National Cooperative Highway Research Program (NCHRP) to facilitate 
the implementation of the HSM by the States.  The other documents being currently prepared as part of 
the series include: 

• Safety Performance Function Development Guide: Developing Jurisdiction-Specific SPFs 
(hereafter referred to as the SPF Decision Guide) (Srinivasan et al., 2013).  This guidebook is 
intended to provide guidance on whether an agency should calibrate the safety performance 
functions (SPFs) from the Highway Safety Manual (HSM) (AASHTO, 2010) or develop jurisdiction-
specific SPFs.  The guidebook discusses the factors that need to be considered while making the 
decision.  It is intended to be of use to practitioners at state and local agencies and to 
researchers. 

• User’s Guide to Develop Highway Safety Manual Safety Performance Function Calibration 
Factors (hereafter referred to as the SPF Calibration Guide).  This guide is being developed 
through NCHRP Project 20-7 (Task 332) by Dr. Geni Bahar of NAVIGATS.  This document will 
provide guidelines to assist an agency in developing statistically sound calibration factors.  This 
document will also provide guidance for assessing the quality of a calibration factor after it is 
developed. 

• SPF Needs Assessment: This project, led by Volpe did a needs and alternatives assessment to 
determine the set of potential resources that would best satisfy the future needs of the states 
using SPFs.  Part of this project involved conducting interviews with selected States to better 
understand their needs and requirements regarding SPFs.  Further information about this effort 
can be obtained from http://safety.fhwa.dot.gov/rsdp/. 

Organization of this Document 

The next section of this document gives a brief discussion of “What are SPFs”.  This is followed by a 
discussion on how SPFs are used.  Next, there is a discussion of the statistical issues associated with the 
development of jurisdiction-specific SPFs.  This is followed by a step-by-step approach that can be used 
to develop jurisdiction-specific SPFs.  Recent developments in SPF development are discussed next 
followed by a brief overview of statistical tools. The report concludes with a list of references. 

http://safety.fhwa.dot.gov/rsdp/
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2. What Are SPFs? 
 

SPFs are crash prediction models.  They are essentially mathematical equations that relate the number 
of crashes of different types to site characteristics.  These models always include traffic volume (AADT) 
but may also include site characteristics such as lane width, shoulder width, radius/degree of horizontal 
curves, presence of turn lanes (at intersections), and traffic control (at intersections).  One example is 
the following SPF from Safety Analyst for predicting the total number of crashes on rural multilane 
divided roads: 

66.005.5 )(AADTeLP ××= −  

Where: 

P is the total number of crashes in 1 year on a segment of length L.   

The primary purpose of this SPF from Safety Analyst is to assist an agency in their network screening 
process, i.e., to identify sites that may benefit from a safety treatment.  This is a relatively simple SPF 
where the predicted number of crashes per mile is a function of just AADT.  On the other hand, Bauer 
and Harwood (2012) provide a more complex prediction model for fatal and injury crashes on rural two 
lane roads: 

𝑁𝐹𝐼 = exp �𝑏0 + 𝑏1 ln(𝐴𝐴𝐷𝑇) +  𝑏2𝐺 + 𝑏3 ln �2 ×
5730
𝑅

� × 𝐼𝐻𝐶 + 𝑏4 �
1
𝑅
� �

1
𝐿𝐶
� × 𝐼𝐻𝐶� 

Where: 

 NFI = fatal-and-injury crashes/mi/yr 
 AADT = veh/day 
 G = absolute value of percent grade; 0 percent for level tangents; ≥ 1 percent 

otherwise 
 R = curve radius (ft); missing for tangents 
 IHC = horizontal curve indicator: 1 for horizontal curves; 0 otherwise 
 LC = horizontal curve length (mi); not applicable for tangents 
 ln = natural logarithm function 
 b0,…,b4 = regression coefficients 
 

This prediction model was estimated using data from Washington.  The goal of this model was to 
examine the safety aspects of horizontal and vertical curvature.  
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3. How Are SPFs Used? 
 

The Highway Safety Manual (HSM) outlines at least three different ways in which SPFs can be used by 
jurisdictions to make better safety decisions.  One application is to use SPFs as part of network screening 
to identify sections that may have the best potential for improvements (i.e., Part B of the HSM). The 
second application is to use SPFs to determine the safety impacts of design changes at the project level 
(i.e., Part C of the HSM). The third application is the use of SPFs in determining the safety effects of 
engineering treatments.  Following is a brief discussion of these applications. 

Network Screening Level: Identifying Locations with Promise 

SPFs may be used to identify locations with promise, which are locations that may benefit the most from 
a safety treatment.  This application is also referred to as network screening.  Here, SPFs can be used to 
estimate the predicted number of crashes for a particular facility type with a particular traffic volume.  
SPFs that could be used for network screening are available in Safety Analyst, a set of software tools that 
can be used by state and local agencies for safety management.  An example of how to apply an SPF in 
networks screening is shown here. 

Example calculation for using an SPF in network screening 
Suppose the goal is to determine if a section (with the following characteristics) should be selected as a 
“site with promise” for further review as part of network screening: 

• Roadway type: Rural 2-lane road 
• Section Length = 2 mi 
• Average AADT in the last 3 years = 5,000 vpd 
• Total crashes in 3 years = 31 

The first step is to select the appropriate SPF for this roadway type.  One example is the following SPF 
from Safety Analyst for predicting total crashes on rural two- lane roads: 

53.063.3 )(AADTeLCP ×××= − ;   k = 0.50 

where P is the total number of crashes in 1 year on a segment of length L, C is the calibration factor, and 
k is the overdispersion parameter of the SPF1.   

This SPF was estimated using HSIS data from the state of Ohio.  Estimating the calibration factor C 
through the calibration process is necessary because “the general level of crash frequencies may vary 
substantially from one jurisdiction to another for a variety of reasons including crash reporting 
thresholds and crash reporting system procedures” (HSM, page C-18).  Within Safety Analyst, calibration 
is done automatically (as discussed in Section 1, the SPF Calibration Guide, being developed under 

                                                            
1 Here, the overdispersion parameter k is a constant. k can also be estimated on a per-mile basis.  Further 
discussion of the overdispersion parameter and other statistical issues associated with SPF development are 
provided in Section 4. 
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NCHRP Project 20-07, will provide guidelines to assist an agency in developing statistically sound 
calibration factors).   

For this example, let us assume that the calibration factor is 1.1.  Since 3 years of data are available for 
network screening, the predicted number of crashes (P) in 3 years using the SPF is: 

53.063.3 )5000(21.13 ××××= −eP = 15.98 

Part B of the HSM discusses different ways in which the predicted SPF value can be used in network 
screening.  One approach is to rank sites in decreasing order based on the difference between the 
observed number of crashes (31) and the predicted number of crashes from the SPF (15.98) – this is 
done in the level of service method.  

Another approach is to estimate the expected number of crashes in the section while accounting for 
possible bias due to regression to the mean (RTM).  One way to do this is to use the empirical Bayes (EB) 
method.  To implement the EB, the first step is to estimate the weight, w1, as follows: 

98.155.01
1

1
1

1 ×+
=

×+
=

Pk
w =0.111 

The EB estimated number of crashes is then calculated as: 

)1( 11 wAwPE −×+×=  

where A is the observed number of crashes for the section under consideration.  In our case A = 31, and 
thus E becomes: 

33.29)111.01(31111.098.15 =−×+×=E  

Once the EB estimate of the expected crashes is obtained, sites could be ranked based on the expected 
crashes per mile or the difference between the expected and predicted number of crashes per mile.  
Further discussion of the use of SPFs in network screening can be found in Part B of the HSM. 

Instead of calibrating existing SPFs, an agency may choose to develop their own SPFs in order to improve 
the accuracy of the predictions.  The advantages of jurisdiction-specific SPFs are also discussed in 
previous studies (e.g., Lu et al., 2012; Sacci et al., 2012) and in the HSM.  As discussed earlier, this 
guidebook provides guidance for agencies who want to estimate jurisdiction-specific SPFs.  This 
guidance is available from Sections 4, 5, 6, and 7 of this guidebook. 

Project Level: Determining the Expected Safety Impacts of Design 
Changes 

When SPFs are used in project-level decision making, they are used for estimating the average 
predicted/expected crash frequency for existing conditions, alternatives to existing conditions, or 
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proposed new roadways.  Part C of the HSM provides methods for estimating the average 
predicted/expected crash frequency of a site or project.  

The HSM provides prediction methods for the following road types: 

Roadway Segments 
• Rural two-lane roads 
• Rural four-lane divided and undivided roads 
• Two-lane, three-lane (with center TWLTL), four-lane divided, four-lane undivided, and five-lane 

roads (with center TWLTL) in urban and suburban arterials 

Intersection Types 
• Three- and four-leg minor road stop-controlled and four-leg signalized intersections on rural 

two-lane roads 
• Three- and four-leg minor road stop-controlled and four-leg signalized intersections on rural 

four-lane roads 
• Three- and four-leg minor road stop-controlled and signalized intersections on urban and 

suburban arterials 
 

The predictive method in Part C of the HSM is an 18-step procedure to estimate the average expected 
crash frequency at a site. A site in the HSM is defined as an intersection or a homogenous roadway 
segment. The predictive method utilizes SPFs that were developed from observed crash data for a 
number of similar sites. The method uses three components to predict the average expected crash 
frequency at a site:  

(1) the base model, called a safety performance function (SPF);  

(2) the crash modification factors (CMFs) to adjust the estimate for additional site specific 
conditions, that may be different from the base conditions; and  

(3) a calibration factor to adjust the estimate for accuracy in the state or local area (as 
mentioned earlier, the procedure to estimate a calibration factor is provided in the Appendix to 
Part C of the HSM and will be further discussed in the upcoming SPF Calibration Guide).  

