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EXECUTIVE SUMMARY

A significantamount of research and developmert @enconductedor decades to provide a

tool for the design and analysis of jointed slabs on different types of foundaii®hAB, which
hasbeen maintained by tHeederal Highway Administration (FHWA) and is distributed free of
charge is one example of such programs. JSLAB has gone through several iterations of
improvements in the last thirty years. héfe has beeninterest in further improving the
capabilities bthat software package recent years.

Researchers at the University of Texas at El R&asEP) have been charged to implement

several modifications in the latest version of JSLAB called JSLAB2004. A thorough review of
JSLAB2004 source code thatwasd el oped in the 1970060s reveal ed
recode the software completely to take advantage of the modern programmfirgtaredement

modeling FEM) tools availableioday As such, a new code was developed in MATLAB that
significanty enhances the efficiency and capabilities of JSLAB2004. The new software will be
referred to as NYSlab hereafter.

The most significant improvements implemented in NYSIlab over other software are: a) Finite
Element model based on an isoparametric efentieat allows for the modeling of irregular
geometries, b) no limitation in the number of PCC and foundation layers, ¢) more accurate
modeling of the contact between unbonded PCC layers, PCC and foundation layersagsing G
elements, d) foundation modelterded beyond the edge of the slabs to more accurately model
the edge deflections and stresses, and e) implementation -tireanthermal gradient models
applied to any number of PCC layers.

In addition to discussing the improvements to JSLAB2004 srdport a comparisorbetween

the improved code and the otheommon codesis also presented Several studies were
conducted to determine the convergence characteristics oet&EM formulation. Finally,

several parametric studies were conductedewfy the appropriate behavior of the code for
different geometric configurations, foundation models and parameters, and temperature gradient
profiles.



These studies indicate that the new coglgultscompare well with the other codes and have
good convegence characteristics. The parametric studies also demonstrate a well behaving code
for various pavemergection configurations.
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CHAPTER 17 INTRODUCTION

A number of aalytical software tools for modeling jointed slabs on different types of
foundations and their application in pavement design have been developed in the past decades.
The finite element progma ILLI-SLAB, which was developed for the structural analysis of one

or two layered portland cement concrete pavements (PG@#R)or without mechanical load
transfer system at joints and cracks, has been under continuous revision and verification to
improwe its accuracy and ease w$e [5, 6, 9].

The finite element program JSLAB, which determines the stresses desdelapgid pavement
under various loading conditions, was developed shortly alt8LAB has been updated several
times to incorporate themhstresses, calculate the principal stresses, and search for the location
and the value of the maximum stre§hat version of thesoftwarewas perceived asore user
friendly in comparisons with other softwapackage$9, 16].

The next generation ofis software, JSLAB2004, incorporated an axel configuration library and

an AExpress Modeo interface. JSLAB2004 <can be
under several loads for a tvlayer system of up to nine slabs. Different kinds of joints @n b
uniformly or nonuniformly spaced. JSLAB2004 also provides the capability to calculate
pavement response under a moving load.

In the following sections, the application of the finite element in analyzing the rigid pavements is
discussed, and the awile software for this purpose is introduced. A brief history of JSLAB
development is also presented. ISLAB2000, which was developed to reduce or eliminate some of
the limitations of the ILLISLAB, will be described also These codes are discussed because
they are the most widely used joirtpdvement analysis tools.

11 RiGID PAVEMENTS M ODELING

Elasticlayeredprograms (ELPs) are the most common programs used for design of pavements.
The horizontal infinity assumption for the slabs makessatprograns a reliable theoretical
method for pavements without discontinuities, which are mostly classified as flexible pavements.
In contrast, gortlandcementconcrete (PCC) pavement with joint connections naturally cannot

1



be considered as an infinite slaBhe comept of semelastic half space used in ELPs is not
applicable for rigid pavements. In rigid pavements, the tire proximity to the edges and the
rigidity of the joints hae a significant role in the mechanical performance of the system.
Therefore, a moreamnplex method is required to estimate the maximum bending stresses and
deflections experiendeby rigid pavements [2].In addition, the contact between the slab and
subgrade has a major effect on the rigid paverperformance Pumping, temperature cunj,

and moisture warping cause a discontinuity between the slab and the subgtatkekes the
analysis of the pavement a nlimear problem This complex behaviorcan only be modeled

using numerical algorithms lik&e finite element method (FEM) [2, 50].

1.2 HISTORY OF THE DEVELOPMENT OF JSLAB

In 1965, Cheung and Zienkiewicz added the stiffness coefficients of the foundation to analyze
the stiffness of theslabs on liquid and solid elastic foundation by using AEY. Huang and

Wang used the FEM ie ar | y 1 9hé andalgsis ojdinted slabs on liquid foundations.
Huang further applied the method to jointed slabs on solid foundation in[3R74 the same

year, Huang and Wang used FEM for concrete slabs having partial contact with theiémsndat
[12]. This research resulted in the development of the WESLIQUD program by Huang and
Chou [5, 13]. WESLIQUDwas able to calculatethe stresses and deflections in concrete
pavements and the subgrade with or without joints and cradksl1981, the Wadways
Experiment Station developed the WESLAYER program for analyzing layered elastictisatids
model various foundation layers [13]

Tabatabaie and Barenberg developed {5LIAB at the University of lllinois in the late 1970s
[14]. This FEM software écame thebasisof JSLAB, which was developed in 1986 for the
Portland Cement Association by Tayabji and Colley [5].

1.2.1 Development oflLLI -SLAB

The first development of the FEM for analyzing rigid pavement slabs was done at the University
of lllinois. Theresult was ILLISLAB, a finite element program that was written in FORTRAN
[14]. ILLI-SLAB usal a rectangular 4hoded elementwith 12-degreesof-freedom first
developed by Melosh [25]Each node has three degrees of freedenthe vertical deflectiomi
z-direction, a rotatioml aboutx-axis and rotatiomwf, abouty-axis [6, 9, 15, 25].

Since the first version of ILLELAB by Tabatabaie and Barenberg researchers at the University
of lllinois haveimplemented manymprovementsto make it more usdriendly andenhancets
capaliities [2, 5, 6, 9,10]. The first foundation model used in I-BLAB was a Winkler
foundation, modeled as vertical spring elements. One of the improvements to this software was
the inclusion of new foundation modeluch as thelastic solid foundatim ILLI-SLAB was

the first program that had both types of ideal subgrades (liquid and solid elastic) in one package
[2, 10].



Cauwelaeret al. worked on solutions for analyzing the infinite and sémfinite slabs on the so

called Pasternak foundatiofi§]. To determine the parameters for a Pasternak Foundation, a
backcalculation procedure developed by Stet and his colleagues wa$ (&éd] . Cauwel a
closed forms solution assumes full contact between the slab and the foundation and can only
analyzethe effects of wheel loading [6].

The assumptiausedfor the analysis of PCC layers in ILLISLAB werebased on the classical
mediumthick elastic plate theoryThe nmediumthick platetheoryis able tomodelout-of-plane
transverse forces thugh flexure, but is not thick enough for the shear deformation to be
important[2]. Such a pl at e a dTimeony émwll defarmakoin theoty)hino Whicld s
the normalplanethat is perpendicular to the middle surface of an undeformed plate will also be
plare and perpendicular to the middle surface of the deformed plate. In that theory the layers
parallel to the middle surface follow the plane stress theory and the load will not cause any axial
or in-plane shear stressgx 10,25].

