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Abstract

Calcium and magnesium deicing salts may damage concrete due to calcium oxychloride
formation (CaOXY). Previous work has shown that replacing a portion of the cement in a
mixture with supplementary cementitious materials reduce CaOXY formation. AASHTO PP-
84 was developed to help specify damage-resistant mixtures by limiting the CaOXY amount
in paste. This limit was established based on empirical observations; however, this did not
consider other aspects of the mixture such as paste volume or air content. This paper
investigates how fluid absorption, paste volume, and air content are all key parameters in
determining damage from CaOXY. Concrete with a higher paste volume has more CaOXY
and is more susceptible to damage. Concrete with a higher air content is less susceptible to
damage as the voids provide space for fluid absorption and CaOXY formation; however this
only occurs for mixtures with a specific range of calcium hydroxide (Ca(OH),) (between 7 and
12 g Ca(OH)2/100g paste). This paper incorporates these factors to provide a more

comprehensive explanation for CaOXY -induced damage in concrete.


mailto:Jason.Weiss%7d@oregonstate.edu
mailto:tyler.ley%7d@okstate.edu

Keywords: Deicing salts, calcium chloride, calcium oxychloride, salt damage, air void content,

concrete pavements.

Introduction

Some portland cement concrete pavements (PCCP) have exhibited premature deterioration at
the joints [1-5]. This distress has been related to the accumulation of fluid in the joints that
contains deicing chemicals specifically in the form of calcium and/or magnesium chloride [1-
5]. When the salt concentration is low, this fluid can increase the degree of saturation and
increase the potential for freezing and thawing damage [6-10]. As the salt concentration
increases, the accumulating fluid can result in the formation of several solid phases such as

Friedel’s salt (FS), Kuzel’s salt, and calcium oxychloride (CaOXY) [11-23].

Calcium monosulfoaluminate present in the cementitious paste (C,ASH;,) reacts with the
chloride ions (CI") to form FS (C3A.CaCl, Hiy) (equation (1)) [20, 24-26]. The release of
sulfate ions (SO4%) when Friedel’s salt forms can react with the remaining calcium

monosulfualuminate to form secondary ettringite (SE) (CsAS3Hs,) (Equation (2)) [20, 24-26].
C4,ASHy, + 2Cl~ - C3A.CaCl,. Hyg + SOZ (1)
C,ASH,, + 250,°" = C4AS;Hs, (2)

Equation (3) describes the chemical reaction that occurs when calcium hydroxide (Ca(OH),)
reacts with the salt solution (CaCl, + H>O) to form CaOXY [27-38]. Various forms of CaOXY
have been reported in the literature [22, 39-42]; however, the form shown in equation (3)
(3Ca(OH),.CaCl».12H>0) has been widely reported as responsible for concrete deterioration
[6,7, 12, 14, 18-20, 24, 42-50].

3 Ca(OH), + CaCl, + 12 H,0 = 3Ca(OH),.CaCl,.12H,0 (3)

Equation (3) is a reversible phase change that is dependent on the temperature and the CaClz
content as illustrated in Figure 1 [51]. The dashed line in Figure 1 is the liquidus line for
CaOXY. For a given CaCl, concentration, when the temperature is above the dashed line the
system is a fluid and there is no CaOXY present. When the temperature falls below the liquidus

line, a phase change occurs and solid CaOXY begins to form. This occurs at temperatures
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above freezing (i.e., the solid lines shown in Figure 1). For instance, Figure 1 shows that with

CaCl; concentrations of 10%, solid CaOXY forms at approximately room temperature.
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Figure 1- Phase isopleth of Ca(OH):-CaCl2-H:20 [51]

CaOXY is particularly problematic since its volume is 303% larger than the volume of
Ca(OH)» [45, 47, 48]. This expansion can cause pressure that may exceed the tensile strength
of the paste, which often results in damage [14, 23, 52-54]. Qiao et al. [55] demonstrated
measurements that showed that CaOXY formation induced a decrease in volume during the
phase change to a solid (i.e., cooling), followed by a volume increase when CaOXY went
through a phase change from solid to liquid during heating (Figure 1). This is important as it
indicates that damage is less likely to occur on cooling than heating. Further, this indicates that
the reason of damage development may be more complicated than a simple volume change.
Previous studies [15, 48] showed that damage development increased when the samples were
immersed in salt solution and less damage occurred for samples not in solution [48]. However,
a full explanation of the role of immersion in fluid on damage development was not provided
in those studies. As such, it is essential to understand the role that access to fluid has in salt
damage development and this work attempt to provide insight into the role that submersion in

fluid plays.

Several approaches have been recommended to reduce the potential for CaOXY-induced
damage. The vast majority of these approaches outline reducing the formation of CaOXY. For
example, one approach is to use supplementary cementitious materials (SCM) that reduce

Ca(OH); content to levels where damage is reduced or eliminated [56-62]. Another approach



is to use topical treatments [33, 63-65] to provide a barrier between the Ca(OH), and the
deicing salts. A third approach is to carbonate the concrete [66, 67] which reduces CaOXY due
to both a reaction that reduces the Ca(OH) and the formation of a barrier around the Ca(OH)s.
A fourth approach is to reduce the paste content of concrete, which reduces the Ca(OH), and
thus CaOXY [64]; however, a specific amount of paste reduction was not recommended.
Current specifications have focused on limiting the CaOXY content to 15g per 100g of paste
based on empirical evidence [57] as measured using low temperature differential scanning
calorimetry according to AASHTO T-365. It has been speculated that air may reduce damage
and some experimental evidence has been gathered to confirm this speculation but this has not
been fully confirmed [68]. Further, the CaOXY specification limit was established empirically
and was assumed to not depend on the paste content, air content, or other aspects of the mixture.
These approaches do not identify the air content that is necessary to accommodate the CaOXY
formation and delay the onset of damage. Research is needed to examine this hypothesis and

to develop approaches to quantify this effect.

This paper examines three factors to determine their influence on the potential CaOXY -induced
damage: First, a series of experiments are performed to evaluate the hypothesis that fluid
absorption is a critical part of CaOXY damage development. If validated, this has a practical
implication on the use of topical treatments to limit fluid ingress as a potential solution for
CaOXY-induced damage. In addition, this would open the possibility that CaOXY-induced
damage requires cumulative fluid absorption (i.e., repeated CaOXY formation through heating
and cooling cycles). Second, the paper examines whether concrete with a higher air content is
less susceptible to damage and whether a higher air-to-paste content ratio will lead to lower
salt induced damage. The hypothesis is based on the fact that the voids would permit more
space for fluid absorption and CaOXY formation with reduced damage (i.e., concrete with
higher air content has a lower degree of saturation). While the current AASHTO PP-84 limit
on the amount of CaOXY that can form is a strong first step to limiting damage, if damage is
dependent on the ratio of air content to paste content, this would indicate that this threshold

may be able to be modified based on concrete mixture design.
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Experimental Procedure

Materials

Type I ordinary portland cement (OPC - ASTM C150 - 19a) and Class C fly ash (FA) (ASTM
C618) were used. The physical and chemical properties of the cement and FA are described in
Table 1. The reactivity of the FA was 27.47% as measured using the Pozzolanic Reactivity
Test [69]. The Blaine finesses of the cement was 386 m?/kg. Natural river sand was used as a
fine aggregate. The natural sand had a specific gravity of 2.61 and an absorption of 0.44%.
Two coarse aggregates were used in this study with specific gravity of 2.75 and 2.72, an
absorption of 0.73% and a maximum size of 19.1 mm. A wood rosin air-entraining admixture

(AEA) was added to the mixtures.
Mixture preparation, sample curing and sample conditioning

Twelve different concrete mixtures were prepared, with varying air void and Ca(OH), content.
The Ca(OH); content was varied by varying the FA content (0, 20, 25, 30, 35, 40% replacement
levels by mass). For each fly ash replacement level, two different air void content were
targeted: low air void content (~2%) and high air void content (~5%). The paste content was
kept constant for mixtures with different air void content. The water-to-binder ratio for all
mixtures is equal to 0.45. The fresh concrete was mixed using the procedure described in [70].
The Sequential Air Method (SAM) number was used to indicate the air void quantity and
quality (air void content, size, and spacing) based on AASHTO TP 118-17 [70-72]. The
mixture characteristics are shown in Table 2. The mortar was obtained from the fresh concrete
by removing the coarse aggregates by wet sieving according to ASTM C172-17. Wet sieving
was done by hand in less than 10 minutes. The concrete was placed on a #4 sieve (4.76 mm)
and the large aggregates were removed. Next, the remaining material was pushed through the
openings. It should be noted that a small loss in air content (averaged to 0.5% when the air
content is determined by pressure [73]) was caused by wet sieving as mentioned in ASTM
C172-17. The air content in mortar is listed in Table 2. Please note that in all the figures of this
manuscript, the air content of the parent concrete will be displayed. The mortar was cast in
cylindrical plastic molds of 102 mm (4 inches) in diameter and 203 mm in height (8 inches).

The mortar was cured in the molds (i.e., under sealed conditions) for 91 days at 23 + 2°C.
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Table 1. Properties of the cement used in this study

. Type I cement (OPC) Class C fly ash
Cement Oxides Percent by mass (%) Percent by mass (%)
Silicon Dioxide (Si02) 21.10 27.04
Aluminum Oxide (Al,03) 4.70 18.11
Ferric Oxide (Fe20O3) 2.60 4.56
Calcium Oxide (CaO) 62.10 30.51
Magnesium Oxide (MgO) 2.40 6.36
Sulfur Trioxide (SO3) 3.20 2.56
Sodium Oxide (Na,O) 0.20 2.73
Potassium Oxide (K20) 0.30 1.07
Loss on Ignition (LOI) 2.70 0.12
Bogue phase composition Percent by mass (%)
Tricalcium Silicate (C3S) 56.70 -
Dicalcium Silicate (C2S) 17.80 -
Tricalcium Aluminate (C3A) 8.20 -
Tetracalcium Aluminoferrite (C4AF) 7.80 -
Specific gravity 3.15 2.74
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Table 2. The mixture proportions and fresh properties of the concrete mixtures

Mixture CA* Sand Cement FA* Water AEA | Ac* | An* SAM A/P*
(kg/m®) | (kg/m®) | (kg/m®) | (kg/m?) | (kg/m®) | (g/m®) | (%) | (%) | number | (%)
1 1161 754 340 0.0 153 2.7 2.6 4.5 0.51 9.9
2 1123 729 329 0.0 148 16.7 5.8 9.8 0.13 22.9
3 1120 729 296 74 167 1.6 2.6 4.3 0.35 9.0
4 1088 707 287 72 162 5.2 5.4 9.0 0.16 19.4
5 1105 722 274 91 165 3.0 2.1 3.6 0.66 7.5
6 1048 685 260 87 156 11.0 7.2 11.9 0.10 26.5
7 1107 723 257 110 165 2.5 1.8 | 3.14 0.63 6.4
8 1064 695 247 106 159 10.6 5.7 9.5 0.13 20.6
9 1104 721 238 128 165 2.9 2.0 34 0.55 6.9
10 1046 683 225 121 156 10.8 7.1 11.8 0.10 26.2
11 1117 724 222 147 166 2.2 2.6 4.3 0.57 8.9
12 1079 700 214 142 160 5.8 5.9 9.7 0.10 20.9

*CA is coarse aggregate, FA is fly ash, Ac is the air content in concrete, A, is the air content in mortar, A/P* is
the air to paste content ratio

After curing, the mortar samples were demolded and cut using a water-cooled diamond saw
into slabs before being cored to cylinders with 10 mm diameter and 30 mm heights. These
cylinders edges were then trimmed using a precision diamond saw that was water cooled in
order to have parallel surfaces as described in [74]. The final dimensions of the cylindrical
cores are 10 mm in diameter and 20 mm in height. The cores were thereafter exposed to 60°C
temperature until reaching a constant mass (mass evolution over 24 hours is less than 0.01%).
The change in the microstructure of the samples after drying was not assessed in this study.
The samples were then vacuum saturated with lime-water solution under a vacuum pressure of
0.8 MPa according to AASHTO 1.6a. The mortar cores were immersed in lime solution for an
additional 24 hours at 23 + 2°C. They were then kept immersed in lime solution at 50 + 1°C
for an additional 24 hours. The samples were removed from the lime solution and placed
directly in 20% CaCl; solution that was equilibrated at 50 + 1°C for an additional 24 hours.
The immersion in salt solution at 50°C was to allow the saturation of the pores of the mortar
cores with chloride ions without the formation of CaOXY [55] (as illustrated in Figure 1, where
values above the liquidus lines are solutions without CaOXY). During the immersion of the
samples in salt solution at 50°C, the chloride ions diffused through the pore solution until

reaching equilibrium. The uniformity of the chloride profiles throughout the cross section of
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the sample was confirmed using EDAX Orbis micro X-ray fluorescence (mXRF) spectroscopy

[75].

Salt damage testing procedure

After the saturation, the samples were exposed to 15 temperature cycles from 50°C to 5°C as
illustrated in Figure 2. At the end of each temperature cycle, the samples were kept at 50°C for
a duration of 30 minutes. It should be noted that the temperature of the samples remained above
the solidus temperature as well as above freezing (-20°C for a 20% CaCl: solution by weight)
as shown in Figure 1. Consequently, any damage that is observed is primarily caused by the
formation of CaOXY and not by ice formation. As stated in the introduction, Equation (3) is
completely reversible and thus CaOXY is expected to undergo a phase change forming a solid
when the temperature is reduced below the liquidus line and then forming a liquid again when
the temperature is raised above the liquidus line (Figure 1). According to Figure 1, at 50°C the
pores of the samples will be filled with dissolved Ca(OH); and salt solution, and at 5°C CaOXY

will solidify and form in the pores of concrete.
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Figure 2- Temperature cycle during the salt damage testing

Three conditions were tested as illustrated in Figure 3.
e Condition #1 (Figure 3(a)): samples were saturated by 20% CaCl; solution and exposed
to temperature cycling while being immersed in 20% CacCl; solution. This condition
was used to study the impact of fluid absorption and air void content on salt damage

development in mortar samples.
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e Condition #2 (Figure 3(b)): Samples were saturated by 20% CaCl: solution and exposed
to temperature cycling while wrapped in aluminum tape. This was done to limit
moisture evaporation and not allow solution to enter the samples during the cycles. The
impact of fluid absorption on salt damage development can be determined by
comparing the damage on samples exposed to this condition with the one measured on
samples exposed to condition # 1.

e Condition #3 (Figure 3(c)): samples were only saturated with lime-water solution
without any salt exposure and exposed to temperature cycling while being immersed in
lime solution. The samples in this condition were used as a control sample where no

salt damage is expected.

Condition #1: in Condition #2: wrapped in Condition #3: in
salt solution aluminum lime solution
20% CacCl, solution Lime splution

i i
11 000 11

Mortar Mortar samples Mortar
samples wrapped with samples
Aluminum tape
(a) (b) (c)

Figure 3- Testing conditions during temperature cycling (a) in salt solution, (b) wrapped
in aluminium, (c) in lime solution

The length change of the cores was measured using a micrometer with 2.54 pm resolution at
the beginning and end of each cycle. The residual strain was then calculated according to
equation (4):

_ =l (4)
-

&

where, ¢ is the residual strain, 1 is the length of the sample at the end of each cycle, lo is the
initial length of the sample. A positive residual strain value indicates expansion which is likely

due to damage development as shown in earlier studies [74, 76-78].

The mass was measured at each cycle and the change in mass was determined using equation
().
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M — M, ()
M

AM =

where, AM is the change in mass, M is the mass of the sample during the test, Mo is the initial

mass of the sample.

A visual inspection for the mortar cores was also performed at the end of each temperature
cycle in order to investigate the development of cracks. The samples were imaged using a
camera at the beginning of the test and during the test in order to provide a qualitative

comparison of the damage between different samples.

CaOXY content determination

The CaOXY content was measured using the Low-Temperature Differential Scanning
Calorimetry (LT-DSC) according to the procedure for mortar defined in [79] and in AASHTO
T365. A portion of the central part of the mortar cylinder (102 mm in diameter and 203 mm in
height) was ground using a lathe grinder. The collected powder was then sieved through a
75 um sieve. The particles that did not pass the sieve were ground using a mortar and pestle to
pass through the 75 um sieve. 20 mg of the ground powder was then mixed in a high volume
stainless steel pan with 5 mg of 20% CaCl; solution according to the procedure defined in [79].
The pan was then sealed and subjected to temperature cycling inside the low-temperature
differential scanning calorimetry (LT-DSC). The temperature was kept constant at 25°C for
60min, and then decreased to -90°C at 3°C/min rate; this was followed by a temperature loop
from -90°C to -70°C to -90°C at the same rate. The temperature was then increased at
0.25°C/min up to 50°C [80]. The amount of CaOXY was quantified according to equation (6).
(6)

Mcaoxy = 7
Ly

where, Mcaoxy is the amount of CaOXY (g/gmortar), L 1s the latent heat measured during the
phase transition of CaOXY at a temperature around 30°C, Lois 186 J/g which is the latent heat
of pure CaOXY. For each mixture design, three LT-DSC tests were performed from the ground
powder. The average and standard deviation values of CaOXY content were then calculated

from these three tests for each mixture.

Ca(OH), content determination

Thermo-gravimetric analysis (TGA) was performed to determine the amount of Ca(OH): using

the mass loss of the sample between 400°C and 500°C. For each mixture design, a small
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powder sample (35-50 mg) was collected from the powder that was sieved through the 75 um
sieve as described previously [79]. This powder sample was oven dried at 105°C, placed in a
platinum crucible, and then loaded into the TGA Q50 TA instrument. The sample was first kept
at an isothermal condition (23°C) for 3 min and then heated up to 990°C at 10°C/min under a

nitrogen purge.
Ca(OH): content was calculated using equation (7) [81].

M _ 74.1 M.gtart B Mgnd (7)

where, M¢qom), 1s the Ca(OH), content (g/gmortar), M$, .. and M3, ; are the sample masses (g)
recorded at the start point and the end point of decomposition of Ca(OH),, respectively [81],
and My is the mass of the mortar powder used during the TGA test. For each mixture design,
three TGA tests were performed from the ground powder. The average and standard deviation

values of Ca(OH)> content were then calculated from these three tests for each mixture.

Theoretical calculations

Thermodynamic modeling

Thermodynamic modeling was used to determine the volume of hydration products, mainly
calcium monosulfoaluminate and Ca(OH),, that form in the mixture designs listed in Table 2
[82]. Once the Ca(OH); content and calcium monosulfoaluminate content are known for each
mixture, the filling of air voids by FS, SE, and CaOXY can be calculated using the procedures
described later in this paper. The thermodynamic calculations are done using GEMS3K [83]
which uses the Gibbs free energy minimization technique to determine the reaction products
for a given set of inputs compositions and mixture proportions. CemData v18.01 [84] and
PSI/Nagra [85] databases are used in conjunction with the GEMS3K for the calculation of
reaction products of cementitious systems. These calculations provide the amounts of solid,
aqueous, and gaseous species that form in these reactions, including key compositions for this

work such as Ca(OH)> and calcium monosulfoaluminate.

The prediction of hydration products using thermodynamic modeling and kinetic model has

been validated in several studies in the literature for both ordinary plain cement systems (OPC)
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[86-88] and OPC+SCM cementitious systems [84, 89-92]. In order to determine the hydration
products at 91 days of sealed curing, the mass fraction of oxide phases that dissolve from the
FA was considered to be equal to the reactivity of the FA (27.47% as measured using the
Pozzolanic Reactivity Test [69]) [84, 89-92]. The mass of alkali oxides (Na,O, K>O, MgO,
S0O3) that dissolve from OPC was calculated based on the clinker dissolution as described in
[93]. The Modified Parrot-Killoh kinetic model [82] was used to calculate the mass fractions
of clinker phases (C3S, C2S, C3A, C4AF) that dissolves from OPC.

Volume of void filling due to FS and SE

The volume of void filling due to calcium monosulfualuminate consumption was determined

using equation (8).

Vi = (Vgs + Vse) — (Vafmr1 + Varm,r2) (8)
where, V1 is the volume of void reduction induced by FS and SE, Vpgy rq is the volume of
calcium monosulfoaluminate that reacted to form FS according to equation (1), Vaen, 12 18 the
volume of monosulfoaluminate that reacted to form SE according to equation (2). Vgg and Vgg

are the volume of FS and SE respectively.

Using equation (1) and equation (2), the volume of FS and SE can be determined as a function

of Vafm r1, and Vagn rp according to equation (9) and (10) respectively.

PafmYAfmr1

Mafm FS _
VFS = A;T - 088 VAfm,rl (9)
pAfm-VAfm,rzMSE
M
VSE = —Afm 228 VAfm,rZ (10)

PSE

where, pagy is the density of calcium monosulfomaluminate (2.015 g/cm?), M agy, is the molar
mass of calcium monosulfoaluminate (622.53 g/mol), pgs and Mgg are the density (2.064
g/cm3) and molar mass (561.33 g/mol) of FS respectively, psg and Mgg are the density (1.778
g/cm?) and molar mass (1255.11 g/mol) of SE respectively [94].

The maximum volume of FS (Vgg) that can develop in cement paste samples with varying FA
content was determined based on the work by Qiao et al. [95]. The volume of calcium
monosulfoaluminate (Vg 1) that is needed to react in order to form this maximum amount

FS was calculated using equation (9) for each mixture in Table 3.
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Using equation (1), the number of moles of sulfate generated with the formation of the
maximum amount of FS was determined and used in order to compute the number of moles of
calcium monosulfoaluminate that can react with these sulfate to form SE according to equation

(2). Vafm r2 Was then determined for all mixtures and illustrated in Table 3.

Table 3. Original volume of calcium monosulfoalumionate and the volumes consumed
to form Friedel’s salt and secondary ettringite for different mixture designs

Fly ash Varm Vig ** Varmr1 Vafm,r2
(%) | (cm’/cm® paste) | (cm’/cm? paste) (cm?/cm? paste) (cm®/cm? paste)
0 0.171 0.041 0.047 0.023
20 0.160 0.059 0.067 0.033
25 0.152 0.065 0.074 0.037
30 0.144 0.070 0.080 0.040
35 0.136 0.075 0.085 0.042
40 0.128 0.080 0.091 0.036*

*Limited due to percentage of AFm consumed to form Friedel’s salt

** Maximum amount of Friedel’s Salt that can be produced

Consequently, the volume of void filling (V1) due to the formation of FS and SE can be

determined using equation (11).

Vi = 1.28Vafmra — 0.12Vagm 1 (11)

The values of Vagy r1 and Vg, 1, are illustrated in Table 3 for the different FA content tested

in this study.

Volume of void filling by the solution absorbed after CaOXY formation

Qiao et al. [55] measured a volume decrease when CaOXY formed, this is in accordance with
the stoichiometry of equation (3). It is hypothesized in this study that the solution surrounding
the concrete, if available, will be drawn by suction into the voids generated by CaOXY
formation and this hypothesis has been confirmed based on mass measurements that will be

shown later in this study. The volume of the solution absorbed by the concrete at each
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temperature cycle was assumed equal to the volume reduction accompanying CaOXY

formation according to equation (12).

Vy = Veaom,r Vs = Veaoxy (12)

where, V3 is the volume of absorbed solution accompanying CaOXY formation, Veq(omy,,r 18
the volume of Ca(OH); dissolving to react with salt solution, V; is the volume of salt solution

reacting with Ca(OH)> to form CaOXY, Vc,oxy 18 the volume of CaOXY developing at each

temperature cycle.

Using equation (3), the volume of salt solution (V) and CaOXY (V¢q0xy) can be determined

as a function of V¢4 (om), r according to equation (13) and (14).

Vca(0oH),,r PCa(OH),

S Meatom) XMcaoxy
v _ 2 =302V,
Ca0Xy = D CaoXy ca(0OH),,r (13)
v P v p
Ca((;I'AI/I)Z,r CalOM)z py Ca(g*ﬂ?z'r €a0M2 1 2M 0
v Ca(0H), Ca(OH)p =245V,
A p” = 2.4 Vea(oH),r (14)

where, pcqom, 18 the density of Ca(OH): (2.21 g/cm?), ps is the density of the solution (1.325
g/lem?), pegoxy 1s the density of the CaOXY (1.805 g/em’ [96, 971; Mcacom2 Mcaoxy» Mcacizs

and My, are the molar mass of Ca(OH), (74.093 g/mol), CaOXY (549.259 g/mol), calcium
chloride (110.98 g/mol) and water (18 g/mol) respectively.

Consequently, the volume of void filling (V2) due to the absorption of solution after CaOXY

formation can be determined as a function of the volume of Ca(OH); reacting with the salt

solution (VCa(O H)z.r) according to equation (15).

Vz S 0'428VC(1(0H)2,T (15)

where, Vegom),r i dependent on the volume of Ca(OH): obtained from thermodynamic
simulation for each of the mixtures in Table 2. The correlation between Vgom), and the

volume of Ca(OH), for each mixture will be defined later in this paper based on the results of

the LT-DSC and TGA measurements.
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Number of temperature cycles needed to fill the voids of the concrete

Figure 4 is an illustration for the filling of voids (i.e., unfilled porosity) for mixture 2 in Table
2 as the temperature is cycled. Some phases are not shown in Figure 4. These phases
corresponds to those that does not react: coarse aggregate with a volume fraction of 41%, fine
aggregate with a volume fraction of 28%, unhydrated cement with a volume fraction of 1.1%,
C-S-H with a volume fraction of 9.3%, other minor hydration products (such as Goethite and
Brucite) with a volume fraction of 0.6%, pore solution that will not react with Ca(OH), with a
volume fraction of 0.31%. In this illustration, after exposure to salt, the matrix pores were
assumed to be filled with calcium chloride solution of 20% concentration by mass. In field, this
will not be the case and longer duration is needed for calcium chloride ions to diffuse and fill
all the matrix pores with 20% concentration. Consequently, the results of the theoretical
calculations aim only to illustrate dependency of salt damage on volume of air voids and paste
content and not to show the duration it takes for the chloride ions to diffuse in the concrete and

start inducing damage.

After exposure to salt solution, there is a reduction in the void space from the formation of FS
and SE (equation (11)) [98, 99]. With each temperature cycle, CaOXY forms and leads to
additional void space. This additional void space develops because the volume of the CaOXY
solid is smaller than its liquid constituents. This creates additional void space that will allow
solution to be absorbed from the surrounding environment. With the temperature increase and
CaOXY phase change to a liquid, there is an increase in volume because of the previously
absorbed fluid. This absorbed fluid is expected to fill the open void space. This process of fluid
movement may cause damage to the concrete if no space is available to accommodate for its

volume.

This work assumes that all dissolved Ca(OH), will react with the salt solution to form CaOXY
during the first temperature cycle. In reality, it may take several temperature cycles for this to
happen. Consequently, the evolution of the volume of void space in concrete with respect to

temperature cycles can be determined according to equation (16).

I/T=VO_V1_I:V2 (16)

where, V: is the remaining volume of void space in the concrete after chemical interaction with

salt solution, Vy is the original volume of void space, Vi is the volume of voids filled by FS
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and SE as described by equation (11), 1 is the number of temperature cycles as shown in Figure
2, V2 is the volume of voids filled by the solution absorbed after CaOXY formation as described
by equation (15). In this work, V is assumed equal to the volume of entrained air voids because

the matrix porosity is assumed to be filled with solution.

By rearranging equation (16), the number of cycles needed to fill the void space (i.e., all
unfilled pores) can be determined. The filling of the void space could be thought of as one way
to quantify when damage should occur. As such determining the number of cycles to fill the
voids can be determined as shown in equation (17).

[ = Vo—V1 (17)
04‘28 X VCa(OH)Z,r

The impact of the air void content, Ca(OH), content (i.e. FA content), and paste content of the
concrete on this number of cycles needed before damage development was investigated in this
research study. It should be noted that the cycles reported in this paper are not directly applied
for a field application in concrete slabs due to differences in sample size, thermal gradients and
fluid availability. Ongoing work will relate the cycles in field conditions for use in pavement

prediction.
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Figure 4. Illustration of the filling of void space with temperature cycles due to the
absorption of solution accompanying CaOXY, Friedel’s salt and secondary ettringite
formation in mixture 2.

Results and Discussion

Ca(OH). and CaOXY content

Ca(OH)> content and CaOXY content as a function of the FA replacement level by mass of
cement are illustrated in Figure 5(a) and Figure 5(b) respectively. As the FA content increases,

the Ca(OH); and CaOXY values decrease [6, 60].

Filled circles are the experimental values of Ca(OH). content obtained from TGA
measurements, while the line represents the Ca(OH), content obtained from thermodynamic
simulation. There is a strong correlation between the experimental measurements and the

theoretically predicted values of Ca(OH)s.
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In Figure 6, the experimental values for Ca(OH), and CaOXY content collected in this study
were added to data points existing in the literature [6, 60, 80]. A line was fitted to these
experimental data points while fixing the slope to the theoretical stoichiometric value of 2.47.
An intercept of -3.27 was obtained from the fit with an R? value of 0.94. This indicates that
approximately 1.32g/100gpaste of Ca(OH)2 does not react with CaCl, solution to form CaOXY.
Consequently, Veq(om),,r» needed for equation (15), was determined according to equation (18).
The value 1.32g/100g paste may vary depending on what portion of the Ca(OH) is inaccessible
because it is possibly surrounded by hydration products, similar to the mechanism described in

[67], but this seems to be a good value for the data points summarized in Figure 6.

1.32/pcacom):2 (18)
VCa(OH)Z,T = VCa(OH)2 -0 1

100(

Ppaste

where, Viqonm),1s the volume fraction of Ca(OH), determined for each mixture using
thermodynamic simulation, p, 4. 1 the density of the paste. This plot illustrates that the

potential for CaOXY production can be determined by knowing the amount of Ca(OH),

produced in the material.
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Figure 6- CaOXY content with respect to Ca(OH): content for both cement paste and
mortar samples

Impact of salt solution suction on the salt damage development

Figure 7 illustrates the residual strain that develops in mortar samples as a function of the
number of temperature cycles for three different exposure conditions illustrated in Figure 3. It
should be noted that the strains reported on the y-axis are quite large, much larger than the
strains typically observed for mechanical failures of cementitious systems in tension. However,
when expansion occurs in the paste matrix, as in the case of delayed ettringite formation where

strains of 10,000 pe were observed [100], these large strains can be expected.

The residual strain increases more for the samples surrounded by salt solution than it does for
the sealed samples or samples in lime solution. The damage that develops in the sample
surrounded by salt solution is significant. In fact, several of the samples broke before reaching

15 cycles (6 and 9 cycles respectively) and their length became non-measurable.

The residual strain measurements collected on samples saturated with salt solution and sealed
during the temperature cycles are comparable to those collected on samples saturated with lime
solution. The samples saturated with lime solution and exposed to temperature cycling while

being immersed in this solution are not expected to develop damage because the temperature
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remained above freezing temperature (>0°C) and no CaOXY is forming due to the absence of

salt.
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Figure 7. Residual strain with respect to the number of cycles for the three different
conditions tested in this study (a) in 0% fly ash (high Ca(OH)2 content), (b) in 25% fly
ash (lower Ca(OH): content)

Figure 8 provides a plot illustrating the mass evolution in mortar samples with respect to the
number of temperature cycles for the three different exposure conditions. The samples
surrounded with salt solution had a measurable increase in mass (1.9 % in Figure 8(a) and 1.3%
in Figure 8(b)) before visible damage was observed (3.5 cycles in Figure 8(a) and 7.5 cycles in
Figure 8(b)). The average maximum mass gain recorded in this study from all the samples
immersed in salt before visible damage was +2.0 + 0.6%, while a value of 0.4 + 0.2 % was
determined for samples immersed in lime solution. This mass increase was not observed for
sealed samples. The sealed samples showed a slight mass loss on average value of -1.2+ 0.2 %

after 15 temperature cycles for all mixtures tested in this study due to evaporation.

Figure 4 illustrated that the formation of CaOXY is accompanied by a volume reduction of the
materials in the pores of the sample. This volume reduction appears to occur with a suction
stress that causes fluid to be absorbed from the solution surrounding it to fill in vacancies
created by CaOXY formation. This increase in fluid can explain the increase in the samples’
mass (Figure 8). The mass increases with an increase in the number of thermal cycles, almost
like a ‘pumping’ effect where more and more solution is absorbed. As the fluid moves through
the paste it may cause microcracks. These microcracks may also allow more solution to be
absorbed, which would also increase the mass of the sample. The mass increase in all the

mixtures tested in this study is illustrated in [101].
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After 3.5 temperature cycles in Figure 8(a) and 7.5 temperature cycles in Figure 8(b)), cracking
increases, which can result in flaking off of particles from the sample leading to a decrease in
the mass of the sample. The salt damage was first visible and localized around the aggregates.
This is likely due to the high Ca(OH), content at aggregates surface [102], and it is the
dissolution of the Ca(OH), and reaction with CaCl, (Equation(1)) that results in the reaction
product resulting in CaOXY formation [64]. As the number of thermal cycles increases,
additional loss of paste and particles from the sample cause a continuous mass decrease. This

observation holds for all the mixture designs tested in this study as shown in the [101].
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Figure 8- Mass evolution with respect to the number of cycles for the three different
conditions tested in this study (a) in 0% fly ash, (b) in 25% fly ash

Figure 9 illustrates the residual strain as a function of the Ca(OH), content (and FA content)
for the three exposure conditions tested in this study after 9 temperature cycles for the sample
with the low air content of 2.3%. This shows the performance of a mixture by only varying the
Ca(OH); content. Visible damage was clearly identified in the samples with a residual strain
of 15,000 pm/m, and as such, this value was selected as a limit for the residual strain
measurements. Samples with Ca(OH), content higher than 6 g/100gpaste developed higher
residual strain values when surrounded with salt solution during CaOXY formation as
compared to samples wrapped in aluminum, or just immersed in lime solution. The absorption
of fluid during CaOXY formation appears to be critical for salt damage development in these
mixtures. This reinforces that the pumping or movement of solution surrounding the sample is

important for the damage.
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Figure 9- Comparison of the residual strain measured after 9 temperature cycles with
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Impact of the air void content on the salt damage development

The impact of air void content on the salt damage development is shown in Figure 10. The
evolution of the residual strain is plotted with respect to the number of temperature cycles for
samples with different Ca(OH). contents (achieved by varying the FA content from 0% to 40%)
and different air voids contents. As shown in Figure 9 and 10, as the Ca(OH)> content decreases,

the damage decreases.