These components are combined in the general form below: 

Npredicted = Nspf x (CMF1x x CMF2x x … x CMFyz) x Cx      (3.1) 
 
where: 

Npredicted = predicted average crash frequency for a specific year for site type x; 
Nspf = predicted average crash frequency determined for base conditions of the SPF developed 
for site type x; 
CMFnx = crash modification factors specific to SPF for site type x; and 
Cx = calibration factor to adjust SPF for local conditions for site type x. 
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As indicated, each predictive model is specific to a facility or site type (e.g., urban four-lane divided 
segments) and a specific year.  It should be noted that the predictive method can be used to predict 
crashes for past years based on observed AADT or for future years based on forecast AADT. 

The steps for the predictive method are presented in detail in Section C.5. of Volume 2 of the HSM. In 
short, they are: 

• Decide which facilities and roads will be used in the predictive process and for what period of 
time (Steps 1 and 2) 

• Identify homogenous sites and assemble geometric conditions, crash data, and AADT data for 
the sites to be used (Steps 3 through 8) 

• Apply the safety performance function, any applicable crash modification factors, and a 
calibration factor if available (Steps 9 through 11) 

• Apply site- or project-specific empirical Bayes method if applicable (Steps 12 through 15) 
• Repeat for all sites and years, sum, and compare results (Steps 16 through 18) 

An example of how to apply an SPF, CMFs, and calibration factor for the predictive method is shown 
next. 

Example calculation of average expected crash frequency using HSM predictive method 
This example demonstrates how to use the HSM predictive method to calculate the expected average 
crash frequency for a rural four-lane divided roadway segment with the following characteristics (this 
example was taken from Section 2 of Srinivasan and Carter, 2011): 

• 1.0-mi segment 
• 12-ft lane  
• 6-ft paved right shoulder  
• AADT of 15,000 vpd 
• 80-ft traversable median with no barrier 
• No roadway lighting 
• No automated enforcement 

All tables, equations, and page numbers in the example below refer to Chapter 11 of the HSM. 

Steps 1 through 8 
Since this example is directed at applying the predictive method to a single pre-selected segment with 
existing data, steps 1 through 8 are not necessary. 

Step 9: Apply the appropriate safety performance function (SPF) 
The SPF for a rural divided roadway segment is presented in Equation 11-9 (p. 11-18) in the HSM with 
coefficients listed in Table 11-5. 

Nspf rd = e (a + b x ln(AADT) + ln(L))  
  
where:  

Nspf rd = base total number of roadway segment crashes per year; 
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AADT  = annual average daily traffic (vehicles/day) on roadway segment; 
L = length of roadway segment; and  
a, b = regression coefficients (appropriate values to be selected from Table 11-5) 

 
Using the SPF for this example yields the following prediction: 
 
Nspf rd  = e (-9.025 + 1.049 x ln(15000) + ln(1.0)) = 2.892 crashes per year 

 

Step 10: Apply the appropriate crash modification factors 
The HSM procedure for rural divided roadways involves five CMFs. 

Lane Width (CMF1rd) 
Based on Table 11-16 for a lane width of 12 feet, CMF1rd = 1.0. 

Right Shoulder Width (CMF2rd) 
Based on Table 11-17 for a right shoulder width of 6 feet, CMF2rd = 1.04. 
 
Median Width (CMF3rd) 
Based on Table 11-18 for a median width of 80 feet, CMF3rd = 0.95. 
 
Lighting (CMF4rd) 
Since there is no roadway lighting at this location, CMF4rd = 1.0 (the base condition for CMF4rd is absence 
of lighting). 
 
Automated Enforcement (CMF5rd) 
Since there is no automated enforcement at this location, CMF5rd = 1.0 (the base condition for CMF5rd is 
absence of automated enforcement). 
 
Combined CMF 
The combined CMF value is calculated below. 
CMFcomb = 1.0 x 1.04 x 0.95 x 1.0 x 1.0 = 0.99 

Step 11: Apply a calibration factor if available 
For this example, the calibration factor (Cr) for the local area is assumed to be 0.96. 

Calculation of Average Expected Crash Frequency 

Npredicted rd  = Nspf rd x CMFcomb x Cr  
  = 2.892 x 0.99 x 0.96 = 2.75 crashes per mile per year 
 

As discussed earlier, instead of calibrating existing SPFs, an agency may choose to develop their own 
SPFs in order to improve the accuracy of the predictions.  The HSM indicates that jurisdiction-specific 
SPFs “are likely to enhance the reliability of the Part C predictive method” (HSM, page A-9). 

Appendix A to Part C of the HSM outlines two possible approaches for developing jurisdiction-specific 
SPFs for project level analysis to make use of the Part C prediction methodology.  One option is for the 
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SPF to be developed using only data that represent the base conditions (defined for each SPF in 
Chapters 10, 11, and 12).  However, in many cases, there may not be a sufficient number of sites with 
the specific base conditions to estimate an SPF.  Under those circumstances, SPFs are estimated with “all 
variables that are part of the applicable base-condition definition, but have non-base-condition values”.  
Then, “the initial model should be made applicable to the base conditions by substituting values that 
correspond to those base conditions into the model” (HSM, page A-10).  As discussed earlier, this 
guidebook provides guidance for agencies that want to estimate jurisdiction-specific SPFs. 

Evaluating the Effect of Engineering Treatments 

Researchers commonly conduct safety evaluation studies to determine the effect on crashes (e.g., 
estimate CMFs) from implementing some safety countermeasure.  Observational studies to develop 
CMFs can be broadly classified into before-after studies and cross-sectional studies.  Before-after studies 
include “all techniques by which one may study the safety effect of some change that has been 
implemented on a group of entities (road sections, intersections, drivers, vehicles, neighborhoods, etc.)” 
(Hauer, 1997, p. 2).  On the other hand, cross-sectional studies include those where “one is comparing 
the safety of one group of entities having some common feature (say, STOP controlled intersections) to 
the safety of a different group of entities not having that feature (say, YIELD controlled intersections), in 
order to assess the safety effect of that feature (STOP versus YIELD signs)” (Hauer, 1997, p. 2-3).  Since in 
a typical before-after study, one is dealing with the same roadway unit located in a particular location 
used by probably the same users in both the before and after periods, it is less likely to be prone to 
confounding (Elvik , 2011).  Hauer (2010) discussed the use of before-after and cross-sectional studies to 
estimate CMFs in the setting of a case study, namely railroad crossings where crossbucks were replaced 
by flashers.  Hauer (2010) found that unlike in before-after studies, the results of CMFs estimated from 
cross-sectional studies were not consistent with each other, and concluded that at this time, cross-
sectional regression cannot be relied upon to capture cause and effect, and hence the CMFs from these 
types of studies are not very reliable.  Further discussion of the issues associated with the development 
of CMFs from cross-sectional and before-after studies can be found in Elvik (2011) and Carter et al., 
(2012).  Following is a brief discussion of how SPFs can be used in estimating CMFs from before-after 
and cross-sectional studies. 

Use of SPFs in before after studies 

Many engineering treatments are implemented at locations that may have a higher than normal crash 
count, therefore, before-after studies need to account for potential bias due to RTM.  One way to 
address this bias is to make use of the empirical Bayes (EB) procedure developed by Hauer (1997).  SPFs 
are an integral part of implementing the EB method. 

Following are the steps used to conduct a before-after evaluation using the EB method: 

1. Identify a reference group of sites that are similar to the sites that are treated, but without the 
treatment. 

2. Estimate an SPF using the data from the reference sites 
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3. Estimate the EB expected crashes for the before period of the treatment group by combining 
the observed crashes from the before period of the treatment sites with the predicted crashes 
for the before period based on the SPFs 

4. Estimate the EB expected crashes in the after period of the treatment group (had the treatment 
not been implemented) and the variance of this estimate 

5. Using the observed number of crashes experienced by the treatment sites in the after period 
along with EB expected crashes in the after period (and its variance), estimate the CMF and the 
standard error of the CMF. 

Further discussion of this application can be found in Hauer (1997) and Gross et al. (2010).  An example 
illustrating the use of SPFs in implementing the EB method for before-after evaluation can be found in 
Section 5 of Srinivasan and Carter (2011). 