ILLI-SLAB can analyze ray configuration of loads. To convert external loads to nodal loads,
ILLI-SLAB uses a worequivalent load vector. This program can also calculate stresses due to a
temperature difference between the top and the bottom of the slab. Different tyza®mént
configurationsare available in ILLISLAB, such as bonded or #oonded layers (PCC to PCC,

PCC to subgrade or PCC to overlay). In the case of bonded conditions, the interface is designed
as fully strain compatible, and for unbonded cases, shearestegdbe interfacere neglected.
ILLI-SLAB is able to process the analysis of several slabs with or without mechanical load
transfer systems at the joints. The mechanical load trasgééemcan consist of aggregate
interlock, dowels, or a combinatiar these two. Aggregate interlock transfers the loads through
shear, while dowel bars carry some moment as well as shear. The dowels are located at the
neutralplaneof the slab and are digined as linear elastic todg 6, 9, 10].

1.2.2 Development ofJ-SLAB (1986)

Tayabji and ColleydevelopedJSLAB to compute the critical stresses and deflections in rigid
pavements under different loading conditifls This software was based omearly version of
ILLI-SLAB andused the Portland Cement Associafiomn ( P C A) -designhprocedure ¢hats

was revised in 1984 for jointed plane concrete pavements (JPCP), jointed reinforced concrete
pavements (JRCP), and continuousdinforced concrete pavements (CRCP). To determine the
thermal stresses in this firgersion of JSLAB, the program had to be executed twice. In that
version the curling analyseould only bedone for a single slab. In addition, the first version of
JSLAB was also not able to calculate subgrade stresses. However, the JSLAB progedohe was

to analyze square and round dowels, in contrast with-8ILAB, which wascapableanalying

round dowel bars only [5], [9].

1.2.3 Development ofJ-SLAB92 (1992)

An error in the curling formula was corrected and verified by theoretical and numerical
comparisonsn JSALB92. This version of JSLAB was able to calculate the principal stresses,



and it was also capable of searching for the location and value of the maximum Birgss.
SLAB 92, the stiffness matrix of the dowel bar was correctechdouately satisfythe
equilibrium conditions. Also, an additional step for the calculation ofveeiiht deflections
was added to the curling analysis [4].

1.2.4 Development ofJSLAB2004 (20012004)

Several improvements were made to JSLAB92 that resultedSLAB2002 followed by
JSLAB2004. JSLAB2002 could analyze six different subgrade types:

Spring foundation (SP)

Winkler foundation (Dense Liquid [DL] model)
Boussinesq foundation (Elastic Solid [ES] model)
Vlasov TweParameter (TP) foundation

Kerr ThreeParameter (K3) foundation
ZhemochkinSinisynShtaerman (ZSS) foundation [4]

OusWNE

The user manual and graphic interface of JSLAB2002 with gme posfprocessors made it
more useffriendly than the earlier versions. This version was tested by comparinghit wi
BISAR, the FAA's H5I, I5LAB 92, and with pavement test data that whtinedat the Ohio
Test Road [4].

The "Express Mode" option was added to JSLAB2004 to accommodate more user iaeds

version of JSLAB hd an axel library including single, dyadnd super single tires and tandem,

triple and quad axle configurationsheA EXx pr e s s 0 i ndtinput dataino @ mogeausee r at e
friendly way and allowd users to easily change the loading areas, axle spacing, and move the
axle groups to any positiam the slab.

JSLAB2004 is capable of analyzing the jointed pavement undewsdaht, traffic load, and a
combination of these two. Temperature gradient or any combination of temperature gradient and
traffic load can also be calculated for a single sl _AB2004 can analyze up to a teyer
pavement system ar@an consider fully bonded or fully unbonded systewith a limitation of

the three slabs in each direction (nine slabs in total). The software also allows for the
modification, on a peelementbasis, of material properties, slab thicknesses, and support
conditions. Uniformly or nonuniformly spaced, circular, or nesircular dowels, tie bars, and
aggregate interlocks are the options fwwdelingof joints in JSLAB2004Thed Ti me Hi st or
analyss under a moving load at specified locations was another feature added to JSLAB2004.
That version can also analyze multiglab curling [4]. A brief summary of the -$LAB
development history is presented in Table 1.1.

1.2.5 Development of ISLAB2000
ILSL2 and ISLAB2000 are two different FEM codes which were developed to reduce or

eliminate some of ILLUSLAB limitations. By introducing seminfinite elements in one or two
horizontal dimensions in ILSL2, Khazanovich and loannides [6] were able to oveecamjor

4



Table 1.1: History of the development of JSLAB [15]

Version Year Creditors Modification and Improvement
1977 Tabatabaie & Original version
Barenberg
1980 | Wang Revision
ILLI-SLAB | 1983 | loannides Several subgrade models included
1984 | Conroyd Adapted to ANSI77 FORTRAN
1989 | Korovesis A new procedure for curling analysis incorporated.
1994 | Khazanovich ILSL2, New generation of the program
. 1 A program for analysis of jointed concrete pavements.
FSLAB | 1986 | Tayabji { Versionin FORTRAN.
9 Added thermal stress in the stress expression.
9 Corrected dowel bar stiffness matrix to satisfy the
equilibrium condition.
JSLAB 92 | 1992 | Dong 1 Added calculation of principal stresses, searching for
location and value of maximum stress
1 Onestep procedure replaced tstep procedure to treat the
selfweight in curling analysis.
1 Upgraded the types of base/subgrade foundations inclug
Winkler, spring, Boussinesq, twmarameter, threparameter
andZSSs foundations.
200%: Ga.IaXY. 9 Developed user Friendly graphical user interfaces.
JSLAB2004 Scientific . . . )
2004 Corp. 1 Installed a library of axle configurations and vehicles.
1 Added capability to calculate the response time history u
the moving axle loads or a vehicle.
1 Version in Visual Basic 6

limitation of ILLI_SLAB. This finite element program used Toksky [7] model to analyze
interior loading cases more accurately by considering the effects of subgrade deformation under
slab edges. ILSL2 offered a variety of subgrade options such as themiddel and the
Zhemochkin, Sinitsyn and Shtaerman model. The Pasternak or Kerr model for subgrade
characterization could be used to analyze one single s@rling stresseswhich have a
significant effect on PCC pavements performargaanot be evaliad by analyzing a single

slab, as it will omit load transferring behavior at the joints. Khazanovich and his colleagues
developed ISLAB2000 which had all the positive features of ILSL2 but was free of some
unnecessary limitations (such as limitationstloe number of nodes in a finite element model).

The program was developed by the ERES Division of Applied Research Associates (ARA), with
support from the Michigan Department of Transportation and the Minnesota Department of
Transportation [6, 7, 8, 15].

One of the improvements made during ISLAB2000 development was enabling curling analysis
of slabs on the Pasternak and Kerr foundations. To do this, it was assumed that the slab and the
subgrade are separated if there is a tensile stress between thamd eEdl. [3] found that in
comparison with -BLAB 92, in which mechanistic response predicts higher strains for rigid
pavement than measured in the field, ISLAB2000 results are simoilar to field-measuredlata

[6].



Rewriting of the code improvedtiseo f t war edés abil ity in analyzing
voids, mesh generating, load placement, and batch processing. Moreover, ISLAB2000 can solve
pavement responses due to temperature, traffic, and construction loadingtsAdsmhicaluser

interface (GUI) for input and outputake it more usefriendly [1, 5].