The residual strain for mixtures with a Ca(OH), content of 16.9 g/100gpaste and 10.6g/100gpaste
increased with temperature cycling as illustrated in Figure 10(a) and Figure 10(b),
independently from the air void content. However, samples with high air void content lasted

three more temperature cycles than low air void content.

This shows that air void content can influence salt damage development in mixtures with
intermediate Ca(OH). content of 9 g/100gpaste and 7.5g/100gpaste (1.€. obtained by a FA content
of 25% and 30% FA by mass respectively). Samples with 7.5 g/100gpaste Ca(OH)2 and a high
air void content lasted up to 15 cycles while samples with a low air void content broke and

their length became non-measurable after 12 cycles (Figure 10 (d)). The impact of air void
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content on mixtures containing 9 g/100gpaste Ca(OH): is visible but less advanced as compared

to mixtures with 7.5 g/100gpaste Ca(OH)2 (Figure 10 (c)).

The salt damage measured in both mixtures containing low Ca(OH), content (35% FA or 40%
FA) is negligible as illustrated in Figure 10 (e) and Figure 10 (f) respectively. This is due to
the pozzolanic reaction that consumes Ca(OH); and reduces its availability to react with CaCl.
This results in a reduction in CaOXY content and thus in salt damage development regardless

of the air void content [57].
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Figure 10- Residual strain with respect to the number of temperature cycle for mortar

samples with 2 different air void content (a) Mixture 1 and 2, (b) Mixture 3 and 4, (c)

Mixture 5 and 6, (d) Mixture 7 and 8, (e) Mixture 9 and 10, (f) Mixture 11 and 12.
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Figure 11 illustrates the residual strain measurements after 9 temperature cycles as a function
of Ca(OH): content, and air void content. As illustrated in Figure 11, the impact of air void
content on salt damage development become more significant for mixtures with intermediate
Ca(OH): content (mixtures with 25% and 30% FA content by mass) and this is in accordance
with the visual inspection of the sample as illustrated in [101]. The Ca(OH), threshold value
corresponding to 15g CaOXY/100 g paste is theoretically equal to 6g Ca(OH)»/100g paste
(Figure 6). For the mortar samples tested in this study with a low air void content (empty dots
in Figure 11), this threshold value seems to hold true as samples with Ca(OH). content higher
than 6g/100 g paste developed significant damage while samples with a lower Ca(OH) content
did not display significant damage. While for mortar samples with a higher air void content
(filled dots in Figure 11), this threshold value seems to be conservative and can be increased to
the value of about 8g Ca(OH)2/100g paste. This observation illustrates that the threshold value
for CaOXY to limit salt damage is dependent on air void content rather than being a constant

single value.
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Figure 11- Residual strain measured on samples with different Ca(OH)2, and different
air voids content after 9 temperature cycles
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Impact of paste content and air void on CaOXY threshold value

Figure 12 illustrates the number of cycles needed to fill the void spaces of concrete, determined
using equation (17) with respect to the air to paste content ratio and fly ash content. The number
of cycles needed to fill voids increased with the FA content (i.e. increased with a decrease in
Ca(OH): content), and with the air to paste content.Based on Figure 12, it can be noted that
mixtures with a high air void content, low paste content and low Ca(OH): content (i.e. high fly
ash content) will resist longer against salt damage development. It should be noted that the
number of cycles illustrated in this figure is not representative to the number of cycles of a
concrete pavement exposed to real environmental conditions. The calculations in this paper do
not apply for a full-scale application with different size samples, environmental boundary
conditions and aims only to illustrate the dependency of salt damage on the paste content, air

void content and Ca(OH); content. Consequently, CaOXY threshold limit may vary depending

on these parameters.

Number of cycles to fill void space

N
o

w
o

N
o

—_
o

o

Air content/paste content (%)

0 10 20 30 40
Fly ash content (%)

Figure 12. Number of cycles needed to fill the void space in concrete with respect to the
air void content to paste content ratio, and fly ash content. Note the number of cycle in
this figure only applies to the laboratory sample sizes and boundary conditions.

By combining equation (17) and equation (13), the amount of CaOXY that can develop in a
mixture before filling the unfilled voids of concrete can be determined as a function of the
number of temperature cycles, original volume of voids in a concrete mixture (Vo), and paste

content of the concrete mixture according to equation (19).
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Vo— Vi 3.02  pcaoxy 19
Mcaoxy—iimic = 0431 X C X ) 2 X 100 (19)
' paste

where, Mcaoxy-limit s the amount of CaOXY that can develop before filling all the voids of

concrete with solution (g/100gpaste), C 1s the paste content of the concrete mixture.

For a given number of temperature of cycles, the impact of the air void content to paste content
ratio on the threshold value of CaOXY to limit salt damage development can be determined

according to (19).

Conclusion

AASHTO PP-84-20 recommend that mixtures be designed using SCMs to limit the amount of
CaOXY that forms to be less than 15g/100gpaste. This limit has been established empirically and
does not consider other aspects of the mixture design. This paper discusses the impact of fluid
absorption, entrained air void content, and paste content (i.e, air content /paste content) on
CaOXY-induced damage. This was studied on mixtures containing different Ca(OH)> content

and different air void contents.

The air void content did not influence salt damage development in mixtures with high Ca(OH)»
content (FA replacement was between 0 and 20% of the cement by mass)), due to the large
amount of CaOXY that can form (i.e., the volume of voids was insufficient to control the

expansion).

Similarly, the air void content did not impact the salt damage development in mixtures with a
low Ca(OH); content (FA replacement higher than 35% by mass)). That is due to the dilution
and pozzolanic reaction leading to a reduction in the Ca(OH), content and CaOXY content

(i.e., there was not a sufficient expansion to result in substantial damage in either case).

The air void content does however impact salt damage in mixtures with moderate Ca(OH)2
content (FA replacement of 25% and 30% by mass)). Samples in this range of Ca(OH). content
with higher air content had improved resistance to salt damage (compared to those with a lower
entrained air content). This indicates the value of the void space (i.e., air content) in reducing

the expansive pressure caused by CaOXY.

This study showed that the absorption of fluid during CaOXY formation is an important factor

for salt damage development. CaOXY formation at low temperatures is accompanied by a
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volume reduction of the materials in the pores of the mortar. The sample absorbs fluid from
the solution surrounding the sample, due to capillary suction, and fills in void space created by
CaOXY formation. When the temperature increases, a phase change occurs of solid CaOXY
into liquid, which has a bigger volume than the solid phase. The absorbed solution at low
temperature will reduce the available volume to accommodate for the volume expansion
accompanying the phase change of CaOXY with the temperature increase. This may lead to

pressure development and salt damage.
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Abstract

Deicing salts may accumulate within concrete paving joints which, over time, may cause
damage due to calcium oxychloride formation. This study looks at mixtures with similar air
contents and 20% and 40% fly ash replacement by mass that are saturated in calcium chloride
solution and cycled through a range of temperatures. 3D X-ray micro-computed tomography
scans are used to sequentially image the changes in the same sample after different temperature
cycles. These images are correlated, and the damage propagation can be observed. This study
shows the formation of a damage gradient within the sample that is the highest at the surface.
The cracking is also observed to begin at the aggregate interface and progress into the matrix.
These observations provide insights into the mechanisms of the damage and provide guidance

to design concrete to resist this deterioration.

Keywords: Concrete, Air entrained concrete, Fly ash, Calcium oxychloride, Micro-Computed

Tomography

1.0 Introduction

Concrete pavements have experienced damage near the joints due to the accumulation of deicing salts
solution [1-6]. The absorption of this solution can result in an increase in the degree of saturation,
which increases the potential for freezing and thawing damage for solutions with a low chloride
concentration [7-11]. As the salt concentration increases, the potential for deleterious reactions
between the solution and reacted products in the concrete increases resulting in the potential

formation of Friedel’s salt (FS), Kuzel’s salt, and calcium oxychloride (CaOXY) [12-24].
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Specifically, the calcium hydroxide Ca(OH), that occurs as a part of the hydration reaction is
susceptible to reaction with the deicing salt [25-36]. A typical chemical reaction for CaOXY is
shown in Equation (1) [7, 8, 13, 15, 19-21, 37-47]; however, the amount and form of water may

change with temperature and CaCl, concentration.

3 Ca(OH), + CaCl, + 12 H,0 = 3Ca(OH),.CaCl,.12H,0 (20)

Equation (1) is a reversible phase change that depends on the temperature and the CaCl> content
as illustrated in Figure 1 [6, 47]. For systems in which the temperature is above the liquidus
line, the Ca(OH), + H2O + CaCl; solution is a miscible fluid. When the temperature of the
solution is decreased to below the liquidus line, the solution undergoes a phase change, and
solid CaOXY begins to form. This phase change occurs above the temperatures necessary to
freeze water. Figure 1 shows that at 20 percent CaCl» and 20°C, solid CaOXY is present within

the solution that can cause damage to the concrete.

80
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| Ca(OH), + solution Lquidus e
40 A |
S 5 | Ca(OH), + CaOXY
g CaOXY + solution + solution
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Figure 13 — Phase diagram of Ca(OH),-CaCl,-H,O system with 20% CacCl, solution, after [6, 40,
47].

The formation of CaOXY occurs on cooling and causes a reduction in volume [39, 41, 43]. On
reheating, this volume change is reversed, and the material expands. The rearrangement of products
during this phase change, accompanied by fluid absorption during cooling, can result in the
development of pressure on reheating that may cause damage [15, 24, 48-50]. While studies have

documented the overall volume changes associated with CaOXY formation [47, 51], there is a lack
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of information about the distribution of the phases and how this causes damage to the concrete. This
work uses X-ray micro computed tomography (Micro-CT) to capture 3D images of the same sample

at different levels of CaOXY damage.

Micro-CT is a non-destructive x-ray tool that can be used to investigate the three-dimensional
microstructure of materials [52, 53]. It has been widely used in medical science to investigate
biological organisms [54-56]. This method has also been used to study construction materials to
analyze crack propagation [57-59] and air void distribution [60-63]. The Micro-CT captures a series
of radiographs from different angles. These radiographs can be used to build a three-dimensional
model of the structure called a tomograph. This tomograph can then be used for qualitative and
quantitative analyses [64-69]. Because Micro-CT is non-destructive, each sample can be scanned over
time to observe changes. Previous examples of this to study the microstructure of concrete and
mortar samples that have been exposed to freezing and thawing cycles [69-73]. However, for this
study, the samples will not be exposed to freezing temperatures to ensure that the damage is only
caused by CaOXY phase changes. Micro-CT will be used to quantify the product growth in air voids

and crack formation within each sample at a high level of Degree of Saturation (DOS).

2.0 Experimental Methods

2.1 Concrete Materials and Mixture Proportions

Table 1 provides the oxide composition for the cementitious materials used in this study. The
cement was an ASTM C150 Type I ordinary portland cement. The fly ash was an ASTM C618
Class C fly ash. Crushed limestone and natural sand from Oklahoma were used as aggregates.
Both the fine and coarse aggregates met ASTM C33 standards. The maximum nominal
aggregate size of the limestone was 19 mm (3/4 in). Table 2 shows the admixtures used that

met the ASTM C260 and ASTM C494 standards.
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Table 4 — Oxide composition of cementitious materials

Oxide
(%)

Cement | 21.1| 47 [ 2.6 [62.1]| 2.4 |3.2] 0.2 | 03 |56.7|17.8| 82| 7.8 2.7

Si0, | ALO; |Fe,05 | CaO | MgO | SO; [Na,0 |K,0 | C;S | C,S |C,A | CLAF|  LOI

Fly Ash [ 27.0| 18.1 | 46 [305| 64 |26 2.7 | 1.1 | - - - - 0.12

An air entraining admixture (AEA) was used in this study. The AEA is a wood rosin (WROS).
Table 2 shows the two different mixture proportions studied in the laboratory testing. All the
mixtures used a Class C fly ash replacement of 20% or 40% of the portland cement by weight.
Each mixture also contained an air content of about 2.5% and 6%. This created four different

concrete mixtures.

Table 5 — Concrete Mixture Proportions at SSD
Paste Coarse Fine
Cement | Fly-Ash Water |Admixture
Mixture | wem Ko/ o/t | Volume AggregateAggregate Ko/ Used
s s (%) kg/m’ kg/m’ sm
20FA 0.45 202 36 21 981 971 125 WROS
40FA 0.45 218 145 29 1098 712 163 WROS

2.1.2 Concrete Mixing

Aggregates from outdoor storage piles were gathered and moved indoors to a controlled
temperature of 23° C +/- 1°C. After 24 hours, the aggregates were loaded into the mixer and
spun. Samples were collected from the mixer for moisture correction. After moisture
corrections were calculated, all the aggregate and two-thirds of the water were placed in the
mixer and spun for three minutes [ASTM C566]. This time allowed for evenly distributed
aggregates and for the aggregates to be closer to saturated surface dry (SSD).

The residual water, cement, and fly ash were added next and mixed for three minutes. While
the mixing drum was scraped, the concrete mixture rested for two minutes. Following the rest

time, the admixtures were added, and the mixer spun for an additional three minutes.

2.2 Concrete and Mortar Sampling and Testing

2.2.1 Sampling of Concrete and Mortar

Immediately after mixing the concrete was tested for slump (ASTM C143) and unit weight
(ASTM C138) [74, 75]. Two 7L samples were tested simultaneously with the SAM (AASHTO
T 395) by different operators [76]. These were used to find the average SAM Number of a
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mixture. One hardened air-void analysis (ASTM C457) sample was made from each concrete
mixture for testing [77].

After the concrete samples were made, mortar samples were prepared. The mortar samples
were obtained from the same concrete mixture [78]. using a wet-sieving process. A 9.5 mm
sieve was used to remove the coarse aggregate from the concrete. Two mortar cylinders were
made from each sieved sample in 102 mm by 203 mm molds. Further testing was completed

on these samples that will be discussed in section 2.3.

2.2.2 Sequential Air Method (SAM)

The SAM testing was performed as defined in AASHTO T 395 [76]. The SAM device applies
three sequential pressures to fresh concrete and the equilibrium pressures are recorded. After
the first pressure step, the air content is found like the ASTM C 231 Type B meter [79]. The
pressure is then released, and the same steps are applied again to the fresh concrete. The SAM
Number is calculated by taking the numerical difference between the final pressure steps. The
difference between the pressure responses has been shown as indication of the air void size and

spacing in the concrete [80].

2.2.3 Hardened Air Void Analysis Sample Preparation

Concrete samples were cut into 19 mm thick slabs and polished with sequentially finer grits
[77]. The surface of the sample was preserved with an acetone and lacquer mixture to
strengthen the surface before it was inspected under a stereo microscope. After an acceptable
surface was obtained, the sample is cleaned with acetone. The surface was then colored with
a black permanent marker, the air voids were filled with less than 1 um white barium sulfate
powder, and the air voids within the aggregates were blackened under a stereo microscope.
This process makes the concrete sample black and the voids in the paste white. Sample
preparation details can be found in other publications [81, 82]. The sample analyzed with
ASTM C457 method C using Rapid Air 457 from Concrete Experts, Inc. A single threshold
value of 185 was used for all samples in this research and the results do not include chords
smaller than 30 um. A traverse length of 2286 mm was used for all samples to satisfy the
requirements of ASTM C457. These settings and sample processing methods are like methods
used in other publications [82-84]. All air voids were used for the volume of chords less than

300 pum [85].
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2.3 Mortar Testing

2.3.1 Measurement of Ca(OH)-

Thermogravimetric Analysis (TGA) was performed on the ground powder from the mortar
samples to determine Ca(OH),. The test was performed using approximately 30 mg of ground
powder from the mortar. The sample was heated to 1000 °C at a rate of 10 °C/min under a
nitrogen atmosphere. Corrections were made for the loss on ignition of the constituent
ingredients in their relative volume. The amount of calcium hydroxide in the paste was
estimated based on its mass loss during decomposition between 380 °C and 460 °C. For
reference, a tested samples of plain cement paste had a coefficient of variation of Ca(OH), of

approximately 1% [86, 87].
2.3.2 Coring and Saturation of Samples

After curing, the mortar samples (obtained by wet sieving) were demolded and cut using a
water-cooled diamond saw into 30 mm thick discs before being cored to cylinders with 10 mm
diameter and 30 mm heights [47]. The cylinders were then trimmed using a water-cooled,
precision diamond saw to have parallel surfaces [88]. The final dimensions of the cylindrical
cores are nominally 10 mm in diameter and 20 mm in height. The cores were then exposed to
60°C temperature until reaching a constant mass (mass evolution over 24 hours is less than
0.01%). The samples were then vacuum saturated with lime-water solution under a vacuum
pressure of 6 Torr. The mortar cores were immersed in lime solution for an additional 24 hours

at 23 + 2°C. They were then kept immersed in lime solution at 50 + 1°C for an additional 24

hours.
Table 6 — Mortar samples investigated.
Fresh Concrete Hardened Concrete Hardened Mortar
Properties Properties Properties
Sample ID o Fly Spacing Specific Initial
Ash Air SAM Fact Surface Initial Length
Content | Number actor Mass [g] eng
[pm] [mm™] [mm]
20FA 20 5.4% 0.16 157 27.9 3.40 19.16
40FA 40 5.9% 0.10 163 29.3 3.70 21.45
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2.3.3 Mortar Sample Mass and Length Measurements

All the samples were measured for mass using a scale with accuracy of 0.01g and length using
a micrometer with accuracy of 0.00254 mm. The samples were measured at the completion of

each cycle.

2.3.4 Temperature Cycling of Samples

To prepare the samples for CaOXY formation a thermal cycling process was used. Figure 2
outlines the temperature cycling and scanning timeline for each sample. After the samples
were removed from the lime solution, they were scanned (Scanl) using the Micro-CT.
Following the scan, the samples were placed directly in 20% CaCl> solution that was
equilibrated at 50 + 1°C for an additional 24 hours, then scanned (Scan2) again using the Micro-
CT. The amount of the solution was three times the volume of the sample. Based on a pore
volume of 20%, this results in an actual concentration of 18.75% CaCl: in the pore solution.
With the binding of chlorides within hydration products, the CaCl, concentration in the pore
solution will further decrease. The immersion in salt solution at 50°C was to increase the
penetration of the salts into the pores of the mortar before forming CaOXY [47, 51]. After
scanning the sample, it was placed in a temperature-controlled chamber to be cycled through a
series of temperatures: 5°C for 12 hours, 23°C for 10 hours, and 50°C for 30 minutes. This

cycle time was based on [47].

60
24hr  24hr caCl, cacl CaCl, cacCl, cacl cacl cacl,
Lime CaCl, Soak Soak Soak Soak Soak Soak Soak
Soak Soak Cyele 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7
50 4 1 e o 50C

/

) |

g
‘E\‘\
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= 30
=
t" Scan3 Scand Scan5
E. 5 4 - - 23¢C
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[ Saturate
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0 | 1CyclePeriod |
!

Measurement Timeline

Figure 14 — Temperature cycling versus time. The timing for each scan is also shown.
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The mortar samples were scanned with the Micro-CT at different stages throughout the process.

These stages are listed in Table 4.

Table 7 — Scans throughout soaking and temperature cycling

Micro-CT Scans
Sample ID % Hy Scanl Scan2 Scan3 Scand Scan5
Ash [ o | 24hrGaCl | CaClSoak [ CaClSoak | CaClSoak
Soak @ 50C Soak Solution | Solution for | Solution for | Solution for
@ 50C 2cycles 5 cycles 7 cycles
20FA M1 20 1 1 1 1 1
40FA M1 40 1 1 1 | 1

2.4 Micro Computed Tomography (Micro-CT)

The scanning was done by a ZEISS XRADIA 410 with a photon energy of 90 keV at a resolution of
4.97 pm/pixel using glass filter LE6 from the manufacturer. The volume of the interest (VOI) was a
cylinder 5.0 mm in diameter and 5.0 mm in height located near the surface of the sample as shown in

Figure 3. The Micro-CT x-ray settings for each scan are shown in Table 5.

! 10 num :

= - 4- - Volume of interest

20 mm

-4 -I- Actual sample

S—

Figure 15 — Location and dimension of the investigated volume of interest (VOI).

Table 8 — ZEISS XRADIA 410 scan settings.

Resolution 4.97 pm/pixel
Source Energy 90 keV
Optical Magnification 4X
Exposure Time 8.5 seconds
Number of Projections 2100
Total Exposure Time 5.5 hours

The images were reconstructed using XMReconstructor to create a library of 2D cross-sectional

images. These images were stacked to enable a 3D image of the entire scan. A dataset from a
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representative sample is shown in Figure 4. This shows a 3D tomography, a 2D cross-section of the

reconstructed image, and the corresponding grayscale histogram for a sample [66]. Each 16-bit

image consists of pixels with gray values ranging from 0 to 255 corresponding to x-ray absorption

which is a function of density and composition of the material [89, 90]. The range in gray values can

be used to separate the sample into different elemental phases by an image segmentation process [57,

61, 91]. The main mortar components are air voids, paste, and aggregates. The x-ray absorption for

air voids is the lowest because they are the least dense. The lower the density of the element, the

darker the voxels in the reconstructed images. The aggregates and un-hydrated cement particles have

higher densities, which makes them appear lighter gray to nearly white. The paste of the sample falls

somewhere between the voids and aggregate gray values. This can all be observed in Figure 4.
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Figure 16 — (A) An example of the Micro-CT dataset with the 3D tomography, (B) a 2D cross-

section of the reconstruction image, and (C) the corresponding grayscale histogram for a sample

[66].
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2.5 Image Processing and Analysis

All images were processed, investigated, and visualized using ImageJ software and MATLAB codes.
These techniques were used to provide quantitative and qualitative data from Micro-CT images. Each
set of images was aligned with the initial set of images. This alignment would improve accuracy for

segmentation and phase identification of each set.

2.5.1 Alignment of Micro-CT Datasets

For each set of images, 16-bit reconstruction images were created. To compare each sample from one
scan to another, alignment was necessary. Before aligning the images, a histogram shift was used to
match the grayscales in the images [62, 66, 69]. This would correct any grayscale shift in values
between scans due to automatic normalization during reconstruction. Matlab coding was then used to
align the Micro-CT image datasets from one cycle to another. The alignment algorithm was used with
Scan? as the reference scan for the subsequent scans. In this process, some identifiable feature
regions such as void clusters or high-density sand grains were handpicked throughout all scans, and
their coordinates were used to find the 3D affine transformation matrices to align the following scans
with the reference scan. Details of the technique can be found in other publications [57, 92, 93].
However, this alignment technique did not fully account for the rigid body movement of the sample
between the scans. If the regions of the sample moved in different directions from changes in the
microstructure from the formation of cracks, it is difficult to find a single affine matrix that could
consider those individual movements. That makes the full region of the sample difficult to align using
this technique. To solve this, the alignment was completed on a smaller region so that the relative
movements would be small and so the alignment was still possible. For quantitative analyses, some
small regions with some identifiable features with the dimensions of I mm x 1 mm x 1 mm were

cropped and aligned individually to compare between different scans.

2.5.2 Segmentation

Segmentation of the Micro-CT imaging was used to create quantitative data. In this study, a

threshold value was chosen to segment the regions of voids. This paper uses the term void to
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describe the measurements that do not contain solids. There are voids that are below the
resolution of the Micro-CT that are not included in this analysis. The threshold value was
adjusted and then chosen when the overall void percentage of Scan 1 matched the results from
the fresh testing. The voids observed in the initial scan are labeled “air voids”. This same
segmentation process was used in subsequent scans. If a void space was observed in
subsequent scans that did not exist in the initial scan, then this volume is labeled as a “crack”
as this is void space that has formed in the hardened matrix. It was also observed that volumes
that were initially air voids in Scan 1 were later filled with a solid with additional temperature
cycles. These volumes were labeled as “products” as they are materials that are forming in

previously existing void space.

3.0 Results

3.1 Ca(OH), Content

The Ca(OH); content in the 20% fly ash and 40% fly ash mixtures was determined to be equal to
10.6 g/100gpaste and 4.5 g/100gpasc respectively [47]. This decrease in Ca(OH); content is caused by
the pozzolanic reaction with fly ash that was added. The lower amount of Ca(OH), will decrease the
CaOXY content, which is expected to decrease the damage to the sample. The CaOXY content in
each sample is equal to 13.6 g/100gpastc and 5.4 g/100gpasc for mixtures containing 20% and 40% fly
ash respectively [47]. This also shows that the sample with 40% fly ash replacement is expected to

have less damage than the 20% fly ash sample.

3.2 Mortar Sample Mass and Length Changes

Figure 5 shows the results from the measurements for the 20FA M1 sample and the 40FA M1
sample. Each percent change in length measurement is labeled by the cycle time and scan.
The percent change in length is the length of the sample minus its initial length divided by its
initial length. The figure shows that the sample with 40% fly ash stays below 0.50 percent
length change, while the sample with 20% fly ash steadily increases in length after cycle 2.
The increase in length could be internal damage from the formation of cracks. This damage
will be discussed later in the paper. At cycle 7, the sample was visibly damaged with crumbling

particles falling off the edges of the sample.
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40FA M1 Air: 5.9% SAM: 0.10
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Figure 17 — Length measurement versus percent change.

3.3 Micro-CT Imaging Analysis

3.3.1 Micro-CT Imaging Compared to Segmentation of Voids

Table 6 shows a 3 mm square scan from an interior volume from the 20FA M1 mixture. This is
the sample that showed expansion in Figure 5. The first row of images are the raw scans from
different cycles. The second row of images shows the segmented voids. The black represents
the solids within the sample and the white represents air. At cycle 5, there is a decrease in the
volume of the air voids and an increase in cracking. Cycle 7 shows further damage to the
sample. The cracks primarily form at the transition zone around the aggregate. The cracks
may form here because the transition zone is expected to have a higher concentrations of
Ca(OH); than the other parts of the structure which has been often seen in field samples with
damage around aggregate. Further, the cracks may start at the interface due to dissimilar
stiffness, moisture content, and coefficients of thermal expansion between the paste and

aggregate resulting in stress concentrations [94].

Table 9 — Images from the grayscale histogram correction process and segmentation of voids for

the 20FA M1 sample. Each image is 3 mm x 3 mm in size.
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Lime 50C CaCl;, 50C
soak soak

Description CaClacycle2 CaClacycle5  CaCls cycle 7

Image after
gray value
histogram
correction

Segmentation
of voids

Table 7 shows a slice from a 3 mm cube from the interior VOI displayed in Figure 3 for 40FA
M1 mixture. This is the sample that showed minimal expansion after 7 cycles in Figure 5. The
first row of images shows a slice without segmentation and the second row of images shows the
same slice after segmentation. This matches what is shown in Table 7. The voids in these scans

are not changing in size and there is no cracking observed as the temperature cycles increase.

The lack of damage is due to the higher fly ash replacement, which decreases the level of

Ca(OH); within the mixture [95, 96].
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Table 10 — Images from the grayscale histogram correction process and segmentation of voids

for the 40FA M1 sample. Each image is 3 mm x 3 mm in size.

Lime 50C CaCl;, 50C
soak soak

Description CaClacycle2 CaClacycle5  CaCls cycle 7

Image after
gray value
histogram
correction

Segmentation
of voids

3.3.2 Quantifying Damage within Samples

To quantify the damage within the sample throughout each scan, the total volume of voids is
plotted for different temperature cycles. In Figure 6, the 20FA M1 sample shows an increase in
the volume of air voids and cracks in the sample. This matches the visual observations from
Table 7 but this provides quantitative evidence. The increase in cracks begin after the second
temperature cycle where the sample is soaked in CaCl,. The 40FA M1 sample shows a
consistent volume of air voids and cracks within the sample. This result agrees with the images

shown in Table 7.
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Figure 18 — Total volume of air per scan for 20 percent and 40 percent fly ash replacement.

To obtain more information about the distribution of the voids in the sample, the samples were
evaluated from the surface of the sample to a depth of 3.8 mm. The plot shown in Figure 6
shows the change in the volume of air voids and cracks over the depth of the sample. Figure 7
also contains slices from a depth near the surface and 3.0 mm from the surface from CaCl,
solution cycle 7 for the 20FA M1 sample. This plot shows the change in volume of air voids
and cracks compared to the initial scan taken after placing the sample in lime water solution at
50°C. The data is plotted this way to help show the difference between the scans. For example,
the total volume of voids at the surface (0.0 mm) for CaCl: cycle 7 was 7.3% greater than the
volume of voids at the surface for the lime soak. The image included in the figure shows the
surface of the sample and the significant cracking that is observed. There are several large
cracks visible around the aggregates in the image. These changes are noticeable starting at
cycle 2. The change in volume of voids for cycle 7 at 3.0 mm depth was 1.5%. This is 5.8%
less void volume than at the surface. This means that there is more damage at the surface of
the sample compared to the interior. This is probably because the surface of the sample was in
contact with the CaCl, solution. As damage increases this will allow more solution to enter

the concrete and damage the sample.
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Figure 19 — Change in the total volume of air over the depth of the 20 percent fly ash sample.

Each image is 3 mm x 3 mm in size.

Figure 8 shows the same plot and slices as Figure 7, but for the 40 percent fly ash sample.
There was minimal change in the volume of air voids and cracks for each cycle. These small
changes are likely caused by noise in the images. Cross section images are included from the
surface and at a depth of 3.0 mm. The difference in performance is because the damaged
sample in Figure 7 used 20% fly ash replacement and contained 10.6 g/100gpaste of Ca(OH)2
and the sample in Figure 8 with 40% fly ash replacement contains 4.5 g/100gpaste of Ca(OH)s>.
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Figure 20 — Change in the total volume of air over the depth of the 40 percent fly ash sample.

Each image is 3 mm x 3 mm in size.

3.3.3 Micro-CT Imaging of Individual Voids

Smaller regions of the sample were investigated to follow the changes of individual voids. In
Table 8, a raw scan from each cycle for sample 20FA M1 is shown along with a segmented
version of the image, a 3D model of an individual air void, the volume of that air void, and the
change in measured volume compared to the initial scan. Each image represents a 1 mm cube

within the 3 mm cube previously studied.

The segmentation of voids shows air voids filling and cracks forming as the sample was cycled
through temperature changes. The 3D model shows how the volume of a single air void
changed over time, which is circled in the segmented image. The percentage of initial void
starts at 100 percent for the lime soak at 50°C. By cycle 5, the volume of air void has reduced
to 66 percent of the initial void volume and by cycle 7, it has reduced to 43 percent of the initial
air volume. These air voids appear to fill with solids over time. These solids may be formed
by water being forced into the voids by the phase change of the CaOXY. If the air voids are

filled over time by solids, then these voids can no longer protect the concrete from freezing
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events or from the pore pressure increases by the CaOXY phase change. Although this study
did not examine the chemical makeup of the material in the voids, others have investigated this

and determined that it is made up of ettringite and CH [69].

Table 11 — Imaging and air volume analysis of 20FA M1 scans 1 through 5. Each image is 1

mm x 1 mm in size.

Lime 50C CaCl, 50C
soak soak

Description CaClycycle2  CaClacycle 5 CaClacycle 7

Image after
gray value
histogram
correction

Segmentatio
n of voids

3D void
model

Volume of

. 3 1171125 1129250 1152125 768750 501750
void [pum”]

Volume
change
compared to 100% 96% 98% 66% 43%
Lime 50C
soak

In Table 9, each cycle for sample 40FA M1 is shown that mirrors Table 8. The most volume
reduction observed is 3%. This is a minimal decrease in volume compared to the 57%
reduction in volume shown in Table 9. The 3D images also show minimal change in the void.
Minimal damage is observed because of the higher fly ash replacement and therefore the

reduced CaOXY formation.

Table 12 — Imaging and air volume analysis of 40FA M1 scans 1 through 5. Each image is 1

mm X 1 mm in size.
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Lime 50C CaCl; 50C
soak soak

Description CaClacycle2 CaClycycle5  CaClh cycle 7

Image after
gray value
histogram
correction

Segmentatio
n of voids

3D void
model

Volume of

s 3 441500 434875 440375 454375 427250
void [pum”]

Volume
change
compared to 100% 98% 100% 103% 97%
Lime 50C
soak

Figures 9 and 10 extend the results from Tables 9 and 10 to the entire sample. The results reported do
not include cracks. The air voids are determined in the scan after soaking the sample in 50°C lime water

and these same volumes are revisited in subsequent scans to determine their change in volume.