Estimating CMFs directly from SPFs 

The coefficients of the variables from SPFs can be used to estimate the CMF associated with a particular 
treatment.  For example, suppose the intent is to estimate the CMF for shoulder width based on the 
following SPF which was estimated to predict the number of crashes per mile per year on rural two-lane 
roads in mountainous roads with paved shoulders (Appendix B of Srinivasan and Carter, 2011): 

]0164.0)10000/(4293.0)10000/ln(4414.08727.0exp[ SWAADTAADTY ×−×+×+=  

where AADT is the annual average daily traffic and SW is the width of the paved shoulder, in feet.  If the 
intent is to estimate the CMF of changing the shoulder width from 3 to 6 ft, then the CMF can be 
estimated as the ratio of the predicted number of crashes when the shoulder width is 6 ft to the 
predicted number of crashes when the shoulder width is 3 ft: 

]30164.0)10000/(4293.0)10000/ln(4414.08727.0exp[
]60164.0)10000/(4293.0)10000/ln(4414.08727.0exp[

×−×+×+
×−×+×+

=
AADTAADT
AADTAADTCMF  

This ratio simplifies to: 

952.0)]36(0164.0exp[ =−×−=CMF  
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4. Statistical Issues Associated with the Development of 
Jurisdiction-Specific SPFs 
 

This section provides a discussion of the statistical issues associated with the development of 
jurisdiction-specific SPFs.  This section was written for readers with more than a basic understanding of 
statistics. It assumes that the reader is familiar with the basic principles of modeling and associated 
assumptions in general and most importantly understands how the selection of a group of sites (i.e., 
their characteristics, traffic volumes, and crash experience) affects the estimation and appropriateness 
of an SPF. We feel that such a discussion is essential and serves as a useful introduction to the next 
section that discusses the steps involved in developing SPFs. 

As discussed earlier, SPFs are crash prediction models that relate crash frequency to site characteristics.  
In other words, the dependent variable in the equation is the number of crashes of a specific type.  
Crashes are examples of “count data” and are properly modeled using a specific family of statistical 
models called count data models.  The most popular count data models for rare events are Poisson and 
negative binomial regression models. 

To illustrate the principles of a Poisson regression model, consider the number of crashes occurring per 
year at a site (i.e., roadway segment or intersection) (Washington et al., 2011).  In a Poisson regression 
model, the probability of site i having yi crashes per year is given by: 

!
)exp(

)(
i

y
ii

i y
yP

iλλ ×−
=          (4.1) 

where: iλ  is the Poisson parameter for site i, which is equal to site i’s expected number of crashes per 

year, E(yi).  In Poisson regression models, the intent is to express the expected number of crashes as a 
function of site characteristics.  In other words, )( ii Xf βλ = , where f is a function, Xi is a vector of 

explanatory variables, and β is a vector of estimable parameters (coefficients of Xi).  The most common 

relationship between the explanatory variables and iλ is the following: 

)exp( ii Xβλ =  or ii Xβλ =)ln(         (4.2) 

This relationship is also called a log-linear model.  One reason the log-linear model for counts is popular 
is because it ensures that the Poisson parameter (i.e., expected number of crashes during a time period) 
is always positive.  Another reason is that taking the log on both sides of the equation results in a linear 
combination of the predictor variables (i.e., the Xs) on the right-hand side.  This type of model form 
belongs to a category of models called generalized linear models (GLM).  In a GLM, the regression 
coefficients and their standard error are typically estimated by maximizing the likelihood or log 
likelihood of the parameters for the data observed; this is called estimating by the maximum likelihood 
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method (the well-known monograph by McCullagh and Nelder, 1989, is a standard reference for 
generalized linear models). 

Overdispersion 

The Poisson distribution restricts the mean and variance to be equal, i.e., E(yi) = VAR(yi).  Often, with 
crash data, VAR(yi) > E(yi), leading to overdispersion (there have been a few examples with crash data 
where VAR(yi) < E(yi), leading to underdispersion; interested readers can refer to Lord and Mannering, 
2010, for further discussion of this issue).  One way to account for overdispersion is to model crash 
counts using a negative binomial regression model, which can be written as follows: 

)exp()( iii Xf εβλ ×=          (4.3) 

where iε  is a gamma-distributed disturbance term. 

If a log-linear model is assumed, then 

)exp()exp()exp( iiiii XX εβεβλ +=×=        (4.4) 

By introducing the disturbance term, the variance is now larger than the mean, and can be shown to be: 

2)]([)()( iii yEkyEyVAR ×+=         (4.5) 

This form of the negative binomial regression model has been called as the NB2 model by Cameron and 
Trivedi (1998).  In the above equation, k is the overdispersion parameter.  Some studies (e.g., Hauer et 
al., 2002) prefer to deal with the reciprocal of the overdispersion parameter rather than the 
overdispersion parameter.  If φ  is used to denote the reciprocal of the overdispersion parameter, then 

φ =1/k.  In that case, equation 4.5 can be rewritten as: 

φ

2)]([
)()( i

ii
yE

yEyVAR +=          (4.6) 

If k is zero, then the negative binomial regression model reduces to a Poisson regression model.  As in 
the case of the Poisson regression, the coefficients of Xi can be estimated using standard maximum 
likelihood methods. 

The most common approach is to assume that the overdispersion parameter is a constant.  However, 
when roadway segments are modeled, Hauer (2001) maintains that “if one assumes that the same 
overdispersion parameter applies to all road sections in the data base, then, the maximum likelihood 
estimate of parameters will be unduly influenced by very short road sections and insufficiently 
influenced by long road sections”, and suggested that “a way to avoid both problems is to estimate an 

overdispersion parameter that applies to a unit length of road”.  In other words, 
L
kk 1= , where k1 is the 
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overdispersion parameter for a unit length of road and L is the length of a particular segment.  Note that 
when the reciprocal of the overdispersion parameter is used (instead of k), then L1φφ = .  More 

recently, Cafiso et al. (2010) found the overdispersion parameter to be inversely related to segment 
length for rural two-lane roads.  Alternatively, the overdispersion parameter itself can be modeled as a 
function of site characteristics including section length (e.g., see Miaou and Lord, 2003; Mitra and 
Washington, 2007).   

Selection of Explanatory Variables 

The selection of explanatory (independent) variables is an important step in the development of SPFs.  
The list of explanatory variables may depend on the proposed application of the SPF.  As discussed in 
Srinivasan et al. (2013), for SPFs that are used for network screening, for each facility type, the number 
of crashes for each unit (intersection, segment, or ramp), along with the traffic volume (AADT) 
associated with that unit are required.  For roadway segments and ramps, the segment length will be 
required as well.  For intersections of any type, it is recommended that AADT for both major and minor 
roads be available (there has been some discussion in the highway safety research community on 
whether SPFs for network screening will be significantly improved by including other explanatory 
variables in addition to traffic volume and segment length – Srinivasan et al., (2011) provides some 
discussion on this topic).  The list of roadway, ramp, and intersection types that could be considered is 
available from Appendix A of the SPF Decision Guide (Srinivasan et al., 2013).  If SPFs are to be 
estimated for a particular crash type or severity, the number of crashes by severity and type will be 
needed for each unit. 

With respect to project-level SPFs, Appendix A to Part C of the HSM outlines two possible approaches 
for developing SPFs.  Following is a quote from page A-10 of the HSM: 

“Two types of data sets may be used for SPF development.  First, SPFs may be developed using 
only data that represent the base conditions, which are defined for each SPF in Chapter 10, 11, 
and 12.  Second, it is also acceptable to develop models using data for a broader set of conditions 
than the base condition.  In this approach, all variables that are part of the applicable base-
condition definition, but have non-base-condition values, should be included in the initial model.  
Then, the initial model should be made applicable to the base conditions by substituting values 
that correspond to those base conditions into the model”. 

With either approach, detailed information is necessary about the site characteristics in addition to 
traffic volume so that it can be determined whether the characteristics of the site correspond to the 
base condition.  A good starting point is the list of variables that are considered required by the HSM for 
calibrating the Part C prediction models.  This list for the different facility types is available in the 
Appendix to Part C of the HSM. 

In practice, it may not be possible to include all the relevant independent variables that could potentially 
have an impact on safety.  If the independent variables that are not included in the model are correlated 
with independent variables that are in a model, then it can lead to omitted variable bias.  For example, if 
the intent is to estimate the safety effects of chevrons on horizontal curves and the curves with 
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chevrons also have the worst roadside hazards, but the information on the roadside hazards is not 
included in the model (because it was not collected), then a prediction model may incorrectly conclude 
that chevrons are associated with an increase in crashes.  For this reason, Harwood et al., (2000) 
indicate that “regression models are very accurate tools for predicting the expected total accident 
experience for a location or class of locations, but they have not proved satisfactory in isolating the 
effects of individual geometric or traffic control features”.  However, there are situations where SPFs 
may be the only reasonable option available to determine the safety effect of an individual geometric or 
traffic control characteristics.  For further discussion of the use of SPFs for determining the safety of 
individual geometric or traffic control characteristic, readers are referred to Carter et al. (2012). 