CHAPTER 2: CHARACTER ISTICS OF JOINTED PAVEMENTS

A significant amount ofesearctwork has been conducted with the intent of finding models that
describe the elastic ampdastic behavior obeams and slabs on linear and +hiaear foundations

A brief description of the most common foundation models used in the modeling of PC@&sslabs
well as a description of the load transfer devices used in jointed pavements wilseeteden

this section.

2.1 FOUNDATION TYPES

The following is a detailed description of the elastic foundation models currently used in JSLAB
and also implemented in NYSlab.

2.1.1 Winkler Model

Westergaard published his first paper on the analysis of cenmagements in 192hdtwenty

five years | ater he publ i solme dg rhaidse sldoa sitn rleds4eBa |
papers, assuming some restrictions, he modeled the rigid pavement as a plate on a bed of springs.
Westergaard developed temperatcurling equations, and through his theoretical studies on the
stress and deflections in concrete pavements, deterrpanaement performancequations for

loading near corner, an edge, and at the interior of a large slab. In his analyses, he assumed th
the foundationspring at one point was independent of the others and slab subgrade reactive
pressurewvas proportional to the deflection of the spring at that location. As a result, in 1961,
Winkler created a foundation model which was a combinationsefias of independent springs

[5, 6, 10, 15, 31]. Figure 2.1 shows a slab on Winkler foundation. These sprgsnhaxial

stiffness defined as:

K=A*k 2.1)

where K is stiffness of the equivalent spring, k is the parameter of the Winkler moddl,ignd
the area of the subgrade.



Figure 2.1 Slab on Winkler foundation [6]

The Winkler foundation is also referred to asdenseliquid (DL) foundation, where the
displacement is proportional to the total load appliedother words, the term "liquiddoes not

refer to an absence of shear strength, but it means the slab is placed on an infinite number of
springs, and the total volume of displacement is proportional to the total load applied. This
assumption makes the Winkler model, the simplest fdiomanodel with one parameter, kK,
which is the modulus of subgrade reaction. This modulus is usually obtained from the plate load
test, and it is sensitive to the radius of the plate used in its determination. The modulus k is
assumed to be independentstfess and deflection level, but most subbase/subgrade support
systems have a stredependent loadeformation response [5, 6, 7, 10].

Westergaard assumed that a medium thick plate (where shear deformations ignored) for the PCC
slab was sufficient; halso assumedthat the slab and subgrade were in full contact. This
foundation is able to model the scenario of the critical load transferred at PCC slab joints, and
develop distresses, such as faulting, pumping and corner breaking [7].

2.1.2 BoussinesgModel

The Winkler nodel was mentioned as being the simplest representation of a continuous elastic
foundation; this foundation used approximations to avoid mathematical difficulties for cases with
continuous foundations. Cheung and Zienkiewicz [11] showed hbkatdtual subgrades behave
more like an elastic solid rather than a liquid [5, 10, 23]. Piekedt.[24] developed theoretical
solutions for concrete slabs on an elastic-epHce. Their research resulted in design charts for
concrete pavements [23].

The following equation was developed by Giroud, which was used irSLIAB to calculate
the deflection over an elastic solid foundation:

_F@-n’

o= (2.2)

where w; is deflection apositioni due to force apositionj, F;

the distance betweeositionsi andj, andE;,andn,;ar e modul us of el asti ci

ratio of the foundation, respectively. Thefl@ctionat the center of a rectangular loaded aaa
be calculated as follows:

is the force apositionj, T, ;is
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whereP; is the distributed load over the rectangular element with dimenaibyb (see Figure

2.2). For a point outside the e¢tangular loaded area, the deflection can be calculated using
Equation 2.2 @éplacing the rectanguléwad with the resultantforce F. Cheung and Zienkiewicz

[11] showed that this approximation is adequate with a less than 5% error. As shown in Figure
2.2, the deflection at a givepoint relates to the forces at all othgoints on the foundation
Therefore, calculating the stiffness matrix for this continuous foundation is possible through
inversion ofthe flexible matrix, which is obtained using Boussirtesq T hdesoribeg in
Equations 2.2 and 2[3, 10].

(2.3)

P

(i —“—
- W; i

Figure 2.2 Deflection of the slab on Elastic Solid (ES) foundation [11]

Cheung and Zienkiewicz proposed a method for incorporating the elastic solid subgrade in a
two-dimensional plate bendirfmite element model for the first tinf@1]. Their solution for this
problem was as complete as the Westergaard solution. To introduce soil nonlinearity, Thompson
and Robnett proposed a resilient modulus characterization for the elastic solid fouridtion [

The shear interactiotescribedy the Boussinesagnodelis strongethan usually observed in the
field. Since Boussinesis a continuum model, it is nowell suited for implementation on
previous FEM packages that directly add the foundation stefteethe slab stiffnegs, 7].

2.1.3 VlasovModel

Because the Winkler foundation model assumes that the deflection at one point is independent of
the deflection everywhere else (springs are not coupled), the model is incapable of capturing the
foundation defrmation beyond the edge of the slab. This deformation decays at some distance
but still can have a significant effect on edge stresses and deformations. By connecting the top of
the Winkler springs to an incompressible layer of vertical elements, Rast@moposed a model

9



that deforms by lateral shear only. Vlasov developed a model that includes shear interaction
between soil elements which can capture the decaying foundation deformation away from
loading points. The Vlasov model is a two parameterehottiuding a modulus of subgrade
reaction similar to the Winkler model, and a shear coefficient. In this model, subgrade reaction
pressure, q, is related to surface deflection, w, as follows:

q=kw- GB*w (2.4)
where k is the modulus of sulagle reaction, G is a coefficient describing the shear interaction

between adjacent springs, aRd is the Laplacian operator [6, 7, 10, 17, 23, 29]. To visualize
this model, a combination of a shear layer resting on top of the $ayeigcan be used as shown

in Figure 2.3
[ IIWMHIIIIIIIIIIIIIIIIHIIIIIIIIII G

Figure 2.3 Slab on Pasternak foundation [6]

The soil deflectionaway from the point of application of the load, dectaser thanwhatthe
Boussinesgnodel predicts The Pasternak foundation prediction tteflectiondecayis much
faster than th@oussinesgand it is a better approximation of actual foundation deflections. By
comparing the Winkler and the Pasternak models, Pronk [18] sudlad®asternaknodelis a
logical improvement of the Winklenodé as corroborated by the experiments of loannetes.

[10]. After all, in the Vlasov model, if G is set to zero, the foundation will reduce to Winkler
foundation [6, 7, 10, 18]. ILLI-SLAB was the first finite element softwate implement the
slab onthe Pasternak foundation. The studies of loanretes show that the flexural rigidity of
the plate af f ec tad thislthe dedinitionsof the &wo paraenétersrissnot unique
and not very straightforward to estimate from field déta.0].

2.1.4 Kerr Model

The Pasternak model was generalized by Vlasov and Leontev [17], and later expanded by Kerr
[23]. Khazanovich and loannides [21] proposed a finite element formulation for the soil beyond

the slab, which was based on the Vlasov and Leonsangsgion. For the soft layer on top of the

stiffer subgrade, Vlasov suggested a higher order idealization to get more accurate solutions than
Pasternakodos model . Il n this assumpti on, the d
deflection of the neast point of the slab edge and the subgrade parameters. These studies
resulted inthethreeparameteiKerr model. The Kerr model is a combination of the Winkler and

the Pasternak models. A plate resting on the Kerr model is shown in Figure 2.4. This mode
considers a twayer foundation assuming that the upper layer is very thin so that its shear
stiffnessis negligible [6, 7, 20].