In Figure 9 and 10, the line for the sample soaked in lime water at 50°C shows the initial air void
distribution. As the lines move lower this shows a decrease in the air void volume. In both figures, the
sample soaked in CaCl, for the first and second cycles is slightly lower than the initial air volume. This
is possibly due to pore filling. Also, there is minimal difference between the “CaCl, 50C soak” scan

and the “CaCl; cycle 2”. This shows that the experimental method is repeatable.

In Figure 9, significant changes in the total volume of air begin to occur starting at cycle 2.
The results show that the cumulative air void volume has decreased by roughly 56% by cycle

5 and 70% by cycle 7. This shows the significant air void filling that occurs from temperature
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cycling in the 20% CaCl; solution. As stated previously, once these air voids fill, the protection

against freeze thaw and CaOXY damage is reduced.
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Figure 21 — Cumulative air void volume for the 20% fly ash sample. The results reported do
not include cracks. The air voids are determined in the scan after the 50°C lime soak, and these

same volumes are revisited in subsequent scans to determine their change in volume.

The 40% fly ash sample shows a significantly different performance when compared to the
sample with 20% fly ash. The total reduction in air void volume is only 20% at the end of the
testing. Also, this volume change occurs in voids with a diameter greater than 80 um. It is
important to note that these larger voids are not as critical in providing protection against freeze
thaw damage compared to the smaller voids [97]. This occurs because less CaOXY is expected

to form in this sample because of the higher fly ash replacement level.

65



2 5E+07
——Lime 50C soak

= ——CaCL50C soak
= 2.0E+07 :
@ CaClcycle 2
= / -
% CaClcycle 5
» 1.5E+07
= ——CaClycycle 7
=
=
2 1.0E+07
i
&
2
= 5.0E+06
-
o

0.0E+00

0 20 40 60 80 100 120 140

Air Void Diameter [pum]

Figure 22 — Cumulative total volume of air in relation to the air void diameter for each scan of
sample 40FA M1. The results reported do not include cracks. The air voids are determined in
the scan after the 50°C lime soak, and these same volumes are revisited in subsequent scans to

determine their change in volume.

4.0 Mechanisms of CaOXY Damage

This work provides a direct observation of the progressive damage caused by CaOXY in
concrete. This provides insights into the location, rate, and volume of damage. Since this work
investigated a 20% fly ash sample that was damaged and a 40% fly ash sample that was not
damaged then this allows a comparison to be made of the accuracy and repeatability of the

experimental techniques.

Figure 7 shows that between cycle 2 and cycle 5, the sample with 20% fly ash shows an increase
in damage from the surface to 1 mm deep within the sample. At this same time, the air voids
are starting to fill, and the sample is changing length. This continues between temperature
cycle 5 and cycle 7. The damage continues to increase at the surface and extends up to 1.5 mm
deep within the sample. By the end of cycle 7, the air voids between 20 um and 100 pum lose

70% of their volume from infilling.
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The higher damage at the sample surface occurs because that is where the 20% CaCl; solution
is in direct contact with the sample. As the concrete cracks, this allows a higher amount of
CaCly within the sample, which reacts to form more CaOXY. As the cycles increase, this
causes more damage to the sample. Within the sample, the cracking is first observed in the
transition zone around the aggregates. This occurs because the transition zone is expected to

have a higher concentration of Ca(OH)..

The air void filling is likely due to high concentration of dissolved ions in the pore solution.
As the temperature decreases, the CaOXY phase change will occur, causing an increase in
volume. This increase in volume forces the solution from the capillary pores into the air voids.
These air voids are likely empty because the sample is below the critical degree of saturation.
Once the forced pore solution reaches the air void, the pressure is relieved because the pore
solution is no longer confined. Once the pressure is reduced, the ions saturated in the pore
solutions will form solids. As the temperature rises, the CaOXY phase change occurs causing
a decrease in volume. This allows the solution in the voids to drain into the capillary pores
leaving the formed solids in the air voids. As this process repeats, the air voids will continue
to fill with solids. As the air voids decrease in volume, this reduces the amount of protection

from future CaOXY phase changes.

5.0 Practical Significance

The damage observed in this paper resembles the damage observed at sawed joints with poor
drainage in field pavements that receive chloride deicing chemicals. Because of the sawing,
these joints often have aggregates with exposed transition zones that can react with the salt
solution. Many field projects have observed air void filling near the joints [98]. The

observations and mechanisms discussed in this paper explain why this occurs.

It is important to note that the temperature cycling that causes damage occurs at moderate
temperatures and does not require temperatures typical of freezing water. This means that the
temperature cycles can be experienced outside winter months and so the cycles caused by

CaOXY may be high for these pavements.

If the air voids within the sample fill because of the CaOXY phase change then the air voids
will lose their effectiveness to protect the concrete from both CaOXY and freeze thaw damage.

This means that concrete could be damaged in the winter from freeze thaw and continue to be
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damaged in other months by CaOXY. This is why the damage can be so rapid and severe in

the field.

A critical takeaway from this work is that CaOXY damage can be stopped by using enough fly
ash in the mixture to reduce the Ca(OH)> in the sample below a critical limit. While the air
void content is helpful, it will only temporarily delay the CaOXY damage if enough Ca(OH)
is present. One practical method to address CaOXY is to use a supplementary cementitious
material like fly ash and to entrain air in the sample. This has been investigated in previous
research and for typical air contents of 6% and when fly ash is used at 30% replacement by

mass, this seems to be sufficient to prevent damage from CaOXY [47].

6.0 Conclusions

For this study, mortar samples that were wet sieved from concrete were examined using Micro-
CT imaging and length change measurements. Both samples had similar values of entrained
air but different fly ash replacement levels. One sample used 20% fly ash replacement and the
other had 40% fly ash replacement. Throughout the study it shows that the sample with 20%
replacement experiences more air void filling and cracking than the 40% fly ash sample. The

following can be observed from this work:

e For the 20% fly ash sample, the length change steadily increased by 2.50% between
cycles 2 and 7, while there was only 0.50% length change for the 40% fly ash sample.

e The cracks were primarily observed around the aggregates. This may be because of
the higher amount of Ca(OH); in the transition zone that may form CaOXY.

e For the sample with 20% fly ash replacement, there was an 8% increase in volume at
the surface and a 2% increase in volume at 3 mm from the surface from CaOXY
damage. There was no cracking observed in the 40% fly ash replacement sample
under the same conditions.

e The sample with 20% fly ash replacement had a 56% reduction in the air voids
between cycle 2 and 5, and a 70% reduction in the air voids between cycles 2 and 7.

While the sample with 40% fly ash replacement showed no changes.
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This work provides fundamental insights into the changes in the microstructure and air voids
caused by the formation of CaOXY. The observations in this work also match previous field
observations and other publications [47]. CaOXY is an issue that has caused significant
destruction, and these observations provide insights and discussions about the mechanisms of
CaOXY formation and how the damage propagates in concrete and reduces the ability to resist

freeze thaw damage.
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Abstract

This research represents four years of direct, concrete field data of degree of saturation (DOS)
and damaging freeze-thaw (FT) cycles from 42 sites in 14 states in the U.S. While present
methods of estimating FT damage are either using regional climatic data, or a result of lab tests,
this research directly measures site-specific variations in concrete moisture and temperature
that affect FT durability. The results show that damaging FT cycles occur only when low
temperatures and high DOS levels overlap. Therefore, this overlap can differ widely even
within the same regions. Based on these observations, four climate zones are identified and

mapped. Also, this study analyzes how DOS, total FT cycles, and damaging FT cycles vary
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across locations. Overall, this work reveals the importance of using site-specific evaluations

for designing concrete with FT durability.

Keywords: Resistivity, Freeze-Thaw Durability, Damaging Freeze-Thaw Cycles, Degree of

Saturation, Freeze-Thaw Maps.

1.0 Introduction

FT damage is one of the main concrete durability challenges in cold and wet climates (Kosior-
Kazberuk and Jezierski 2004; Jacobsen 2005). Thus, predicting damaging FT cycles accurately
is important for designing concrete mixtures that are more durable in cold regions. However,
many previous studies relied on laboratory testing or broad climate zones that do not always
represent what concrete experiences in the field (ASTM 2015; RILEM TC 117-FDC 2004; Li
et al. 2012; Yu et al. 2013; Abdelrahman and Ley 2024; ACI Committee 201 2016; Schaefer
and Wang 2006). Current standards, such as the Long-Term Pavement Performance (LTPP)
Climate Region Classification (FHWA 2013) and ACI 318 (ACI Committee 318 2019),
provide general exposure guidance, but they are not based on field measurements recorded
directly from concrete, and they do not account for local weather variability within a single
region. Therefore, this work presents concrete field measurements of DOS and FT cycles at
different locations across the U.S. to better understand the actual performance of the concrete

under real environmental conditions.

FT damage is mainly controlled by freezing temperature and moisture content in the concrete,
which is commonly represented by the DOS (Beaudoin and MacInnis 1974; Bentz et al. 2001;
Sutter et al. 2006; Sun et al. 2007; Leech et al. 2008). However, local weather conditions such
as air temperature, humidity, and precipitation can significantly change both the freezing
temperature and the DOS within the concrete (Akita et al. 1999; Liu et al. 2016). DOS stands

for percentage voids in concrete saturated with water, and it plays a major role in determining
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concrete susceptibility to FT damage (Ghantous et al. 2019; Fagerlund 1977). Several factors
influence DOS, such as porosity, air content, pore structure, and the amount of free water within
the concrete. Although air void spacing does not directly change DOS, it affects the critical
DOS, the critical saturation level when damage starts to develop (Li et al. 2012; Fagerlund
1977; Moradllo et al. 2019; Fagerlund 1973). The critical DOS is typically between 78% and
90% (Li et al. 2012; Fagerlund 1977; Moradllo et al. 2019; Fagerlund 1973), and FT cycles are

considered damaging when the DOS in concrete is above the critical DOS.

Temperature is also a key factor in FT damage. In cold, wet regions, when the concrete
temperature drops below freezing, water inside the concrete freezes, resulting in hydraulic and
crystallization pressures. As a result, cracks will develop, especially when the DOS is above
the critical value, leading to more concrete durability issues (Fagerlund 1977; Powers 1945;
Shang and Yi 2013; Barham et al. 2021; Obaidat et al. 2020). Therefore, measuring DOS and

detecting ice formation in real time under field conditions has historically been a challenge.

To address this challenge, a novel field-based method was developed that uses electrical
resistivity and temperature measurements to measure DOS, ice formation, and ice melting
inside concrete in real time (Chen et al. 2023). This study showed a direct relationship between
DOS and freezing temperature, as higher DOS increases the freezing temperature of
cementitious materials, while lower DOS results in freezing at lower temperatures (Chen et al.
2023; Bager and Sellevold 1986; Farnam et al. 2015). Thus, this work showed that damaging
FT cycles can be detected in situ, offering a practical way to quantify the number of damaging

FT cycles. However, the method was only applied at two locations throughout one winter.

This study extends earlier work (Chen et al. 2023) by expanding the field measurements to 42

sites in 14 U.S. states, monitored over four consecutive winters from September to April (2020—
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2024), to investigate how the DOS and the FT cycles change in real environmental conditions

across different locations.

This novel dataset of field location-specific measurements offers a valuable methodology for
establishing tools and maps that can identify and measure damaging FT cycles for various
climatic conditions. Therefore, it becomes feasible for these tools and maps to help enhance
durability design and analysis, which are currently a prominent missing area in available

literature.

2.0 Experimental Materials and Methods

2.1 Field Sample Preparation

The samples for this work were prepared using cylindrical specimen mortar samples with a
diameter of 152.4 mm, a height of 127.0 mm, a water-to-cement ratio of 0.45, and no
supplementary cementitious materials were included to minimize variability in resistivity over
time (Chen et al. 2023). This mixed design for the samples ensures that all locations have
identical samples. Another reason for using a mortar sample in this test is that it provides easy
construction, calibration, and measurement for electrical resistivity. Since FT durable coarse
aggregates are not expected to absorb much moisture, this test result will also work for

concrete.

A fiber-reinforced concrete cover was constructed to protect the samples and wiring using a
0.45 w/c mix with 2% macro synthetic fibers by volume. The final concrete block measured
457 mm % 305 mm x 178 mm, providing structural support and insulation (Chen et al. 2023).
Each field sample block contained two mortar specimens, allowing for redundant
measurements for data reliability. More details about the mixture design are available in

Appendix A.

2.2 Instrumentation and Data Collection
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Each field sample block was embedded with four thermocouples for temperature monitoring,
and stainless-steel rods, referred to as electrodes, were used for resistivity measurements. The
electrodes had a horizontal spacing of 92.7 mm and were centered in the middle of the 152.4
mm diameter cylinder. The rods are vertically spaced at 12.7 mm from the surface to create
seven levels of measurement. Thermocouples were also installed to measure the temperature
of the sample at 12.7 mm from the surface, and then at 50.8 mm and 88.9 mm from the surface.
Based on previous publications, the rods are 51 mm from the surface. This was chosen as the
previous research (Chen et al. 2023) has shown that this depth experiences the most FT cycles
and the highest DOS. Therefore, this depth is considered the worst-case scenario for evaluating
FT damage in this study. These findings were also verified with the sites investigated for this

work.

The uppermost steel rods and thermocouples were exposed above the mortar surface to capture
water accumulation and air temperature readings (Chen et al. 2023). To simulate poor drainage
conditions, the mortar surface was set 25.4 mm below the top of the mold, allowing
precipitation to collect and evaporate naturally. This was done to simulate an area of poor
drainage on a pavement or bridge deck. Fig. 1 illustrates the configuration of the mortar
samples. Samples were connected to an instrument box with a data logger mounted on a post.
Temperature and resistivity measurements were recorded every 30 minutes and stored on an
SD card. Fig. 2 describes in detail the samples used in the field for monitoring the mortar
specimens. Additionally, Fig. 3 illustrates the monitored samples installed in the field. Further

information on data processing is in Appendix B.
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Perspective View Cross Section

Fig. 1. Mortar cylindrical specimen configuration (acquired from Chen et al. 2023).

Instrument Box with Solar Panel

Mortar Samples
Wires

Post

Thermocouples

Concrete Cover

Fig. 2. Configuration of the field samples setup, showing the concrete block dimensions,

instrument box, and solar panel connection.
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Fig. 3. Installed field samples, with the instrumentation box and solar panel set up for data

collection.

2.3 Field Samples Placement

To test how FT cycles affect concrete durability, concrete samples were distributed in 14 states
in the U.S. The reasons for this are that these states are expected to expose their concrete to
varying amounts of FT cycles, and these are also states that are sponsoring this research. The
period of this experiment lasted for four successive winter periods: 2020, 2021, 2022, and 2023.
Every winter period lasted from September to April. This is tabulated in Table 1. The locations
and states are shown on the map in Fig. 4. Each state contains three instrumented blocks placed
at three different locations. The field sites in each state are labeled A, B, and C, starting with
the furthest west site. The layout is shown in Fig. 4. Detailed locations for each field site are

provided in Appendix C.
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Table 1. Study Periods for the Field Samples.

Year Period
Winter of 2020 September 2020 — April 2021
Winter of 2021 September 2021 — April 2022
Winter of 2022 September 2022 — April 2023
Winter of 2023 September 2023 — April 2024

45

40 1

Latitude

354

30 1 3

® Field Sample Locations

251

T T T T T T
-120 -110 -100 -90 -80 -70
Longitude

Fig. 4. Locations of the 42 field samples across 14 U.S. states.

2.4 Determining the Number of FT Cycles

The detection of FT cycles is based on the relationship between the DOS and freezing
temperature (Chen et al. 2023). The freezing temperature is defined as the temperature at which
the water inside the concrete begins to freeze, and this temperature depends on the DOS of the
concrete (Chen et al. 2023). Fig. 5 shows the relationship between DOS and freezing
temperatures, which was developed from previous work (Chen et al. 2023). More details about

this relationship can be found in Appendix D.
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Fig. 5 shows that concrete samples with higher DOS values freeze at higher temperatures than
the samples with lower DOS. This means it is easier for the concrete to freeze and be damaged
from ice formation at high DOS. For this study, the FT cycle is defined as a temperature drop
below the freezing temperature followed by a rise above 0°C. The analysis uses the rods located
51 mm below the surface, as this is where the samples showed the highest DOS (Chen et al.

2023).

—— Fitted line

Freezing Temperature (°C)

-5 = .
3540 50 60 70 80 90 100
DOS (%)

Fig. 5. DOS vs. freezing temperature relationship (acquired from Chen et al. 2023).
2.5 Determining the Number of Damaging FT Cycles

In this study, the FT cycle is considered damaging if the DOS increases above 80% and ice
forms within the sample. The 80% DOS limit was selected as it represents a conservative lower
limit when FT damage is likely to occur. Setting the critical DOS at 80% ensures caution, as
the potential for damaging FT cycles is reduced below this value, and ice formation within the
sample is less likely to cause damage. Therefore, this value helps avoid underestimating
potential FT damage and aligns with findings from previous studies, which identify the critical
DOS range as 78-90% (Li et al. 2012; Fagerlund 1977; Moradllo et al. 2019; Fagerlund 1973).
This provides further justification for selecting 80% as a conservative value to account for
potential measurement variability and ensure a margin of safety in evaluating FT damage.

Thus, in this study, FT damage is detected when the concrete has frozen, based on the freezing
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temperature shown in Fig. 5, and coincides with a DOS above the critical 80%. Any FT cycles

occurring below this critical DOS are not considered damaging cycles.

3.0 Results and Discussion

3.1 Variation of DOS Based on Month, Region, and Year

Fig. 6 shows the average DOS at the 42 locations during winter 2020-2021, along with regional
variation. Results for other winters are provided in Appendix E, and the average monthly DOS
data are presented in Appendix F. Across the four winters, Oregon Location C has the highest
Coefficient of Variation (CV) at 5.6% and a standard deviation of 4.9%. This indicates that the
DOS values were generally consistent over the winters for each location measured. The high
CV at this site was likely due to local weather variability, though the variation remained

relatively small. The variation in the damaging FT cycles is discussed later in the document.

Fig. 6 shows that different regions have different DOS levels. As explained previously,
locations where the DOS is high will freeze at higher temperatures (see Fig. 5) and will be
damaged more easily from the FT cycles. While locations with low DOS require lower
temperatures to freeze (see Fig. 5), they are less of a concern for FT damage. This observed
variability in DOS means that using a single FT strategy for an entire state or region may be
inaccurate, since moisture levels can vary widely in the same region. This highlights the need
for location-based FT exposure assessments based on actual field measurements to better
analyze and design more durable concrete in cold regions. The variation in the DOS between
sites is impacted by a complex combination of weather. Understanding how different weather

factors impact the DOS will be discussed in other publications.
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Fig. 6. Location-specific average DOS (%) measured at field sites during winter 2020-2021.

3.2 Total and Damaging FT Cycles

This section presents the total and damaging FT cycles measured in field concrete samples
across U.S. states during winter 2020—2021. Results for other years are presented in Appendix
G. Fig. 7 shows the total and damaging FT cycles measured in the field concrete samples,
where the first number represents the total cycles and the second number indicates the
damaging cycles (i.e., cycles occurring when the DOS exceeds 80%). Based on the DOS and
FT data, each location can be grouped into different regions, which are summarized in Table 2

and illustrated in Fig. 8.
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Fig. 7. Total and damaging field-measured FT cycles during winter 2020-2021.

Table 2. Summary of Environmental Conditions and Freezing Event Scenarios.

Variable Saturation +

Possible Case Wet + FT Dry + FT Wet + Low FT FT
Precipitation High Low High Moderate
DOS% High (>80%) Low (<80%) High (>80%) Variable (> or < 80%)
FT Cycles High High Low (<15 Cycles) High
Damaging FT Cycles High No Low (<15 Cycles) Moderate
Example Location Minnesota (A)  Oklahoma (A) Oregon (A) Ilinois (B)
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Fig. 8. Geographic distribution of FT cases assigned to each field location.

3.2.1 Wet+ FT

Fig. 7 shows that in northern states like Idaho, North Dakota, Minnesota, Wisconsin, lowa,
Nebraska, and Pennsylvania, every FT cycle was damaging, as the DOS consistently exceeded
80% during freezing. This shows the vulnerability of colder, wetter regions where the DOS

remains above 80%.

3.2.2Dry+ FT

While some locations experienced frequent FT cycles, these do not always lead to damage.
This occurs because the DOS was always <80% during freezing at these locations. This
highlights that damaging FT cycles are not caused by freezing alone but by the coincidence of
freezing events with high DOS. This can be seen in Fig. 7 in locations B and C in Colorado.
These locations experience freeze—thaw cycles (67 and 66), but none were damaging because
the DOS stayed below 80% (75% and 79%). A similar pattern was observed at Location A in

both Oklahoma and Kansas, where high cycle counts were not damaging because the DOS was
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below the critical DOS (both had a DOS of 79%). It should be noted that all of these locations

were in a dry climate, which can explain why the DOS of this concrete was lower.

3.2.3 Wet + Low FT

Some locations had an average DOS above the critical threshold of 80% but experienced
relatively few freeze—thaw cycles. For this work, a few FT cycles are defined as fewer than 15
cycles over the winter season. In these cases, nearly all FT cycles were damaging, but the total
number of FT cycles was limited due to warmer temperatures. For example, Oregon Location
A and Oklahoma Location C had average DOS values above 80% during winter, yet recorded
only a small number of FT cycles. This shows that even in wet regions where concrete remains
highly saturated, limited freezing events can reduce the overall FT damage. However, when

freezing does occur, the high DOS ensures that nearly every cycle contributes to damage.

3.2.4 Variable Saturation + FT

It is also possible that the DOS is sometimes above the critical limit of 80% and sometimes it
is below. This can be seen at Illinois Locations B and C. For example, 33 and 27 FT cycles
were recorded, but only 19 and 22 were damaging. Although the average DOS for this region
1s 82% and 85%, temporary drops in the DOS below 80% by drying before a freeze meant that
some of the FT cycles were not damaging. This shows that it is not enough to know the average
DOS, but instead it is important to know the DOS when the freezing event occurs. This work

classified any location where this occurred as having variable saturation.

To show a detailed example, individual measurements of the temperature and DOS from
December 2020 for Location B in Illinois are shown in Fig. 9. The dashed blue vertical lines
indicate points where the concrete has frozen. The vertical dashed green lines then indicate
where the concrete has thawed. Note that the temperature may be below 0°C, but this is not

low enough for the concrete to freeze based on the DOS of the sample. However, it should be
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emphasized that if the DOS is below 80% then the freezing event will not cause damage.

Examples of this are shown in Fig. 9b.

This shows that even at sites with a high average DOS, it is possible that variations in the
moisture content can create non-damaging FT cycles. This highlights the importance of the

DOS of the sample and the timing of the FT event.
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Fig. 9: Temperature and DOS at Illinois Location B in December 2020, highlighting

damaging and non-damaging FT cycles; (a) temperature, (b) DOS.

3.3 Comparison to Other Climate Models

Current standards classify FT exposure by using broad regional climate categories, but they
often overlook the site-specific conditions that cause actual damage. Thus, it is important to

understand the limitations of these standards as they affect the concrete durability of design
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decisions and analysis. For instance, the LTPP (FHWA 2013) divides regions into wet and dry
zones based on precipitation. Wet regions are defined as receiving more than 508 mm of
precipitation per year, while dry regions receive less. Freeze severity is then described using
the Freezing Index (FI), which adds up the degree-days below 0°C in a year and is meant to
indicate how severe the freezing exposure is. Areas with FI values below 50 are classified as
No-Freeze, those between 50 and 400 as Moderate-Freeze, and those above 400 as Deep-Freeze
(FHWA 2013). One problem with this approach is that it does not consider whether freezing
happens when the concrete is highly saturated. As shown in this study, even if the average DOS
is higher than the critical threshold, short-term drops in saturation during freezing events can
reduce the number of damaging FT cycles. Many locations move above and below the 80%
DOS level throughout the winter, and this variability is not captured by LTPP categories.
Another limitation is that the LTPP zones describe only the severity of freezing but do not

indicate how many damaging FT cycles occur at a location, which is a key factor in durability.

ACI 318 (ACI Committee 318 2019) has exposure classes (FO—F3) based on whether or not
concrete will freeze in moist conditions, but it does not provide engineers with clear guidance

on how to determine this, leading most to make conservative assumptions.

This work has used location-specific field data in combination with measured DOS and timing
of freezing events. This allows regional variability to be taken into account and offers a much
more accurate assessment and basis for design for FT exposure and durability of concrete in
cold regions. It also more accurately represents the true exposure of concrete to damaging
cycles than the zones that are offered by some guidelines, but misrepresent local conditions,

and can either overestimate or underestimate actual FT exposure.
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3.4 Year-to-Year Variability in FT Cycles

Table 3 groups sites by CV and lists the percentage of locations in each variability group;
results for individual locations are given in Appendix G. A low CV of less than 15% indicates
little variation from year to year and suggests that sites had relatively stable FT
behavior. Moderate variability between 15% and 40% still shows some noticeable variation
over the years in terms of FT cycles. High variability of greater than 40% suggests that there
were substantial differences between years in FT cycle numbers. Locations with a very low
number of FT cycles, in general, had inflated values of CV as the effect of even minor
variations is magnified. Consequently, only locations that have more than five FT cycles per
year have their CV reported as values at sites where there are a very small number of cycles
that can be easily inflated and are not very meaningful. The resulting values show that the
plurality of locations had low variability (52%), and a very large portion had moderate
variability (43%). This suggests that there was year-to-year variability in damaging FT cycles
at many locations, but only 5% had high variability. The year-to-year changes are largely the
result of annual variations in the weather and the DOS. This finding emphasizes the point that
measuring FT cycles for just one year is not sufficient, and multiple years of monitoring are
necessary to improve understanding and predictability of FT damage. In general, there was a
stable pattern of damaging FT cycles at most locations for the duration of the study. This will

be investigated in more detail in future publications.

Table 3. Classification of Site Variability Based on CV for FT Cycles (Only Sites with >5
Cycles per Year are Included).

Number of Locations for Damaging FT

o A
CV (%) Variability Cycles
<15% Low 52%
15-40% Moderate 43%
>40% High 5%
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4.0 Practical Significance

This research provides the first large-scale, field-based dataset of damaging FT cycles
measured directly in concrete. The results show that FT damage occurs only when freezing
temperatures coincide with high saturation levels. Many locations experience FT cycles, but
they do not damage concrete because the DOS remains below the critical DOS. This highlights
the importance of site-specific evaluations for designing more durable concrete to better

capture the complex relationship between DOS and freezing events.

Contrary to conventional methods that are dependent on large climatic areas, these results
imply that present design practices either overlook regions with high potential for damaging
FT cycles or result in designs that are excessively conservative when, in reality, low potential
for damaging cycles exists. These findings also indicate that a level of variation in damaging

cycles, as well as in air content requirements, exists in a given area.

Furthermore, this research examines the annual variation of DOS values and damaging cycles
of FT, illustrating how a region can experience considerable variation in damaging cycles of
FT from year to year. On this basis, it provides for better decisions concerning FT durability,
design and maintenance. Lastly, this research has found four different types of FT climatic
conditions and has produced a map of their geographic distribution among the regions

analyzed.

This lays the groundwork for developing a measurement-based mapping system to quantify
damaging FT cycles and to establish procedures that incorporate local weather data for
predicting FT cycles using machine learning or other data-driven models that are the focus of
future work. This could create a significant improvement to current methods of classifying FT

exposure.
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5.0 Conclusions

This research builds on work (Chen et al. 2023) by extending the methodology to a larger

number of locations and seasons and providing a more detailed understanding of damaging FT

cycles in the field. This study evaluated FT exposure using a combination of electrical

resistivity and temperature data collected from 42 field locations in the United States over four

consecutive winters. A damaging FT cycle was determined as a cycle where ice developed

when the value of DOS exceeded 80%. This research effort, in total, adds to a realistic, practical

understanding of FT damage as a function of the inclusion of comprehensive field measurement

data over a period of four winters. The observations derived from this research effort are as

follows:

1.

The findings show that FT durability is strongly dependent on both freezing
temperature and DOS. Areas with consistently high DOS and frequent freezing, such
as Wisconsin, Minnesota, and North Dakota, experienced a high number of damaging
FT cycles each year. Conversely, locations like Oklahoma recorded frequent freezing
but minimal damage due to low DOS. This difference highlights the importance of
accounting for both temperature and DOS, rather than temperature alone, when
evaluating FT damage.

In dry climates, some locations experienced many FT cycles without damage because
the DOS stayed below 80% during freezing. This verifies that the FT cycles do not
cause damage if the DOS is low.

At some locations, the average DOS was above the critical DOS of 80%, but temporary
drops in DOS during freezing prevented damage. This shows that seasonal average

DOS alone is not enough; the timing of saturation relative to freezing determines
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whether cycles are damaging. This highlights the importance of location-specific
evaluations to understand the complex relationship between DOS and FT cycles.

4. Although some locations with high DOS experienced limited overall damage due to the
few FT cycles, every cycle that was detected was damaging. This highlights the critical
role of DOS in determining FT damage.

5. The relationship between DOS cycles and FT cycles was grouped into four different
groups, including: (Wet + FT), (Dry + FT), (Wet + Low FT), and (Variable Saturation
+ FT), as per actual data of field observations and actual conditions that are not
represented in current standards.

6. Over the four winters, the CV for DOS was low at all locations. Oregon Location C had
the highest variability, with a CV of 5.6% and a standard deviation of 4.9%. These low
values indicate that DOS did not change much from year to year, aside from small
weather-related variations.

7. Most sites (95%) had low to moderate variability in damaging FT cycles (CV <40%).
Only about 5% showed high variability, with CV values above 40%. This suggests that
damaging FT cycles are consistent at most locations, but some sites do experience large

year-to-year variations due to small weather variations.

This study shows that location-specific field measurements provide a more accurate and
realistic evaluation of FT damage risk. Consequently, this will provide a more reliable
design against FT damage. Categorizing the observed exposure conditions into four distinct
categories and providing limits for this classification is an important step in developing a
weather-based recommendation for FT durability design methods. This work also supports
an artificial intelligence-based approach to use more specific weather data to predict the

number of damaging FT cycles. This is an area of future work.
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Appendixes

Appendix A: Field Samples Mix Design

Table Al. Mortar mixture summary (acquired from Chen et al. 2023).

Cement (kg/m?) Water (kg/m?) Fine Aggregate (SSD kg/m?®)

603.7 265.7 1514.2

Table A2. Type I cement oxide analysis (acquired from Chen et al. 2023).

Oxide
SiO2 ALOs Fe:0s CaO MgO SOs3 NaxO KO GCiS C:S C;A CsAF LOI
(%)

Cement 21.1 438 3.1 645 233 32 017 058 50 23 7 9 2.6

Table A3. Concrete mixture summary (acquired from Chen et al. 2023).

Cement (kg/m%)  Water (kg/m®)  Fine Aggregate (SSD kg/m®)  Coarse Aggregate (SSD kg/m?)

366.4 157.8 728.6 1071.4
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Appendix B: Resistivity and Temperature Calculation
Resistivity Calculation

This work builds on a previous study (Chen et al. 2023) that used the AD5933, a 12-bit
impedance converter, to measure resistivity. The AD5933 combines a frequency generator with
a high-precision 12-bit analog-to-digital converter (ADC) capable of sampling at 1 mega-
sample per second (MSPS). To provide accurate results, calibration was performed using
resistors of 560 Q and 2000 Q. In working mode, it calculates the magnitude and phase of

impedance at a particular frequency (Chen et al. 2023).

The AD5933 gathers signals from the sample via its ADC during use. Using its DSP system, it
applies DFT to these signals. The DFT yields real (R) and imaginary (I) values representing
impedance, which are stored in the data registers for further processing. The calculation for the

magnitude of the impedance is given by Eq. 1:

Magnitude = /(R? + I? (1)
Here, R represents the real impedance, and I represents the imaginary impedance.

A scaling factor, called the gain factor, multiplies the magnitude to get the impedance value.
During the calibration process, the gain factor is calculated by using an already-known value
of impedance of a resistor. Calibration in this study was done using resistors with values of 560
Q and 2000 Q at 4 kHz frequency. Using Eq. 2, the magnitude value received from the
calibration gave the gain factors as 1.43E-7 and 4.84E-8, respectively. Using these gain factors,
the unknown impedance of each mortar layer was calculated using Eq. 3, where the magnitude

of the unknown layer is determined through the DFT process described in Eq. 1.

Gain Factor = ! (2)

Magnitude Calibration

105



1
(Gain Factor x Magnitude Unknown)

Impedance =

3)

Temperature Measurement

The MAX31855T thermocouple-to-digital converter was utilized for temperature
measurements in the previous study (Chen et al. 2023). This advanced chip includes a 14-bit
analog-to-digital converter (ADC) and provides cold-junction compensation for accurate
sensing and correction. Different versions of the MAX31855T are available to work with
various thermocouple types, and the T-type thermocouple was selected for this research. The
MAX31855T incorporates signal-conditioning hardware that converts the thermocouple's
output signal into a voltage compatible with the ADC input channels. To minimize noise-
induced errors, the thermocouple wires (T+ and T—) were connected directly to the data logger.
The device assumes a linear relationship between temperature and voltage, providing output
data based on this approximation. For a T-type thermocouple, the voltage output changes
approximately by 52.18 puV/°C. This relationship can be modeled by Eq. 4, where Vour
represents the thermocouple's output voltage (uV), Tr is the temperature of the remote
thermocouple junction (°C), and T is the temperature of the device (Analog Devices 2007;

Maxim Integrated 2015).