Functional Form of the Model and the Explanatory Variables 

Relationship between Traffic Volume and Crashes 

Since traffic volume is usually the most important contributor to crashes, the relationship between 
traffic volume and crashes is discussed first.  Let us assume that an SPF predicts the number of crashes 
for a roadway segment for the purpose of network screening and includes segment length and the 
annual average daily traffic (AADT).  The most common form that has been used for this purpose is the 
following: 

ba AADTeLAADTbaLY )()]ln(exp[ ××=×+×=       (4.7) 

where: Y is the expected number of crashes on a segment, L is the length of the segment, and a and b 
are regression coefficients to be estimated.  This type of model is sometimes called a power function.  
This form is common because it is simple and also satisfies the boundary condition that if there is no 
traffic (i.e., if AADT is zero), then the expected number of crashes should be zero.  In fact, the SPFs in 
Safety Analyst for roadway segments and ramps use this form. 

In the power model, it is generally accepted that b is positive since the number of crashes are expected 
to increase with increase in traffic volume.  Depending on whether b is less than 1, equal to 1, or greater 
than 1, Figure 4.1 shows the shape of the relationship between the expected number of crashes and 
traffic volume.   
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Figure 4.1: Shape of the Relationship 
between Crash Frequency and AADT as a 
Function of the Power, b 
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In discussing the underlying relationship between crash frequency and traffic volume, Kononov et al., 
(2011) state that the power model may not be the most appropriate functional form.  As a starting 
point, Kononov et al. (2011) used neural networks (NN) to explore the underlying relationship between 
crash frequency and AADT using data from urban freeways from California and Colorado.  The use of NN 
seemed to indicate that the relationship could be sigmoidal (Figure 4.2). 

 

 

 

 

 

 

 

 

 

Kononov et al. (2011) then used the parameters from the Highway Capacity Manual (HCM) to explain 
the underlying relationship, by dividing the graph into three zones: sub-critical, transitional, and super 
critical zones.  Kononov et al. (2011) maintain that in the sub-critical zone (i.e., when freeways are not 
congested and traffic density is low), crashes increase gradually with AADT.  However, in the transition 
zone, the crashes start increasing rapidly.  Finally, in the super-critical zone, crashes still increase with 
AADT, but only gradually.  Based on the HCM, Kononov et al. (2011) found that when the AADT 
increases from the sub-critical to the transition zone, operating speeds remain almost the same, but 
with a significant increase in traffic density, and this may be a possible reason for the rapid increase in 
crashes with AADT in the transition zone.  In the super-critical zone, speeds start dropping, possibly 
leading to only a gradual increase in crashes with AADT. 

Hauer (2004) argued that the simplistic power function (discussed earlier) may not be appropriate, 
especially for single vehicle crashes.  The probability of a single-vehicle crash has been shown to 
decrease with increasing traffic volume (e.g., see Qin et al., 2006).  Hence a functional from that allows a 
peak/valley and a point of inflection may be more appropriate for modeling the relationship between 
single-vehicle crashes and traffic volume – based on Figure 4.1, the simple power model from equation 
4.7 does not allow a peak/valley or a point of inflection.  

Sub-critical zone 

Transition  
zone 

Super-critical 
zone 

AADT 

Y 
Figure 4.2: Sigmoidal Relationship 
between Crash Frequency and Traffic 
Volume (Kononov et al., 2011) 
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Relationship between Segment Length and Crashes 
In equations 4.7, segment length is included as a multiplier, i.e., if N crashes are expected to occur on 1 
mi of a roadway, one would expect 2N crashes to occur on an identical roadway segment that is 2 mi 
long.  However, if instead of assuming it as a simple multiplier, segment length could be included as 
another independent variable with its own coefficient that would be estimated along with the other 
coefficients.  For example, equation 4.7 could be rewritten as: 

bca AADTLeY )(××=          (4.8) 

where c is a parameter to be estimated as part of the modeling process.  If the estimate of c is close to 1, 
then equation 4.8 reduces to equation 4.7.  However, in many situations, c may be significantly different 
from 1.  There may be many reasons for this situation.  For example, shorter segment lengths may be 
associated with corridors where there are more driveways per mile and intersections are closer 
together, and if these variables are not included in the model, then segment length may become a 
surrogate for variables that were omitted from the model. 

Identifying the Relevant Individual Explanatory Variables and Determining the Most 
Appropriate Functional Form 

There are two interrelated components to defining the relationship between crash counts and the 
explanatory variables: one is the choice of variables (and interactions, if necessary) from the many 
available and the other is the mathematical equation or functional form that relates the two. This aspect 
of modeling is undoubtedly the most challenging part in developing SPFs that are not merely a function 
of traffic volume and segment length.   Before going into a discussion of approaches for identifying the 
explanatory variables and the most appropriate functional form, following is a discussion of interaction 
and its importance in the modeling process. 

What is Interaction? 
Interaction occurs when the effect of an independent variable on crash frequency depends on the 
values of another independent variable.  To illustrate, first consider an SPF that includes segment length, 
AADT, lane width, and shoulder width, without interaction terms: 

])ln(exp[ SWdLWcAADTbaLY ×+×+×+×=       (4.9) 

where: LW is the lane width, SW is the shoulder width, and a, b, c, and d, are regression parameters to 
be estimated as part of the modeling process.  Equation 4.9 can also be written as follows: 

dSWcLWba eeAADTeLY ××××= )(         (4.10) 

If this SPF is used to determine the safety effect of changing from a lane width of LW1 to a lane width of 
LW2, then the CMF for changing a LW1-ft lane to a LW2-ft lane can be calculated as: 

])ln(exp[
])ln(exp[

1

2

SWdLWcAADTbaL
SWdLWcAADTbaLCMF

×+×+×+×
×+×+×+×

=       (4.11) 
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Equation 4.11 simplifies to: 

)](exp[
)exp(
)exp(

12
1

2 LWLWc
LWc
LWcCMF −×=

×
×

=       (4.12) 

The CMF in this case is a function of just the parameter estimate c, LW2, and LW1.  Alternatively, 
consider the following SPF that includes an interaction term between lane and shoulder width: 

])ln(exp[ SWLWeSWdLWcAADTbaLY ××+×+×+×+×=     (4.13) 

where a, b, c, d, and e, are regression parameters to be estimated as part of the modeling process.  
Based on equation 4.13, the CMF of changing from LW1 to LW2 foot lanes will be the following: 

])ln(exp[
])ln(exp[

11

22

SWLWeSWdLWcAADTbaL
SWLWeSWdLWcAADTbaLCMF

××+×+×+×+×
××+×+×+×+×

=    (4.14) 

Equation 4.14 simplifies to: 

)]()exp[(
)exp(
)exp(

12
11

22 SWecLWLW
SWLWeLWc
SWLWeLWcCMF ×+×−=

××+×
××+×

=    (4.15) 

It is clear that the CMF is not only a function of the parameter estimates c and  e and LW2 and LW1, but 
also shoulder width (SW) because of the interaction between lane width and shoulder width shown in 
the SPF in equation 4.13.  In this case, the CMF is a crash modification function, rather than a crash 
modification factor. 

Interaction effects are not commonly found in SPFs probably because there is no easy way to identify 
which interactions are important and how they should be included in a model, unless there is some 
theoretical reason for including certain interactions.  This does not imply that interactions do not exist or 
that they are not important.  In fact, the following SPFs that were estimated for fatal and injury and PDO 
crashes using data from rural two-lane roads in Washington clearly indicate the interaction between 
curve radius and length of horizontal curves (Bauer and Harwood, 2012): 

𝑁𝐹𝐼 = exp �𝑏0 + 𝑏1 ln(𝐴𝐴𝐷𝑇) +  𝑏2𝐺 + 𝑏3 ln �2 ×
5730
𝑅

� × 𝐼𝐻𝐶 + 𝑏4 �
1
𝑅
� �

1
𝐿𝐶
� × 𝐼𝐻𝐶� 

𝑁𝑃𝐷𝑂 = exp �𝑏0 + 𝑏1 ln(𝐴𝐴𝐷𝑇) +  𝑏2𝐺 + 𝑏3 ln �2 ×
5730
𝑅

� × 𝐼𝐻𝐶 + 𝑏4 �
1
𝑅
� �

1
𝐿𝐶
� × 𝐼𝐻𝐶� 

where: 

 NFI = fatal-and-injury crashes/mi/yr 
 NPDO = PDO crashes/mi/yr 
 AADT = veh/day 
 G = absolute value of percent grade; 0 percent for level tangents; ≥ 1 percent 

otherwise 
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 R = curve radius (ft); missing for tangents 
 IHC = horizontal curve indicator: 1 for horizontal curves; 0 otherwise 
 LC = horizontal curve length (mi); not applicable for tangents 
 ln = natural logarithm function 
 b0,…,b4 = regression coefficients 
 

Identifying the Variables and Determining the Functional Form 
In the type of model shown in equation 4.9 (or 4.10), a common approach for identifying significant 
variables from those available is a stepwise regression approach.  The stepwise approach could be based 
on either a forward selection or a backward elimination procedure.  Forward selection involves starting 
with no variables in the model, testing the addition of each variable using a chosen model comparison 
criterion, adding the variable (if any) that improves the model the most, and repeating this process until 
no additional variable significantly improves the model at a predetermined significance level (e.g., 80 or 
90 percent).  Backward elimination involves starting with all candidate variables, testing the deletion of 
each variable using a chosen model comparison criterion, eliminating the variable (if any) that does not 
significantly degrade the model, and repeating this process until only variables that significantly 
contribute to the model remain.  Examples of model comparison criteria include t-statistic, chi-square 
statistic, Akaike’s information criterion (AIC), and Bayesian Information Criterion (BIC) (further 
discussion of some of the model comparison criteria can be found in the subsection entitled Goodness of 
Fit later in this section).  The stepwise approach is popular because it can be readily implemented in 
many statistical software tools as long as the model is a generalized linear model (GLM). 