10
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Figure 2.4 Slab on Kerr foundation [6]

Khazanovich and loannides [21] shedithat if the stiffness of the upper Winklgprings idarge
enough, the Kerr model results would be the same as watke tf thePasternak model.
However, a very high stiffness for upper Winkler springs cause numerical instability and non

K
convergence of the finite element solution [6, 7, 21, Z2r higt—"" ratios,the Kerr model
pl

behaves as a Vlasov model, whereas for very l}fiy\ﬁ\i the Kerr model approximatesthe

pl
Winkler model [7]. One of the weaknesses of the Kerr model is its requirement of three
parametes that are difficult to determine experimentally.

2.1.5 Zhemochkin, Sinitsyn and Shtaerman (ZSS)

Zhemochkin and Sinitsyn in 1947 and then Shtaerman in 1949 proposed anotharameter
subgrade that utilizes plasticity concefitk The ZhemochkiSinitsynShtaerman (ZSS) model
consists of a series of independent springs on an elastisdsé. The ZSS model is a
combination ofa Winkler and a Boussinesgmodel. Nonrrecoverable spring deformations
simulate the plastic component and the resilient pargsibtieflections are modeled through the
elastic haspace. For very high k values (Winkler parameter), ZSS produces results similar to
the conventionaBoussinesdalf-space. As plastic deformations usually occur only at the slab
edges, Shtaerman and rHienyi suggested a simpler linear model by ignoring the plastic
deformations and assuming both deflection components as gelastich is the assumed
behavior in the JSLAB implementation [7The ZSS subgrade permits a deflection profile
discontinuity at doaded slab edge, whichesjuivalent tahe Winkler model.

2.2 L oAD TRANSFER DEVICES

To allow for slab movements due to temperature and moisture variations, PCC pavements can be
constructed with transversad longitudinajoints. A critical point for maitaining a satisfactory
performance of PCC pavements is the transfer of the laass thes@ints. Havingproper
transfermechanismawill result in smallerdeflectiors andreducedintrusion of water into the
jointsthatleads to a loss of load beariogpacityof thefoundation [26, 30].

Both theoretical and field results show that increasing the thickness of the slab or subbase is not
a sufficient solution to prevent slab faulting or breaks at the corner of the slab. An adequate load
transfermechanim can preventlarge permanent deformatiorso thatslab faulting or breaks at
the corner of the slatamot occur [25].
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2.2.1 Aggregateand Key Interlock

Aggregateand keyinterlock is perceived as the simplest means of load transfer when the crack
faces are Hd together. This mechanism is useful only if the traffic volume is low, and the
pavement lay on a firm support such as a stabilized subbase. The aggreb&tyinterlock
mechanismgransfer theloads across cracks or joints only by shear. Figurell2$&rate the
application of aggregate interlocks. The material properties of the concrete, such as coarse
aggregate type, mix design, and gradation, have a significant impact on the aggregate interlock
load transfer [14, 25, 26].

£ 3

(25 4 € 1

YD TR0

Figure 2.5 Aggregatenterlocks [41]
2.2.2 Dowels and Ties

The National Cooperative Highway Research Program (NCHRP) Synthesis 211 states that when
slab lengths increase the use of the aggregate and key interlock begins to become ineffective
[30]. Many highway agencies utilize delitie bars to interconnect slabs to transfer the edge
loading and reduce the differential deflection of the mating slabs; Figure 2.6 shows the
implementationof these transfer devices. Dowel bars are then used as structural elements for
eliminating or rélucing the potential for faulting, pumping and corner breaks [10, 26, 30].

(a) Tie Bars (b) Dowels
Figure 2.6 Application of dowels and tie bars41]
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CHAPTER 3: THE FINITE ELEMENT C ORE PROCESSOR

The MATLAB softwarewas usedd develop the new processing caned toimplement the
required i mprovements and new capabili-ni es.
capabilities to handle matrix and vector aggms on which the FEM is based. This section
describes the finite element formulation used in the modeling of the slabs, foundation and load
transferring devices.

3.1 PAVEMENT SECTION MODELING

Figure 3.1 illustrates the mathematical modelingadiypical jointedpavement section. To
implement the necessary improvements to JSLAB2004, the general geometric modeling of the
jointed slabs and foundation was significantly changBde pavement structure (layers of slabs

and soils)aretreated as three dimenseal. Unbonded slab layers were modeled independently
and connected to each othesinggap elements. The bottom slab layer and the top foundation
layer were also connected thru gap elements. To model the Winkler foundation, the foundation
layers below eeh slab were modeled as disconnected elements to allow for the independence of
Wi nkler Aspringso across the joints. To mod e
foundation, the soil elements were connected across the joints with high stsfmess. This

FE structure deviates from the one used in JSLAB2004 where all slabs and foundation stiffness
matrices were condensed to the top slab.

3.1.1 Mindlin Plate Theory

Although JSLAB2004 used the Kirchhoff plate theory that applies to thin to metiakn
plates, for NYSlab the Mindlin plate theory was used to account for the shear deformation that
becomes significant for relatively thick plates. In this plate formulation, the rotation of the plate
cross section is not equal to the derivatives ofdisplacementv as is the case in the Kirchhoff
plate theory. The crossection rotationsh, and b, are thus, independent of the transverse
displacement. The governing equations for a single isotropic plate will be discussed first and
then an explanatioof the treatment of bonded plates (laminates) in NYSlab will be presented.
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Figure 3.1 Jointed slab pavement section in NYSlab

The displacement and strain equations are [32]:

U(X’ Y, Z) = ZbX(X, y) V(X’ Y, Z) =" Zby (X’ y) W= \N(X1 y) (31)
e pbx 7]
e © om0
i 822
FwuTTe U
@xyld g%.;.iyﬂ
By xH
aw_ o
wngzgux Xl:‘ (32b)
ggyzg gu\—N- byg
e g

Using a plain stress constitutive matrix for isotropic plates, the strainslaedréo the stresses
as follows:
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whereEi s Y o un g 0Gis smeardnodulussi, s Poi s s o ki®ashearadrrecton a n d
factor, to account for the namiform distributionof transverse shear stresses over the plate
thickness. Since the cross sections of plates are always rectakguas assumed as 5/6 in the
transverse shear stress equations [32].

The equilibrium equations are the same as thasthéoKirchhoff plate theoryi.e:

Wy B =0 (3.4a)
WXy
-V, LM My =0 (3.4b)
Xy
v, My W (3.4c)
Xy

where,V,,V,, M,, M ,and M  are shear force and moment intensitear force and
moments in matrix form would be represented as follows:
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3.1.2 Mindlin Plate Element

where,p = is the bending or flexural rigidity [32].

The finite element formulation of the Mindlin plate element requires three interpolation schemes
for w, b, andb,. Since all three quantities are independbey can be expressed in terms of the
element nodal transverse displacements and-hightled rotations as follows [32letting w [=]

Vertical deflectiongy [=] Rotation about saxis * b, , andgy [=] Rotation about yaxis * - b,
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Without going through the weak formulation of the governing equations, the element stiffness
matrix is calculated as follows using numericaégration,

Bending Stiffness Matrix:

k, = rmCBD detddbdh =3 3 ww,B, (x4, )CB! (x,4,)detd (x4, (3.8)

i=1 j=1

Shear Stiffness Matrix:

11 m n
ks = AGhffB, B! detddxdh = kGhg & ww,B,(x,,/7,)B! (x,,h,)detd(x,,h,) (3.9)

i=1 j=1

Total Stiffness Matrix: Ky+ks

where
e1 n 0 9
Eh® . =E . =9/
& 1 u; G /2(1_,7), k é (3.10)
12(1 n )e0 0 1-7
e /2U

Theplae el ement equations described above suffe
becomes small and the shear term becomes dominant. Several numerical schemes have been
implemented to solve this problem. Selective reduced integration where the #fifie@ssst

matrix is calculated using one quadrature point while the bending stiffness is calculated using
four is one of these methods [32]. Although reduced integration eliminates the shear locking
problem, it produces the problem of rank deficiency wtaeh lead to oscillatory behavior.