Vour=(52.18 uV/°C) x (Tr - TamB) (4)
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Appendix C: Field Locations Details for FT Analysis

Table C1. Field locations for FT analysis.

State Location Latitude Longitude
Stillwater 36.16238° -97.08931°
Oklahoma McCurtain County 34.04799° -94.40157°
Texas County 36.68185° -101.50515°
Spring Field (Central) 39.83079° -88.87192°
Illinois Dixon (Northern) 41.93167° -88.70806°
Carbondale (Southern) 37.78329° -89.24533°
Green Bay 44.47958° -88.1371°
Wisconsin Madison 43.14069° -89.34521°
Rhinelander 45.63143° -89.4824°
Watertown 43.98872° -76.02609°
New York Clifton Park 43.1111° -76.10384°
Hauppauge 40.95956° -72.25183°
Baxter 46.40206° -94.12734°
Minnesota Maplewood 44.93234° -93.05586°
Thief River Falls 48.06667° -96.18333°
Bismarck Site 46.7680° -100.894°
North Dakota Grand Forks Site 47.96667° -97.4000°
Fargo Site 46.92424° -96.81186°
Clearfield 41.04647° -78.4112°
Pennsylvania Cyclone 41.79835° -78.63543°
Harrisburg 40.1962° -76.77249°
Lincoln 40.84781° -96.76467°
Nebraska Thedford 41.96444° -100.56861°
Chadron 42.83736° -103.09806°
Fairfield 41.05306° -91.97889°
Iowa Mason City 43.1544° -93.32611°
Ames 41.99045° -93.61852°
Denver 39.84657° -104.65623°
Colorado Seibert 39.24148° -102.28192°
Glenwood 39.52791° -107.71965°
Oakley 38.8701° -100.9627°
Kansas Hutchinson 38.06824° -97.86075°
Topeka 38.94144° -95.65125°
Coeur d Alene US-95 48.29944° -116.5600°
Idaho Mt Home I-84 43.0500° -115.86667°
Paddy Flat SH-55 44.89425° -116.09978°
Bend 44.0950° -121.200°
Oregon Hinsdale Wave Research Lab 44.5000° -123.28333°
Newport 44.58333° -124.0500°
Central Laboratory 38.9470° -92.6830°
Missouri Northwest District 39.819848° -93.576951°
Southeast District 36.76973° -90.32241°




Appendix D: Relationship Between Resistivity, Temperature, and DOS for Mortar

Samples

The DOS for a mortar sample can be estimated using temperature and resistivity data through
a two-step linear interpolation process, based on the calibration sample dataset. For instance,
Fig. D1 illustrates an isotherm at 20°C, derived through interpolation between the data points
at 21°C and 17°C. Given a resistivity value of 0.4 kQ-cm, the corresponding DOS can be
calculated as 70% by performing a second step of linear interpolation along the isotherm. This
method allows for the practical estimation of DOS under varying temperature and resistivity

conditions.
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Fig. D1. DOS evaluation using two-step linear interpolation (adapted from Chen et al. 2023).

The relationship between Freezing Temperature and DOS is expressed by the following

equation:

FT =a,. DOS5 + a, . DOS* + a,. DOS® + a5 . DOS? + a, . DOS + a

(1)
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Table D1. Parameter values in eq. 1 (acquired from Chen et al. 2023).

Parameters a, a; a, as a, as
Value 3.81e-08 1.2e-05 1.4e-03 -8.1e-02  2.3et00  -2.9¢+01
References

Chen, L., Ley, M. T., Ghantous, R. M., Weiss, W. J., and Master, N. F. (2023). “Measuring
damaging freeze—thaw cycles in the field.” Construction and Building Materials, 387,

131660.

110



Appendix E: Year-Specific DOS Maps by Location Across Four Winter Seasons (2020-

2024)
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Fig. E1. Location-specific average DOS (%) measured at field sites: (a) winter 2020-2021,

(b) winter 2021-2022, (c¢) winter 2022-2023, (d) winter 2023-2024.
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Appendix F: Average Monthly DOS Data and Variability Metrics

Table F1. Average monthly DOS data and variability metrics (September 2020 — April 2021).

Average DOS (%)

Total

Standard

State Location Sep Oct Nov Dec Jan Feb Mar Apr Average* Deviation** CV (%o)***
A 94 96 97 97 98 98 97 95 97 1.4 1.5
Idaho B 88 87 90 91 92 93 93 91 91 2.2 2.4
C 88 91 90 92 91 89 88 88 90 1.6 1.8
A 90 93 89 91 90 89 91 90 90 1.3 1.4
Oregon B 77 78 77 79 81 83 81 80 80 2.1 2.7
C 80 83 85 85 84 82 84 84 83 1.7 2.0
A 89 89 91 92 91 90 91 90 90 1.1 1.2
North Dakota B 88 90 92 93 91 90 91 92 91 1.6 1.7
C 91 93 93 94 95 91 92 92 93 1.4 1.5
A 92 98 96 98 98 97 97 96 97 2.0 2.1
Minnesota B 92 93 95 96 96 95 94 94 94 1.4 1.5
C 90 91 92 92 91 89 91 90 91 1.0 1.1
A 97 96 98 98 99 97 98 97 98 0.9 0.9
Wisconsin B 95 94 96 98 97 96 95 95 96 1.3 1.3
C 91 90 94 92 97 95 93 91 93 2.4 2.5
A 90 89 93 94 94 93 93 92 92 1.8 2.0
Nebraska B 81 83 86 88 89 86 85 84 85 2.6 3.1
C 87 90 90 89 90 88 87 88 89 1.3 1.5
A 88 87 87 86 87 89 88 88 88 0.9 1.1
Towa B 85 87 86 88 87 85 86 85 86 1.1 1.3
C 84 88 89 89 90 91 87 88 88 2.1 2.4
A 81 83 85 88 86 87 87 86 85 2.3 2.7
Colorado B 72 73 75 76 76 75 75 75 75 1.4 1.9
C 77 77 76 79 80 81 79 79 79 1.7 2.2
A 76 79 77 78 79 82 80 79 79 1.8 2.3
Kansas B 82 88 86 88 88 85 86 84 86 2.2 2.5
C 92 93 96 96 96 95 94 94 95 1.5 1.6
A 89 89 90 93 94 94 91 90 91 2.1 2.3
Missouri B 88 85 89 87 90 88 86 84 87 2.0 2.3
C 74 78 81 82 82 80 80 80 80 2.6 3.3
A 88 85 88 86 87 85 84 83 86 1.8 2.1
Illinois B 80 81 84 85 82 81 81 82 82 1.7 2.1
C 84 84 88 87 87 85 82 82 85 2.3 2.7
A 77 77 79 80 78 79 79 79 79 1.1 1.4
Oklahoma B 79 81 84 85 86 83 82 81 83 2.3 2.8
C 78 83 89 85 86 84 86 85 85 3.2 3.7
A 92 92 91 92 94 91 90 92 92 1.2 1.3
Pennsylvania B 95 95 97 98 97 99 98 94 97 1.8 1.8
C 93 91 92 94 91 93 92 92 92 1.0 1.1
A 81 84 83 82 80 83 80 80 82 1.6 2.0
New York B 90 91 93 92 94 91 91 90 92 1.4 1.5
C 79 82 81 84 85 83 84 82 83 1.9 2.3
Maximum Value 97.5 3.2 3.7
Minimum Value 74.6 0.9 0.9

* Average Value of the Average Monthly DOS Values.

** Standard Deviation of the Monthly Average DOS Values.

*** Coefficient of Variation (%) of the Monthly Average DOS Values.
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Appendix G: Year-Specific Total and Damaging FT Cycles Maps by Location Across

Four Winter Seasons (2020-2024)
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Appendix H: Standard Deviation and Coefficient of Variation (CV) of DOS, Total, and
Damaging FT Cycles Across the Four Winter Seasons.

Table H1. Yearly field-measured DOS at each location with Corresponding Standard
Deviation and CV.

State Location DOS (%) 4-Year DOS Standard CV (%)

Year1 Year2 Year3 Year4 Average Deviation of DOS  of DOS
A 97 98 96 95 97 1.3 1.3
Idaho B 91 97 95 90 93 3.3 3.5
C 90 84 80 81 84 4.5 54
A 90 87 81 82 88 2.1 24
Oregon B 80 78 84 NA 81 3.1 3.8
C 83 92 91 NA 89 4.9 5.6
North A 90 93 96 NA 93 3.0 32
Dakota B 91 95 96 NA 94 2.7 2.8
C 93 94 95 NA 94 1.0 1.1
A 97 96 97 96 97 0.6 0.6
Minnesota B 94 96 96 96 96 1.0 1.0
C 91 92 91 97 93 29 3.1
A 98 94 96 NA 96 2.0 2.1
Wisconsin B 96 95 93 NA 95 L5 1.6
C 93 91 92 87 91 2.6 29
A 92 91 92 86 90 29 32
Nebraska B 85 80 84 88 84 3.3 3.9
C 89 91 93 87 90 2.6 29
A 88 85 87 88 87 1.4 1.6
Iowa B 86 88 85 NA 86 1.5 1.8
C 88 87 87 90 88 1.4 1.6
A 85 93 90 88 89 3.4 3.8
Colorado B 75 77 79 77 77 1.6 2.1
C 79 85 84 79 82 3.2 3.9
A 79 84 81 83 82 2.2 2.7
Kansas B 86 80 81 85 83 2.9 3.5
C 95 93 92 90 93 2.1 2.3
A 91 95 91 88 91 2.9 3.1
Missouri B 87 83 82 83 84 2.2 2.6
C 80 87 82 80 82 3.3 4.0
A 86 88 84 84 86 1.9 22
Illinois B 82 84 87 82 84 24 2.8
C 85 87 81 NA 84 3.1 3.6
A 79 75 78 81 78 2.5 32
Oklahoma B 83 80 80 83 82 1.7 2.1
C 85 87 88 85 86 1.5 1.7
A 92 90 91 96 92 2.6 29
Pennsylvania B 97 93 94 98 96 2.4 2.5
C 92 95 94 97 95 2.1 2.2
A 82 80 80 84 82 1.9 2.3
New York B 92 91 90 93 92 1.3 1.4
C 83 87 83 88 85 2.6 3.1
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Table H2. Yearly field-measured total FT cycles with standard deviation and CV.

Total FT Cycles Total
State Location Year1 Year2 Year3 Year4 FT Cycles Total FT Cy-cle's Freeze-FT
Average Standard Deviation
CV (%)
A 121 110 123 113 117 6 5
Idaho B 130 102 123 110 116 13 11
C 68 50 56 55 57 8 13
A* 0 1 6 3 3 3 -
Oregon B 21 26 35 NA 27 7 26
C 54 42 48 NA 48 6 13
North A 99 97 83 NA 93 9 9
Dakota B 71 66 57 NA 65 7 11
C 90 81 73 NA 81 9 11
A 97 79 88 102 92 10 11
Minnesota B 97 74 83 97 88 11 13
C 67 79 85 90 80 10 12
A 90 85 81 NA 85 5 5
Wisconsin B 75 79 65 NA 73 7 10
C 60 50 56 49 54 5 10
A 88 94 99 89 93 5 6
Nebraska B 76 64 74 66 70 6 8
C 64 56 77 50 62 12 19
A 66 39 49 56 53 11 22
Iowa B 90 97 94 NA 94 4 4
C 54 48 41 33 44 9 21
A 95 83 85 98 90 7 8
Colorado B 67 48 70 75 65 12 18
C 66 71 50 45 58 13 22
A 83 70 96 70 80 13 16
Kansas B 53 48 54 52 52 3 5
C 48 41 54 53 49 6 12
A 53 44 52 35 46 8 18
Missouri B 33 44 46 32 39 7 19
C 31 37 33 35 34 3 8
A 96 78 83 NA 86 9 11
Ilinois B 33 40 34 25 33 6 19
C 27 33 24 NA 28 5 16
A 49 42 41 30 41 8 19
Oklahoma B 14 23 29 33 25 8 33
C 9 17 11 12 12 3 28
A 78 58 85 71 73 12 16
Pennsylvania B 81 78 83 75 79 4 4
C 56 40 49 43 47 7 15
A 71 55 49 47 56 11 20
New York B 47 57 40 67 53 12 22
C 53 45 30 30 40 12 29

* CV values are only reported for sites with more than five cycles per year; sites with lower averages are

marked with (-).
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Table H3. Yearly field-measured damaging FT cycles with standard deviation and CV.

Damaging FT Cycles FT Cveles Damaging FT Damaging FT
State Location Year Year2 Year3 Year4 A y Cycles Standard Cycles CV
verage . .
1 Deviation (%)

A 121 110 123 113 117 6 5

Idaho B 130 102 123 110 116 13 11
C 68 50 48 42 52 11 22

A* 0 1 3 1 1 1 -

Oregon B 11 8 17 NA 12 5 38
C 54 42 48 NA 48 6 13

North A 99 97 83 NA 93 9 9
Dakota B 71 66 57 NA 65 7 11
C 90 81 73 NA 81 9 11

A 97 79 88 102 92 10 11

Minnesota B 97 74 83 97 88 11 13
C 67 79 85 90 80 10 12

A 90 85 81 NA 85 5 5
Wisconsin B 75 79 65 NA 73 7 10
C 60 50 56 49 54 5 10

A 88 94 99 89 93 5 6

Nebraska B 76 63 74 66 70 6 9
C 64 56 77 50 62 12 19

A 66 39 49 56 53 11 22

Iowa B 90 97 94 NA 94 4 4

C 54 48 41 33 44 9 21

A 95 83 85 98 90 7 8

Colorado B* 0 0 0 0 0 0 -
C* 0 4 6 0 3 3 -

A* 0 6 3 5 4 3 -
Kansas B 53 34 37 46 43 9 20
C 48 41 54 53 49 6 12
A 53 44 52 35 46 8 18

Missouri B 28 26 17 22 23 5 21
C 16 31 15 3 16 12 71

A 96 76 78 NA 83 11 13
Illinois B 19 20 29 25 23 5 20
C 22 27 17 NA 22 5 23

A* 0 0 0 1 0 1 -

Oklahoma B 14 9 11 27 15 8 53
C 9 17 11 9 12 4 33
A 78 58 85 71 73 12 16

Pennsylvania B 81 78 83 75 79 4 4
C 56 40 49 43 47 7 15

A 60 47 36 40 46 11 23
New York B 47 57 40 67 53 12 22
C 53 45 30 30 40 12 29

* CV values are only reported for sites with more than five cycles per year; sites with lower averages are
marked with (-).
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Abstract

This paper presents a machine learning model to predict the number of damaging freeze-thaw
(FT) cycles based on weather data. The model combines a genetic algorithm (GA) to identify
the most effective environmental thresholds for six major weather variables across four regions
in the United States. Training was performed on data from 42 sites within 14 states over the
course of a year, then testing was performed using data from the subsequent three years. The
model correctly predicted the DOS category 89% of the time for all years and regions. Based
on a 95% confidence interval, the number of predicted FT cycles and damaging FT cycles were
within 15% of the measured values in all years and regions, meaning that the model provides
reliable and consistent performance across varying climatic conditions. Thus, this model
allows for an important new ability to predict FT cycles from weather only. This can aid in
improving these predictions and lead to the development of better tools to aid specifiers in
getting the needed FT durability of their concrete.

1. Introduction

Freeze-thaw (FT) durability of concrete is often critical to the longevity of concrete structures
in cold regions. The FT resistance of concrete is primarily a function of its internal degree of
saturation (DOS) [1,2]. Damage from FT occurs when water freezes and expands within the
pore structure, leading to microcracking, scaling, and long-term degradation [3,4]. The
phenomenon was first modeled by Powers [ 5] and Fagerlund [6], who discovered damage when
the material became saturated, and the temperature fell to the freezing point. Critical DOS is
the moisture level above which the growth of stresses created by the freezing of water can
damage the concrete, which subsequently leads to gradual deterioration [5-7]. It has been
demonstrated that the critical degree of saturation was between 78-90% [7-10]. This range is
impacted by the size, spacing, and overall volume of air voids within the concrete, which can
allow for relief of the hydraulic pressure due to the ice formation [11-14]. A FT cycle occurs
when the temperature of the concrete falls below the freezing temperature and then returns

back above 0°C. Therefore, a damaging FT cycle occurs when the DOS is at or above the
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critical DOS. If the cycle occurs when the DOS is below this critical value, then the cycle does

not count as a damaging cycle [7, 14-16].

Presently, concrete design for FT durability is typically prescriptive exposure classes (ACI
201.2R, ACI 318 ) [16,17]. These documents use the designer or specifier to determine the
appropriate exposure category based on the severity of the freezing and thawing to be
experienced. While this is simple to understand, the specifier must make assumptions about
local weather, the saturation level within the concrete, and the anticipated frequency of FT
cycles. This can lead to either under-design or over-design of the structure. In contrast, the
desired tool should utilize local climatic information and provide recommendations on both the

level of saturation in the concrete and the frequency of FT cycles.

Machine Learning (ML) has been an increasingly common research direction in concrete
research. Concrete properties of value are often the targets to be predicted. The nature of
concrete research data is nonlinear and multivariate, leading to well-suited for ML
approaches. Numerous studies have developed predictive models of concrete properties,
including compressive strength [18-22], crack propagation [23], thermal expansion [24], and
other mechanical properties [25-28]. The common thread among these papers is that they
demonstrate the ability of ML models to capture and represent the complex behavior of these
materials. ML has been widely used to model the mechanical properties of concrete. However,
only a few studies have explored its potential for assessing concrete durability, particularly
under FT conditions. A handful of authors have developed ML models to predict FT resistance
based on mixture design parameters and laboratory test results [29]. A few studies have
proposed using a framework to extract microstructural features (pore structures) with deep
learning and image-based data for the assessment of FT durability indices [30,31]. ML
techniques have also been used to predict the FT behavior of aggregates [32]. However, this is
still a reduced system and does not represent the full complexities of concrete systems exposed

to real-world conditions.

Predicting the FT performance in concrete requires understanding how the moisture content,
temperature, and ice formation evolve over time. Previous work has collected this information
from 42 different field locations over the course of four years [33,34]. This work aims to
employ ML techniques to relate the DOS and the number of damaging FT cycles to local
weather parameters. Extensive previous research has been completed in predicting the soil

moisture content of an area based on the local weather parameters [35-44]. The research was
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consistent in identifying six key weather parameters. This included: temperature, precipitation,
relative humidity, solar radiation, wind speed, and air pressure [35-44]. These same parameters
will be used to predict the moisture content of concrete. However, in order to predict FT cycles,
they will be used to predict damaging FT cycles by incorporating the moisture information to

predict the number of damaging FT cycles.

Traditional ML models often struggle to represent the complex relationships between
environmental factors such as temperature, relative humidity, and precipitation [45-47]. These
variables interact in nonlinear ways that make it difficult for models to identify the specific
conditions that cause damaging FT cycles. For example, in this study, ten machine learning
models were assessed, and the GAs showed the best overall performance; further details are
discussed later in the results section and also in Appendix D. The GA uses one year of training
data, including measured DOS, FT cycles, and six key weather parameters, to predict the

number of damaging FT cycles in a concrete slab.

This work addresses a major gap by providing a data-driven approach to directly connect local
weather conditions to concrete DOS and FT performance using a large field dataset from 42
locations across the U.S. This tool can use either measured or simulated weather data to provide
estimates of FT damage under different environments. This paper lays the foundation for
developing measurement-based mapping systems and tools of damaging FT cycles for different
locations using long-term historical weather records, which offer practical guidance for FT

durability design, which will be developed in a future study.
2. Methodology

2.1. Data Collection and Preprocessing

2.1.1. Field-Measured DOS Data

The DOS represents the proportion of voids in concrete that are filled with water and is an
important factor in determining its FT durability. Field-measured DOS data from 42 locations
across the United States were collected in a previous study over four consecutive winters [34].
The locations were chosen to capture a wide range of climate variability and include the state

agencies that funded the research.

A single, mortar mixture was used for all field samples at each location. The use of the same
mixture at each location enables direct comparison of DOS behavior. However, the results are

specific to this material and mixture design. The mixture design chosen was representative of
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pavement and bridge deck concrete, and so this makes this work applicable to a wide variety
of applications. For this study, the DOS data from each location were averaged for each month,
and these monthly average values were grouped into three categories representing practical
thresholds of FT vulnerability. By using monthly averages from the concrete and the weather
data, this minimizes the short-term variability. This approach allows the model to capture more
meaningful relationships between the environmental conditions and the saturation level of the

concrete.

Previous studies identified the critical DOS range to be between 78% and 90% [7-10]. Thus,
80% 80% was chosen as a practical lower limit and was a convenient place to segment the data.
Locations with a DOS <80% are considered to have minimal risk for FT damage, locations
with a DOS between 80% and 90% suggest a moderate risk, and DOS values >90% have the
highest risk of FT damage. The developed predictive model is used to classify the DOS of a

location into one of these ranges based on six weather parameters.

To account for geographic variability, the field sites were divided into four regions, Northwest,
South, North, and Northeast, based on climate variations. Climate variation strongly influences
both DOS and FT durability of concrete, with northern regions generally experiencing lower
temperatures and greater FT exposure than southern states. Some states, such as Illinois and
Missouri, have regions that are assigned to the north and south regions because of their
differences in weather. These regional distinctions are used because the weather was found to
be different in each region, so the prediction was improved by using a ML model that is specific

to the region. These regions are shown in Fig. 1.
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Fig. 1. Regional classification used for FT cycle prediction, showing the four regions applied

to field samples.

2.1.2. Weather Data

The study considered six weather variables presented in Table 1. These parameters were
chosen as they are the most commonly used in the soil literature for the assessment of
environmental impact on the saturation and drying process of porous media such as soils [35—
44]. Thus, these same parameters also control moisture movement and retention within
concrete, making them suitable inputs for predicting DOS and FT cycles. Precipitation is the
liquid-equivalent of rain and snowfall combined. Snowfall amounts were converted to liquid-
equivalent precipitation amounts, using the standard water-equivalent amounts that weather
stations report, so that rain and snow contributions to total precipitation can be compared on a

common volumetric basis across areas.

Solar radiation was expressed as Global Horizontal Irradiance (GHI) in kWh/m?, which
quantifies the total solar energy incident on a horizontal surface. Weather data for each field
location across the United States were collected from the Open-Meteo API [48], an open-
source, research-oriented climate database that compiles long-term, quality-controlled records
from established meteorological networks and provides broad spatial coverage. Because
precipitation accumulates over time, monthly totals were calculated by summing the daily

precipitation values. In contrast, the remaining parameters, air temperature, relative humidity,
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solar radiation, wind speed, and air pressure, reflect average environmental conditions and were
therefore averaged over each month to reduce random short-term fluctuations. This allowed an

average DOS to be used for each location.

Table 1

Selected weather variables and their relevance to moisture behavior in concrete.

Variable Unit Role and Relevance

Air °C Governs evaporation, condensation,
Temperature and FT cycles.

Precipitation mm Represents the moisture ingress into

concrete pores.

Relative % regulates vapor exchange and internal
Humidity drying

Solar kWh/m?*/day Influences surface heating, drying
Radiation rates, and temperature gradients
(GHI) within concrete.

Wind Speed m/s Affects convective moisture loss

from exposed concrete surfaces and
accelerates drying.

Air Pressure kPa Impacts vapor diffusion and moisture
transport through capillary pores.

2.1.3. Data Collection Period and Study Timeframe

The DOS and weather data were collected during the winter seasons, spanning from September
to April, over four consecutive years (September 2020 to April 2024). The model was trained
and developed using data from the first winter season (September 2020 to April 2021). It was
then used to predict the DOS category and FT cycles for the following three winters, as shown
in Table 2.

Table 2

Summary of Model Training and Prediction Periods.

Purpose Time

Training Year 1 September 2020 to April 2021
Prediction Year 1 September 2021 to April 2022
Prediction Year 2 September 2022 to April 2023
Prediction Year 3 September 2023 to April 2024
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2.2. Model Development

The predictive model was developed using a GA framework, selected for its ability to
efficiently explore complex, nonlinear relationships between environmental variables and
DOS. GA is an optimization technique based on the concept of natural selection. A population
of candidate solutions to an optimization problem is evolved toward better solutions by
repeatedly selecting and applying genetic operators like selection, crossover, and mutation to
individual candidates in the population [49-56]. In this work, the GA was used to determine
the combination of thresholds of the six weather variables that most accurately predict the
measured DOS categories.

2.2.1. Segmenting the Data

ML algorithms are more efficient when the data are binned into discrete classes. This limits the
number of possible results and minimizes the impact of scale and units of measurement. As a
preprocessing step for modelling, it was decided to sort each weather parameter with two
thresholds (Threshold 1 and Threshold 2), which can be used as a boundary value to separate
the weather data into high, medium, or low with respect to the DOS of the concrete. This
segmentation procedure can be organized with a trinary code. The trinary code is summarized
below:

0, if x < Threshold 1
Trinary Code ==Y 1, if Threshold 1 < x < Threshold 2
2, if x > Threshold 2

Where x represents the value of the weather parameter.

The GA continuously adjusts the thresholds for each weather parameter to determine the
combination of threshold values that best predicts the measured DOS for the regions shown in
Fig. 1. Once these threshold values have been found, each measurement location can be
categorized by a six-digit number made up of a 0, 1, or 2 in each digit (x, xz, x3, x4, x5, Xs). The
value of 0, 1, or 2 is determined by comparing the average monthly weather parameter in
comparison to the threshold values. Each digit in the code corresponds to a specific weather
variable in the following order: air temperature, precipitation, relative humidity, solar radiation,

wind speed, and air pressure. This was done to enable effective categorization.

The thresholds for each parameter were initially defined based on statistical analysis of the
four-year dataset, where the lower and upper thresholds correspond to the 33rd and 66th
percentiles of each feature’s distribution. This ensured that the coding captured low, medium,
and high ranges representative of realistic weather variability across all sites. These threshold

values were then optimized by GA, which iteratively adjusted the values to improve the

126



model’s classification accuracy for predicting the DOS. The established upper and lower limits

from the GA model are shown in Appendix A.
2.2.2. Fitness Function: Bhattacharyya Distance

In GAs, the fitness function determines the objective numerical value for each member of the
population of solutions. A good fitness function helps the algorithm drive better threshold
combinations that enhance DOS class separation by progressively selecting threshold sets that
can offer greater degrees of separation for each optimization cycle [57]. In this case, the fitness
function calculates a measure of separability between the distributions of weather-variable
threshold combinations that belong to different measured DOS categories. This process is
essential to the model development as it helps the model identify how different weather
conditions impact the DOS of concrete and its vulnerability to FT damage. The selection of
weather-variable threshold combinations that result in the highest degree of separability
between measured DOS categories should result in a model that can better represent the impact
of temperature, precipitation, relative humidity, solar radiation, wind speed, and air pressure

on moisture accumulation and its associated damage.

The Bhattacharyya distance was used as the fitness function. The Bhattacharyya distance is a
nonparametric, distribution-based measure that directly compares two probability distributions
[57-59]. Unlike distance-based measures of performance, it is independent of any parametric
assumptions on the data and is well-suited for nonlinear environmental datasets. The
Bhattacharyya distance can range from O to infinity, with higher values indicating lower

overlap between DOS categories and better classification performance [57-59].
2.2.2.1. Converting Trinary Codes to Probability Distributions

The frequency of each six-digit trinary weather code in the training set was counted and then
normalized by the total counts in that category so that the probabilities summed to 1. The
resulting distributions, denoted P (for <80%), O (for 80-90%), and R (for >90%), represent the
likelihood of each six-digit code occurring within its respective DOS category, and were

compared pairwise using the Bhattacharyya distance to quantify separability.

For instance, consider the category P corresponding to DOS <80%. Suppose the six-digit
trinary code (e.g., 000000) appears 10 times within this category, and the total number of codes
recorded for P is also 10. The probability of observing this code within the category is therefore
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_ Count of six-digit trinary code (e. g.000000) in category P 10

Di = =1.0

Total number of six-digit trinary codes in category P 10

indicating that this particular trinary code (e. g.,000000) occurs in all observations within the
<80% DOS category. Conversely, if the same six-digit code does not appear in the other
categories (Q (for 80-90%), or R (for > 90%)), its probability becomes zero (q; = 0 and 1; =
0), indicating that this six — digit trinary code is unique to the <80% DOS category. Thus,
differences in code probabilities across categories capture distinct weather—DOS relationships,

which are later quantified using the Bhattacharyya distance.

Because six weather features each have three possible trinary codes (0, 1, 2), there are 3% =
729 unique combinations (bins), each representing a distinct weather pattern. These
normalized probability distributions (P, Q, and R) were then used to compute the
Bhattacharyya coefficient (BC), which measures the overlap between the probability

distributions of any two DOS categories.

2.2.2.2. Computing the Bhattacharyya Coefficient and Distance

The Bhattacharyya coefficient (BC) measures the similarity between two probability
distributions. In this study, the three distributions P, @, and R represent the normalized trinary
weather-code probabilities for the three DOS categories, where P corresponds to DOS (<80%),
Q to DOS (80-90%), and R to DOS (>90%). The BC quantifies how much the two distributions
overlap, (P vs.Q), (P vs.R),and (Q vs.R), which is a critical property when the goal is to
separate classes effectively. For the first pair, P and Q, the BC is calculated as shown in

Equation (1) [57]:

BC (P,Q) = Xisiy/Pi- i Equation (1)

where p; and g; represent the normalized probability values of the weather variable across two
DOS categories being compared. Similarly, the BC was computed for the other two category

pairs, (P vs. R) and (Q vs. R).

The square root term in Equation (1) plays an important role. Multiplying p; and q; without the
square root, the coefficient is dominated by the high probability regions. In this case, a low-
probability but meaningful overlap between the two distributions will have less influence on
the value of the coefficient. Taking the square root counteracts this compression of high values

and expansion of lower values and leads to a more uniform, symmetric measure of overlap that
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is not dominated by one of the distributions even in the case when the two distributions are

very different (e.g. one distribution is much sharper or more skewed than the other) [60].

Since the BC ranges from 0 to 1, the Bhattacharyya distance (Dg ) transforms this coefficient
into a measure of dissimilarity through a logarithmic function, as shown in Equation (2)

[57,58]:
Dy (P,Q) = —In (BC) Equation (2)

The negative natural log transformation yields an infinite range (0 to o), in which larger
D3 values represent better separability between DOS categories. Logarithmic transformation
mathematically changes multiplicative relationships between probabilities into additive ones,
and this renders the metric more sensitive to small differences in overlap and therefore more

amenable to optimization in the GA setting [61, 62].

For example, if the trinary code (2, 0, 0, 0, 2, 2) appears only in the >90% DOS category and
never in the <80% or 80-90% categories, the corresponding probabilities are p; (>90%) = 1,

q;, (<80%) =0 and r; (80-90%) = 0. For this case, the coefficient between the >90% and <80%

categories is BC = /1 x 0 = 0, giving Dy = —In (0) = co. This means that the trinary code
here is unique, and there is no overlap between these two categories of DOS. The same logic
holds for each other category pair in Table 3. This represents perfect separability where the
weather pattern of this code is uniquely characteristic of the >90% DOS category.

For comparison, if a trinary code occurs equally across two DOS categories, the probabilities
would be p; = q; = 0.5, giving BC = V0.5 X 0.5 = 0.5and Dz = —In (0.5) = 0.69, which

represents overlap between the categories.

Thus, larger Dgvalues indicate greater separability between the DOS categories. When two
DOS categories have nearly identical probability distributions, BC = 1 and D = 0, indicating
complete overlap. Conversely, when their distributions are entirely distinct, BC = 0 and Dg =
oo, representing maximum separation between the DOS categories [57]. In our study, we
consider higher D values to be more desirable. In this case, the probability distributions of the
two DOS categories overlap minimally, and the GA can find weather-variable thresholds to
create better distinctions. This metric helps to ensure the model is as effective as possible at
predicting outcomes. It is important to make this distinction, as the fundamental goal of the GA
model is to create distinctions between the DOS categories by determining the best weather-

variable thresholds. By making the Bhattacharyya distance the fitness function of the

129



algorithm, we can directly optimize how distinct these categories are in probabilistic terms and
ensure the resulting model is effective at not only differentiating between DOS categories but

also capturing information about the environmental effects on FT durability.

Table 3
Example Calculation of the Bhattacharyya Coefficient and Distance for the Trinary Code (2, 0,
0,0,2,2).

DOS Category Pair and Bhattacharyya Bhattacharyya distance .
. o . Interpretation
Probability Substitution coefficient (BC) (Dg)= -In(BC)
BC(P, = iq; Dy (P, =—In (0 Perfect tion;
p, (>90%) = 1. q, (<80%) =0 (P,Q) = /pia; s (P, Q) 0 erfect separation;
=v1x0=0 = o0 no overlap
BC(P,R) = it Dy (P,R) = —In (0 Perfect tion;
p, (590%) = 1. 7, (80-90%) = 0 (P,R) =iy 5 (P,R) 0) erfect separation;
=v1x0=0 = o0 no overlap
BC(Q,R) = \/1iq; D ,R) = —In (0 ion;
i (80-90%) = 0. g, (<80%) = 0 (Q,R) = J1iq; 5 (Q,R) 0) Perfect separation;
=vJ0x0=0 = o0 no overlap

2.2.2.3. Fitness Function Evaluation and Optimization

The fitness was determined as the negative value of the sum of the Bhattacharyya distances

between all pairs of DOS categories as per Equation (3) [57,58].
Fitness Score = —Y3_, Dk Equation (3)
where 3 represents the number of DOS categories.