When a simple model such as those in equations 4.9 and 4.10 is not satisfactory, then the user might 
want to investigate other forms of the explanatory variables to include in the model, such as the 
reciprocal of a variable, the variable to a certain power, or another transformation of a variable, but also 
two-way and perhaps three-way interactions between variables. Two example approaches are 
presented next. 

Bauer and Harwood (2012) used a combination analysis of variance (ANOVA) and regression analysis 
approach to assess the functional form of the relationship between crash frequency and available 
parameters that can be summarized as follows: 

1. except for AADT, categorize data into three groups, separately for each parameter; quantiles for 
continuous variables can typically be used 

2. develop a crash prediction model including AADT and only the interaction of all categorized 
parameters 

3. plot the safety effect of one parameter against the cell means of another parameter, encoding 
the data by the levels of the third parameter; if a four-way interaction was included, then 
multiple sets of plots will need to be generated 

4. assess the shape of the relationships between safety effects and a given parameter across the 
levels of another parameter 

5. assess whether these trends are consistent for a given model; if not, assess whether interactions 
exist 
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Based on the visual assessment of these relationships, if any, a final model can be developed using all 
parameters and relevant interactions on their original continuous scale. A stepwise approach is then 
used where first all parameters and interactions are included and then eliminating, one at a time, the 
least significant interaction(s) and then parameter(s). 

Hauer (2004) argued that multiplicative models (such as in equation 4.9) may be appropriate to 
represent factors that apply to a stretch of road (e.g., lane width, shoulder width) but may not be 
appropriate to account for the influence of point hazards (e.g., such as driveways).  Hauer (2004) 
suggested that a model that includes both multiplicative and additive forms may be more appropriate to 
study the influence of both point hazards and factors that apply to a stretch of road, such as: 

Y = (scale parameter) × [multiplicative parameter + additive parameter]    (4.16) 

The multiplicative parameter could include variables such as traffic volume, lane width, and shoulder 
width.  The additive portion may include traffic volume along with the number of driveways and number 
of short bridges (another possible approach to address the issue of point hazards such as driveways is to 
estimate separate SPFs for driveway-related crashes and non-driveway related crashes - this approach 
was used for estimating the SPFs for urban and suburban arterials that were included in Chapter 12 of 
the HSM). 

In order to determine the appropriate functional form of the individual explanatory variables, Hauer and 
Bamfo (1997) introduced the Integrate-Differentiate (ID) method.  This method was further discussed 
and developed in Hauer (2004).  A summary of the steps involved in applying this method is provided 
next.  For this illustration, it is assumed that the introduction of variable V is contemplated along with 
the appropriate functional form (some variables are already introduced in the model). 

1. Divide V into groups (bins): V1, V2, etc.  For example, if V represents lane width, V1 may 
represent 10-ft lanes, V2 may represent 11-ft lanes, etc. 

2. For each group of sites within V, determine the total number of observed crashes (No(Vi)) and 
the total number of predicted crashes from the existing model (Np(Vi)) that does not currently 
include the variable V (here, i represents the number of groups or bins in the variable V). 

3. Calculate R(Vi) and ))((ˆ iVRσ (estimate of the standard deviation of R(Vi)).  Depending on 

whether the variable is being introduced in the multiplicative part of the model or the additive 
part of the model (see equation 4.16), the formulas for R(Vi) and its standard deviation are as 
follows: 
 
If V is introduced in the multiplicative part of the model: 
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If V is introduced in the additive part of the model: 
)()()( ipioi VNVNVR −=  

)())((ˆ ioi VNVR =σ  

4. Plot R(V) versus V.  If there is an orderly relationship between the two, then V can be introduced 
into the model with an appropriate functional form based on the shape of the relationship 
between R(V) with V.  For guidance on selecting the appropriate mathematical function based 
on plots, readers can use websites, books, and articles on mathematical functions and curve 
fitting (e.g., http://functions.wolfram.com/). 

This procedure can be applied as each variable is introduced into the model.  Further discussion of 
alternative functional forms is available from Chapter 11 of Hauer (2013).  The approach discussed in 
Hauer (2004) does not explicitly discuss the inclusion of interaction between the explanatory variables. 

Cumulative Residual Plots 
After a variable is included in the model and the parameters are estimated, Hauer (2004) recommends 
the use of cumulative residual (CURE) plots to obtain further insight into whether the selected 
appropriate functional form was reasonable.  Following is a discussion of CURE plots and how they can 
be used.  Suppose the goal is to develop a CURE plot to determine if the functional form used for AADT 
is appropriate.  The first step is to create a data file that includes for each observation (i.e., segment or 
intersection) the AADT value and the residual from the SPF (the residual is the difference between the 
observed number of crashes and the predicted number of crashes from the SPF).  Then this file is sorted 
in increasing order of AADT and the cumulative residuals are computed for each observation.  The plot 
of the cumulative residual versus AADT is called a CURE plot.  Following is an example of a CURE plot 
from Hauer and Bamfo (1997). 

http://functions.wolfram.com/
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Figure 4.3: Example CURE Plot (Hauer and Bamfo, 1997) 

The data in the CURE plot are expected to oscillate about 0.  If the cumulative residuals are consistently 
drifting upward within a particular range of AADT, then it would imply that there were more observed 
than predicted crashes by the SPF.  On the other hand, if the cumulative residuals are drifting downward 
within a particular range of AADT, then it would imply that there were fewer observed than predicted 
crashes by the SPF.  Hauer and Bamfo (1997) also derived confidence limits for the plot ( σ2± ) beyond 
which the plot should go only rarely.  Following is a figure from Hauer and Bamfo (1997) that shows the 
CURE plot from figure 4.3 but with its confidence limits.  This is an example of an acceptable CURE plot 
where the plot stays well within the confidence limits. 
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Figure 4.4: CURE Plot with Confidence Limits (Hauer and Bamfo, 1997) 

In the context of CURE plots, it is important to recognize that the plot is not only a reflection of the 
functional form of the particular explanatory variable, but also whether other relevant explanatory 
factors have been included in the model in an appropriate form, i.e., the extent to which there is 
omitted variable bias (discussed earlier in subsection entitled Selection of Explanatory Variables).  For 
example, Srinivasan and Carter (2011) estimated SPFs to predict the number of crashes in 1 year on rural 
two lane roads in North Carolina.  The first SPF included AADT as the only explanatory variable – the 
resulting SPF was the following: 

)]ln(5830.0-4.0852exp[ AADTLY ×+×=  

For this SPF, the CURE plot for AADT is shown in Figure 4.5.  Clearly, the plot is outside the confidence 
limits for a substantial range of AADT values, indicating that either the functional form of the SPF is not 
appropriate or that other important explanatory variables are not included in the model. 
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Figure 4.5: CURE plot for AADT based on AADT-only SPF 

The SPF was modified by changing the functional form of AADT and including terrain, shoulder width, 
and shoulder type as other explanatory variables. Similar to the first SPF, the modified SPF was a log-
linear model as well: 

).....exp( 3322110 nn XXXXLY βββββ +++×=  

Where 0β is the intercept, X1, X2, X3,…,Xn are the explanatory variables, and 1β , 2β , 3β ,…., nβ , are the 

coefficient estimates.  The various categories within terrain and shoulder type were included as 
individual specific indicator variables.  Table 4.1 shows the coefficient estimates for the modified SPF: 
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Table 4.1: Coefficient Estimates for Modified SPF (Srinivasan and Carter, 2011) 
Explanatory Variable   Coefficient 

estimate 
Intercept   0.8727 
ln(AADT/10,000)   0.4414 
AADT/10,000   0.4293 

Terrain 

Flat 0.1264 
Rolling 0.1368 

Mountainous 0.0000 

Shoulder Type 
Unpaved 0.0354 
Paved 0.0000 

Shoulder Width (in ft)   -0.0164 
 

Based on this SPF, the average predicted total crashes in 1 year for a 1.5 mile rural two-lane road 
segment in rolling terrain with a 2-ft unpaved shoulder and an AADT of 1,500 vpd will be: 

Y = 1.5 x exp{0.8727 + 0.4414 x ln(1,500/10,000) + 0.4293 x (1,500/10,000) + 0.1368 + 0.0354 - 0.0164 x 2} = 1.905 

Figure 4.6 shows the CURE plot for AADT for the improved SPF.  A significant portion of the plot is now 
within the limits.  It is clear that the alternate functional form for AADT along with the inclusion of the 
other independent variables provided an improved model.  However, even with the improved model, 
there are portions of the CURE plot that are outside the limits (e.g., for AADT less than 5,000).  Hence, it 
may be possible to further improve this SPF by modifying the functional form and including variables 
such as horizontal and vertical alignment. 