Bathe and Dvorkin [33] described an effective element which does not lock in thin plate/shell
analysis and does not have any spurious zero energy modes [33]. This element, which is
commonly called MITC, is used in NYSIabln this element formulation, the interpolation
functions used to determine the shear strains are defined as follows in the natural space

=1(+h)gh +1@- Mg
(1+x)gh +1(1- x)g, (3.11)

(o)
G =

N\r—‘ N\l—‘

whereg’, g2, g5 and g0 are the transverse shear strains at points A, B, C and D located at the

midpoints of the sides of the quadrilateral elemesee Figure 3.2) These are call
points and is where the isoparametimterpolations predict exact strains. Thus, the MITC
interpolation uses the strains at the tying points to extrapolate the strains using a linear
interpolation. This translates into a reduction of the order of the interpolation functions from bi
linearto linear.
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Figure 3.2 Quadrilateral elements with MITC tying points

This reduction of order of interpolation from-lmear to linear of the shear strain components
produces a stiffness matrix that has very good convergence characteristics for teny pla
thickness. The shear stiffness matrix in this formulation is integrated using four quadrature
points.

3.1.3 Foundation Elements

All the foundation models, except for the solid elastic, can be model as a single or a combination
of two Vlasov layers in serse For example the Kerr foundation can be modeled as two Vlasov
layers where the shear parameter on the top layer is set to zero. The Winkler foundation is
modeled as one Vlasov layer with a zero shear parameter and the ZSS foundation is modeled as a
Vlasov layer with zero shear coefficients on top of a solid elastic (Boussinesq) foundation. |If
several foundation layers across the pavement section need to be modedatraf@indation

then becomes a series of Vlasov layers with the appropriate garameThe solid elastic
foundation can only appear at the bottom of the pavement section as part of a ZSS layer or as the
only foundation layer.

In NYSlab the Vlasov element is modeled as an eight node element with one degree of freedom

per node associd with the vertical displacement. The Winkler contribution to the stiffness
matrix for this element is calculated as follows,

k. = K[} BB, dA (3.12)
A
where
B,=[N, 0 0 N, 0 3] (3.13)

k is the modulus of subgrade reaction and Hhape functions are the same isoparametric
interpolation functions used for the plate element discussed in the previous section.

The integration indicated to calculdtg is over a horizontal cross section of the element. The
total element Winkler dfness matrix is then calculated as
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The shear layer contribution to the stiffness matrix is calcufedeat

kW:

ks = G BB dA
A

where
g o M 50
a1 = S wo Y (3.15)
TelN o o W 50
gy W H

G is the shear parameter and thkape functions the isoparametric functions previously
discussed.

The total Vlasov element stiffness matrix is then the sum of the two stiffness matrices as follows,

_Katks -kyo 3.16
k\/Iasov 8 _ le le bes ( )

The solid elastic (Boussinesq) foundation miadenot based on a FEM formulation but uses a
flexibility matrix that then is inverted to obtain a stiffness matrix. The flexibility matrix is
calculated as follows,

_(1' nfz)
E

S (3.17)

where S is the deflectionat nodei caused by a unit force at nogleand j is the distance
between nodeisand;.

S :(]'_—’7f2);(b|n((a+(a2 +b?)2 /b) +aln((b+(a% +b?) %)/ a) (3.18)
i ab,dEf 2 '

where S; is the deflection at nodecause by a unit load at node In this equation, a and b are

the dimen®ns of the rectangular element formed by connecting the center points of the four
elements connected to each node in the FE mesh of the foundation. For edge and corner nodes
this equation is adjusted to account for the fact that there could only ber tare celement
connected to a node. It should be noted that this formulation is only valid for rectangular
elements.
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The stiffness matrix of the Boussinesq foundations is then calculated as

—c-1
K, =S (3.19)

This matrix is then addk though a degree of freedom mapping scheme, to the global stiffness
matrix.

It is important to note that the flexibility and stiffness matrices of the Boussinesq model are full
matrices and thus very memory intensive. This not only affects memaryements but also
increases the computation time for the manipulation of the global stiffness matrix and the
solution for the displacement vector.

To reduce tamemory and CPU time overhead, the stiffness matrix is made sparse by zeroing all
off-diagonalelements associated with nodes separated by more than a specified distance. This
distance is an input parameter, butftl@as found to produce good results since at that distance
the flexibility has decayed significantly. The use of smaller distarmedstto significantly

affect the stresses in the slabs.

3.1.4 Load Transfer Elements

Adjacent slabs might be connected (jointedpuigh dowels, ties, aggregate interlock or keyed.

Any combination of al/l or some of inaja@ded Al oa

pavement. Dowels and ties are modeled as beam elements with two degrees of freedom per node

including a displacement and ad rotation about the axis perpendicular to the beam longitudinal

axis (see Figure 3.3). Because of the unconsialength of the beams is governed by the

small separation of the slabs (usually a fraction of an inch), shear deformation cannot be ignored.

For this reason a Timoshenko beam is used for the modeling of dowels and ties. Having
12EI

f=

LZ

as a dimensionless coefficient, the stiffness matrix for the Timoshenko beam is given

by the following equation,

€12/L> 6/L -12/L* 6/L@

e u
K = El e 6/L 4+f - 6/L 1-f g (3.20)
® L@+f)é12/L*> -6/L 12/L* -6/LU

€ 6/L 2-F -6/L 4+F(

For the aggregate interlock and keyed connection, a bar element with one degeedarhfper

node, associated with the longitudinal displacementis used. These bars connect
corresponding nodes across the jointed slabs. The stiffness of this bar element is calculated from
the stiffness per unit length of the interlock or key. Tiftnsss of this bar element is given by,

~

et
[Kl=EAp &,

1
é 2 1z

1 -1g (3.21)
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Figure 3.3 Dowel bar Degree of Freedom
3.1.5 Gap Element

Gap elements are used to model the contact between unbounded slab layers and between the
bottom slab and the foundation. é&e elements are modeled as bar elements with one degree of
freedom per node and are activated if the gap closes or deactivated if the gap is opened. When a
gap element is activated, its stiffness is given as 1,000 times the maximum of the diagonal of the
global stiffness matrix. On the other hand, when a gap element is deactivated, its stiffness is
given as 13 times the minimum of the diagonal of the global stiffness matrix. The contact
problem is solved through an iterative process over which gapesats are activated and
deactivated until two consecutive iterations produce no charte state of gap elements [42

3.2 LoAD VECTORS

Pavements are subject to various types of loading conditions with different levels of intensity
over their lves Loads generated by trucks and thermal gradients across the thickness of the
slabs are the loads used in the analysis and design of jointed pavemeatdhey ar¢ghe most
significant The implementation of these two types of loads will be discussed wetttion.