This approach allows the GA to favor solutions that produce greater separation between DOS
categories. Since larger Dg values indicate better distinction, summing them captures the total
separability across all categories. The negative sign is used because GA evaluates fitness by
minimizing the objective function. Since larger Dy indicate greater separation between DOS
categories, taking the negative sum reverses the direction of optimization. This way,
minimizing the fitness value corresponds to maximizing the overall separability among the

DOS categories.
2.2.3. Genetic Algorithms Framework

The algorithm begins by generating an initial population, which in this case consists of possible
threshold sets for the six weather variables. In this study, a population size of 200 was chosen,
meaning that 200 different combinations of weather thresholds were created in the first
generation. This number was chosen to provide sufficient diversity for reliable convergence

without excessive computational time. Each threshold set represents one possible way that
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weather conditions could be divided to classify the DOS categories. The algorithm then
evaluates how well each threshold set separates the measured DOS categories using the fitness
function. By starting with a broad and diverse population, the algorithm increases its chances
of identifying combinations that best capture the complex, nonlinear relationships between

weather variables and concrete saturation behavior [63—65].
2.2.3.1. Mutation

Mutation is performed on the first population to diversify and explore the parameter search
space for new combinations. Mutation slightly perturbs the existing threshold combinations to
create new candidate threshold combinations that have the potential to perform better at
separating DOS categories [65, 66]. Mutation is an essential part of this operation as without it
the algorithm would converge prematurely and limit itself to a small portion of the search
space. Mutation allows for the exploration of new areas of the parameter space through the
generation of new combinations of weather thresholds that may or may not be represented in

the initial population.

This process is essential to identifying the most appropriate weather thresholds that will
separate the two measured DOS categories. The weather thresholds that most accurately reflect
environmental conditions will result in DOS distributions with the least overlap between
categories. This work used the Differential Evolution (DE/rand/1) mutation strategy. This
strategy was used because it is a simple yet effective mutation scheme that maintains
population diversity while simultaneously biasing the search toward better-performing
individuals. It achieves this by generating new members through a combination of randomly
selected threshold sets [65, 66]. The method is computationally inexpensive and exploits the

search space between existing members to improve performance.

A mutation factor of 0.2 was used to control the extent of the change introduced with each
mutation step. A smaller factor would have led to small changes, resulting in slow
exploration. A larger factor would have been computationally expensive and led to an unstable
search. The value of 0.2 was empirically selected as it offered a good balance between

exploration and exploitation.
2.2.3.2. Crossover

Once a mutation generates new threshold combinations, the algorithm proceeds to the

crossover step, which mixes the weather-variable thresholds from different threshold
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combinations. This step creates a new trial combination of thresholds by taking a portion of a
newly mutated threshold set and combining it with a portion of a previously existing threshold
set. The purpose of crossover is to further combine the best thresholds (those that most
effectively separate the DOS categories) from different sets while still maintaining diversity in

the trial runs [63—67].

For this study, a crossover rate of 0.8 was used, which means that approximately 80% of
threshold values in a new combination were inherited from the mutated set, with the remaining
20% of the values being inherited from the original set. This way, the algorithm can preserve
useful threshold patterns that may have been developed in earlier generations, while still
exploring the full space of possible threshold combinations that could lead to improved

classification.

Conceptually, crossover can be thought of as a controlled form of experimentation. The
algorithm tests to see if taking thresholds from different, but still well-performing, sets of
weather variables can lead to a better overall separation of the DOS categories. For example, a
combination of thresholds that is effective for temperature could be combined with a
combination that better represents the effects of relative humidity, and an improved overall set

of thresholds could result.

This step is important as it maintains diversity in the population and allows the algorithm to
test multiple, potentially promising, paths simultaneously. Without crossover, the population
of threshold combinations could quickly become too similar from generation to generation, and
the algorithm would be less able to identify new and more effective threshold configurations

to describe the DOS of the concrete [63—67].
2.2.3.3. Selection

For each generation after crossover, the algorithm has to decide which threshold combination
should continue. This selection process essentially determines which candidates are fittest in
terms of being able to separate the different DOS categories. Several selection strategies are
available, but in this case the fitness function described earlier is simply used to compare the
fitness values of the newly generated (trial) and the existing threshold sets and the one with a
better (higher) fitness value is carried forward to the next generation (replaces the other if the

trial set is fitter) [50, 68].
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In a conceptual sense, the selection process is essentially the judgment phase of the
optimization process. It determines which set of weather-threshold values is best at
distinguishing the different saturation states of concrete, and it only lets the fittest combinations
survive and be subject to further variation. By iteratively and automatically performing this
selection process over many generations, the algorithm applies a kind of survival of the fittest

pressure on the evolving threshold combinations.

In this way, the overall fitness of the population is slowly but continuously improved. The
algorithm eventually converges when the incremental improvements of the fitness function
become insignificant, and the algorithm then converges to the set of weather thresholds that

most effectively discriminate between different saturation states in concrete [50, 68].
2.2.3.4. Optimization and Convergence

During this optimization process, the algorithm automatically monitored the best fitness value
in each generation to track convergence, and the algorithm was deemed to have converged
when improvements in the best fitness score became negligible. In this study, optimal
thresholds refer to a particular set of threshold values for the six weather variables that most
effectively separate the measured DOS categories. This particular set of thresholds is
associated with a particular set of environmental limits that may be used to directly associate

weather conditions and the DOS of the concrete.

For repeatability of the optimization procedure and thus produce the same results each time, a
fixed random seed of 42 was used in both the initialization and the evolutionary phases of the
GAs. The random seed marks the start of the sequence of pseudorandom numbers, which are
later used to determine how the initial population is generated and which mutations are applied
in the subsequent evolutionary steps of the algorithm. Fixing the random seed to the same value
thus implies that with every restart of the algorithm, the same sequence of random operations
is generated and that the complete optimization procedure can therefore be repeated bit by bit

with identical results [69].

The value 42 was chosen arbitrarily, but consistently for all weather variables and all runs of
the model. This procedure allows for complete transparency and repeatability of the model,

both of which are essential for judging the predictive performance of the developed model.

2.3. Lookup Table and Prediction Process for New Data
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Once the best thresholds were defined, a lookup table was generated that associates the various
combinations of weather values with the corresponding categories of DOS. This table acts as a
kind of summary of all the relations discovered between weather variables and measured DOS
values in the training data. It encodes each combination of the six weather variables and the
DOS category that was observed with those conditions. In other words, it reduces the complex
relations between weather and concrete DOS into a simple reference system. This allows for
fast and direct classification of new weather data, while still being exactly the same as the

trained model.

When a new weather dataset is presented, the same thresholds are used to assign each variable
to a low, medium or high value. The combination of these categories together can be considered
a simple pattern that describes the overall state of the weather. The algorithm then looks up this

pattern or the most similar one in the lookup table and assigns the associated category of DOS.

If an exact match for the new pattern does not exist in the lookup table, the algorithm selects
the closest match using the Hamming distance, which counts how many positions differ
between two patterns. In simpler terms, it finds the trinary code that is most similar to the new
one [70-73]. For instance, if the new weather pattern differs from an existing one in only a
single variable (e.g., temperature slightly higher but all other variables similar), that closest

match is used to predict the DOS category.

In cases where a trinary code does not exactly match any existing code but shows equal
similarity to multiple classified codes, the category that appears most frequently in the training
data is selected. For example, if a specific trinary code has been associated with both the 80—
90% and >90% DOS categories, but that trinary code occurred more often in the DOS >90%
category in the training data (e.g., a trinary code observed 15 times in DOS >90% and 3 times
in DOS 80-90%), the algorithm will assign >90% to that trinary code. When both categories
occur with equal frequency, the higher DOS category is chosen, as it represents a more

saturated and potentially more critical condition for FT damage.
2.4. Prediction Evaluation

The model’s accuracy is evaluated through two metrics: correct predictions and incorrect

predictions.

Correct Prediction: A prediction is considered correct if the predicted trinary code exactly

matches a code from the training data, and the corresponding DOS category is the same.
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Alternatively, if the predicted trinary code does not exactly match but is the closest to a code
in the training data (based on the Hamming distance), and the predicted DOS category matches

the measured value from the field, then this is considered a correct prediction.

Incorrect Prediction: A prediction is considered incorrect if the predicted trinary code
matches a code from the training data, but the predicted DOS category does not align with the
measured DOS category.

2.5. Predicting FT Cycles
2.5.1. Detecting Actual FT Cycles

The detection of field freezing events was based on the relationship between the DOS and the
freezing temperature of concrete. The freezing temperature is defined as the point at which the
pore solution within the concrete begins to freeze, and this temperature depends directly on the
DOS of the material [33,34]. As illustrated in Fig. 2, concrete with a higher DOS freezes at
warmer temperatures, meaning it is more susceptible to ice formation and potential freeze—
thaw damage. Conversely, concrete with a lower DOS requires colder temperatures to reach

the freezing point.

The field-measured FT cycle, defined as a temperature below the freezing temperature that was
followed by a rise to temperatures above 0°C, was used in this study to compare with the values
predicted by the model. The analyses of the field-measured data were limited to the sensors 51

mm below the surface since this depth had the highest DOS values in all cases [33,34].

—— Fitted line

-5
3540 50 60 70 80 90 100
DOS (%)

Fig. 2. Relationship between freezing temperature and DOS (adapted from [33]).

2.5.2. Predicting FT Cycles
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Fig. 2 shows how the freezing temperature varied for samples with different DOS. Instead of
using the curve shown in Fig. 2, a single freezing temperature was assigned to each DOS
category to simplify the analysis. The values used for the analysis are listed in Table 4. These
values were selected by testing multiple freezing temperatures within the range of each DOS
category, as shown in Fig. 2, to determine which provided the most accurate prediction of

freeze—thaw cycles. More details are provided in Appendix B.

In summary, a freeze event was defined as any period when the air temperature dropped to or
below the freezing temperature outlined in Table 3, based on the DOS category for the location,
based on the weather, and a thaw event occurred when the air temperature increased to or above
0°C. A complete freeze—thaw cycle was identified when the sample goes from a freezing point

to a thawing point.

Table 4

Selected Freezing Temperatures Assigned to Each DOS Category.

Freezing Temperature

DOS Category °C)
<80% -4.0
80-90% -3.5
>90% -1.5

2.5.3. Detecting Damaging FT Cycles

The FT cycles were considered damaging only when the moisture level exceeded the critical
DOS, which is assumed to be 80% or higher for this study. This threshold was selected based
on previous research that identified the critical DOS range to be approximately 78-90% [7—
10]. The chosen 80% cutoff has the advantage of giving a conservative lower limit on FT
damage. This is cautious, in that it is less likely that ice formation below 80% will lead to
severe damage. Given that the temperature, DOS, and presence of ice were known, it was
possible to assess whether the observed freezing event occurred when the DOS was at or above
80%. This approach allowed for the quantification of potentially damaging FT cycles.
Specifically, FT cycles for predicted DOS categories >90% and 80-90% were considered

damaging, while those with DOS <80% were not deemed damaging.

3. Results and Discussions
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3.1. Air and Concrete Temperatures Relationship

In this research, air temperature was employed instead of concrete temperature for a few
reasons. Air temperatures are available from numerous sources and monitored frequently by
weather stations. Their data are consistent and easily accessible as well. Air temperature is a
practical and cost-effective means of detection of FT cycles, and it performs well for this
purpose if the difference between air and concrete temperature at 51 mm from the surface is

minimal, and the coefficient of correlation between the two is high.

A statistical test was performed to show whether air temperature can replace concrete
temperature in FT. In order to determine the consistency between air and concrete temperature
data, these two datasets were compared. For determining whether the difference in means of

air and concrete temperature was statistically significant, the Z-test was used.

The Z-test for two population means is the test for differences in the population means of two
samples of continuous data drawn from a normal distribution when each sample has more than

30 records [74, 75]. The Z-score is calculated based on the following formula:

XX
2 2

g g
91,92
niy np

where X; and X, are the sample means, g, and o, are the standard deviations, and n,, n, are

Z = Equation (4)

the sample sizes. The sample sizes were large and equal, justifying the use of the Z-test over a

t-test [75].

In this study, one location was selected from each geographical region to prevent any bias or
generalization and to represent the diversity of regions. The selected location was presented
with the detailed value of each statistical test in Table 5, and the rest were reported in Table
6. The results of the Z-test for all four locations showed no statistically significant difference
(p>0.05) (Tables 5 and 6). These results mean that the measured air temperature and concrete
temperature at 51 mm from the surface are statistically similar. Pearson's correlation coefficient
was also computed to more closely assess the relationship between the two variables. This test
determines the strength and direction of the linear relationship between two continuous
variables [75,76]. A Pearson correlation close to +1 indicates a strong positive relationship. All
locations showed strong positive correlations (r >0.85), confirming that concrete and air
temperatures are statistically similar. Plots showing the relationship are included in Appendix

C.
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This supports using air temperature as a reliable input for assessing FT cycles in large-scale

analyses. This is useful where direct concrete temperature measurements are not available.

Table 5

Statistical Comparison of Air and Concrete Temperatures from September 2021 to April 2022

at Four Different Locations, Including Z-Test Results and Pearson Correlation Coefficients.

Location North South Northeast Northwest
(Wisconsin — (Oklahoma - (Pennsylvania — (Idaho — Coeur
Green Bay) Texas County) Cyclone) d'Alene US-95)
Sample Size 11,616 11,616 11,616 11,616
Mean Concrete 1.53 8.43 6.73 6.66
Temperature (°C)
Mean Air 1.44 8.13 6.70 6.45
Temperature (°C)
Standard Deviation 9.287 11.901 7.977 9.189
(Concrete) (°C)
Standard Deviation 9.063 10.085 7.417 9.239
(Air) (°C)
Standard Error 0.107 0.124 0.385 0.097
(Concrete) (°C)
Standard Error (Air) 0.104 0.136 0.094 0.122
(°C
Standard érror of 0.149 0.185 0.369 0.156
Difference (°C)
Z-score 0.599 1.589 0.075 1.348
P-value 0.549 0.112 0.940 0.178
Significance Not Significant  Not Significant Not Significant Not Significant
(0=0.05) (p >0.05) (p >0.05) (p >0.05) (p >0.05)
Pearson Correlation 0.952 0.937 0.968 0.963
Table 6
Pearson Correlation Coefficients of Air and Concrete Temperatures from September 2021 to
April 2022.
State Location Pearson Correlation P- Value
Cooper Lab 0.954 0.235
Oklahoma McCurtain County 0.922 0.552
Texas County 0.937 0.112
Spring Field (Central) 0.945 0.531
Dixon (Northern) 0.903 0.203
Carbondale (Southern) 0.958 0.640
Green Bay 0.952 0.549
Wisconsin Madison 0.960 0.460
Rhinelander 0.924 0.335
Watertown 0.953 0.197
New York Clifton Park 0.922 0.756
Hauppauge 0.900 0.623
Baxter 0.860 0.101
Minnesota Maplewood 0.887 0.267
Thief River Falls 0.967 0.310
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Clearfield 0.913 0.554

Pennsylvania Cyclone 0.968 0.940
Harrisburg 0.947 0.910

Lincoln 0.925 0.646

Nebraska Thedford 0.939 0.501
Chadron 0.915 0.397

Ames 0.908 0.631

Iowa Fairfield 0.956 0.241
Mason City 0.895 0.200

Denver 0.923 0.122

Colorado Seibert 0.898 0.298
Glenwood 0.909 0.534

Oakley 0.927 0.115

Kansas Hutchinson 0.945 0.621
Topeka 0.969 0.322

Coeur d Alene US-95 0.963 0.178

Idaho Mt Home 1-84 0.911 0.386
Paddy Flat SH-55 0.893 0.476

Bend 0.975 0.678

Oregon Hinsdale Wave Research Lab 0.913 0.834
Newport 0.967 0.568

Central Laboratory 0.905 0.178

Missouri Northwest District 0.922 0.433
Southeast District 0.930 0.754

Bismarck Site 0.889 0.756

North Dakota Grand Forks Site 0.914 0.989
Fargo Site 0.927 0.854

3.2. DOS Prediction Evaluation
3.2.1. Regional Threshold Development

This section shows the values of the upper and lower boundaries of each weather variable that
are found to be optimal for distinguishing the measured values into DOS categories, referred
to as thresholds. These thresholds for each region are found using the training dataset of 1 year
(September 2020—April 2021), and the GA model is run.

The result suggests that different regions have different threshold values, as listed in Table
7. This is also a representation of the fact that regional climate behavior is a dominant feature
in dictating the DOS classification. For instance, the threshold of air temperatures in the North
and the South are between —7.6 and 5.3°C and between 10.8 and 14.8°C, respectively. This is
a concrete example showing that the climate of a region determines the classification of a
particular weather condition into a specific DOS category. By using the regionally varying
thresholds, the proposed model is more representative of the weather behavior of different
regions and therefore improves prediction accuracy.

The regional thresholds are then utilized to predict the DOS categories of the following three
winter seasons, i.e., September 202 1-April 2022, September 2022—April 2023, and September
2023— April 2024.
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3.2.2. Development and Application of the Lookup Table for DOS Prediction

A lookup table was established during the training to link each trinary code to a DOS category
during training. When the model is applied to new monthly weather data, the regional
thresholds obtained from the GA training period are used to generate trinary codes for each
location and month. These codes are then matched to their corresponding DOS categories using
the lookup table. This lookup-based approach simplifies the prediction process by turning the
complex relationships between weather and concrete DOS into an easy-to-use reference
system. It allows rapid classification of new weather data while maintaining consistency with
the trained model.

Table 8 summarizes the lookup table results generated from the 2020-2021 training data and
presents an example from Lincoln, Nebraska (North Region) for one representative year
(September 2021—-April 2022). These results illustrate how the lookup table was used to predict
DOS categories for each month within that region and year. The prediction results for the other
regions are presented in the following section.

Table 7
Optimal Thresholds of Weather Variables for Each Region.
Weather Feature Region Threshold 1?2 Threshold 2?2
Northwest -0.2 8.4
North -7.6 5.3
3 (o]
Average Air Temperature (°C) South 108 148
Northeast 4.1 7.6
Northwest 228.6 260.0
. North 44.9 152.4
Total Precipitation (mm) South 269.0 2730
Northeast 140.0 148.0
Northwest 51.3 67.6
North 63.2 82.5
. s o
Average Relative Humidity (%) South 65.6 701
Northeast 60.4 74.8
Northwest 4.6 4.8
North 4.2 4.7
. . )
Solar Radiation GHI (kWh/m?) South 47 49
Northeast 4.3 4.5
Northwest 2.8 3.1
. North 3.6 4.7
Average Wind Speed (m/s) South 23 31
Northeast 2.8 33
Northwest 92.7 97.0
. North 92.6 94.3
Average Air Pressure (kPa) South 26.0 90.0
Northeast 93.0 98.0

2Obtained from the Genetic Algorithms Model.
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Table 8
Lookup Table Example for DOS Prediction in Lincoln, Nebraska (September 2021-April
2022).

North Region
Training Data Predicted Performance Conclusion
(September 2020 — April 2021)  (September 2021 — April 2022)
DOS Predicted Does the  Does the
Month Trinary Category Overlap Trinary DOS Overlap Trinary DOS
Code (%) (%) Code Category (%) Code Category
(%) Match? Match?
September 002012 >90 0 002012 >90 0 YES YES
October 111002 >90 0 111002 >90 0 YES YES
November 221102 >90 0 221102 >90 0 YES YES
December 201012 80-90 0 201012 80-90 0 YES YES
January 202102 80-90 0 202102 80-90 0 YES YES
February 210002 80-90 0 210002 80-90 0 YES YES
March 112002 >90 0 112012 >90 0 Closest YES
Match
April 201022 80-90 0 201022 >90 0 YES NO
Prediction Accuracy (%)* 87.5

Number of Correct DOS Predictions .
ap . L. oLy —
rediction Accurac = x100 Equation
y ( /0) Total Number of Months Evaluated quatio (5)

3.2.3. DOS Prediction Accuracy Across Years and Regions

Table 9 shows the results for ten traditional ML models. The best performing model was the
GA model, as the other models did not perform well. This is likely because of the imbalance in
the dataset. There were fewer training data points in the <80% DOS category than in the 80—
90% and >90% DOS categories. The models had less information from which to learn the
properties of this category, and the prediction accuracy for it was particularly low, as presented
in Appendix D. The GA approach, unlike traditional ML models, is able to accommodate the
imbalanced and non-uniform distribution of data in the three DOS categories [49-51]. The
result is a large improvement in the accuracy of predicting the DOS category, which speaks to
the robustness of the GA model and its applicability in making predictions of DOS for different
years with confidence from weather data.

Table 10 shows more details of the predictions of the GA model. The table shows where the
predicted DOS category matches the measured values over three forecasted years. Across all
regions, the average prediction accuracy was 89%, indicating that the GA model and its derived
thresholds achieved nearly 90% accuracy in predicting DOS categories over multiple years.
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Table 9
Predicting DOS Category Results for the year September 2021 to April 2022.

Model Model Accuracy in Predicting the DOS
Category (%)

Random Forest Classifier 56
Multilayer Perceptron 31
Support Vector Machines 31
SVM with RBF Kernel 31
Gradient Boosting Classifier 31
Decision Tree Classifier 44
LSTM Model (10 epochs) 33
LSTM Model (60 epochs) 33
Linear Regression 25
Nonlinear Regression 30
Artificial Neural Network (ANN) 35
Genetic Algorithms 89

Table 10
Prediction Accuracy of DOS Categories for Three Years.
Time Region Correct Prediction Incorrect Prediction
Northwest 85% 15%
. North 86% 14%
September 2021 to April 2022
South 89% 11%
Northeast 87% 13%
Northwest 84% 16%
. North 87% 13%
September 2022 to April 2023
South 97% 3%
Northeast 93% 6%
Northwest 89% 11%
. North 87% 13%
September 2023 to April 2024
South 95% 5%
Northeast 91% 9%
Average 89% 11%

3.3. FT Cycles Prediction

The comparison of the predicted FT cycles is shown in Table 11 for all 42 field locations over
three years for both total and damaging FT cycles. Some field samples from September 2023
to April 2024 were damaged, and this caused sensor malfunction. These affected sites are
labeled as NA in Table 11. In total, 9 out of the 42 locations did not yield actual FT cycle
measurements for this winter season.

The predicted DOS categories generated by the GA model were combined with the predefined
freezing temperatures (Table 4) and the air temperature data to estimate the number of total and
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damaging FT cycles for each field location. A cycle was considered as damaging when the air
temperature dropped below the predefined freezing temperature for that DOS category (Table
4), and the predicted DOS category corresponded to either 80—90% or >90%. FT cycles
occurring during months with a predicted DOS <80% were considered non-damaging.

Table 11 summarizes the percentage differences between the predicted and measured FT cycles
across all locations and years. The measured FT cycles were obtained from instrumentation
boxes used in the field over four winter seasons. Detailed actual and predicted values for total
and damaging FT cycles are provided in Appendices E and F.

On average, the predicted results are within 2% of the measured values for both total and
damaging FT cycles. To quantify the accuracy of the proposed method, the standard deviation
of measurements was analyzed. The standard deviation of damaging FT cycles was 7%,
meaning that the number of predicted damaging FT cycles will be within the 14% of the
measured value 95% of the time. This is reasonably consistent with this study, as the maximum
error in this study was 15%, close to the anticipated 14%. The prediction of the total number
of FT cycles at a 95% confidence interval has a smaller standard deviation of 5%. The GA-
based approach could, therefore, be considered a practical tool for predicting the FT behavior
of concrete in a wide range of climatic zones. Minor deviations between the predicted and the
measured FT cycles were, in most cases, linked to a difference in the actual freezing
temperatures at field locations and the predefined freezing temperatures for each category of
DOS. The model tends to overpredict the FT cycles when the actual freezing temperature is
lower than the predefined value, and underpredict when the actual temperature is higher. In
some cases, the mismatch of predicted and measured DOS category also plays a role in the
variations. These differences reflect the inherent variability in local weather conditions and the
nonlinear relationship between DOS and freezing temperature, but remained within acceptable
limits for the intended predictive accuracy of the model.

Additionally, it is important to note that the model predictions in this study are based on field
measurements obtained from mortar without entrained air. This represents a worst-case
scenario for FT susceptibility, as air-entrained concrete or concrete with different mixture
proportions would experience fewer damaging cycles under the same environmental
conditions. Therefore, the predicted number of damaging FT cycles presented here should be
interpreted as mixture-dependent, and different concrete mixtures may show reduced or altered
damage potential.
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Tab

le 11

Regional and Overall Percent Differences Between Predicted and Measured FT Cycles.

g FT Cycles % Difference®
& State Location Year 1° Year 2¢ Year 3¢
R Total Damaging Total Damaging Total Damaging
Bismarck Site 0 -2 0 0 NA® NA
North Dakota Grand Forks Site 0 -8 0 0 NA NA
Fargo Site 0 -11 0 0 NA NA
Baxter 0 -5 0 0 -4 -4
Minnesota Maplewood 6 11 0 0 2 2
Thief River Falls 3 -4 0 5 -4 -2
Green Bay -4 -1 -8 8 NA NA
Wisconsin Madison -8 -10 -4 -4 0 0
= Rhinelander -5 1 0 2 NA NA
B Ames 3 1 2 3 NA NA
- Towa Fairfield -8 -8 -7 -7 0 0
Mason City 8 -3 -4 -4 0 0
Lincoln -7 -7 0 0 14 8
Nebraska Thedford 2 -6 0 -8 3 3
Chadron -5 4 0 0 10
Illinois Dixon (Northern) -4 -1 -2 10 NA NA
Missouri Northwest District -5 -5 0 0 -3 -3
Average (%) -2 -3 -2 0 1 1
Standard Deviation 5 6 3 5 5 5
Denver 0 0 1 0 -1 0
Colorado Seibert -4 0 -4 0 0 0
Glenwood -1 4 -5 0 -1 -1
Oakley -1 0 0 0 1 0
Kansas Hutchinson 2 -12 0 -8 4 -9
Topeka -10 -10 -15 -7 -4 -4
= Cooper Lab 0 0 0 9 6 -11
E Oklahoma McCurtain County 0 0 0 -9 8 -11
@ Texas County 0 0 0 0 0 0
Ilinois Spring Field (Central) -5 -10 -12 -10 12 12
Carbondale (Southern) 0 -1 0 -12 13 12
Missouri Central Laboratory 0 -12 0 -12 6 -14
Southeast District -3 -13 0 13 0
Average (%) -2 -5 -3 -3 3 -3
Standard Deviation 3 6 5 8 5 7
Bend -10 -12 -4 NA NA
Oregon Hinsdale Wave Research Lab -8 0 -9 -12 NA NA
2 Newport 0 0 0 0 0 0
£ Coeur d'Alene US-95 5 -5 0 2 -1 14
§ Idaho Mt Home 1-84 -12 -12 0 -15 -7 -12
z Paddy Flat SH-55 9 2 0 7 5 5
Average (%) -3 -4 -2 -4 -3 -1
Standard Deviation 9 6 4 3 11
Clearfield -5 10 0 -3 -3
Pennsylvania Cyclone -8 10 0 0 -6 -6
2 Harrisburg -8 -8 0 -2 7 7
g Watertown 0 -6 4 11 3 3
E New York Clifton Park -8 4 -10 -13 4
z Hauppauge 0 11 0 0 10 10
Average (%) -5 4 -1 -4 3 3
Standard Deviation 4 9 5 6 6 6
All Years and Average Difference Standard Deviation Maximum Minimum
Regions (%) (%) Difference (%) Difference (%)
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Total FT Cycles -1 5 14 -15
Damaging FT 2 7 14 15
Cycles

J Measured FT Cycles—Predicted FT Cycles .

2 Difference (%) = x 100 Equation
Measured FT Cycles

(6)

®Year 1: September 2021 — April 2022,
¢Year 2: September 2022 — April 2023.
4¥Year 3: September 2023 — April 2024,
¢ NA: No Available data due to the damaged field sample.

4. Practical Significance

The main contribution of this research is the ability to provide a field-validated, scalable model
to predict the damaging FT cycles of concrete using weather data. By accurately predicting the
DOS categories to 89% accuracy and damaging FT cycles within 15% of measured values
Based on a 95% confidence interval in all years and regions. This model enables a specifier to
perform a reliable evaluation of FT durability without the need for physical measurements,
which may be costly and time-consuming.

A single, uniform concrete mixture was used for all field samples at each location. The use of
the same mixture at each location enables direct comparison of DOS behavior across locations.
However, the results described here are specific to this material and mixture design. It is
encouraging that this mixture is representative of a common bridge deck or pavement.The
developed model has significance in that it is based on easily acquired and generally available
weather data. Therefore, the end-user needs only to know the geographic location of a project
to predict its risk to FT. This research is not only novel, but it has never previously
existed. Most existing models are based on generalized or region-wide climatic assumptions
and therefore result in designs that are either overly conservative or under-designed for FT
durability.

The developed model could also be used to develop FT maps or web-based tools to allow users
to input a location and provide predicted FT damage based on historical weather data or
forecasts. Publications are also being developed that focus on the development of these
tools. The tools will provide valuable information for data-informed decision-making in
construction planning, infrastructure maintenance, and resilience strategies, particularly in
regions where climatic conditions are changing.

The model will also be expanded in the future by the addition of new field measurements from
different regions and the use of different concrete mixtures to continue to validate and refine
the performance. As data are obtained from adjoining climatic zones more widely, the hope is
to be able to develop a universally applicable model.

5. Conclusions

This work provides a scalable, regionalized framework to predict the DOS, FT cycles, and
damaging FT cycles for concrete, given accessible weather data from 42 separate locations. To
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characterize a wide range of climatic conditions, GA-based optimization was used to determine
thresholds for 6 environmental variables, which differ by region, to be used as model inputs
for the classification of the three DOS categories. Region-specific thresholds were used with
trinary encoding and the Bhattacharyya distance as a fitness function to accurately predict the
DOS. The model was also validated against measured FT cycles and damaging FT cycles in
the field and was shown to provide statistically equivalent and interchangeable results
compared to the measured values. The field measurements used for both the development and
validation of this framework were performed on the same standard concrete mixture to allow
for direct comparison of DOS and FT behavior between locations. As a result, the presented
findings and suggested thresholds are specific to this mixture design and may need to be
adjusted when applied to other concrete mixtures. The following conclusions can be drawn:

The GA model that used trinary encoding and Bhattacharyya distance as a fitness function
yielded an average DOS accuracy of 89% using 1 year of training data and 3 years of validation
data.

Based on a 95% confidence interval, the number of predicted FT cycles and damaging FT
cycles were within 15% of the measured values in all years and regions, meaning that the model
provides reliable and consistent performance across varying climatic conditions.

The statistical analysis indicates that there is no statistical difference between air temperature
and concrete temperature at 51 mm, and the Pearson correlation coefficient (r) is greater than
0.93, showing that they have a strong positive linear relationship. The air temperature can be
used as an effective substitute for the concrete temperature for large-scale applications where
concrete temperature is not available for determining FT cycles.

A model that uses a simplified freezing temperature based on the DOS was developed. The
temperatures used were —4.0°C for DOS <80%, —3.5°C for 80-90%, and —1.5°C for >90%.
This allowed for simplified calculations to determine when freezing occurred within the
concrete.

In summary, this framework represents a significant step towards the state-of-the-art in
predictive modeling of concrete durability, while also providing a foundation for future
expansion to larger geographic regions as additional field data becomes available. By
establishing a strong linkage between environmental exposure conditions and actual field
measurements, this framework provides a scalable and validated solution for the
assessment and mitigation of FT damage in infrastructure.

146



References:

[1] Wang, R., Zhao, Q., Zhang, S., & Gao, X. (2022). Review on the deterioration and
approaches to enhance the durability of concrete in the freeze-thaw environment.
Construction and Building Materials, 321, 126371.

[2] Marchand, J., Jolin, M., & Machabée, Y. (2005). Deicer salt scaling resistance of
supplementary cementing material concrete: Laboratory results against field performance.
In Proceedings of the 6th International Congress Global Construction: Ultimate Concrete
Opportunities, Dundee, UK, 5-7 July 2005.

[3] Guo, J., Xu, H., Zhang, J., & Li, Q. (2022). Damage mechanism and modeling of
concrete in freeze—thaw cycles: A review. Buildings, 12(9), 1317.

[4] Sun, Z., and Scherer, G.W. (2010). Effect of air voids on salt scaling and internal
freezing. Cement and Concrete Research, 40(2), 260-270.

[5] Powers, T.C. (1945). A working hypothesis for further studies of frost resistance of
concrete. ACI Journal Proceedings, 41(4), 245-272.

[6] Fagerlund, G. (1973). Critical degrees of saturation at freezing of porous and brittle
materials. Durability of Building Materials, 1(1), 19-29.

[7] Li, W., Pour-Ghaz, M., Castro, J., & Weiss, J. (2012). Water absorption and critical
degree of saturation relating to freeze-thaw damage in concrete pavement joints. Journal
of Materials in Civil Engineering, 24(3), 299-307.

[8] Fagerlund, G. (1977). The critical degree of saturation method of assessing the
freeze/thaw resistance of concrete. Materials and Structures, 10(58), 217-229.