Hauer (2004) also addresses the issue of the sequence in which variables could be added in a model. He 
suggests that traffic volume be introduced first since it is the dominant factor in terms of influence on 
crashes.  This can be followed by including variables in the order in which they contribute to the increase 
in log-likelihood/parameter. 
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Figure 4.6: CURE plot for AADT for modified SPF 

Overfitting of SPFs 

Overfitting of SPFs may occur when too many parameters are included in the regression model. Even 
though they are found to be statistically significant (this is especially the case with large sample sizes), 
the inclusion of such parameters may not be of practical importance, and might even be counter-
intuitive. Such complex models are often poor predictive models; in some cases, one has simply 
modeled “noise” in the data once the most relevant parameters were included in the model. The 
inclusion of too many parameters (i.e., roadway characteristics) may also lead to the introduction of 
correlation between different variables in the model.  One way to address this problem is to assess the 
correlation between pairs of variables and only including one of the two, should they be highly 
correlated; typically one chooses the one that is easiest to obtain or makes the most engineering sense 
to include.  However, one has to be careful when excluding variables since that could lead to omitted 
variable bias (discussed earlier under subsection entitled Selection of Explanatory Variables). 
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Another way to deal with overfitting is using cross-validation.  When cross-validating, the data set is 
randomly divided into two parts, where one part is used for estimating the model parameters and the 
other part is used for validation.  Examples of validation can be found in studies led by Simon 
Washington (Washington et al., 2001; Washington et al., 2005). Another approach is to use relative 
goodness-of-fit measures such as the Akaike Information Criterion (AIC) and Bayesian Information 
Criterion (BIC) in selecting models; these measures penalize models with more estimated parameters 
than needed, and help reduce the possibility of overfitting. 

Correlation among Explanatory Variables 

A high degree of correlation among explanatory variables in the model (also called collinearity) makes it 
very difficult to determine a reliable estimate of the effects of particular variables.  For example, if 
horizontal curvature is correlated with clear zone/roadside hazards, then it may be difficult to isolate the 
safety effect of horizontal curvature.  There are no easy solutions to this problem.  It may be tempting to 
remove one of the correlated variables, but this may lead to omitted variable bias, which was discussed 
earlier under the subsection entitled Selection of Explanatory Variables.  Some statistical routines 
include tools to assess the extent of this problem.  For example, one could examine the correlation 
matrix of the estimated parameters which will provide information about the extent of correlation 
between pairs of variables.  A useful plotting tool is a scatterplot matrix which organizes N-choose-2 
scatterplots where each individual plot shows the correlation between any 2 of N variables. 

Homogenous Segments and Aggregation 

The HSM advises that segments need to be divided into homogenous sections.  For example, for rural 
two-lane roads, the HSM indicates that a segment should be created when anyone of the following 
variables change: 

• Average daily traffic 
• Lane or shoulder width 
• Shoulder type 
• Driveway density 
• Roadside hazard rating 
• Presence of an intersection 
• Beginning or end of a horizontal curve 
• Point of intersection of a vertical curve 
• Beginning or end of a two-way left-turn lane (TWLTL) 

Fitzpatrick et al. (2006) indicated that creating homogenous segments using this approach resulted in 
some very short segments (e.g., as short as 16 ft).  Short sections can lead to a large number of sections 
with zero crashes which in turn leads to challenges in estimating a valid SPF (Lord et al. 2005).  In 
addition, with short sections, there is a higher chance “that a feature of the road in one segment 
triggered a crash officially located on another segment” (Koorey, 2009).  In fact, Hauer and Bamfo (1997) 
recommend that “road sections shorter than 0.1 mi should either be reassembled into longer road 
sections or removed from the database used for modeling”. 
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For these reasons, some researchers have suggested aggregating segments to create longer non-
homogenous segments.  A recent example is the work by Bonneson et al. (2012) that used longer non-
homogenous segments, but included the proportion of segment lengths for which particular roadway 
characteristics are present, e.g., some of the SPFs included the proportion of segment lengths with a 
barrier present in the median, the proportion of segment lengths with rumble strips on the outside 
shoulder, and the proportion of segment lengths with rumble strips on the inside shoulder.  This 
approach makes it more likely that all crashes attributable to severe features (or combination of 
features, for example short, sharp curves) fall within the appropriate analysis unit (segment) but at the 
cost that the safety effects of those features may be “watered down” by inclusion of adjacent features 
within the same analysis unit. 

Presence of Outliers 

In some cases, a single outlier or a few outliers can significantly influence the parameter estimates in an 
SPF and lead to misleading or incorrect findings. It is always recommended to perform basic quality 
checks of the data before attempting to model crash frequencies. This can be accomplished by plotting 
the data (e.g., X-Y plots, boxplots, and distribution plots) and calculating basic distributional statistics for 
each variable (dependent and independent). Values of predictor variables that are far outside the range 
of typical values for that variable could be considered leverage points in the regression analysis and 
should be investigated. Looking at crash rates (crashes per MVMT) for example across specific groups of 
segments will highlight unusual crash rates and crash counts. Extreme observations, unless they can be 
corrected, should be excluded from the data.  During modeling, influential observations can be 
identified using Cook’s D statistic (D stands for distance). This is a measure of the influence of a single 
observation on the model and is based on the comparison of the predictions with and without that 
observation.  Rules of thumb are typically used to investigate further an observation with high influence.  

Hauer (2004) proposed another approach for identifying outliers--he states that a vertical jump in the 
CURE plot indicates the presence of an outlier. 

El-Basyouny and Sayed (2010) introduced alternative mixture models based on the multivariate Poisson 
lognormal (MVPLN) regression to deal with outliers.  They proposed outlier resistance modeling 
techniques by down-weighting the outlying observations rather than excluding them unless the 
exclusion can be justified based on data related reasons (e.g., data collection errors). 

Endogenous Explanatory Variables 

Situations exist when some of the explanatory variables may depend on the dependent variable 
(frequency of crashes) themselves.  This is known as endogeneity.  Bias due to endogeneity can lead to 
incorrect conclusions from a model, e.g., a model may show that a treatment is associated with an 
increased number of crashes, when in reality the treatment may actually reduce crashes (Elvik, 2011).  
Obviously, this becomes a critical issue if the SPF is used to estimate the CMF associated with a 
particular treatment.  Kim and Washington (2006) show an example as part of a study that examines the 
safety effectiveness of left-turn lanes.  Since left-turn lanes are likely to be implemented at intersections 
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with large numbers of left-turn related crashes, a prediction model that includes the presence of left-
turn lanes as an independent variable is likely to suffer due to endogeneity bias.  Kim and Washington 
(2006) first estimated a model which predicted the number of angle crashes as a function of AADT, an 
indicator variable to represent the presence/absence of left turn lane on the major road, the number of 
driveways on the major road within 250 ft of the center of the intersection, and an indicator variable to 
represent the presence/absence of lighting on the major road.  This model seemed to indicate that 
angle crashes would increase due to the presence of a left-turn lane.  Next, to account for the possible 
bias due to endogeneity, the authors simultaneously estimated two models: in one model, the 
dependent variable was crash frequency, and in the second model, the dependent variable was a binary 
variable indicating the presence/absence of a left-turn lane – the two models were estimated 
simultaneously using limited information maximum likelihood (LIML).  The models estimated using LIML 
indicated that the number of angle crashes would decrease with the presence of a left-turn lane, 
indicating that the original single equation approach did not adequately account for endogeneity bias.  

Estimation of SPFs for Different Crash Types and Severities 

There are many ways to estimate the predicted number of crashes by type and severity.  One common 
approach is to use the observed proportion of the crash type or severity and apply it to the SPF that has 
been estimated for total crashes to estimate the predicted number of crashes for that crash type or 
severity.  For example, if an SPF is available for total crashes for rural two-lane roads and rear-end 
crashes represent 20 percent of total crashes, then the SPF for rear-end crashes will simply be just the 
SPF for total crashes multiplied by 0.2.  This approach assumes that the proportion of rear-end crashes is 
the same for all sites on a particular facility/roadway type regardless of the specific characteristics of the 
sites, e.g., this approach assumes that the proportion of rear-end crashes does not vary with AADT.  
Jonsson et al. (2009) found that using fixed proportions without consideration of site characteristics was 
a questionable practice and can lead to errors in estimation.  Specifically, they found that the proportion 
of crashes may vary based on traffic volume and suggested that separate SPFs should be estimated for 
each crash type and/or severity if sufficient data are available.  However, estimating separate SPFs by 
crash type and/or severity ignores the correlation between crash types and severities and a more 
complex multivariate model structure is needed to account for this correlation (e.g., see El-Basyouny 
and Sayed, 2009; Ma et al., 2008, Lan and Srinivasan, 2013). 