3.2.1 Truck Loads

Truck loads are the main types of loads pavements are subjected to. These loads are transferred
through the contact fApatcho between the tires
be rectangular. It is also assumeattthe load is uniform across the patch. Because the
rectangular patch will not necessarily have the same dimensions as the slab ekemdemisre

than likely the patch will span more than one slab element, the tire loads are simulated as an
equivalent sries of point loads. This eliminates the need to calculate the nodal loads associated
with a distributed load that does not cover the entire elemiémg. rectangular tire contact patch

is treated as a nine node rectangular element (see Figure 3.4)reduhd can be divided into

nine concentrated loads that coincide with the nine nodal points. The intensity of these loads is
calculated as

F = AfgN, dA (3.22)
A
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where the shape functions are for those of the nine node isoparanestrenghnd q is the tire
contact pressure. This integral is calculated using the appropriate quadrature rules for a nine
node element.

o——adl—a?
S dp g Tl
15—

Figure 3.4 Shape FunctiorN;

The shape (interpolation) functions for the nine node isoparametric element are

N, =200 D= D= S (N + ) N, =2 (- X)L 5)

N, == S0 D= (N +Ny) N, =2 @)L A7) (3.23)
_1 1 1y,

N = 20D +D)- —(Ng+N) N, =2 @ x)a+h)

N, == 200 D+D- Z(N +N) Ny =2 (- (- )

N, = (1- X*)A- A#?)
3.2.2 Thermal Loads

Changes in temperature couékert additional load to the pavement. During the day the
temperature of the top of the slabhigher in comparison with the bottorrausing the slab to

curl upward. On the other hand,raght time the lower temperatures at the top of the slab force it
to curl downward. To calculate the thermal loads, a thermal gradient given by a cubic function is
assumed. This order of polynomial was selected because it is common for temperaéure to b
measured at four points across the thickness of the slgga@mentest sites. Assuming the
origin at the mieblane of the slab, the temperature gradient is defined as:

Dt =a,+az+a,z7 +a,2’ (3.24)

where thea; s can beifted from field data measured at a specific pavement 3it@ moments
caused by the thermal loads can then be calculated as

e 2
M; =DA R, érf Dt zdzdA (3.25)
&b U

A
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whereB; is as defined in Section 3.1.2,is the linear coefficient of thermal expansiand z
andzare the distances from the ANeutr al Pl aneo
integral can be calculated analytically, but the integral over the area needs to be calculated using
Gauss quadrature rules.

If the pavement sectiols made of bonded layers with different mechanical properties then the
thermal moment should be calculated as

fD ncm er‘fl. thdzudAuP (3.26)
oA & by

wheren is the number of slabs that make the bonded pavement section. In this case, subscript
will identify the corresponding mechanical or geometric property of each slab. The fubiction
still is assumed to be the temperature change across the bonded pavement section with origin at

=a

the fineutr al pl aneo. The neuksimbeams,/lb@ondy conce
Aexi stso for cas esofalWoreledslabarétle sadme.i sons rati o
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CHAPTER 4: CONVERGENCE STUDY

In order for NYSIlab to be used with confidence, several verification stepsfollowed to
determine thathe governing equations that describe the behavior of the jointed slab system have
been accurately implemented in the FE model. One of the critical components in the process was
to verify that the finite element model converges to a solution as the nofrddements used in

the space discretization increases [38].

4.1 NUMBER OF ELEMENTS

The number of elements used in a finite element model is one of the parameters that have the
most effect on theumericalaccuracy of the solution. In general, a more refimesh results in

more numericallyaccurate result88]. However, a finer mesh leads to a longer execution time.

A convergence analysis can be carried out to optimize the mesh fineness without incurring on
excessive computation time. The results cogeevhen a significant increase in the number of
elements produces an insignificant change in a particular response.

NYSlab can generate uniform and aomform meshes with any level of refinement as seen in
Figure 4.1. The nonuniform mesh is automatidgl generated in NYSlab by increasing the
number of elements in the regions close to the point of application of the truck loads and on the
edges of the slab.

(@) (b)

Figure 4.1 Uniform (a) and nonruniform (b) meshes
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4.1.1 Single SlabStudy

To denonstrate the convergence of the software, a single slab with a single tire load was
modeled. The dimensions of the slab were 10@yn100 in, which had a 10n. by 10in. tire
contactat the center with a 10fsi contact pressure. The maximum deflectend normal
bending stress were the control parameters used to charattiegpavergence.

Figure 4.2 shows the variation in deflection ratio with the number of elements used to model the
slab. Deflection ratio is defined as the ratio of the maximeffection estimated from a given
mesh divided by the maximum deflection estimated by a very refined mesh of 128 by 128
elements. The maximum deflection converges very rapidly, for both the uniform and non
uniform meshes Theerror is smaller than 2% witbnly five elements in each directio’ slab

with a nonuniform mesh had more conceriioa of elements near the loaded area and
progressively beame less refined farther from the load. For example, a slab with 225 elements
gave the smallest elementesiaf 1.56 in. under the load, while the largest element was 6.25 in.
away from the load (as opposed of uniform element sizes ofré.tf the uniform mesh).

1.040 1

1.020 A

1.000 -
0980 1 7/

0.960 A

0.940 A

Deflection Ratio (Unitless)

0.920 A
= = Uniform Mesh

Non-uniform Mesh
0.900 T T T T T T !

0 10 20 30 40 50 60 70
Number of Elements

Figure 4.2 Deflections convergences for single slab

The ®onvergence of displacements doed guarante¢he convergence of stresses because the
stresses are associated with the derivatives of the displacement field. As a result animcrease
the number of elements under concentrated loads or close to the lhesiaddredges may be
required [B]. The stress ratios for uniform and remform meshes as a function of the number

of elements are shown in Figure 4.3. Stress ratio is defined as the ratio of the maximum normal
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stress estimated from a given mesh divided by the maximum normal stiessted from a very
fine mesh of 128 by 128 elements. Since the slab geometry and the applied load were square in
1.20 7

1.00 A N —————

0.80 1

0.60 A

Stresses Ratio (Unitless)

0.40 A

0.20 1
= = Uniform Mesh

Non-uniform Mesh
0.00 T T T T T T !

0 10 20 30 40 50 60 70

Number of Elements
Figure 4.3 Stress convergences for single slab

geometry the stresses in both X and Y directions are the s@h@dress converges atlawer

rate than displacementsand a finer mesh was needed for the convergence. The stresses
converge with a 16 element nraniform mesh, while uniform mesh needs at least 32 elements in
each direction to converge.

4.1.2 Control CaseStudy

To further evalua the convergence characteristics of NYSlab, a three by two slab pavement
system was used as the control case. The slabs had a dimension of 16 ft by 14 ft. These slabs
were loaded with a standard truck shown in Figure 4.4 (called Modified Truck L14 in
JSLAB2004 truck library). This truck had a single axle for steering, and two sets of tridem axles.
Figure 4.5 shows the truck load layout on the slabs. The front tridem axle of the truck was
placed on the center of the second slab in the slow lane. Al tee last axle of the rear

tridem axles could not be fitted within the pavement. For each tire, a contact pressure of 100 psi
was applied assuming that the dimensions of the tires were 8 in. by 6 in.