[9] M.K. Moradllo, C. Qiao, H. Hall, M.T. Ley, S.R. Reese, W.J. Weiss, Quantifying
fluid filling of the air voids in air-entrained concrete using neutron radiography, Cem.
Concr. Compos. 104 (2019) 103407.

[10] Wen, J., Li, F., Zhang, H., & Niu, D. (2024). A review of new methods for
measuring saturation of concrete and its impact on concrete properties. Journal of
Building Engineering, 96, 110664.

[11] Moradllo, M. K., Qiao, C., Ghantous, R. M., Zaw, M., Hall, H., Ley, M. T., &
Weiss, W. J. (2020). Quantifying the freeze-thaw performance of air-entrained concrete
using the time to reach critical saturation modelling approach. Cement and Concrete
Composites, 106, 103479.

[12] Ley, M. T., Welchel, D., Peery, J., Khatibmasjedi, S., & LeFlore, J. (2017).
Determining the air-void distribution in fresh concrete with the Sequential Air
Method. Construction and Building Materials, 150, 723-737.

[13] Scherer, G. W. (2004). Stress from crystallization of salt and ice. Cement and
Concrete Research, 34(9), 1613—-1624.

147



[14] Abdelrahman, B., & Ley, M. T. (2024). The effects of concrete temperature on air
void parameters in pumped concrete. Materials and Structures, 57(10), 228.

[15] Zhang, W., Liu, J., Guo, J., & Li, Q. (2020). Influence of damage degree on the
degradation of concrete under freezing—thawing cycles. Construction and Building
Materials, 260, 119903.

[16] ACI Committee 201. (2016). Guide to Durable Concrete (ACI 201.2R-16).
American Concrete Institute, Farmington Hills, MI, USA.

[17] ACI Committee 318. (2019). Building Code Requirements for Structural Concrete
(ACI 318-19) and Commentary (ACI 318R-19). American Concrete Institute.

[18] Chou, J. S., Tsai, C. F., Pham, A. D., & Lu, Y. H. (2014). Machine learning in
concrete strength simulations: Multi-nation data analytics. Construction and Building
Materials, 73, 771-780.

[19] Tran, V. Q., Dang, V. Q., & Ho, L. S. (2022). Evaluating compressive strength of
concrete made with recycled concrete aggregates using machine learning approach.
Construction and Building Materials, 323, 126578.

[20] Nguyen, H., Vu, T., Vo, T. P., & Thai, H. T. (2021). Efficient machine learning
models for prediction of concrete strengths. Construction and Building Materials, 266,
120950.

[21] Bayar, G., & Bilir, T. (2019). A novel study for the estimation of crack propagation
in concrete using machine learning algorithms. Construction and Building Materials, 215,
670-685.

[22] Hadzima-Nyarko, M., Nyarko, E. K., Lu, H., & Zhu, S. (2020). Machine learning
approaches for estimation of compressive strength of concrete. The European Physical
Journal Plus, 135(8), 682.

[23] Khambra, G., & Shukla, P. (2023). Novel machine learning applications on fly ash
based concrete: an overview. Materials Today: Proceedings, 80, 3411-3417.

[24] Chaabene, W. B., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of
mechanical properties of concrete: Critical review. Construction and Building Materials,
260, 119889.

[25] Nilsen, V., Pham, L. T., Hibbard, M., Klager, A., Cramer, S. M., & Morgan, D.
(2019). Prediction of concrete coefficient of thermal expansion and other properties using
machine learning. Construction and Building Materials, 220, 587-595.

[26] Bello, S. A., Oyedele, L., Olaitan, O. K., Olonade, K. A., Olajumoke, A. M., Ajayi,
A., etal. (2022). A deep learning approach to concrete water-cement ratio prediction.
Results in Materials, 15, 100300.

148



[27] Yuan, Z., Wang, L. N., & Ji, X. (2014). Prediction of concrete compressive strength:
Research on hybrid models genetic based algorithms and ANFIS. Advances in
Engineering Software, 67, 156—163.

[28] Chopra, P., Sharma, R. K., & Kumar, M. (2016). Prediction of compressive strength
of concrete using artificial neural network and genetic programming. Advances in
Materials Science and Engineering, 2016, 7648467.

[29] Li, Y., Jin, K., Lin, H., Shen, J., Shi, J., & Fan, M. (2024). Analysis and prediction of
freeze-thaw resistance of concrete based on machine learning. Materials Today
Communications, 39, 108946.

[30] Luo, D., Qiao, X., & Niu, D. (2025). A predictive model for the freeze-thaw concrete
durability index utilizing the DeepLabV3+ model with machine learning. Construction
and Building Materials, 459, 139788.

[31] Li, F., Luo, D., & Niu, D. (2025). Durability evaluation of concrete structure under
freeze-thaw environment based on pore evolution derived from deep learning.
Construction and Building Materials, 467, 140422.

[32] Kahraman, E., & Ozdemir, A. C. (2022). The prediction of durability to freeze—thaw
of limestone aggregates using machine-learning techniques. Construction and Building
Materials, 324, 126678.

[33] Chen, L., Ley, M.T., Ghantous, R.M., Weiss, W.J., Master, N.F. (2023). Measuring
damaging freeze-thaw cycles in the field. Construction and Building Materials, 387,
131660.

[34] Abdelrahman, B. N., Ley, M. T., Chen, L., Materer, N. F., Simon, J., & Young, A.
(2025). Field-Based Measurement of Freeze—Thaw Damage in Cementitious Materials.
Manuscript submitted for publication.

[35] Hong, Z., Kalbarczyk, Z., & Iyer, R. K. (2016). A data-driven approach to soil
moisture collection and prediction. 2016 IEEE International Conference on Smart
Computing (SMARTCOMP). IEEE.

[36] Cai, Y., Zheng, W., Zhang, X., Zhangzhong, L., & Xue, X. (2019). Research on soil
moisture prediction model based on deep learning. PLOS ONE, 14(4), €0214508.

[37] Matei, O., Rusu, T., Petrovan, A., & Mihut, G. (2017). A data mining system for
real-time soil moisture prediction. Procedia Engineering, 181, 837-844.

[38] Gill, M. K., Asefa, T., Kemblowski, M. W., & McKee, M. (2006). Soil moisture
prediction using support vector machines. JAWRA Journal of the American Water
Resources Association, 42(4), 1033—1046.

[39] Acharya, U., Daigh, A. L., & Oduor, P. G. (2021). Machine learning for predicting
field soil moisture using soil, crop, and nearby weather station data in the Red River
Valley of the North. Soil Systems, 5(4), 57.

149



[40] Brocca, Luca; Moramarco, Tommaso; Melone, Fulvio; Wagner, Wolfgang (2011).
Assimilation of surface- and root-zone ASCAT soil moisture products into rainfall-runoff
modeling. IEEE Transactions on Geoscience and Remote Sensing, 50(7), 2542-2555.

[41] Entekhabi, D., et al. (2010). The Soil Moisture Active Passive (SMAP) mission.
Proceedings of the IEEE, 98(5), 704-716.

[42] Mohanty, B.P., Skaggs, T.H., Famiglietti, J.S. (2000). Analysis and mapping of
field-scale soil moisture variability using high-resolution ground-based data during the
SGP97 Hydrology Experiment. Water Resources Research, 36(4), 1023—-1031.

[43] Pan, M., Cai, X., Chaney, N.-W., Wood, E.F. (2016). An initial assessment of SMAP
soil moisture retrievals using high-resolution in situ and modeled data. Geophysical
Research Letters, 43(18), 9662—9668.

[44] Vereecken, H., Huisman, J.A., Bogena, H., Vanderborght, J., Vrugt, J.A., Hopmans,
J.W. (2008). On the value of soil moisture measurements in vadose zone hydrology: A
review. Water Resources Research, 44(12).

[45] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
16, 321-357.

[46] Fernandez, A., Garcia, S., Galar, M., Prati, R. C., Krawczyk, B., & Herrera, F.
(2018). Learning from imbalanced data sets. Springer.

[47] Garcia, S., Fernandez, A., Luengo, J., & Herrera, F. (2015). Advanced nonparametric
tests for multiple comparisons in the design of experiments in machine learning research.
Information Sciences, 180(10), 2044—2064.

[48] Open-Meteo. (2024). Open-Meteo: Free weather forecast and historical data API
for scientists and developers. Retrieved from https://open-meteo.com.

[49] Haupt, R. L., & Haupt, S. E. (2004). Practical Genetic Algorithms (2nd ed.). Wiley.

[50] Deb, K. (2000). An efficient constraint handling method for genetic algorithms.
Computer Methods in Applied Mechanics and Engineering, 186(2—4), 311-338.

[51] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of
Michigan Press.

[52] Kara, A., Pekel, E., Ozcetin, E., & Yildiz, G. B. (2024). Genetic algorithm optimized
a deep learning method with attention mechanism for soil moisture prediction. Neural
Computing and Applications, 36(4), 1761-1772.

[53] Wang, J., Wu, Y., Zhang, Y., Wang, H., Yan, H., & Jin, H. (2024). A genetic
algorithm-optimized backpropagation neural network model for predicting soil moisture
content using spectral data. Journal of Soils and Sediments, 24(7), 2816-2828.

150



[54] Wang, H., Zhang, L., Zhao, J., Hu, X., & Ma, X. (2022). Application of
hyperspectral technology combined with genetic algorithm to optimize convolution long-
and short-memory hybrid neural network model in soil moisture and organic matter.
Applied Sciences, 12(20), 10333.

[55] Nguyen, T. T., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Nguyen, C. T, &
Hoang, N. B. (2022). A low-cost approach for soil moisture prediction using multi-sensor
data and machine learning algorithm. Science of the Total Environment, 833, 155066.

[56] Dumedah, G., Berg, A. A., & Wineberg, M. (2011). An integrated framework for a
joint assimilation of brightness temperature and soil moisture using the nondominated
sorting genetic algorithm II. Journal of Hydrometeorology, 12(6), 1596—-1609.

[57] Bhattacharyya, A. (1943). On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the Calcutta
Mathematical Society, 35, 99—109.

[58] Kailath, T. (1967). The divergence and Bhattacharyya distance measures in signal
selection. IEEE Transactions on Communication Technology, 15(1), 52—60.

[59] Xuan, G., Zhu, X., Chai, P., Zhang, Z., Shi, Y. Q., & Fu, D. (2003). Feature
selection based on the Bhattacharyya distance. Pattern Recognition, 36(8), 1703—1709.

[60] Knuth, K. H. (2016, July). Why square roots of probabilities?. In AIP Conference
Proceedings (Vol. 1757, No. 1, p. 020001). AIP Publishing LLC.

[61] Crooks, G. E. (2015). On Measures of Entropy and Information. (See discussion on
fidelity / Bhattacharyya coefficient and the negative-log transformation.)

[62] Aherne, F. J., et al. “The Bhattacharyya Metric as an Absolute Measure of
Divergence.” Kybernetika, 1998. (Shows taking—In of the coefficient to get a divergence
measure with additive properties.)

[63] Price, K., Storn, R., & Lampinen, J. (2005). Differential Evolution: A Practical
Approach to Global Optimization. Springer.

[64] Lampinen, J. (2002). A Constraint Handling Approach for the Differential Evolution
Algorithm. Proceedings of the IEEE CEC, 1468—1473.

[65] Gong, W., Cai, Z., & Liang, D. (2014). Adaptive ranking mutation operator-based
differential evolution for constrained optimization. /EEE transactions on
cybernetics, 45(4), 716-727.

[66] Gong, W., & Cai, Z. (2013). Differential evolution with ranking-based mutation
operators. I[EEE Transactions on Cybernetics, 43(6), 2066-2081.

[67] Wang, B. C., Li, H. X,, L1, J. P., & Wang, Y. (2018). Composite differential
evolution for constrained evolutionary optimization. [EEE Transactions on Systems, Man,
and Cybernetics: Systems, 49(7), 1482-1495.

151



[68] Takahama, T., & Sakai, S. (2006). Constrained optimization by the e-constrained
differential evolution with gradient-based mutation and feasible elites. Proceedings of the
2006 IEEE Congress on Evolutionary Computation, 1-8.

[69] Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization.
Journal of Machine Learning Research, 13(2), 281-305.

[70] Bishop, C. M. (20006). Pattern Recognition and Machine Learning. Springer.

[71] Hamming, R. W. (1950). Error detecting and error correcting codes. Bell System
Technical Journal, 29(2), 147-160.

[72] Bookstein, A., Kulyukin, V. A., & Raita, T. (2002). Generalized hamming
distance. Information Retrieval, 5, 353-375.

[73] Norouzi, M., Fleet, D. J., & Salakhutdinov, R. R. (2012). Hamming distance metric
learning. Advances in neural information processing systems, 25.

[74] Montgomery, D. C., & Runger, G. C. (2014). Applied Statistics and Probability for
Engineers (6th ed.). Wiley.

[75] Moore, D. S., McCabe, G. P., & Craig, B. A. (2012). Introduction to the Practice of
Statistics (7th ed.). W. H. Freeman.

[76] Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation
coefficient. The American Statistician, 42(1), 59-66.

152



Appendices

Appendix A: Initial Threshold Ranges for Weather Variables Before GA Optimization
The boundary values were preselected based on the following considerations:

»  Data Boundaries: The boundaries were chosen to include at least 90% of the data,
ensuring they reflect typical conditions while excluding outliers.

*  Avoiding Extremes: Boundaries were intentionally set away from the absolute
maximum and minimum values of the weather features to ensure the thresholds
remain within reasonable limits.

= Optimal Discriminant Power: The selected boundaries were found to be most
effective in distinguishing between DOS categories, minimizing overlap between
them.

This approach ensures that threshold optimization remains grounded in realistic weather
conditions, as all threshold values fall within the observed weather data ranges obtained from
the Open-Meteo API website [ 1 ]. By staying within these bounds, the model maintains physical

relevance and improves its generalizability across different regions and years.
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Table Al
Weather Feature Threshold Boundaries and Optimized Threshold Values for Each Region,

Derived from the Genetic Algorithms Model (Training Period: September 2020 to April 2021).

Weather  Weather

E Feature Feature Minimum Maximum Lower Upper
g Weather Feature Min. Max. ;ﬂﬂfggg gfnﬁﬂ? Threshold®  Threshold®
Value* Value*

Average Air Temperature (°C) -3.75 15.89 -1 12 -0.2 8.4

2 Total Precipitation (mm) 0.00 504.95 40 450 228.6 260.0
E Average Relative Humidity (%) 40.94 94.10 45 85 51.3 67.6
E Solar Radiation GHI (kWh/m?) 4.00 5.50 4.2 5.25 4.7 4.9
z Average Wind Speed (m/s) 1.37 4.98 2.2 3.5 2.8 3.1
Average Air Pressure (kPa) 84.35 101.71 88 99 92.7 97.0
Average Air Temperature (°C) -16.24 17.58 -12 12 -7.6 5.3

Total Precipitation (mm) 0.00 269.49 30 200 44.9 152.4
g Average Relative Humidity (%) 53.00 93.22 60 85 63.2 82.5
2 Solar Radiation GHI (kWh/m?) 4.00 5.75 4.2 5.25 4.25 4.9
Average Wind Speed (m/s) 2.17 6.04 3 5.2 3.56 4.7
Average Air Pressure (kPa) 90.01 99.51 92 99 92.6 94.3
Average Air Temperature (°C) -6.17 20.64 -2 16 10.8 14.8

Total Precipitation (mm) 0.00 657.86 40 450 269.0 273.0
g Average Relative Humidity (%) 38.98 90.02 45 80 65.6 70.1
& Solar Radiation GHI (kWh/m?) 4.00 5.75 4.2 5.25 4.7 4.9
Average Wind Speed (m/s) 1.53 6.16 2.2 5.0 23 31
Average Air Pressure (kPa) 82.96 102.25 85 99 86.0 90.0
Average Air Temperature (°C) -5.17 19.86 -1 12 4.1 7.6

v Total Precipitation (mm) 30.23 282.45 70 250 140.0 148.0
E Average Relative Humidity (%) 57.20 84.87 60 80 60.4 74.8
E Solar Radiation GHI (kWh/m?) 4.00 4.75 4.25 4.5 4.3 4.5
z Average Wind Speed (m/s) 1.64 4.70 2.2 4.0 2.8 33
Average Air Pressure (kPa) 93.57 101.89 94 101 93.0 98.0

2Obtained from Open-Meteo API website [1].
b Obtained from the Genetic Algorithms Model.
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Appendix B: Freezing Temperature Optimization for Predicting FT Cycles

Fig. B1 represents the freezing temperature ranges for each DOS category, selected on the
DOS—freezing temperature curve. For instance, as shown in Fig. Bl, freezing temperatures
between —3.9°C and —4.9°C are the selected range for the DOS <80% category. Several values
within this range were tested, and the freezing temperature at which the best agreement between
predicted and observed FT cycles was found was —4.0°C. The same method was used to select
the best freezing temperature ranges for the other DOS categories in order to ensure high
accuracy and best matching between predicted and observed FT cycles.

As a result, a large number of tests at various locations have confirmed that the freezing
temperatures in Table B1 resulted in the most accurate FT cycle predictions in terms of the best
matching with the observed number of freeze—thaw cycles at all of the tested locations (as
presented in the results section).

<80% 80— 90% >90%

— — —

i

— Fitted line — Fitted line

— Fitted line

Freezing Temperature (°C)

4 /
q2*40 TS0 60 70 80 90 100 3540 0 60 70 80 90 100 3540 S0 60 70 80 90 100
DOS (%) DOS (%) DOS (%)

(a) (b) (c)

Fig. B1. Freezing temperature ranges associated with each DOS category, derived from the
DOS vs. freezing temperature relationship [2]: (a) <80%, (b) 80-90%, and (c) >90%.

B.1 Optimal Freezing Temperatures for DOS >90%

To identify the best fitting predefined freezing temperature in terms of predicting FT cycles in
the locations with the predicted DOS category >90%, appropriate freezing temperatures for the
considered category were determined with the DOS—freezing temperature relationship shown
in Fig. B1. For this purpose, three freezing temperatures were chosen within the temperature
range shown for this category in Fig. B1(c) (between —0.6 and —2.8°C), namely 1, —1.5, and —
2°C. These were used to test which of these temperatures most accurately predicted the number
of FT cycles (Table B1). For the sake of simplicity, it was decided to use locations from
different parts of the considered region with predicted DOS values >90%.

The fact that actual DOS values (91-99%) and associated freezing temperatures (0.6 and —
2.8°C) vary significantly supports the notion that the selection of a specific predefined freezing
temperature influences the resulting number of FT cycles. Table 11 gives the total number of
actual FT cycles and their differences between the values predicted using a given predefined
freezing temperature and the actual values (predicted from September 2021 to April 2022) for
the selected locations.
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It is clear from the results that the predefined freezing temperatures of —1 and —2°C lead to
large differences between the predicted and actual values. This means that neither of these
temperatures is a good fit for the locations with the DOS >90%. In contrast, the predefined
temperature of —1.5°C has very small variations and can be deemed to be the best fitting
freezing temperature for predicting the number of FT cycles in this category.

Table B2 shows the average, maximum, and minimum values of actual and predicted FT cycles,
as well as the differences between the predicted and actual numbers of FT cycles. It can be seen
that predictions using the predefined freezing temperature of —1.5°C have smaller absolute
differences compared with those using the predefined temperature of —2°C. In other words, the
predicted numbers of FT cycles at —1.5°C are closer to the actual values. Smaller differences
at a predefined temperature of —1.5°C also have a tighter range with a minimum and a
maximum of —8 and 7, respectively, than at —2°C, for which a minimum and maximum of —7
and 15, respectively, were calculated. For example, a large maximum difference of 15 at a
predefined freezing temperature of —2°C might cause a bias in results for a location. On the
other hand, predictions using the predefined freezing temperature of —1°C are clearly lower
than the actual number of FT cycles, which is evident from the negative values of differences
(Table B2).

In summary, using the predefined freezing temperature of —1.5°C leads to the most accurate
and consistent predictions of FT cycles in the DOS >90% category. It minimizes the difference
between actual and predicted numbers of FT cycles, as well as the range of these differences,
and avoids systematic underestimation or overestimation of the numbers of FT cycles.
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Table B1

Evaluation of Predicted FT Cycles Using Different Predefined Freezing Temperatures for DOS
Category >90%.

Predefined Freezing Temperature (-1.0°C)

Actual FT Difference
Region Location, State Predicted FT Cycles® (Actual —
Cycles? .
Predicted)
Northwest  Coeur d'Alene US-95, Idaho 61 123 -62
Northwest Paddy Flat SH-55, Idaho 74 83 -9
Northeast Cyclone, Pennsylvania 44 64 -20
Northeast Harrisburg, Pennsylvania 40 51 -11
North Chadron, Nebraska 94 119 -25
North Madison, Wisconsin 50 67 -17
North Baxter, Minnesota 54 67 -13
South Glenwood, Colorado 70 72 -2
McCurtain County,
South Oklaborm Y 31 50 -19
South Topeka, Kansas 41 56 -15
Average 55.9 75.2 -19.3
Minimum Value 31 50 -62
Maximum Value 94 123 -1
Predefined Freezing Temperature (-1.5°C)
Northwest  Coeur d'Alene US-95, Idaho 61 58 3
Northwest Paddy Flat SH-55, Idaho 74 67 7
Northeast Cyclone, Pennsylvania 44 52 -8
Northeast Harrisburg, Pennsylvania 40 43 -3
North Chadron, Nebraska 94 99 -5
North Madison, Wisconsin 50 54 -4
North Baxter, Minnesota 54 54 0
South Glenwood, Colorado 70 71 -1
McCurtain County,
South Oklaborm Y 31 31 0
South Topeka, Kansas 41 45 -4
Average 55.9 57.4 -1.5
Minimum Value 31 31 -8
Maximum Value 94 99 7
Predefined Freezing Temperature (-2.0°C)
Northwest  Coeur d'Alene US-95, Idaho 61 52 9
Northwest Paddy Flat SH-55, Idaho 74 59 15
Northeast Cyclone, Pennsylvania 44 51 -7
Northeast Harrisburg, Pennsylvania 40 40 0
North Chadron, Nebraska 94 93 1
North Madison, Wisconsin 50 49 1
North Baxter, Minnesota 54 50 4
South Glenwood, Colorado 70 69 1
South MeCurtain County, 31 35 4
South Topeka, Kansas 41 41 0
Average 55.9 53.9 2.0
Minimum Value 31 35 -7
Maximum Value 94 93 15

2 Total Number of FT Cycles from September 2021 to April 2022.
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B.2 Optimal Freezing Temperatures for DOS 80-90%

To reduce complexity, multiple locations from different regions with variable DOS values in
the range of 80-90% (Table B2) were chosen for this specific category to identify the most
suitable predefined freezing temperature. This DOS range covers the widest spectrum of actual
DOS values and their corresponding actual freezing temperatures (Fig. B1(b), approximately
from —3.8 to —2.8°C). Consequently, three predefined freezing temperatures, 2.5°C, —3.0°C,
and —3.5°C, were chosen for comparison and testing.

The actual FT cycles from the selected multiple locations in the DOS 80-90% category (Table
B2) were used to conclude the most reasonable predefined freezing temperature. As a result,
—3.5°C is recommended as the predefined freezing temperature to calculate FT cycles in this
category (Table B2). This is because, in comparison to —2.5°C and —3.0°C, differences between
actual and predicted FT cycles at —3.5°C generally have smaller absolute values, i.e., they are
relatively closer to zero, which implies that the prediction using —3.5°C is, on average, closer
to the actual values. Besides, as shown in Table B2, the predefined freezing temperature of
—3.5°C produces the smallest average absolute difference (=1.3) as opposed to —2.5°C (=10.1)
and —3.0°C (=5.3), which further indicates that the latter two cases have more extreme values
(—18 and —10, respectively) that would disproportionately affect the results and make
predictions less accurate at certain locations. The absolute average differences between actual
and predicted FT cycles at —2.5°C are also generally large and consistently negative, which
would suggest an underestimation bias in those cases. Although those at —3.0°C are much
closer to zero on average, there are still more positive and extreme values present that could
cause occasional overestimations.
On the contrary, differences at —3.5°C are not only on average smaller in magnitude but also
lack a strong positive or negative direction. As such, it can be concluded that —3.5°C would
lead to more accurate predictions on average, compared to the two other cases.
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Table B2
Evaluation of Predicted FT Cycles Using Different Predefined Freezing Temperatures for DOS
Category 80%-90%.

Predefined Freezing Temperature (-2.5°C)

Difference
Region Location, State Actual FT Cycles* Predicted FT Cycles® (Actual —
Predicted)
Northwest Newport, Oregon 1 2 -1
Northwest Mt Home 1-84, Idaho 50 61 -11
Northeast Hauppauge, New York 18 33 -15
North Lincoln, Nebraska 56 74 -18
North Mason City, lowa 39 44 -5
South Seibert, Colorado 71 87 -16
South Hutchinson, Kansas 48 53 -5
Average 40.4 50.6 -10.1
Minimum Value 1 2 -18
Maximum Value 71 87 -1
Predefined Freezing Temperature (-3.0°C)
Northwest Newport, Oregon 1 1 0
Northwest Mt Home 1-84, Idaho 50 60 -10
Northeast Hauppauge, New York 18 26 -8
North Lincoln, Nebraska 56 63 -7
North Mason City, lowa 39 40 -1
South Seibert, Colorado 71 80 -9
South Hutchinson, Kansas 48 50 -2
Average 40.4 45.7 5.3
Minimum Value 1 1 -10
Maximum Value 71 80 0
Predefined Freezing Temperature (-3.5°C)
Northwest Newport, Oregon 1 1 0
Northwest Mt Home 1-84, Idaho 50 56 -6
Northeast Hauppauge, New York 18 18 0
North Lincoln, Nebraska 56 60 -4
North Mason City, lowa 39 36 3
South Seibert, Colorado 71 74 -3
South Hutchinson, Kansas 48 47 1
Average 40.4 41.7 -1.3
Minimum Value 1 1 -6
Maximum Value 71 74 3

2 Total Number of FT Cycles from September 2021 to April 2022.
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B.3 Optimal Freezing Temperatures for DOS <80%

The results for the DOS category <80% show the effect of the chosen value of predefined
freezing temperature on the predicted values. Table B3 presents the actual and predicted
number of FT cycles for three different predefined freezing temperatures (—4.0°C, —4.5°C, and
—4.7°C) for locations in Texas County, Oklahoma, and Denver, Colorado. The chosen range of
temperatures is based on the range of actual DOS values and corresponding freezing
temperatures shown in Fig. B1(a).

When the predefined freezing temperature is set to —4.0°C, the actual and predicted FT cycles
are perfectly aligned with no difference in any of the metrics (average, minimum, and
maximum). This would make the predefined temperature of —4.0°C an ideal choice. At a
predefined freezing temperature of —4.5°C, there is a clear difference between the actual and
predicted values. The predicted values underestimate the number of FT cycles with a difference
ranging from 3 to 5, with an average of 4. When the predefined freezing temperature is further
lowered to —4.7°C, the difference between actual and predicted values increases, with a range
from 5 to 7 and an average of 6. This pattern of results shows that lower predefined
temperatures cause a larger underestimation of the actual values, which affects the prediction
accuracy in a negative way.

In conclusion, the most suitable predefined freezing temperature for the <80% DOS category
is —4.0°C, as it results in a perfect match between actual and predicted FT cycles with no
difference in the selected locations.

Table B3
Evaluation of Predicted FT Cycles Using Different Predefined Freezing Temperatures for DOS
Category <80%.

Predefined Freezing Temperature (-4.0°C)

Region Location, State Actual FT Predicted FT Difference
Cycles? Cycles® (Actual — Predicted)

South Texas County, Oklahoma 42 42 0

South Denver, Colorado 48 48 0

Average 45 45 0

Minimum Value 42 42 0

Maximum Value 48 48 0
Predefined Freezing Temperature (-4.5°C)

Northwest  Texas County, Oklahoma 42 39 3

Northwest Denver, Colorado 48 43 5

Average 45 41 4

Minimum Value 42 39 3

Maximum Value 48 43 5
Predefined Freezing Temperature (-4.7°C)

Northwest  Texas County, Oklahoma 42 37 5

Northwest Denver, Colorado 48 41 7

Average 45 39 6

Minimum Value 42 37 5

Maximum Value 48 41 7

2 Total Number of FT Cycles from September 2021 to April 2022.
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Appendix C: Comparison of Air Temperature and Concrete Temperature

Fig. C1 shows the air and concrete temperatures at all selected locations from September 2021

to April 2022. Fig. C1 indicates that air temperature generally tracked the concrete temperature
over time at each location.
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Fig. C1: Comparison of air temperature and concrete temperature from September 2021 to
April 2022 at the following locations: (a) North — Wisconsin (Green Bay), (b) South —
Oklahoma (Texas County), (¢) Northeast — Pennsylvania (Cyclone), and (d) Northwest —
Idaho (Coeur d'Alene, US-95).
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Appendix D: Comparison with Traditional Machine Learning Models

Initially, standard ML models were applied to the dataset to predict the DOS categories. The
performance of all models was mediocre, which was further compounded by the low
performance in the most important class, the <80% DOS category (Table D1). The best-
performing traditional ML model was the Random Forest Classifier, which still only managed
to achieve 56% accuracy (Table D1), which is no better than making random predictions (Table
D1). The major problem that plagued all traditional ML models was the imbalanced nature of
the data. There were fewer data points for the <80% DOS category compared to the 80—90%
and >90% categories, which made it more difficult for the models to learn this category,

resulting in worse predictive accuracy for it.

Furthermore, the traditional ML models are often not good at representing the intricate and
non-linear interactions that can exist between weather variables. This is because the ML models
often assume that the inputs to the model are independent from each other, or that their
relationship is linear, when in fact the relationship between weather variables is dynamic and
mutually dependent. For example, the effect of a single weather variable, such as temperature,
on the DOS may change depending on the values of other weather variables, such as humidity
or precipitation. These kinds of non-linear and context-dependent effects are difficult to model
using traditional ML algorithms, which operate based on simplified assumptions [3-5]. The
exhaustive search of the hyperparameter space for the traditional models resulted in only
marginal increases in performance, and even then, performance in the DOS <80% category
still remained very low (Table DI1). As a result of all of the above, it was decided to use
GAs. The principal reason for this is that they are able to search through a larger solution space
with little to no need for training data [6-8]. GAs is particularly useful for threshold
optimizations, and as an added benefit, it can also work with imbalanced and non-uniform
distributions of data [6-8]. It was also able to circumvent the manual weighing of the different
categories in the decision tree via fitness maximization, which, as seen in the results,
automatically enforces the importance of all categories, which also contributed to a large

increase in performance in the <80% category.

GAs clearly outperformed the traditional machine-learning method in dealing with the
imbalanced data and in threshold optimization, which resulted in a large improvement in the

prediction of the DOS categories.

163



Table D1

Predicting DOS Category Results for the year September 2021 to April 2022.

Model

DOS Category

<80%

Overall Model Accuracy (%)

Random Forest Classifier
Multilayer Perceptron
Support Vector Machines
SVM with RBF Kernel
Gradient Boosting Classifier
Decision Tree Classifier
LSTM Model (10 epochs)
LSTM Model (60 epochs)
Linear Regression

Nonlinear Regression
Artificial Neural Network (ANN)

20

20

S O o o O

80-90% >90%
Prediction Accuracy (%)

38 76
31 57
20 67
20 50
14 44
25 67
22 67
0 44
22 48
33 57
20 60

56
31
31
31
31
44
33
33
25
30
35
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Appendix E: Predicted and Measured Total FT Cycle Data for All Regions
Tables E1, E2, and E3 display the predicted and measured total FT cycles for all years and
regions, as well as the absolute and relative (percentage) differences between measured and

predicted total FT cycles.

Table E1

Predicted and Measured Total FT Cycles from September 2021 to April 2022 Across All
Regions and Locations.

'gﬁ State Location Measured FT Predicted FT Difference in %, Difference®
& Cycles Cycles FT Cycles*

Bismarck Site 97 97 0 0
North Dakota Grand Forks Site 66 66 0 0
Fargo Site 81 81 0 0
Baxter 54 54 0 0
Minnesota Maplewood 49 46 3 6
Thief River Falls 70 68 2 3
Green Bay 79 82 -3 -4
= Wisconsin Madison 50 54 -4 -8
E Rhinelander 59 62 -3 -5
- Ames 77 79 2 3
Towa Fairfield 48 52 -4 -8
Mason City 39 36 3 8
Lincoln 56 60 -4 -7
Nebraska Thedford 64 63 1 2
Chadron 94 99 -5 -5
Illinois Dixon (Northern) 48 50 -2 -4
Missouri Northwest District 44 46 -2 -5
Denver 48 48 0 0
Colorado Seibert 71 74 -3 -4
Glenwood 70 71 -1 -1
Oakley 70 71 -1 -1
Kansas Hutchinson 48 47 1 2
= Topeka 41 45 -4 -10
2 Cooper Lab 23 23 0 0
@ Oklahoma McCurtain County 31 31 0 0
Texas County 42 42 0 0
IHlinois Spring Field (Central) 40 42 -2 -5
Carbondale (Southern) 33 33 0 0
Missouri Central Laboratory 44 44 0 0
Southeast District 37 38 -1 -3
Bend 42 46 -4 -10
:”3 Oregon Hinsdale Wave Research Lab 26 28 -2 -8
E Newport 1 1 0 0
E Coeur d'Alene US-95 61 58 3 5
z Idaho Mt Home 1-84 50 56 -6 -12
Paddy Flat SH-55 74 67 7 9
Clearfieldl 58 61 -3 -5
Z Pennsylvania Cyclone 48 52 -4 -8
2 Harrisburg 40 43 -3 -8
g Watertown 25 25 0 0
Z  New York Clifton Park 25 27 2 -8
Hauppauge 18 18 0 0

2 Difference in FT Cycles = Measured — Predicted FT cycles.
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® Difference (%) =

Measured FT Cycles—Predicted FT Cycles

Table E2

Measured FT Cycles

x 100

Predicted and Measured Total FT Cycles from September 2022 to April 2023 Across All
Regions and Locations.