An alternative approach is to start with an SPF for total crashes but explicitly model the proportion of 
the different crash types and severities as a function of site characteristics.  This approach was proposed 
by Wang et al. (2011) who used a two-stage mixed multivariate model combining both accident 
frequency and severity.  Wang et al (2011) showed that the two-stage mixed model approach was able 
to make use of detailed individual level accident data that the traditional approaches such as fixed 
proportion values for crash type/severity, separate SPFs by crash type and/or severity, or multivariate 
SPFs (to account for the correlation) are not able to do.  Further discussion of model forms for 
estimating the proportion of crashes by severity can be found in Savolainen et al., (2011). 
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Goodness of Fit 

For linear regression models, the R2 statistic, the proportion of the total variation in the dependent 
variable explained by the model, is the goodness-of- fit (GOF) measure typically reported.  For GLMs, a 
direct analogous R2 statistic is not available.  However, there are other fit statistics that have been 
suggested to assess how well a GLM fits the data. An overview and references are provided here. 

The Scaled Deviance and the Pearson chi-square are two traditional GOF statistics calculated in GLMs 
(Wood, 2002).  In addition, many pseudo R2 statistics have been used by statisticians and other safety 
researchers.  Examples include the pseudo R2 based on the log-likelihood ratio, weighted (variance 
stabilizing) residuals, Freeman-Tukey transformation residuals, and the overdispersion parameter of the 
SPF.  Further discussion of pseudo R2 used in the highway safety field can be found in Fridstrom et al., 
(1995), Wood (2002), and Miaou (1996). 

Another possible GOF was proposed by Liu and Cela (2008).  Their approach involves the comparison of 
the empirical distribution of the observed counts to the negative binomial distribution with the mean 
estimated from the data.  The probabilities from the two distributions are plotted.  The extent of the 
overlap between the predicted and observed probabilities provides insight into the GOF of the model.  
The goal is to have nearly complete overlap between the predicted and the observed probabilities. 

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are examples of 
measures that provide an assessment of the relative quality of specific models, for a given dataset.  AIC 
and BIC penalize models based on the number of parameters (coefficient estimates).  In other words, 
they deal with the trade-off between the GOF of the model and the complexity of the model.  Therefore, 
AIC and BIC are statistics typically used as model selection criteria rather than for GOF assessment.  
Further discussion of AIC and BIC can be found in Burnham and Anderson (2004). 

CURE plots, discussed earlier, also provide a means of assessing the GOF of a model.  Unlike most of the 
other GOF statistics that look at overall model fit, the CURE plot is primarily aimed at assessing the 
adequacy of the functional form of a specific independent variable (conditional on other variables being 
in the model). 
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5. Steps Involved in Developing SPFs 
 

This section presents a logical order of the steps users can follow for any specific situation for which 
they desire developing an SPF.  These steps pertain to the intended use of the SPF and the facility type 
for which it is to be applied; the data collection and preparation; and the statistical modeling.  Details for 
each step are provided next. 

Step 1 – Determine use of SPF.   

Based on the discussion in Section 3 of this document, SPFs may be used for the following purposes: 

1. Network screening 
2. Project-level analysis using the HSM prediction methodology.  Two scenarios are possible here: 

o Scenario 1 – use only the data for the base conditions to estimate the SPF (if sufficient 
data are available with these conditions) 

o scenario 2 – use data for a broader set of conditions to estimate the SPF 
3. Derive CMFs directly from the SPF 
4. Before-after evaluation using the EB method 

Step 2 – Identify facility type.   

The user needs to select the facility type to which the SPF will be applied. The list of facility types 
(separately for roadway segments, intersections, and ramps) provided by Safety Analyst is a good 
starting point.  For project level analysis using the HSM prediction methodology, Part C of the HSM 
provides a list of facility types.  Both lists are shown in Appendix A of the SPF Decision Guide (Srinivasan 
et al., 2013). 

Step 3 – Compile necessary data.  

As discussed earlier, SPFs that are used for network screening (purpose 1), for each facility type, the 
number of crashes for each unit (intersection, segment, or ramp), along with the traffic volume (AADT) 
associated with that unit are required.  For roadway segments and ramps, the segment length will be 
required as well.  For intersections of any type, it is recommended that AADT for both major and minor 
roads be available.  Since the SPFs in the HSM for the base conditions are also just a function of traffic 
volume, the explanatory variables in the SPFs for purpose 1 and scenario 1 of purpose 2 are the same.  
Here is an example.   

Suppose the goal is to use the HSM prediction methodology to conduct project level analysis for rural 
divided multilane roadway segments, and the analyst wants to develop jurisdiction-specific SPFs instead 
of calibrating the default SPFs in Chapter 11 of the HSM.  Based on page 11-17 of the HSM, following are 
the base conditions for the SPF for divided roadway segments on rural multilane roads 

• Lane width = 12 feet 
• Right shoulder width = 8 feet 
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• Median width = 30 feet 
• Lighting = None 
• Automated Speed Enforcement = None 

If sufficient data are available corresponding to the base conditions (listed above) to estimate an SPF 
(i.e., scenario 1 of purpose 2), then the analyst can assemble the data for these sites, and the SPF can be 
estimated based on segment length and AADT as the explanatory variables .  Table 1 of the SPF Decision 
Guide (Srinivasan et al., 2013) provides some guidance on the minimum sample size that is needed for 
estimating SPFs. 

However, if sufficient data are not available to estimate an SPF based on sites with the base condition 
(i.e., scenario 2 of purpose 2), then data for a broader set of conditions than the base condition need to 
be assembled, so that a sufficient sample of sites are available for estimating the SPF.  In this scenario, 
the SPF will not only include segment length and AADT, but the other explanatory variable such as lane 
width, shoulder width, median width, presence/absence of lighting, and the presence/absence of 
automated enforcement. 

The data needs for purpose 3 are similar to those of scenario 2 of purpose 2.  Suppose the goal is to 
estimate a CMF for shoulder width using an SPF, there is a need to assemble data from enough sites 
with a range of shoulder width.  It is also necessary to compile data for other explanatory variables that 
are potentially related to safety (such as AADT, median width, lane width, curvature, and grade). 

In purpose 4, the goal is to use the SPF as part of an EB before-after evaluation.  Here the SPF needs to 
be estimated for a reference group that is similar to the treatment group, but without the treatment.  
For example, if the intent of the before-after evaluation is to determine the CMF for changing the 
shoulder width from 4 to 8 feet, then it is necessary to find a reference group of sites (similar to the 
treatment group) where the shoulder width remained at 4 feet during the entire study period (before 
and after). 

For all the situations discussed above, if SPFs are needed for more than one crash type or severity, then 
crash counts by type and severity need to be obtained for each unit (i.e., segment or intersection). 

Step 4 – Prepare and cleanup database.  

At this stage, one or more databases (e.g., individual crash, traffic volume, and roadway characteristics 
databases) have been assembled. Basic quality checks and outlier checks are in order at this point. This 
is accomplished using the basic tools discussed in Section 4 (e.g., plotting tools, evaluation of basic 
descriptive statistics, checking for outliers and data entry errors). 

Step 5 – Develop the SPF.  

As discussed in Section 4, there are a variety of statistical issues that need to be considered in 
developing an SPF. This step might consist of a series of trials (i.e., this is typically an iterative process) 
that require both statistical modeling skills and engineering judgment. Using the available software, 
estimate the regression coefficients of the model for each desired crash type. Calculate model 
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diagnostics such as goodness-of-fit statistics and examining residual and CURE plots as discussed in 
Section 4; check that the regression coefficients make engineering sense (e.g., their sign is in the 
anticipated direction); and perhaps perform sensitivity analyses for a number of factors. 

This step is easier to accomplish for purpose 1 and scenario 1 of purpose 2 since these SPFs typically 
only include segment length and AADT for roadway segments and ramps, and major and minor road 
AADT for intersections.  The appropriate functional form of the SPF needs to be determined as well in 
this step.  If the analyst decides to use Safety Analyst (for network screening), or IHSDM (for project 
level analysis), then the SPF needs to follow the functional form that these tools can accommodate.  In 
Safety Analyst, for example, the SPFs for roadway segments and ramps are power functions of the form:

ba AADTeLY )(××= , and the SPFs for intersections are of the form: 
c

or
b

major
a AADTAADTeY )()( min××=  

Since the crash prediction model in the IHSDM implements the HSM prediction methodology from Part 
C, if the analyst decides to use IHSDM , the SPFs need to follow the functional form of the SPFs in Part C 
of the HSM. 

On the other hand, if the analyst is planning to use their own customized tool for network screening or 
project level analysis (instead of Safety Analyst or IHSDM), then more complicated functional forms may 
be possible (e.g., Hauer, 2004; Kononov et al., 2011). 

This step is more difficult to accomplish for scenario 2 of purpose 2, and purposes 3 and 4, since other 
explanatory variables in addition to segment length and AADT need to be considered for inclusion in the 
SPF.  Readers are referred to Section 4 for further discussion of the statistical issues associated with this 
step. 

Another decision that needs to be made is how the SPFs will be estimated for multiple crash types and 
severities.  As discussed in Section 4, there are different options: 

1. Multiply the total crash SPF with the proportion of a crash type and/or severity level to obtain 
the SPF for that particular crash type and/or severity 

2. Estimate separate SPFs by crash type and/or severity level.  An extension of this approach will 
be the use of multivariate models to account for the correlation between the crash types and 
severities 

3. Model the proportion of the different crash types and severities as a function of site 
characteristics and then multiply the total crash SPF with these proportions 

Step 6 – Develop the SPF for the base condition.   