Figures 4.6 through 4.8 show the convergenceydidthis pavemenivith anon-uniform mesh

The deflections and stresses are normalized to the results fcaseawith40 elements in each
direction. As shown in Figure 4.6, the deflections essentially converged with 16 elements in
each direction. Théargest fluctuation shown in this figure is 0.14%. On the other hand, as
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shown in Figures 4.7 and 4.8, the absolute maximum stresses converge with approximately 30
elements in each direction.
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Figure 4.4 Scheme of the truck
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Figure 4.6 Deflections convergences for control case
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Figure 4.8 Stress convergences in the Y direction for control case
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4.2 ELEMENT ASPECTRATIO

The lengthto-width ratio of rectangulaelements can affect the deflections and stresses. To
determine the effect of element aspect ratio, the same single slab with 30 elements in each
direction, using uniform mesh was selected to demonstrate this phenomenon. For this study the
element aspeattio was changed while maintaining a constant total number of elements set at
900 (30 square elements in each direction for an aspect ratio of 1). Figures 4.9 and 4.10
represent the results wheeeandb are the dimensions of the elements in x (longitalj and y
(transverse) directions, respectively.

Figure 4.9 shows that the geometry of the element does not have a major effect on the
convergence of the absolute maximum deflectidhe deflection did not change more than 3%
even for a large aspecti@ As shown in Figure 4.10, the maximum decrease of normal stresses
in thex direction is 3.2% relative to square elements, while the maximum stressyidithetion

is 9.6% less than the stress for the element with an aspect ratio of one. Théaretsodrop in

the stress in the direction is that for large aspect ratios, the number of elements in the y
direction decreases below the number required for convergence. Thus, the big error is mostly a
result of non convergence and not related tagpeect ratio.
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Figure 4.9 Deflections convergence as a function of element aspeatio
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CHAPTER 5: COMPARISON STUDY

Theresults fromNYSLAB were compared with those frod$LAB2004 and ISLAB2000, using

the same pavement geometry and applied loads. The next section will discuss how the
comparison case was implementedach software and the results obtained. The case study is
the same one used $ection 4.1.2 an®ection6 below.

5.1 DEsCRIPTION OF CASE STUDY

Since JSLAB2004 is restricted to a maximum of three by threesshatisup to two PCC layers,

a pavement withhiree by two slabs was modeled to carry the load of a standard truck. The slabs
had a dimension of 16 ft dy ft, with a thickness of 12 inA modulus of elasticity of 4000 ksi,

a Poisson ratio of 0.15, and unit weight of 150 pcf were used for the PCC slabs.

ISLAB2000 is capable of analyzing pavements with fine, medium, or coarse mesinesdel

with a mediun mesh has one elem#htthe fine mesh has two eleméffitsand the coarse mesh

has elements that areftdong. In this case study a medium mesh was used to analyze the model
for all three software.

The gap between two adjacent slabs was set to 0.2 inoth directions. The slabs were
connected by load transfer devices. The key joints were used in both diresttbescommon

load transfedevices. However, dowels were used for the transfer joints while the tie bars were
applied to the longitudingoints. The stiffness of the key joints in both directions was set to
60,000 psi/in. along the length of the joints. The following material and geometry properties
were chosen to model the dowels and tie bars:

Modulus of elasticity (E) = 29,000 ksi

Poison ratio (383) = 0.3,
DowelConcrete Interaction (DCI) £.53 10° (Ib/in.),
Length of dowel/tie bar in concrete (L) = 9,in
Dowels outside diameter = 1.25,in

Tie Bar outside diameter = 0.75 in.

The dowels were uniformly distributed in tlransfer joints with d-ft spacing in the transverse
direction andhespacing between the tie bars was set to 2 ft in the longitudinal direction.
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ISLAB2000 is capable of analyzing Winkler, Kerr, akthsov types of foundations, while
JSLAB2004 works mperly for Winkler andvlasov foundations. In this case stuttye Winkler
foundation with a modulus of subgrade reaction of 200 ps#is used

The modified truck,L14 (see Figure 4.4) was selected from the JSLAB2004 libFagyre 5.1
shows the tire idhensions and spacing between the axles of L14 truck in JSLABZI®& front
tridem axle of the truck was placed on the center of the second slab in the sloBitmee.
JSLAB2004 is not capable of analyzing the tires located outside of the pavemdast tivde
was removed for the JSLAB20@%ecutions As mentioned in Chapter 4, 8 in. by 6 in. tires with
a contact pressure of 100 psi were used in all programiSLAB2000 an aspect ratio of 0.75
(6/8) was selectefbr the tire contact for best matehth the other two programs.
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Figure 5.1 Truck dimensions

The reference coordinate system used in ISLAB2000 is not the same as the one used in NYSlab
and JSLAB2004. While NYSIlab and JSLAB2004 use a +igintded system, ISLAB2000 uses a
left-handed syem; this means that the normal stress in the x direction in ISLAB2000
corresponds to the normal stress in the y direction in NYSlabthis study the results are
compared using the rigiianded system.

Figures 5.2 through 5.4 show the results for AB2004, ISLAB2000, and NYBSAB,
respectively. ISLAB2000 andYSLAB provide contour plots of the results, while JSLAB2004
provides 2D plots of the results.
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Figure 5.4 NYSLAB MATL AB codeoutput (X- Stress)
5.2 COMPARISON

Figure 5.5comparesdeflections along the exterior tires on the pavemieomn the three
programs The NYSlab and JSLAB2004 deflections are similar while ISLAB2000 exhibits less
deflection but with a similar shape tfoe other programs. The reason for the smaller deflection
in ISLAB 2000 is that it subtracts the deformations caused by the self weight of the slab(s).

The stresses in the longitudinal direction along the exterior tires are compared in Figure 5.6.
Gererally good agreement is observed among the three programs. As reflected in Figure 5.7, the
stresses in the transverse direction from the three software packages are very similar, except
close to the joints. This can be due to the fact that dowels ateledodifferently in NYSlab

(see Chapter 3) and/or because the tyghedlements is not the same in NYSlab as in the other

two codes. NYSlab uses fenode bilinear isoparametric elements, while the other two codes

use a fonode quadratic rectangulelement. This should be a topic of further study.
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CHAPTER 6: PARAMETRI C STUDY

A series ofparametric studies agsconducted to better understand the interplay between the most
relevant parameters that govern the performance of jongeti pavements. The parameters
selected fothe analysis were the foundation parameters, foundation typegndion of slabs,

the number of slab layers, and temperature gradi@ot.study the effects of each parameter
individually, the relevanttargeted parameter was varied, while all other parameters were kept
constant. The control model described in detathm previous chapter was used as the baseline
case. A standard truck load a three by two slab pavement system, the front tridem axle of the
truck was placed on the center of the second slab in the slow lane.

6.1 FOUNDATION PARAMETERS

The Winkler, Vlasov ad Solid Elastic foundation models were selected for this study. Each
model was analyzed by varying the parameters that difireebehavior of the foundation and
by calculating thenaximum slab stresses and deflections.

6.1.1 Winkler Foundation

The only parametethat defines aVinkler foundationis the modulus of subgrade reaction. The
modulus was varied from 50 to 1,0p6i/in andthe maximum deflection and bending stresses in

the slab were calculated. Figurd @nd Figure & show the variatiomf the deflection and the
stresses in the x and y directions as a function of the modukiggrade reactiomespectively.