=
'§n State Location Measured FT Predicted FT .Cycle 9% Difference
& Cycles Cycles Difference?®
Bismarck Site 63 63 0 0
North Dakota Grand Forks Site 57 57 0 0
Fargo Site 73 73 0 0
Baxter 83 83 0 0
Minnesota Maplewood 85 85 0 0
Thief River Falls 67 67 0 0
Green Bay 51 55 -4 -8
= Wisconsin Madison 56 58 -2 -4
g Rhinelander 60 60 0 0
z Ames 94 96 2 2
Towa Fairfield 41 44 -3 -7
Mason City 49 51 -2 -4
Lincoln 77 77 0 0
Nebraska Thedford 116 116 0 0
Chadron 99 99 0 0
Illinois Dixon (Northern) 65 66 -1 -2
Missouri Northwest District 52 52 0 0
Denver 70 69 1 1
Colorado Seibert 50 52 -2 -4
Glenwood 85 89 -4 -5
Oakley 96 96 0 0
Kansas Hutchinson 54 54 0 0
= Topeka 55 62 -7 -15
2 Cooper Lab 29 29 0 0
@ Oklahoma McCurtain County 4 4 0 0
Texas County 41 41 0 0
.. Spring Field (Central) 34 38 -4 -12
Ilinois
Carbondale (Southern) 24 24 0 0
. . Central Laboratory 46 46 0 0
Missouri Southeast District 33 33 0 0
Bend 48 48 0 0
2 Oregon Hinsdale Wave Research Lab 35 38 -3 -9
E Newport 6 6 0 0
g Coeur d Alene US-95 133 133 0 0
z Idaho Mt Home 1-84 56 56 0 0
Paddy Flat SH-55 123 123 0 0
Clearfieldl 83 83 0 0
v  Pennsylvania Cyclone 85 85 0 0
g Harrisburg 49 49 0 0
% Watertown 49 47 2 4
z New York Clifton Park 41 45 -4 -10
Hauppauge 30 30 0 0

2 Difference in FT Cycles = Measured — Predicted FT cycles.

Measured FT Cycles—Predicted FT Cycles

b Difference (%) =

Measured FT Cycles

X

100
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Table E3

Predicted and Measured Total FT Cycles from September 2023 to April 2024 Across All
Regions and Locations.

'?D State Location Measured FT  Predicted FT Cycle %
g Cycles Cycles Difference®  Difference®
Bismarck Site NA 115 NA NA
North Dakota Grand Forks Site NA 105 NA NA
Fargo Site NA 106 NA NA
Baxter 97 101 -4 -4
Minnesota Maplewood 90 88 2 2
Thief River Falls 102 107 -5 -4
Green Bay NA 91 NA NA
Wisconsin Madison 49 49 0 0
£ Rhinelander NA 89 NA NA
- Ames NA 55 NA NA
Towa Fairfield 33 33 0 0
Mason City 56 56 0 0
Lincoln 50 43 7 14
Nebraska Thedford 66 64 2 3
Chadron 75 76 1 1
Illinois Dixon (Northern) NA 43 NA NA
Missouri Northwest District 35 36 -1 -3
Denver 75 76 -1 -1
Colorado Seibert 45 45 0 0.00
Glenwood 98 99 -1 -1
Oakley 70 69 1 1
Kansas Hutchinson 52 50 2 4
= Topeka 53 55 -2 -4
2 Cooper Lab 33 31 2 6
@ Oklahoma McCurtain County 12 11 1 8
Texas County 30 30 0 0
Ilinois Spring Field (Central) 25 22 3 12
Carbondale (Southern) 16 14 2 13
Missouri Central Laboratory 32 30 2 6
Southeast District 35 35 0 0
Bend NA 37 NA NA
= Oregon Hinsdale Wave Research Lab NA 26 NA NA
E Newport 3 3 0 0
1;- Coeur d Alene US-95 72 73 -1 -1
z Idaho Mt Home 1-84 55 59 -4 -7
Paddy Flat SH-55 110 115 -5 -5
Clearfield1 75 77 -2 -3
v Pennsylvania Cyclone 71 75 -4 -6
g Harrisburg 43 40 3 7
£ Watertown 40 39 1 3
z New York Clifton Park 67 64 3 4
Hauppauge 30 27 3 10

2 Difference in FT Cycles = Measured — Predicted FT cycles.

Measured FT Cycles—Predicted FT Cycles

b Difference (%) =

Measured FT Cycles

x 100
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Appendix F: Predicted and Measured Damaging FT Cycle Data for All Regions
Table F1 presents the predicted and measured damaging FT cycles for all years and regions, as
well as the absolute and percentage difference between the observed and predicted. Table F2

shows the monthly predicted and measured values for selected locations.

Table F1

Predicted and Measured Damaging FT Cycles Across All Regions and Locations.

£ Measured Damaging FT Cycles Predicted Damaging FT Cycles % Difference”
& State Location
& Year2" Year3© Year4! Year2" Year3© Year4! Year2” Year3® Year4!
North Dakota Bismarck Site 97 83 NA 99 83 NA -2 0 NA
North Dakota Grand Forks Site 66 57 NA 71 57 NA -8 0 NA
North Dakota Fargo Site 81 73 NA 90 73 NA -11 0 NA
Minnesota Baxter 74 83 97 78 83 101 -5 0 -4
Minnesota Maplewood 79 85 90 70 85 88 11 0 2
Minnesota Thief River Falls 79 88 102 82 84 104 -4 5 -2
Wisconsin Green Bay 79 65 NA 80 60 NA -1 8 NA
Wisconsin Madison 50 56 49 55 58 49 -10 -4 0
= Wisconsin Rhinelander 85 81 NA 84 79 NA 1 2 NA
E Towa Ames 97 94 NA 96 97 NA 1 -3 NA
z Towa Fairfield 48 41 33 52 44 33 -8 -7 0
Towa Mason City 39 49 56 40 51 56 -3 -4 0
Nebraska Lincoln 56 77 50 60 77 46 -7 0 8
Nebraska Thedford 63 74 66 67 80 64 -6 -8 3
Nebraska Chadron 94 99 89 90 99 80 4 0 10
Tllinois Dixon (Northern) 76 78 NA 77 70 NA -1 10 NA
Missouri Northwest District 44 52 35 46 52 36 -5 0 -3
Average -3 0 1
Standard Deviation 6 5 5
Colorado Denver 0 0 0 0 0 0 0 0 0
Colorado Seibert 4 6 0 4 6 0 0 0 0
Colorado Glenwood 83 85 98 80 85 99 4 0 -1
Kansas Oakley 6 3 5 6 3 5 0 0 0
Kansas Hutchinson 34 37 46 38 40 50 -12 -8 -9
Kansas Topeka 41 54 53 45 58 55 -10 -7 -4
= Oklahoma Cooper Lab 9 11 27 9 10 30 0 9 -11
E Oklahoma McCurtain County 17 11 9 17 12 10 0 -9 -11
@ Oklahoma Texas County 0 0 1 0 0 1 0 0 0
Illinois Spring Field (Central) 20 29 25 22 32 22 -10 -10 12
Illinois Carbondale (Southern) 27 17 NA 30 19 NA -11 -12 NA
Missouri Central Laboratory 26 17 22 29 19 25 -12 -12 -14
Missouri Southeast District 31 15 3 35 13 3 -13 13 0
Average -5 -3 -3
Standard Deviation 6 8 7
Oregon Bend 42 48 NA 47 50 NA -12 -4 NA
Oregon Hinsdale Vave 8 17 NA 8 19 NA 0 12 NA
?;a Oregon Newport 1 3 1 1 3 1 0 0 0
= Idaho Coeur d'Alene US-95 110 123 113 115 120 97 -5 2 14
g Idaho Mt Home 1-84 50 48 42 56 55 47 -12 -15 -12
Idaho Paddy Flat SH-55 102 123 110 100 115 115 2 7 -5
Average -4 -4 -1
Standard Deviation 6 8 11
Pennsylvania Clearfield 78 83 75 70 83 77 10 0 -3
Pennsylvania Cyclone 58 85 71 52 85 75 10 0 -6
- Pennsylvania Harrisburg 40 49 43 43 50 40 -8 -2 7
E New York Watertown 47 36 40 50 40 39 -6 -11 3
‘g. New York CliftonPark 57 40 67 55 45 64 4 -13 4
F4 New York Hauppauge 45 30 30 40 30 27 11 0 10
Average 4 -4 3
Standard Deviation 9 6 6
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. Measured FT Cycles—Predicted FT Cycles
2 Difference (%) = x 100
Measured FT Cycles

b September 2021 — April 2022.
¢ September 2022 — April 2023.
dSeptember 2023 — April 2024.

Table F2
Comparison of Predicted and Measured FT Cycles for Selected Locations (September 2021 to
April 2022).

Actual DOS  Actual DOS  Predicted DOS  Actual Number L redicted  Difference Between
Month Number of Actual and

0/ \a o 0/\b
(%) Category (%) Category (%) of FT Cycles FT Cycles Predicted FT Cycles

Maplewood, Minnesota (North Region)

September 87 80-90 80-90 0 0 0
October 92 >90 >90 0 0 0
November 99 >90 >90 6 6 0
December 99 >90 >90 13 10 4
January 99 >90 >90 6 6 0
February 99 >90 >90 7 7 0
March 97 >90 >90 9 9 0
April 97 >90 >90 8 8 0
Total Number of FT Cycles 49 46 3
Percent Error (%)¢ 6
Bend, Oregon (Northwest Region)
September 68 <80 <80 0 0 0
October 73 <80 <80 1 1 0
November 81 80-90 80-90 4 4 0
December 81 80-90 80-90 8 8 0
January 82 80-90 80-90 9 9 0
February 83 80-90 80-90 10 10 0
March 86 80-90 >90 5 9 -4
April 79 <80 <80 5 5 0
Total Number of FT Cycles 42 46 -4
Percent Error (%)¢ -10
Harrisburg, Pennsylvania (Northeast Region)
September 96 >90 >90 0 0 0
October 95 >90 >90 0 0 0
November 95 >90 >90 1 2 -1
December 93 >90 >90 4 7 -3
January 94 >90 >90 14 14 0
February 96 >90 >90 14 14 0
March 96 >90 >90 8 8 0
April 97 >90 >90 0 0 0
Total Number of FT Cycles 40 43 -3
Percent Error (%)¢ -8
Topeka, Kansas (South Region)
September 92 >90 >90 0 0 0
October 91 >90 >90 0 0 0
November 93 >90 >90 4 7 -3
December 92 >90 >90 9 10 -1
January 94 >90 >90 14 14 0
February 93 >90 <80 12 14 -2
March 94 >90 >90 5 5 0
April 94 >90 >90 1 2 -1
Total Number of FT Cycles 41 45 -4
Percent Error (%)¢ 10

2Obtained from the Field Sample [2].

b Obtained from Genetic Algorithms Model.

Measured FT Cycles—Predicted FT Cycles
¢Percent Error (%) = x 100
Measured FT Cycles
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Abstract

Freeze—thaw damage is a major durability concern for concrete in cold regions. This study
develops maps based on field instrumentation, weather data, and a correlation based on
machine learning. The maps are based on 24 years of data from 574 weather stations. Maps of
the average and variation of the combination of freeze-thaw cycles and moisture are combined
to measure the amount of damaging freeze-thaw cycles. Since this work provides insights into
the average freeze-thaw exposure and its variability, this information can serve as a starting
point for performance design against freeze-thaw damage. The map produced is also compared
to other freeze-thaw exposure maps, such as those developed by the Long-Term Pavement

Performance (LTPP), which do not capture the localized weather exposure.
1.0 Introduction

The durability of concrete can be compromised in cold regions due to freeze—thaw deterioration
[1, 2]. Repeated freeze—thaw cycles generate internal stresses when pore water freezes at high
saturation levels, leading to cracking, scaling, and premature degradation of concrete structures
[3-9]. This highlights the need for reliable methods to predict freeze—thaw damage and improve
durability design [10].

The degree of saturation (DOS), defined as the ratio of pore water to total pore volume in
concrete, plays a key role in freeze—thaw damage [11,12]. When DOS exceeds a critical
threshold, typically between 78% and 90%, the risk of damage increases significantly due to
ice formation in the pores [12—15]. Accordingly, damaging freeze—thaw cycles are defined as
those that occur when the DOS is at or above the critical DOS, while freeze-thaw events that

occur below the critical DOS are not damaging [ 15-18].

A recent study developed a novel field-based method that combines electrical resistivity and
temperature measurements to monitor DOS, ice formation, and ice melting within concrete in
real time [19, 20]. This approach provides in-situ detection of damaging freeze—thaw cycles

and a practical way to quantify them. The study also showed that higher DOS levels raise the
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freezing point of cementitious materials, while lower DOS levels result in freezing at lower
temperatures [19-22]. This highlights the importance of accounting for both temperature and
moisture conditions when evaluating freeze—thaw exposure, as freeze-thaw damage is
primarily influenced by freezing temperature and DOS, both of which are influenced by local

weather conditions [23,24].

Building on this framework, the authors’ recent work [25] introduced a novel statistical model
to predict freeze—thaw cycles directly from weather data. The model was trained on field
measurements from 42 sites across 14 states and incorporated critical weather parameters. A
genetic algorithm (GA) was applied to optimize thresholds, systematically identifying the most
effective cutoff values of the weather variables to classify and distinguish the DOS categories.
From this process, a region-specific tool was developed to convert weather data into different
levels of DOS within the concrete. Freeze—thaw cycles were determined to occur if the
temperature dropped below the freezing temperature based on the moisture of the concrete and
then subsequently increased to a temperature above 0°C. If the DOS >80%, then the freezing
cycle is classified as damaging, and if the DOS <80%, then the freezing cycle is considered
non-damaging. The model correctly predicted the DOS in 89% of cases and predicted

damaging freeze-thaw cycles with 85% accuracy across all years and regions [25].

This work uses the developed model and combines it with 24 years of weather data from 574
locations. Predictions were only made for regions where field data were used to validate the
model. This work aims to provide a starting place for an easy-to-use tool, such as a map or
simple website, where the amount of total and damaging freeze-thaw cycles can be determined.
This also helps visualize the average, standard deviation, and the coefficient of variation (COV)
of this exposure. This offers specifiers and builders a better understanding of regional freeze—
thaw risks, and this supports durability-based decision-making in concrete infrastructure

design.
2.0 Methodology
2.1 Weather Data Collection and Preprocessing

This study focused on six key weather variables: temperature, precipitation, relative humidity
(RH), wind speed, solar radiation, and atmospheric pressure. These parameters were selected
because they are widely used in measuring how environmental factors impact the saturation

and drying behavior of soils [26-35]. More information can be found in other publications [25].
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Weather data were collected from the winter seasons (September through April) between 2000
and 2024 for 574 weather stations across 14 states. A map of these weather stations is shown
in Figure 1. The dataset was obtained from the Open-Meteo API [36], an open-source, research-
oriented climate database that compiles long-term, quality-controlled records from established
meteorological networks and provides wide spatial coverage. The daily records were averaged

into monthly values for ease of processing.

e Weather Station Location
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Figure 1: Locations of weather stations used for predicting freeze-thaw cycles in the

states analyzed.

2.2 Freeze-Thaw Cycles Prediction

To predict freeze—thaw cycles across all weather stations, this study used the tools developed
in the previous study [25]. The approach allowed the conversion of weather data into
categorical representations that could be used to estimate the average DOS for each location

during each winter season. The regions used are in Appendix A.

The freeze—thaw cycles were predicted using air temperature records from each station in
combination with the predicted DOS category. The air temperature has been shown to closely
match the temperature at 50 mm from the surface in the concrete, based on field measurements

[25]. Each DOS category is associated with a specific freezing temperature, and a cycle is
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counted whenever the temperature falls below that freezing temperature and then increases to
0°C. Additional details on this procedure are provided in Appendix B and in a previous

publication [25].

Any freeze—thaw cycle that occurred when the predicted DOS was below 80% was considered
non-damaging, while all cycles at or above 80% were classified as damaging. This threshold
was selected based on previous studies, which identified the critical saturation range for freeze—
thaw damage as approximately 78-90% [12—15]. Using 80% as the cutoff provides a
conservative and practical criterion that accounts for the measurement variability and ensures

a margin of safety when evaluating freeze—thaw durability.

2.3 Development of Freeze-Thaw Cycles Maps

Geospatial interpolation was used to produce continuous surfaces by interpolating between
weather measurement sites to visualize the spatial distribution of freeze-thaw cycles to create
freeze-thaw maps. Maps of measures of variability (average, standard deviation, and
coefficient of variation (COV) were generated across the 24 winter seasons for both total and
damaging freeze-thaw cycles. Total freeze-thaw cycle maps represent all cycles occurring
when the concrete freezes based on the saturation level, while damaging freeze—thaw cycle

maps include only cycles when the DOS exceeded 80%, the critical threshold set for this work.
2.3.1 Interpolation and Smoothing

Spatial interpolation and smoothing are widely used in geospatial analysis to convert irregular
point measurements into continuous surfaces that can reveal regional patterns [37,38]. These
approaches are particularly valuable when site data are limited or unevenly distributed, as they
help reduce noise, fill gaps, and generate maps that are both interpretable and suitable for

decision-making.
2.3.1.1 Interpolation Method

Surface interpolation in this study was performed using the Inverse Distance Weighting (IDW)
method, which estimates values at locations without data by averaging nearby measurements
while giving greater influence to points that are closer. In this approach, the weight of each
point decreases with distance according to an inverse power function, meaning that spatially

close sites contribute more strongly to the estimated value. IDW was selected because it
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performs well with irregularly spaced data, preserves local gradients, and avoids the overshoot

artifacts that can occur in polynomial or spline-based interpolation methods [38,39].

The interpolation parameters were empirically tuned to achieve a balance between smoothness
and local accuracy. The power value, which typically ranges between 1 and 3, controls how
quickly the influence of a point decreases with distance. A power of 1.9 was chosen in this
study because it provides an effective balance between emphasizing nearby data points and
maintaining regional continuity. A higher power would overly emphasize nearby points,
creating sharp local variations, while a lower power would over-smooth the data and obscure

meaningful regional trends.

Each grid cell represents a small, regularly spaced unit on the interpolation grid covering the
study area, serving as the basic element where the damaging freeze—thaw cycle value is
estimated. Interpolating values at each grid cell ensures a continuous surface suitable for
mapping and contour visualization. The model used the 16 nearest neighboring stations within
a maximum search radius of 1.6° in both longitude and latitude, which defines the geographic
range (in degrees) within which nearby stations influence the interpolated value. These settings
ensured that interpolation remained constrained to regions with sufficient data coverage,

preventing unrealistic extrapolation into data-sparse areas.

Overall, the chosen IDW parameters allowed the interpolated surface to represent realistic
spatial transitions in damaging freeze—thaw cycles while maintaining numerical stability and
visual continuity. The IDW approach has been shown to perform reliably in environmental
mapping applications where preserving local variability without introducing artificial extremes

is important [38,39].
2.3.1.2 Smoothing Filters

To reduce small-scale noise and improve the visual clarity of the interpolated surface, two
smoothing filters were applied in sequence. First, a median filter was used to remove isolated
pixel-level spikes that resulted from local interpolation noise, with a window size of 0.26° in
both longitude and latitude. The window size defines the area around each grid cell that the
filter considers when computing a new value. This value was chosen empirically to allow
random noise to be removed without distorting meaningful spatial gradients. The median filter
replaces each grid cell’s value with the median of its surrounding cells within the defined

neighborhood, effectively removing isolated spikes or speckled noise that may arise from local
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measurement variability or interpolation artifacts while preserving genuine spatial boundaries

and gradients [40].

After median filtering, a Gaussian filter was applied to further smooth the overall surface. The
Gaussian filter performs a weighted average of nearby values, giving higher weights to those
closer to the center and progressively lower weights with distance. This produces a gradual,
natural-looking transition between neighboring cells rather than abrupt changes. A standard
deviation (o) of 0.32° in both longitude and latitude was used to control the degree of
smoothing, while a truncation factor of 2.5 limited the filter’s influence on about five times o
in each direction [41,42]. These parameters were selected empirically through sensitivity
testing to provide light smoothing that reduced pixel-level irregularities without blurring

meaningful regional gradients.

Overall, the combination of median and Gaussian filters effectively enhanced the smoothness
and readability of the maps while preserving the true spatial variability of damaging freeze—
thaw cycles. The parameters were chosen conservatively to ensure that filtering improved
visualization without introducing bias or altering the underlying data trends [41,42]. The
filtering effects at each stage of processing are illustrated in Figure 2, which compares the IDW

interpolation, IDW with a median filter, and IDW with median and Gaussian filters.
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Figure 2: Comparison of the effects of interpolation and filtering steps on freeze—thaw cycle
maps: (a) IDW interpolation, (b) IDW with median filter, and (c) IDW with median and

Gaussian filters.
2.4 Color Mapping and Visualization Design

For this study, filled contour maps were selected to visualize the distributions of freeze—thaw

cycles. These maps display continuous color shading to represent regional gradients and
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contour lines to mark areas of equal value, providing an intuitive and quantitative
representation of spatial variation. Such maps are widely used in environmental and geospatial

studies to communicate spatial variation in a way that is both intuitive and quantitative [43,44].

Interpolated grids were displayed as filled rasters, meaning that each grid cell was color-shaded
according to its freeze—thaw cycle value using a sequential colormap, with categories
increasing in 10-cycle intervals. This continuous color background highlights spatial gradients,
while contour lines were added at consistent intervals appropriate for each map to provide
additional clarity. A color bar accompanied each figure for easy interpretation of the result

[45].

These maps highlight geographic variations in freeze—thaw cycles and their potential impact
on concrete durability. They serve as a practical tool for visualizing freeze—thaw exposure,
enabling engineers and practitioners to design concrete mixtures suited to specific
environmental conditions. By clearly identifying regions at higher risk of damaging freeze—
thaw cycles, the maps support informed decision-making in selecting materials and mix designs

appropriate for different climates.
3.0 Results and Discussions
3.1 Long-Term Spatial Distribution of Freeze—Thaw Cycles

The maps in this work use 24 years of weather information to find the total and damaging
freeze—thaw cycles. Figures 3a and 3b show significant variability over the regions studied. In
some regions, damaging freeze—thaw cycles are frequent, while in nearby areas they are
minimal. These variations demonstrate how moisture levels can shift over short distances,
directly influencing damaging freeze—thaw cycles.
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Figure 3: 24-Year average of predicted freeze—thaw cycles at all weather stations: (a) total

freeze—thaw cycles, (b) damaging freeze—thaw cycles.

3.2 Difference Between the Total and Damaging Cycles
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Figure 4 shows the average difference between the total and damaging freeze—thaw cycles.
Areas with large differences, such as eastern Colorado, Oregon, and western Idaho, experience
frequent freeze—thaw cycling, but the moisture content of these areas was often below the
critical DOS, resulting in a damage reduction. Conversely, the rest of the regions studied show
little to no difference between the damaging and effective freeze-thaw cycles. One reason for
this small difference is that the model assumed the average DOS remained constant throughout
each month. However, the field data showed that there were periods when the DOS temporarily
dropped below 80% before increasing again. These fluctuations were not captured in the model,
leading to a conservative estimate of the number of damaging freeze—thaw cycles.
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Figure 4: Average difference between total and damaging freeze—thaw cycles.

3.3 Long-Term Variability in Freeze-Thaw Cycles
3.3.1 Standard Deviation of Freeze-Thaw Cycles

Figures 5a and 5b show the standard deviation maps of the total and damaging freeze—thaw
cycles. This is helpful to understand the variability in the different winter seasons. While total
cycles generally show low variability, ranging from 3 to 21 cycles, the standard deviation for
damaging cycles is much higher, reaching up to 45 cycles in regions such as Colorado, Oregon,
and Idaho. This demonstrates that these regions have larger variability in the moisture content

during the freezing cycles.
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3.3.2 Coefficient of Variation to Measure Variability
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The average coefficient of variation was used to quantify the variability of the total and the
damaging freeze thaw cycles. This was done to create a map of which areas show the most
variation in the freeze-thaw damage. The individual plots are included in Appendix C, but
Figure 6 is included in the body of the paper as it shows the coefficient of variation of the
damaging freeze-thaw cycles in different risk levels. These different groups are a coefficient
of variability of Low (<15%), Moderate (15-40%), and High (>40%). The locations in the high

category face substantial swings in the damage potential from year to year.

Some of these regions typically have a low number of damaging freeze thaw cycles but they
will have a few winters where these numbers increase significantly. It is possible that these
regions have variable weather, or that more than 24 years is needed to understand the weather
patterns for these regions. Overall, the results highlight regions where freeze—thaw damage

potential is more sensitive to year-to-year climate variability.
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Figure 6: 24-Year spatial categories of CV (%) of predicted damaging freeze—thaw cycles at

all weather stations.
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3.4 Comparison with Existing Models and Standards

Unlike traditional approaches that rely on broad climate zones or a single freeze—thaw
classification for an entire state, the maps developed in this study are based on a predictive
model that was developed and validated using real field data [25]. Existing standards classify
freeze—thaw exposure using broad regional categories, but such approaches often overlook the
site-specific conditions that drive actual damage. Understanding how these models differ is

important, as they directly influence durability design decisions for concrete in cold regions.
3.4.1 LTPP Climate Classification

The Long-Term Pavement Performance (LTPP) climate classification [46,47] divides the
United States into four general zones, Wet—Freeze, Wet—Non-freeze, Dry—Freeze, and Dry—
Non-freeze, based on annual precipitation and the freezing index (FI). The FI is the summation
of the average daily air temperature of each day that is below freezing. The data is then
classified as No-Freeze (FI < 50), Moderate-Freeze (FI =50-400), and Deep-Freeze (F1>400).
Wet regions are defined as those receiving more than 508 mm of annual precipitation, while

dry regions receive less.

Although this framework provides a generalized national classification, it simplifies the
complex interaction between moisture availability and freezing conditions that controls freeze—
thaw damage in concrete. Total annual precipitation does not determine whether the concrete
remains saturated when freezing occurs. As shown previously [19, 20, 25], the DOS is
influenced by several weather variables, and the relationship between concrete and DOS is

complex.

Similarly, the freezing index represents an index of the temperature below freezing, but it does
not capture the temperature fluctuations around 0 °C that define individual freeze—thaw cycles.
Moreover, previous studies have shown that freezing does not always occur exactly at 0°C;
concrete with higher DOS freezes at higher temperatures than concrete with lower DOS [19].
As a result, the LTPP classification does not specify how many damaging freeze—thaw cycles

occur annually, how severe they are, or how much they vary from year to year.

The maps developed in this study overcome these limitations by using a model trained and
validated with field measurements to predict both total and damaging freeze—thaw cycles for
specific locations. These maps directly incorporate the effects of temperature and DOS to

provide a more realistic assessment of freeze—thaw exposure. Figure 7 overlays the LTPP
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climate zones [47], with the 24-year average damaging freeze—thaw cycle map developed in
this study for easy comparison. While the general distribution of the Wet-Freeze, Wet—No-
Freeze, and Dry—No-Freeze regions align with the LTPP zones, notable differences appear
within the Dry—Freeze region. States such as North Dakota, Nebraska, Idaho, Colorado, and
Kansas exhibit measurable damaging cycles, indicating that these areas are not as dry as
suggested by the LTPP classification. This highlights the need for long-term, location-specific

analysis when evaluating freeze—thaw durability.
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Figure 7: Overlay of LTPP climate zones with the 24-year average damaging freeze—thaw

cycles.

3.4.2 ASHRAE 90.1 Climate Zone Map

The ASHRAE 90.1 Standard [48] divides the United States into eight primary climate zones,
with further subdivisions based on moisture regime (moist, dry, or marine) (Figure 8). These
zones are defined using long-term heating and cooling degree days together with humidity
indices and are primarily intended to guide building energy performance and envelope design.
In this system, dry (B) zones represent areas with low annual precipitation, humid (A) zones
correspond to regions with higher precipitation and significant seasonal humidity, and marine
(C) zones are coastal regions with moderate temperatures, high humidity, and mild summers

[48].
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Figure 9 shows the ASHRAE climate zone boundaries overlaid on the 24-year average
damaging freeze—thaw cycle map developed in this study. Although the ASHRAE map was
not designed for concrete durability, it shows a noticeable resemblance to the spatial patterns
of damaging freeze—thaw cycles. For example, regions classified as moist (A), including
Minnesota, North Dakota, Wisconsin, [owa, Nebraska, and the northern portions of Illinois and
Missouri, generally correspond to areas with a higher number of damaging freeze—thaw cycles
> 50 for this work. Similarly, the central and southern parts of Illinois and Missouri show
fewer damaging cycles (30-40 cycles), aligning with the transitional mixed classification in the
ASHRAE map. In addition, the dry (B) regions in the ASHRAE map, such as western Idaho,
eastern Colorado, and eastern Oregon, exhibit relatively low damaging freeze—thaw cycles in
our map (up to 20 cycles). The marine (C) zones along the Pacific Coast also display limited

freezing, consistent with our observations from the western Oregon site [48].

This comparison suggests that both systems reflect similar climatic trends, but the ASHRAE
framework does not account for concrete DOS or the actual number of damaging freeze—thaw
cycles, which are critical for assessing material durability. Overall, the ASHRAE classification
and the maps in this study share some broad climate-driven similarities (e.g., distinguishing
dry and wet regions), but only the field-calibrated, DOS-based approach presented here

provides an accurate representation of damaging freeze—thaw exposure relevant to concrete

durability.
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Figure 8: ASHRAE 90.1 climate zone map for the United States (adapted from ASHRAE
90.1-2016 [48]).
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4. Practical Implications

This research introduces a framework that develops maps of long-term, site-specific damaging
freeze—thaw cycles in concrete by using a model trained and validated with field measurements
to predict both total and damaging freeze—thaw cycles based on weather data [25]. These maps
directly incorporate the effects of local weather conditions and concrete DOS to provide a more
realistic assessment of freeze—thaw exposure and durability design. The results show that
designing solely on average or assumed regional exposure may overlook areas with high

variability or lead to overly conservative designs in regions where the actual risk is low.

Currently, design engineers are responsible for making durability-related decisions about
freeze-thaw design, and the maps developed in this work can help them by providing objective,
data-driven guidance. For example, ACI 318 [49] uses exposure classes (FO—F3) based on
whether concrete is expected to freeze while saturated, but it does not specify how to determine
when those conditions occur or how many cycles to design for. As a result, many practitioners
rely on conservative assumptions that may not reflect real exposure levels. The maps presented
in this study help fill this gap by quantifying damaging freeze—thaw cycles across regions,

offering engineers a performance-based and data-driven tool to inform durability design.

It should be noted that in high-variability regions, designing solely based on the average freeze—

thaw cycles may be insufficient. A more rational approach can be achieved by incorporating a
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safety margin based on the variability of the damaging freeze-thaw cycles. For example,
designing for the 95" percentile, assuming a normal distribution, is an approach used in
structural reliability-based design. This means the number of damaging freeze-thaw cycles to
design for would be to design for the average number of damaging freeze-thaw cycles plus the
standard deviation multiplied by 1.65 [51-53]. This approach would account for the years of
high and low exposure in the design of the concrete. However, such design guidance is only

possible when long-term datasets, such as the 24-year records used for this study.
5. Conclusions

This study developed long-term, data-driven maps of the average total and damaging freeze—
thaw cycles across 14 U.S. states using a field-validated model and 24 years of weather data.
The work also shows the spatial variation and the difference in the total and damaging freeze-

thaw cycles. The following key conclusions can be drawn:

e The presented maps provide engineers with a scalable and validated framework for
integrating long-term weather records with field data. This enables location-specific
durability design, particularly for specifying air-void systems and other measures to
improve concrete resistance to freeze—thaw damage.

e The average difference between the total and damaging freeze—thaw cycles was highest
in regions such as eastern Colorado, Oregon, and western Idaho, where the concrete
often experienced frequent freezing and thawing but remained below the critical DOS.
These areas had lower moisture contents during freezing events, reducing the number
of damaging cycles. Conversely, areas in the North, South, and Northeast showed
minimal differences, suggesting that their concrete was frequently near or above the
critical DOS threshold during freezing periods.

e The highest variation in damaging freeze—thaw cycles was observed in Colorado, Idaho,
and Oklahoma, where the standard deviation reached up to ~45 cycles and the COV
exceeded 60—70%. These large fluctuations indicate that year-to-year moisture
variability significantly impacts the freezing exposure. In contrast, states in the North
region, such as Iowa, Wisconsin, and Minnesota, exhibited more consistent patterns
with low variability, reflecting more stable winter conditions and moisture behavior
across seasons.

e The average number of damaging freeze-thaw cycles determined in this study provides
different recommendations than the LTPP framework currently used in pavement
design for freeze-thaw exposure. These predictions are different because the maps
developed in this work account for the DOS and directly quantify damaging-cycle
counts, while the LTPP map relies on average precipitation and the temperature of the
days below freezing.
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Overall, the maps presented in this study incorporate long-term, site-specific data and account
for both regional and intra-state variability, offering a more reliable and practical foundation

for freeze—thaw durability design.
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Appendices

Appendix A: Regional Classification Used for Predicting Freeze—Thaw Cycles

Fd

7z

] Regions ‘\

@ North

O Northeast
@ Northwest
O South

454

Colorado

40 -

Latitude

354

25+

T T T T - = T T
-120 -110 -100 -390 —80 =70
Longitude

Figure 2: Regional classification used for freeze—thaw cycle prediction, showing the four

regions applied to weather stations (adapted from [25]).