For scenario 2 of purpose 2, the SPF for given base conditions is obtained by substituting the value of 
the desired base conditions in the SPF. 
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Step 7 – Develop CMFs for specific treatments.  

For purpose 3, follow the procedure described in Section 3 under Evaluation the Effect of Engineering 
Treatments—Estimating CMFs directly from SPFs.  If the SPFs include interaction terms, the CMF may be 
a crash modification function instead of a crash modification factor (e.g., see equation 4.15). 

Step 8 – Document the SPFs. 

After the SPFs are estimated, it is important to document them so that they can be used by other 
analysts and researchers in the future.  Here are some of the details that need to be included as part of 
the documentation: 

• Crash type(s)/severity(s) for which the SPF was estimated 
• Total number of crashes (by type and severity) used in the estimation 
• Purpose of the SPF (e.g., network screening, project level analysis, CMF development, etc.) 
• State(s)/county(s)/city(s) that were used 
• Facility type (e.g., rural 2 lane, 3 leg stop-controlled intersection, freeway to freeway exit ramp) 
• Number of years used in the estimation of SPF 
• Number of units (segments, intersections, ramps) 
• Minimum, maximum, and average length of segments 
• Minimum, maximum, and average AADT 
• Minimum, maximum, and average values for key explanatory variables 
• Coefficient estimates of the SPF 
• Standard errors of the coefficient estimates2   
• Goodness of fit statistics 
• Discussion of potential biases or pitfalls 

 

 

 

 

 

  

                                                            
2 There has been some debate about the usefulness of this parameter (Hauer, 2013).  Nevertheless, most 
statisticians are in favor of reporting this parameter. 
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6. Recent Advances in SPF Development and Estimation 
 

This section provides a brief discussion of some recent advances in SPF development and estimation.  It 
also directs the reader to other useful documents.  

Variance of Crash Estimates Obtained from SPFs 

Most of the discussion in previous research has focused on using SPFs to estimate the expected value of 
crashes under certain conditions.  Wood (2005) illustrates how prediction intervals for the number of 
crashes at a new site can be calculated based on the coefficients of the independent variables and the 
covariance matrix of these coefficients.  It is important to note that the procedure discussed in Wood 
(2005) is for GLMs with a log link.  Lord (2008) used the method in Wood (2005) to develop a 
methodology for estimating the variance and 95-percent confidence intervals for the estimate of the 
product between baseline SPFs and CMFs (the method discussed in Part C of the HSM for estimating the 
expected number of crashes at a site). 

Temporal and Spatial Correlation 

Temporal correlation can lead to incorrect estimates of the standard errors of the coefficients.  
Temporal correlation may arise when multiple observations are used for the same roadway unit.  This is 
often the case when multiple years/months of data are used in the modeling because “many of the 
unobserved effects associated with a specific roadway entity will remain the same over time” [Lord and 
Mannering (2010, p. 292)].  This type of data is also sometimes called panel data.  A common approach 
to dealing with temporal correlation is to aggregate the data so that each roadway unit has one 
observation, e.g., if 3 years of data are available for SPF estimation, and crash counts and site 
characteristics (e.g., AADT) are available for each of these 3 years, then for each roadway unit, the total 
crash counts over the 3 years is computed and used as the dependent variable along with the average 
value of the site characteristics over the 3 year period as the explanatory variables (the number of years 
may then be used as an offset so that the SPF provides the prediction for the number of crashes per 
year).  Kweon and Lim (2012) found that SPFs based on aggregated data could underestimate the 
overdispersion parameter of the SPFs. 

Other methods for addressing temporal correlation include generalized estimating equations (GEE) (e.g., 
see Lord and Persaud, 2000), random effects models (e.g., see Shankar et al., 1998), and negative 
multinomial models (e.g., see Hauer, 2004).  Ulfarrson and Shankar (2003), in their study of median 
crossover crashes, found that the negative multinomial model outperformed the random effects model 
in terms of fit, but that the negative multinomial model was more difficult to estimate because of 
convergence problems. 

Similar to temporal correlation, spatial correlation may occur because “roadway entities that are in close 
proximity may share unobserved effects” (Lord and Mannering, 2010).  Wang and Abdel-Aty (2006) used 
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GEE to account for spatial correlation in their examination of rear-end crashes at signalized 
intersections.  Other examples include Aguero-Valverde and Jovanis (2006) and Guo et al. (2010). 

Other Model Forms 

Some recent studies have used model forms other than a negative binomial form.  These include zero-
inflated models, Poisson-lognormal models, and Conway-Maxwell-Poisson models.  Zero-inflated (can 
be zero-inflated Poisson or zero-inflated negative binomial) are specifically used to handle data 
characterized by a significant number of zero crash sites.  Zero-inflated models are based on the theory 
that the excess zeros are generated by a separate process from the count values and that the excess 
zeros can be modeled independently.  Zero-inflated models have been used in a few studies.  However, 
they have also been criticized because the “zero or safe state has a long-term mean equal to zero, this 
model cannot properly reflect the crash-data generating process” (Lord and Mannering, 2010).  Further 
discussion of zero-inflated models can be found in Shankar et al., (2003) and Lord et al., (2007). 

Some studies have used Poisson-lognormal models as an alternative to negative binomial models (e.g., 
Lan and Srinivasan, 2013; Aguero-Valverde and Jovanis, 2008).  Poisson-lognormal models are similar to 
the negative binomial models except that the iε  term in equation 4.3 is log-normally- instead of gamma-

distributed.  Lord and Mannering (2010) indicate that Poisson-lognormal may be more flexible, but also 
more difficult to estimate. 

Unlike negative binomial models, Conway-Maxwell-Poisson model can handle both overdispersion and 
underdispersion.  Recent research has found that for data that was overdispersed, the negative binomial 
and Conway-Maxwell-Poisson models were comparable (Lord and Mannering, 2010).  However, the 
Conway-Maxwell-Poisson model is more difficult to estimate compared to the negative binomial model. 

Generalized Additive Models 

Generalized additive models (GAM) introduce smoothing functions for each explanatory variable in the 
model and hence provide a more flexible functional form.  GAMs can include both parametric and non-
parametric forms.  However, GAMs do not have coefficients associated with the smoothing functions 
and hence are much more difficult to use and interpret as an SPF.  For examples of the use of GAMs in 
highway safety, readers are referred to Xie and Zhang (2008). 

Random-Parameters Models 

Random-parameters models allow the estimated parameters (coefficients) to vary across the individual 
observations, but usually based on a pre-specified distribution.  The goal of these models is to account 
for the unobserved heterogeneity among observations.  Since these models allow for this flexibility, they 
provide a better statistical fit compared to models where the coefficients are assumed to be fixed.  
However, random-parameter negative binomial models are more difficult to estimate and they may not 
necessarily be more useful compared to fixed parameter models (Lord and Mannering, 2010). 
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Bayesian Estimation Methods 

Bayesian models integrate Bayes’ theorem with classical statistical models (Washington et al., 2011).  
Bayesian models allow the use of prior information about the parameters (i.e., regression coefficients) in 
addition to the data to obtain the “posterior estimate” of the parameter values.  Bayesian models have 
become more common because of the accessibility of Markov Chain Monte Carlo (MCMC) methods.  
MCMC methods more easily allow the estimation of complex functional forms that are often difficult to 
estimate using traditional maximum likelihood methods.   Bayesian methods are also more effective in 
modeling spatial correlation.  Examples of the use of Bayesian estimation methods can be found in Lan 
and Srinivasan (2013), Guo et al., (2010), Ma et al., (2008), and El-Basyouny, K. and Sayed, T. (2009). 
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7. Software Tools for Estimating SPFs 
 

A number of statistical software tools are available for estimating SPFs.  Examples include SAS, SPSS, 
STATA, R, and LIMDEP.  There are advantages and disadvantages to each software tool.  However, the 
tools are constantly evolving as the developers strive to provide more features and improve the 
capability of the tools. 

For estimating negative binomial models using maximum likelihood methods, most of the popular 
modules within these tools (e.g., PROC GENMOD and PROC GLIMMIX within SAS) are geared towards 
estimating a GLM (for sample SAS code to estimate SPFs using PROC GLIMMIX, calculate goodness of fit 
measures, and develop CURE plots, readers are referred to Appendix F of Srinivasan and Carter, 2011).  
The GLM allows the estimation of the negative binomial model without the need for starting estimates 
for the parameters.  However, if more flexible functional forms (which may not be a GLM) need to be 
used (e.g., as in equation 4.16), then the analyst would need to code the log-likelihood function and 
provide starting estimates for the parameters before the estimation process can proceed.  As an 
example, PROC NLMIXED in SAS provides this option (sample SAS code for estimating negative binomial 
models using PROC NLMIXED can be found in Liu and Cela, 2008).  Another example is the Solver tool 
within Microsoft Excel.  Hauer (2013) advocates the use of Microsoft Excel because of the convenience 
that it provides for the visualization and graphing of the data.  
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