As expectedincreasing the modulus of gytade reaction reduces the maximumlatdfon and
bending stresses.The deflection slpe is large when the modulus is small but becomes
asymptotic to zero as the modulus increases. Of course the behavior of the deflections and
stresses is not only a function of the modulus but also of the geometry and properties of the
concrete slab and s general conclusions cannot be stated. Still, the trend is consistent with
expected behavior.
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6.1.2 Vlasov Foundation

The Vlasov foundation model behavior is governed bystiearmodulus that allows for the
modeling of the deflection beyond the point of application of the load. In addition, a modulus
similar to themodulus ofsubgrade reactiom the Winkler model governs the vertical stiffness of

the foundation. For this parametric study, the shear modulus was varied from 5 to 120¢k/in

the modulus of subgrade reaction was assumed at 50, 200 apdi@90Figures & through 65

show tte variation of the maximum deflection and stresses as functions of shear modulus (G)
and modulus of subgrade reaction (k). As the modulus of subgrade reaction increases, not only
the slab deflections and stresses become smaller but theysaless impated by the shear
modulus of the Vlasov foundation. Figur® 6hows that for a soft subgrade (k = 50 psi/in.), the
deflection changes significantly with shear modulus up to a shear modulus of 60 kip/in., beyond
which the deflections are almost independwithe shear modulus. The stresses show a similar
pattern in Figures 8.and 65 where the effect of the shear modulus decreases as the modulus of

subgrade reaction increases.
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6.1.3 Solid Elastic Foundation

The solidelastic (Boussinesq) foundatitvas two parameters, the modulus of elasticity and the
Poissod satio. The impact of the modulus of elasticity of the Boussinesq foundation on the
maximum deformations and stresses of the slabs for two different Poisson maflo3 é&nd

0.45) is presenteith Figures 6 through 68. Variations in the maximum deflection and stresses

are consistent with their inverse relation to the foundationulus of elasticity. Theségtires

al so show that the influence of shosmals8naodos r a
changing the Poisson ratio from 0.3 to 0.45 (an increase of 50%), the maximum stresses
decreased by less than 6% while the maximum deflections decreased by 11%.
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6.2 FOUNDATION M ODEL

The objective of this study was to compahe general response of the baseline case described
above under different foundation models (Winkler, Vlasov and Solid Elastic). Since it is not
possible to find equivalent foundation parameters for the three models, this study will only serve
the purmse of verifying that NYSlab captures the differences between them.

For this comparison study, the modulus of subgrade reaction of the Winkle foundation was set to
200 psi/in, the Vlasov model used the same modulus of subgrade reaction as the Winlder mod
with a shear modulusf 30 kip/in. Throughtrial and erroy a Boussinesq foundation witdh
modulus of20ksi and a Poisson ratio of 0.3 agiteeell with the stresssof the other foundation

types.

The foundation is expanded beyond the edge of thles$br the Vlasov and Solid Elastic
foundations to capture the foundation deformation beyond the d&dgs hasa stiffeningeffect
thatredwesthe deflection of thedge of the slabs. Figure &Bows contours of the deformation

of the top of the fouration for the Vlasov and Winkler foundat®itlustrating the existence of
foundation beyond the edge of the slabs in NYSlab. This figure also shows the discontinuity of
deflections on the Winkler foundation becausésshssumed dense liquid behavior.

The behaviors of the slabs for the three foundation models studied for thes effestiear
stiffness in the Vlasov model and the elastic parameters of the Solid Elastic foundatistabThe
deflectiors for the three foundation modedseshownin Figure6.10 The effect of the extension

of thefoundation beyond the edge of the siglguite apparent The deflections with the Vlasov
model at the edges are significantly lower than with the Winkler model. This difference cannot
be attributed to the sheparameter but is the effect of the added foundation stiffness caused by
the extension of the foundation. This foundation extension also has the effect of changing the
curvature of deformation close to the edge of the slab. This translates into lalbgeresses for

the Vlasov and Solid Elastic foundation when compared to the Winklegrdation as seen in
Figure 6.11

6.3 SLAB DIMENSIONS

For this study, the length, width and thickness of slabs placed on two types of foundations
(Winkler and Vlasov) wex varied. The effects of these parametgrshe responses of the slabs
are discusseih the following section.

6.3.1 Slab Length and Width

To quantify the effects of the slab dimensions on deflections and stresses, the length of the slabs
was varied from 13t to 20 ft. Three different widths of slabs (12 ft, 14 ft and 16 ft) were
consideredThe truck was placed in the middle of the first row of the slabs for all casesher

words, the first tripleaxle was placed in the middle of the second slalhefitst row of slabs.

Figures 6.12and 6.8 show the results for absolute maximum deflections, and stresses in the X
and Y-directions.
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As shown in Figure 62, increasing the length up tb8 ft resulted in increased maximum
deflections. This could be due to theeiieased flexibility of the longer slabs. For slab lengths
larger than 18 ft, the slab deflections begin to decrease, as the fact that the load is spread over a
larger area begins to dominate. This behavior is seen for all slab widths and foundation types

The shear modulus of 30 ksi in the Vlasov foundation not only reduced the deflections relative to
Winkler foundation, but it also decreased the impact of the slab dimensions. By increasing the
slab dimensions for slabs placed over the Vlasov foundatienabsolute maximum deflections
changed only by 3%, while the change in deflection under the Winkler foundation was 9%.

The longitudinal bending stresses show a similar behavior as seen in Figur&érshort slabs

with a length of 12 ft the stress are small but as the length increases, the stresses increase up to

a length of 14 ft. This increase in stresses is due to the increased raomeantthe slightly

longer slab. For lengths larger than 14 ft, the increased meamartias a smaller effethan the
decreased contact stresses between the slab and foundation due to the larger contact area. This
results in a reduction of stresses as the slab length increases beyond 14 ft. As expected, the
stresses for the Vlasov foundation are less thasetlimm the Winkler foundation due to the
inclusion of shear stiffness in the Vlasov model.

6.3.2 Slab Thickness

To study the effect of the thicknesses of the PCC layer on a Winkler foundation, the thickness
was varied from 6n. to 18 inches. As shown indure 6.14 the slab deflection decreased by
increasing the thickness of the slab up to 18 in., because of the increase in the rigidity of the slab.
For slabs thicker than 18 in., the weight of the slab becomes a dominant effect over the rigidity
of the sld and the deflections begin to increase. Even though not shown here, for slabs thicker
than 24 in., the maximum deflection occurred at the edge of the slab instead of the center of the
slab. As &pected and shown in Figure 6,1Be increase in the thickas of the slab resulted in a
reduction in the stresses, especially for the stresses in the y direction.

6.3.3 Unbonded PCC Layers

As previously discussed, NYSlab is capable of analyzing a pavement with several layers of PCC
and foundation. In this sectioheinfluence of considering an bonded twelayer slab system

on the performance of the pavement is evaluated. For this study, the total thizktiestwo
slabswas ket constant at 12 in. Thhicknessof the top PCC layewas varied from 2n. to 10

in. The foundation was modeled as Winkl8ihe absolute maximum deflections and stresses of
the top layer as a function of the thickness of the tof P&yer are shown in Figuresl6.
through6.18. The results are normalized with respect to the cornebpg values obtained from

a 12in. thick monotonic slab (ratio is of londed over monolithic slab performanaeiables).

The deflection ratio reaches a maximum wlpeth layers are @n thick. The plots for the
longitudinal bending stresses also shibve expected behavior. As the top layer increases in
thickness, the stresses increase ugbiout8 in after which the stresses begin to decrease. The
stress ratio should be one when the top layer thickness is 12 in since the system becomes a one
layer mvement; the results do show this behavior. The behavior for the stress in the bottom
layer shows the same expected trends.
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(a) Winkler Foundation

(b) Vlasov Foundation
Figure 6.13 Longitudinal bending stress in the X direction as a function of slab dimsions
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