Appendix B: Freezing Temperature Thresholds for DOS Categories

Figure B1 shows how freezing temperature thresholds were assigned for each DOS category
using the DOS—freezing temperature relationship, where higher DOS levels require warmer
temperatures to freeze and cause damage. They were also verified in the previous study [25]]
to have the best match between predicted and measured freeze—thaw cycles. For instance, the
DOS < 80% category corresponded to a freezing range of approximately —3.9°C to —4.9°C.
Several values within this interval were tested to evaluate prediction accuracy, and a threshold
of —4.0°C provided the closest match between predicted and observed freeze—thaw cycles [25].
This same process was repeated for the remaining DOS categories to identify the most
representative freezing temperatures. The final set of thresholds, summarized in Table Bl,
produced cycle predictions that closely agreed with measured values across multiple locations.
These results confirmed that the selected thresholds gave the most reliable estimation of freeze—

thaw cycles, as further discussed in the results section [25].
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Figure B1: Freezing temperature ranges associated with each DOS category, derived from
the DOS vs. freezing temperature relationship (adapted from [9]): a) <80%, b) 80—90%, and
¢) >90%.

Table B1

Selected Freezing Temperatures Assigned to Each DOS Category.

DOS Category Freezing Temperature (°C)
<80% -4.0°C
80-90% -3.5°C
>90% -1.5°C

A freeze event was defined as any period during which the air temperature dropped to or below
the assigned freezing threshold, while a thaw event occurred when the temperature rose to or
above 0 °C. A complete freeze—thaw cycle was therefore identified as the progression from a

freezing event to a subsequent thawing event.
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Appendix C: Variability Analysis and Coefficient of Variation Maps for Freeze—Thaw Cycles
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Figure C1: 24-Year coefficient of variation of predicted freeze—thaw cycles at all weather

stations: (a) total freeze—thaw cycles, (b) damaging freeze—thaw cycles.
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Abstract

This study investigates the effects of concrete pumping on air content, SAM Number, spacing
factor, and freeze-thaw performance. This work focuses on how the air dissolves under
pressure and then returns to the concrete at room (30°C/86°F), cold (8°C/46°F), and hot
(40°C/104°F) temperatures. The research reveals that concrete pumping leads to a significant
reduction in air content, with cold mixtures experiencing higher air loss compared to room
temperature and hot mixtures. Despite these changes, freeze-thaw performance remains
satisfactory for mixtures with initial air content above 4% and SAM Number below 0.32. The
study also observes that the dissolved air bubbles return to the concrete with a similar bubble
distribution as was in the original mixture.

Keywords: Air entrainment; air void system; pumping concrete; Super Air Meter; SAM
Number; freeze-thaw resistance

1. INTRODUCTION

Concrete pumping is a widely used placement method because of its efficiency, versatility, and
reduction in labor [ 1, 2]. Despite the wide use of pumping, concerns have been raised regarding
the impact of pumping on the air void system of fresh concrete [1, 3-6]. This is important in
cold regions where air voids play an important role in preventing freeze-thaw damage and
ensuring the durability of concrete structures [3, 7-10]. Consequently, to address this concern,
specifiers in freeze-thaw environments often mandate measuring the air volume after pumping
to ensure that the concrete at placement meets the required air volume specification. Because
pumping changes the air volume in an unpredictable manner, this makes it challenging to meet
the specified range. This causes issues in practice.

While measuring the air volume in fresh concrete is common in practice, more recent work
shows that freeze-thaw durability is ensured by providing a high-quality air void system.
Recent research shows that this is done if then the air content in the fresh concrete is at least
4.0% [1, 3, 5, 7] and the Sequential Air Method (SAM) Number is lower than 0.32 [3, 5, 7,
11]. These recommendations are currently used in the AASHTO R101 document for field
concrete [12].

Previous research has studied pumping air-entrained concrete, and it has been found that the
pressure during pumping caused the dissolution of smaller air bubbles [1, 5, 13, 14]. Several
studies have shown that concrete pumping can generate pressures ranging from 2000 to 3500
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kPa[11, 13]. Lab and field measurements show that these pressures regularly decrease the air
content between 0.5% to 3%, occasionally observing larger losses, and at times even increases
in the air volume [1, 4, 11, 13, 15]. This research has gone on to show that the dissolved air
bubbles return to the concrete with a similar bubble distribution as measured by the spacing
factor prior to pumping [3, 5, 6, 13]. This observation is also supported by satisfactory freeze-
thaw performance, and observations of improved bubble spacing over time as measured by the
SAM Number.

Others have suggested that the air is knocked out of the concrete by impacting a surface such
as a 90-degree elbow during pumping [16]. However, previous work has shown by testing
concrete in several different places along the pumping line that the air is lost immediately after
pumping and that there is no change in air after a 90-degree elbow [5].

While previous studies have focused on analyzing the air void systems and rheological
properties of concrete during pumping [4-6, 13, 15, 20, 211, these studies examined the concrete
at ambient temperature or uncontrolled temperatures in the field. This work creates air-
entrained concrete mixtures at different temperatures and measures how pumping changes the
air volume and the ability of the air to return to the fresh concrete before it has hardened.

2. EXPERIMENTAL METHODS

2.1. Constituent Materials

All concrete mixtures used a type I cement that adhered to ASTM C150 standards [22]. Table
1 presents the oxide analysis and Bogue calculations. The aggregates consisted of locally
available crushed limestone and natural sand typically utilized in commercial concrete
applications. The crushed limestone featured a maximum nominal aggregate size of 19 mm
(3/4 inch), and the natural sand is characterized by a fineness modulus of 2.68. Each mixture
incorporated a blend of both coarse and intermediate aggregates. Both the crushed limestone
and sand met the specifications outlined in ASTM C33 [23] and are known for good
performance in freeze-thaw conditions. The absorption capacity for crushed limestone and sand
are 0.66% and 0.55%, respectively. All admixtures used in this study adhered to the
requirements outlined in ASTM C260 and ASTM C494 [24, 25]. Various doses of air-
entraining admixture were used to create concrete with air contents from 4% to 10%. It's
important to note that one cooled mixture and one heated mixture intentionally did not contain
AEA. This was done to examine the performance of concrete with a poor air void distribution.
A water reducer was used at a constant dosage of 467 mL/100 kg (7 oz./cwt). This was done
to get at least a 15 cm (6 in.) slump in the concrete mixture. Additionally, citric acid was added
at 0.25% of the cementitious material's weight. Citric acid was used to delay the set time of the
concrete to ensure that the concrete did not stiffen over120 minutes, which was needed for
pumping and sampling the fresh concrete. This intentional delay in setting time was helpful to
isolate any change in air void system from stiffening from concrete hydration. Previous
research with these same materials and equipment showed no impact of citric acid on the
performance of pumped air-entrained concrete [5].

Table 1
Type I Cement Oxide Analysis.

Oxide (%) | SiO2 | ALO3; | Fe203 | CaO | MgO | SO3; | Na20 | KO | TiO2 | P2Os | C3S | CaS | CiA | C4AF

Cement 21.1 4.7 2.6 62.1 24 3.2 0.2 0.3 - - 56.7 | 17.8 | 8.2 7.8

Fly Ash 38.7 18.8 5.8 23.1 5.6 1.2 1.8 0.6 1.5 0.4 - - - -
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2.2. Mix Proportions

2.2.1. Concrete Mixtures

The mixtures used 362.5 kg/m® (611 Ibs./yd®) of cementitious material, with a 20% mass
replacement of fly ash and water to the cementitious material ratio (w/cm) of 0.45. The paste
content of each mixture was 28.9%, excluding air content from the calculation. Slight
adjustments were made to the aggregate proportions in each mixture, aiming to maintain a
consistent aggregate gradation between mixtures. This approach was guided by the Tarantula
Curve, an aggregate gradation strategy known to enhance concrete pumpability [26]. Table 2
presents the mixture design employed in this study.

Table 2
Concrete Mixture Summary.
Cement Fly Ash Water Coarse Intermediate Coarse Fine Paste
(kg/m) (kg/m>) (kg/m) (SSD kg/m?) (SSD kg/m?) (SSD kg/m?) Content
290 72 163 660 328 886 28.9%

2.2.2. Grout Mixtures

Before each laboratory pumping session, the pump and pipe network underwent a priming
process using grout. Priming involved applying a thin lubricating layer of grout to the inner
walls of the pump and pipe network. The grout mixture used a w/cm of 0.40. The mixture is
outlined in Table 3.

Table 3
Grout Mixture Summary.
Cement (kg/m?) Water (kg/m?) Fine (SSD kg/m?)
597 238.5 1491.5

2.3. Mixing Procedure

2.3.1. Grout Mixtures

Fine aggregates were loaded into the mixer, accompanied by approximately two-thirds of the
mixing water. A mixing duration of at least three minutes ensured thorough blending.
Subsequently, the binder and the remaining water were mixed for three minutes. Following a
two-minute rest period, during which the sides of the mixing drum were scraped, mixing was
resumed for an additional three minutes.

2.3.2. Concrete Mixtures

Aggregates were brought from outside stockpiles and placed in a temperature-controlled
environment at (25°C/77°F) for at least 24 hours before mixing. Aggregates were added into a
mixing drum and spun for a minimum duration of three minutes. To account for moisture
content, a representative sample was utilized for moisture content testing and subsequent
moisture correction. To simulate different temperatures, some concrete mixtures were either
heated or cooled prior to mixing. For these mixtures, the aggregate and water were either
heated to (63°C/ 145°F) or cooled to (1.7°C/35°F) prior to mixing. The average concrete
temperature was (40°C/104°F) for the heated mixtures, (§8°C/46°F) for cooled mixtures, and
(30°C/86°F) for the mixtures near room temperature. This paper will refer to (40°C/104°F) as
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the “hot mixtures” and (8°C/46°F) as the “cold mixtures”. These temperatures were chosen
because they represent the extremes of temperatures that may be used in the field.

During the mixing phase, all aggregates and approximately two-thirds of the required mixing
water were loaded into the mixer. This blend was mixed for three minutes to ensure uniform
distribution of aggregates and saturation of their surfaces. Subsequently, the cement, fly ash,
and remaining water were added and mixed for three minutes. After a two-minute resting
period, the sides of the mixing drum were scraped, admixtures were introduced, and the mixing
process continued for an additional three minutes.

Care was taken to ensure that the heated and cooled aggregate did not lose water prior to
mixing. All storage containers for the aggregate had tight-fitting O-rings, and the weight of
the container was compared before and after either heating or cooling to ensure that there was
no moisture loss. For the cold mixtures, ice was added to the mixer prior to adding the
aggregates to cool the mixer. The ice was 0.25% by weight of the water in the mixture. The
equivalent amount of water was withheld from the mixture to ensure an accurate w/cm.

2.4. Equipment and Pipe Configuration

2.4.1. Concrete Pump

The Putzmeister TK 50 concrete pump shown in Fig. 1 was used for testing. This pump
operates through two alternating pistons, ensuring an almost continuous concrete flow. As one
piston retracts, it draws concrete from the hopper, while the second piston extends to push
concrete out. An S-valve alternating delivery system facilitates the shift between delivery
cylinders, ensuring a consistent concrete supply. To maintain the concrete's homogeneity, a
remixer continuously agitates the concrete within the hopper. The pump settings were 1500
RPM, with the piston volume set at 0.016 m* (0.57 ft*). Both of these parameters were used in
previous research and so they were repeated in this work [26].

Fig. 1. The Putzmeister TK 50 Concrete Pump.
2.4.2. Pipe Configurations

The laboratory testing employed a standard pipe network configuration, as shown in Fig. 2.
This network used a 0.102 m (4.0 in.) inner diameter (I.D.) single-wall steel pipe. The
connection of pipe sections was secured through rubber gaskets and couplings. The pipe
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network encompassed a 1 m (3.3 ft.) long single-wall steel pipe reducer, which reduced the
pump output from 0.127 m (5.0 in.) I.D. to 0.102 m (4.0 in.). Following the reducer, a 16 m
(52.5 ft.) length of 0.102 m (4.0 in.) L.D. steel pipe was incorporated, featuring three 0.457 m
(1.5 ft.) radius 90° bends. Concluding the steel pipe network, a flexible rubber hose directed
the concrete back to the pump's hopper, creating a continuous flow. The cumulative volume of
the pipe network was approximately 0.17 m® (6.0 ft).

f im ) 3m

Im Angled up at 45°

lm

i 902, 0.5m Radms
( 3m Im Im /
I 1 I Pum

Reducer

Fig. 2. Pipe Network Configuration.

2.5. Pumping Procedure

The grout was added to the pump, and a few piston strokes were used to add the grout to the
pipe. Next, concrete was added to ensure that the hopper remained constantly filled to prevent
introducing air into the line. Concrete was added to the pump's hopper, and additional pump
strokes were used to push concrete through the pipes. This process persisted until all the mortar
was expelled from the flexible rubber hose. The rubber hose was secured to the pump's hopper
to redirect the concrete back into the pump. This established a seamless and uninterrupted
flow, allowing us to complete a single cycle of concrete pumping.

Once a continuous flow was completed, the rubber hose was detached from the pump's hopper
and was used to fill five wheelbarrows with concrete. Wet burlap sheets were carefully draped
over the concrete in the wheelbarrows to minimize temperature and moisture loss. One
wheelbarrow was tested immediately after pumping, and the other four were tested
approximately every 25 minutes. This allowed the change in the fresh properties of the
concrete to be measured before and after pumping and regularly over time until about 120
minutes after the concrete was pumped. Fig. 3 illustrates the pumping procedure employed in
this study. The tests and timing used are outlined in Table 4.

The following tests were used to evaluate the concrete: Slump (ASTM C143), Unit Weight
(ASTM C138), SAM (AASHTO T 395), Freeze-Thaw Resistance (ASTM C666), and
Hardened Air Void Analysis (ASTM C457). The SAM was used to measure the air volume
and the SAM Number. The slump, unit weight, air volume, and SAM Number were measured
at each time- period. Freeze-Thaw Resistance and Hardened Air Void Analysis were run
before pumping, immediately after pumping, and 120 minutes after pumping. The number and
timing of the tests are outlined in Table 4.
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cycle. wheelbarrows with concrete. temperature and moisture tested every 30 minutes
loss. thereafter.

Fig. 3. Concrete Pumping and Wheelbarrow Filling Procedure.
Table 4

Number and Timing of Conducted Tests.

Time O.f the Tests Conducted Tests Number of Samples
(Minutes)
1) Unit Weight (ASTM C138). 3
2) Air % and Sam Number, Super Air Meter (AASHTO T 3
0 395). 5
(Before Pumping) | 3) Slump (ASTM C143). 5
4) Hardened Air Void Analysis (ASTM C457). 3
5) Freeze-Thaw Resistance (ASTM C666).
1) Unit Weight (ASTM C138). 3
10 2) Air % and Sam Number, Super Air Meter (AASHTO T 3
(Immediately after 393). 2
Pumping) 3) Slump (ASTM C.143). . 5
4) Hardened Air Void Analysis (ASTM C457). 3
5) Freeze-Thaw Resistance (ASTM C666).
1) Unit Weight (ASTM C138). 3
30 2) Air % and Sam Number, Super Air Meter (AASHTO T 3
395).
3) Slump (ASTM C143). 2
1) Unit Weight (ASTM C138). 3
60 2) Air % and Sam Number, Super Air Meter (AASHTO T 3
395).
3) Slump (ASTM C143). 2
1) Unit Weight (ASTM C138). 3
80 2) Air % and Sam Number, Super Air Meter (AASHTO T 3
395).
3) Slump (ASTM C143). 2
1) Unit Weight (ASTM C138). 3
90 2) Air % and Sam Number, Super Air Meter (AASHTO T 3
395).
3) Slump (ASTM C143). 2
1) Unit Weight (ASTM C138). 3
2) Air % and Sam Number, Super Air Meter (AASHTO T 3
120 393). 2
3) Slump (ASTM C143). )
4) Hardened Air Void Analysis (ASTM C457). 3
5) Freeze-Thaw Resistance (ASTM C666).
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3. RESULTS and discussion

3.1. Change in Air Volume Before and After Pumping

Table 5 provides a comprehensive overview of the fresh and hardened properties of all concrete
mixtures, before and after 120 minutes of pumping. Figs. 4a, 5a, and 6a summarize the changes
in air volume before and after the pumping for the concretes of different temperatures and Figs.
4b, 5b, and 6b show the same data that has been normalized by the original air content. The
normalized air content represents the percentage obtained by multiplying the ratio of air content
measured at a specific time after pumping to the air content measured prior to pumping by 100.
The data point at zero minutes represents measurements taken before pumping, while the data
at ten minutes corresponds to the first measurement taken after pumping. These times were
used to make it easier to visualize the data.

Figs. 4, 5, and 6 show that there is a reduction in air content after pumping with the current
materials and equipment, regardless of the temperature of the concrete. The reduction in air
content is attributed in other research work to the dissolution of smaller air bubbles from the
increased pressures that occur during pumping [1,13,14]. It should be noted that other papers
have seen that at least a portion of these air bubbles return to the concrete with a similar spacing
as before they were pumped [3, 5, 6, 13]. From these Figures, it can be deduced that after
pumping, the air volume decreased by at least 20% of the initial value that was present before
pumping. In practical terms, if a concrete mixture initially possessed 6% air content before
pumping, it would have an air volume of approximately 5% when measured after passing
through the pump, as investigated in other research work [6]. This reduction in air content
highlights the impact of the pumping process on air voids within the concrete mixture [5].
Based on the presented figures, it can be concluded that the percentage of air loss remains
relatively consistent between room temperature and heated mixtures. Notably, the cold
mixtures deviate by exhibiting a significantly higher air loss. This implies that colder concretes
may see a larger air loss during pumping.

For example, Table 6 shows that the average air content was similar in all three mixtures at
7.4%, 6.8%, and 5.7%. The loss in air content for the room and hot temperature mixtures were
similar at 1.9% and 1.7%, respectively, but the colder mixture lost more air at 2.3%. When
comparing the percentage loss of air content between the mixtures, the room and hot
temperature mixture lost between 26% and 25% of the original air volume, and the cold mixture
lost 40%. This suggests that a cold mixture is expected to lose roughly twice as much air as
room temperature or hot mixtures. The standard deviations are included in the table to show
the relative difference. To investigate this further, a Student t-test was used, and this was found
to be a statistically significant difference in the results, as shown in Table 7. The t-test results
indicate that the observed differences in air loss percentage between Room Temperature and
Hot mixtures are not statistically significant (t-value < t-critical), suggesting comparable
behavior. In contrast, the Cold mixture exhibits a significantly higher air loss percentage
compared to both Room Temperature and Hot mixtures (t-value > t-critical for both
comparisons), emphasizing the considerable impact of lower temperatures on air loss during

pumping.
Fig. 7 shows the relationship between measuring the air content before pumping and
measurement in the fresh concrete 120 minutes after pumping. This plot features a line of
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equality, indicating that a mixture maintaining the same air content before and after pumping
would fall on this line. Moreover, the plot highlights significant changes with 0.7% offset
lines, exceeding the threshold of two standard deviations. This implies that the sample falls
outside the 95% confidence interval can be considered as statistically different. However, for
all mixtures tested at different temperatures, a statistically significant reduction in air content
was consistently observed after the pumping process.

From Figs. 4, 5, and 6, we can observe that the air volume does not change significantly up to
120 minutes after pumping. However, it should be noted that the air volume measurement may
not be the most discerning indicator to the change in the air void system over time. Also,
changes may occur after the 120-minute period.

Table 5

Fresh and Hardened Properties of All Concrete Mixtures at Various Temperatures Before and
After 120 Minutes of Pumping.

Fresh Properties HAYV Analysis 666 Beams
Temperature (°C) -
Air% SAM # Air% Sp“‘(‘l‘fmF)a“‘" Durability Factor (%)
After After After After After After
%

Before 120 min** | BT | 120 min | BT | 120 min | BT | 120 min | BT | 120 min | BeTOre 120 min
30 25 9.1 6.7 0.15 0.10 10.9 8.8 107 160 NA NA
30 25 7.9 6.0 0.11 0.13 8.5 54 130 226 NA NA
30 25 6.8 4.7 0.17 0.10 7.4 5.8 157 226 NA NA
30 25 5.9 4.0 0.16 0.32 6.8 4.1 211 188 100 93

[2%** 22 34 2.0 0.63 0.35 4.4 3.6 333 353 32 16
3 15 5.8 34 0.15 0.23 6.5 4.6 178 312 100 96
9 17 5.2 3.0 0.24 0.45 6.0 5.7 231 264 96 100
8 19 6.3 33 0.30 0.48 8.1 49 178 307 100 98
8 19 5.9 34 0.20 0.55 8.7 7.2 160 173 83 96
10 20 5.4 3.8 0.33 0.38 7.4 59 239 211 104 96

44%%* 32 3.8 3.0 0.76 0.49 53 39 257 335 75 19
39 32 7.7 4.6 0.23 0.17 8.6 6.8 135 229 100 100
38 30 7.8 4.5 0.25 0.19 7.5 4.0 173 245 100 96
39 31 6.1 44 0.21 0.29 7.9 5.2 175 252 98 98
38 30 5.7 43 0.32 0.26 7.6 12.0 165 99 98 100

* Before: Measurements Taken Before Pumping the Concrete.
** After: Measurements Taken 120 Minutes After Pumping Concrete.
*#* Non- Air Entrained Mixtures.

Table 6
Average and Standard Deviation of Fresh Concrete Air Content%.
Mixtures Average Air% of Fresh Average Air Percentage Loss of Air Standard Deviation of Fresh
Concrete (%) loss (%) Content After Pumping (%) Concrete Air Content %
Before Immediately (Avg Air Loss/Air Before Before Immediately after
Pumping | after Pumping Pumping x 100) Pumping Pumping
Room 6.9 5.5 1.4 20 0.98 0.78
Temperature
Hot 6.8 5.1 1.7 25 1.08 0.57
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Cold | 5.7 | 3.4 2.3 0.45 0.36
Table 7
Statistical Analysis of Air Loss Percentage and Standard Deviation Differences in Concrete
Mixtures
Average % Change
o
Mixtures Average % chuange of Standard t-critical Mixtures t-value Comparison Conclusion
of Air loss (%) .. .
Deviation Difference
Room . .
26 4.1 +2.365 | Room-Hot 0.243 t-Value < t-critical | Not Significant
Temperature
Hot 25 8.1 +2.306 | Room-Cold 4.096 t-Value > t-critical Significant
Cold 40 6.7 +2.262 Hot-Cold 3.331 t-Value > t-critical Significant
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a) Air Content vs. Time.
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Fig. 4. Air Content vs. Time Before and After Pumping of (30°C/86°F) Concrete
Mixtures.
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a) Air Content vs. Time. b) Normalized Air Content vs. Time.

Fig. 6. Air Content vs. Time Before and After Pumping of (8§8°C/46°F) Concrete

Mixtures.
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Fig. 7. Plot of Air Content Before Pumping vs. Air Content After Pumping.

3.2. Change in SAM Number Before and After Pumping

Figs. 8a, 9a, and 10a show the change in the SAM Number over time after pumping. The data
shows that typically, the SAM Number increases immediately after pumping, followed by a
subsequent decrease in the SAM Number with time.

Out of the 13 air-entrained mixtures at three different temperatures, 11 exhibited an increase in
the SAM Number immediately after pumping by at least 20% over the SAM Number before
pumping. The other two had a SAM Number that increased but not to the same degree. All
the air entrained mixtures that showed an increase in the SAM Number also showed a decrease
in the SAM Number over time. This decrease in SAM Number suggests that small air voids
are returning to the concrete. For the hot and room temperature samples, every air entrained
sample that showed an increase in the SAM Number showed a value within 20% of the original
value. Recall that the cold samples showed an air volume loss of almost double from pumping
over the samples at room temperature and hot samples. The SAM Number for the cold samples
increased by almost twice as much as the hot and room temperature samples.

It is interesting to note that 120 minutes after pumping, the SAM Numbers of the hot and room
temperature mixtures were close to the original SAM Number. This matches previous data
that shows that the small voids lost during pumping are returning to the concrete before the
concrete has hardened with a similar air void spacing [3, 5, 6, 13]. However, during the 120
minutes of testing the SAM Numbers of the cold mixtures did not return to the original values.
The measurements for the cold mixtures show that the SAM Numbers continue to decrease
over time indicating that at the end of the measurement period the small air voids continued to
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return to the concrete. This will be discussed in greater detail later with the hardened air void
analysis and the freeze thaw-durability testing.

The increase in the SAM Number after pumping and its subsequent decrease over time can be
attributed to the temporary dissolution of smaller bubbles during pumping due to increased
pressures [5, 6, 11, 13]. After decreasing the pressures from pumping, it appears that the
dissolved air voids are re-forming in liquid-filled space. This suggests that the air void system
measured immediately after pumping does not accurately represent the characteristics present
in the hardened concrete.

An important observation is that the SAM Number seems to be improving without a significant
change in the air volume. This may occur because the SAM Number is sensitive to the amount
of small bubbles in the concrete while these small bubbles do not have a significant change to
the air volume [5, 6].

This difference in the rate of bubbles returning in the cold mixtures could be attributed to a
slower rate of gas formation in the low-temperature concrete mixtures compared to room-
temperature or high-temperature concrete mixtures [28-32]. However, this lower temperature
will increase the set time, which will provide more time for the bubbles to return to the concrete.
This could extend past the 120-minute measuring period for fresh concrete used in this study.
This will be investigated more with the freeze-thaw and hardened air void analysis.
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a) SAM Number vs. Time. b) Normalized SAM Number.

Fig. 8. SAM Number vs. Time Before and After Pumping of (30°C/86°F) Concrete
Mixtures.
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a) SAM Number vs. Time. b) Normalized SAM Number.

Fig. 10. SAM Number vs. Time Before and After Pumping of (8°C/46°F) Concrete
Mixtures.

3.3. Freeze Thaw Performance

Fig. 11 illustrates the correlation between the volume of fresh air content and the durability
factor. Dashed lines are added at 4% air content and a durability factor of 70%, as these are
typical values that have been used with these materials to recommend freeze-thaw durability
based on previous work [3, 5, 7]. A data set has been added with light gray dashes. This data
uses the same materials from this study to show the performance of air-entrained concrete that
was never pumped [3]. These data points highlight that as the air content decreases then so
does the durability factor. The filled circles represent the air content measured before pumping,
and the opened circles represent the air content measured after pumping. Fig. 11 shows that
several measurements measured immediately after pumping had air contents of 4% or lower
that showed satisfactory freeze-thaw performance. While this is useful, there are several
measurements made of concrete that was not pumped that also showed satisfactory freeze-thaw
performance at this air volume.

® (30rC/B6°C) Air Entrained Mixtures Before Pumping O (30rC/B6°C) Air Entrained Mixtures After Pumping

® (B=C/46°C) Air Entrained Mixtures Before Pumping (8=C/46°C) Air Entrained Mixtures After Pumping

® (40rC/104°C) Air Entrained Mixtures Before Pumping O (40rC/ 104°C) Air Entrained Mixtures After Pumping

A (B2C/46°C) Mon-Air Entrained Mixtures Before Pumping A (82C/46°C) Mon-Air Entrained Mixtures After Pumping
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Fig. 11. Plot of Durability Factor vs. Fresh Air Content for Concrete Mixtures at Different
Temperatures.

Fig. 12 shows the relationship between the SAM Number and the durability factor from ASTM
C 666 testing [33]. The dashed lines show a 0.32 SAM Number and a durability factor of 70%.
These are typical values used to recommend freeze-thaw durability based on previous research
[3, 5, 7]. A data set has been added with the same materials to show the performance of air
entrained concrete that was never pumped [3]. These data points are shown as black dashes.
The filled circles represent the SAM Number measured before pumping, and the opened circles
represent the SAM Number measured after pumping.
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The primary observation in Fig. 12 is that air entrained concrete mixtures with a SAM Number
below 0.32 before pumping the concrete showed freeze-thaw resistance in the hardened
concrete even if the SAM Number after pumping increased above 0.32. This shows that
measurements of the concrete immediately after pumping are not representative of the freeze-
thaw performance using recommendations for non-pumped concrete.
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Fig. 12. Plot of Durability Factor vs. Fresh SAM Number for the Concrete Mixtures at
Different Temperatures.

3.4. Hardened Air Void Analysis (HAV)

Fig. 13 illustrates the relationship between the spacing factor before and after 120 minutes of
pumping for various concrete temperature mixtures. The graph includes a line of equality and
lines indicating twice the reported coefficient of variation of the ASTM C 457 test method [34],
illustrating the expected variation of the test method with a 95% confidence interval. Notably,
all measurements fall within the anticipated variation of the test method, indicating that
pumping did not significantly alter the spacing factor of the hardened concrete samples
according to this test.

Despite observing a loss of fresh air volume and an increase in the fresh SAM Number in 11
out of 13 of the air-entrained mixtures after pumping, the measurements of the hardened air
voids do not indicate a substantial change in the spacing factor after pumping. These findings
align with previous studies on air entrained pumped concrete [5, 6].
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Pumping.

3.5. Practical Significance

This work shows that when the concrete had an air content greater than 4% and a SAM Number
less than 0.32 prior to pumping, then satisfactory freeze-thaw performance was found despite
air contents or SAM Numbers outside of these limits being obtained after pumping. This
recommendation is held for concretes with measured temperatures from (8°C/46°F) to
(40°C/104°F). This suggests that concrete should not be rejected for measurements of air
content or SAM Number measured after pumping as the air void system has been temporarily
modified by pumping, and there has not been enough time for the air void system to recover.
One solution is to only sample the concrete prior to pumping to use the conventional limits for
the air content and SAM Number before pumping and to not test concrete after a concrete
pump. Another solution is to wait for the air voids to return to the concrete; however, based
on this work it may be 50 minutes for the air voids to return at room temperature. Also, this
return time will depend on the temperature of the concrete as it took more than 120 minutes
from the air voids to return to the (8°C/46°F) concrete mixtures.

4. conclusions

This work examines how different concrete temperatures impact the loss of air during pumping
and the rate and efficiency of that air to return to the concrete. Pumping frequently caused
changes in the air void system of the fresh concrete in this work. However, these changes did
not affect the hardened air void parameters and freeze-thaw performance of concrete mixtures
at temperatures between (8°C/46°F) and (40°C/104°F). Here are the key conclusions drawn:

e All mixtures tested at different temperatures showed a significant reduction in air
content by at least 20% of the initial value that was present before pumping.
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Despite the hot mixtures (40°C/104°F) and room temperature (30°C/86°F) mixtures
showing comparable air losses at 1.4% and 1.7%, respectively, the colder mixtures
(8°C/46°F) experience a more significant air loss of 2.3%. When this is normalized, the
hot and room temperature mixtures lose between 26% and 25% of the original air
volume, while the cold mixture loses 40%. This finding implies that a cold mixture is
anticipated to lose roughly twice as much air as its room temperature or hot counterpart.

Out of the 13 air-entrained mixtures at three different temperatures, 11 exhibited an
increase in the SAM Number immediately after pumping by at least 20% over the
SAM Number before pumping. The other two had a SAM Number that increased but
not to the same degree.

All the air-entrained mixtures that showed an increase in the SAM Number also
showed a decrease in the SAM Number over time to reach a point that is closer or
lower than the initial number before pumping. This suggests that the fine air voids are
returning to the concrete and that they are forming an air void system that is well
dispersed with a similar spacing factor to the concrete that was added to the pump.

Spacing factors measured before and after pumping across various temperatures
exhibited changes within the variation of the test method, indicating that pumping did
not significantly alter the spacing factor of hardened concrete samples.

Mixtures with an air volume > 4% and SAM Number < 0.32 before pumping showed
satisfactory performance in ASTM C666 testing, regardless of changes in fresh air
content, SAM Number due to pumping, or concrete temperature.

Cold mixtures (8°C/46°F) experienced an average air content change from 5.73% to
3.40%, resulting in a 41% air loss. This was about double the air loss air loss
experienced for the room temperature (30°C/86°F) and hot concrete (40°C/104°F)
mixtures. Additionally, for the cold concrete samples, the SAM Number did not return
to its original value even 120 minutes after pumping. This phenomenon may be
attributed to the slower rate of diffusion in low-temperature concrete mixtures [28-32].
The extended set time in lower temperatures would allow more time for the bubbles to
return to the concrete as was shown by the spacing factor and satisfactory freeze thaw
performance.

This work replicates previous measurements and reinforces findings that pumping causes a

dissolution of smaller air bubbles from the increased pressures and these bubbles seem to return

to the concrete before hardening. In summary, these findings indicate that the air volume and

SAM Number measured immediately after pumping are not representative of the values in the

hardened concrete. Therefore, these parameters should not be used to reject concrete for poor

freeze-thaw durability after pumping. Instead, it is recommended to measure the air volume

and SAM Number of the concrete before pumping for more accurate assessments.
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