
1 
 

Part 2 – Detailed Report 

 

Pool Fund Study TPF-5-297 

Led by the Oklahoma DOT 

 

Bahaa N. Abdelrahman, M. Tyler Ley, Lichun Chen, Hope Becker, Amir 

Behravan, Guoliang Fan, Nicholas F. Materer, Jair Simon, Andrew Young 

Oklahoma State University  

Stillwater, Oklahoma 

 

Rita M. Ghantous, K. Zetterberg, O. Burkan Isgor, W. Jason Weiss 

Oregon State University 

Corvallis, Oregon 

 
 

 

 

 

 

 

 

 

 

 

 

December 2025 



2 
 

Table of Contents 
 

The Influence of Air Voids and Fluid Absorption on Salt-Induced Calcium Oxychloride 
Damage 

 
Abstract………………………………………….…………………….….…………………..7 
Introduction….…………………………………………………...…………………………..8 
Experimental Procedure ….………………………………………………………………..11 

Materials ……….…………………............................................................................ 11 
Mixture preparation, sample curing and sample conditioning …………………….....11 
Salt damage testing procedure ……………………….……………..…..…………….14 
CaOXY content determination ……………………………………………………….16 
Ca(OH)2 content determination ………………………………………...……...…….16 

Theoretical calculations …………………………………………………...………….…….17 
Thermodynamic modeling …………………………………….……………..…...….17 
Volume of void filling due to FS and SE ………………………………..…….….….18 
Volume of void filling by the solution absorbed after CaOXY formation …..….…….19 
Number of temperature cycles needed to fill the voids of the concrete …………….…21 

Results and Discussion ………………………………………….……………..………...….23 
 Ca(OH)2 and CaOXY content ………………………..……….………..………....….23 

Impact of salt solution suction on the salt damage development……………………...25 
Impact of the air void content on the salt damage development….……………..…….28 
Impact of paste content and air void on CaOXY threshold value…………….……….29  

Conclusion…………………..………………………………….……………..………….….33 
Acknowledgments……………………………………..……….……………..………....…..34 
References……………………………….……………..……….……………..………..…...34 
 

Quantifying Calcium Oxychloride Formation Using Micro-Computed Tomography 
 
Abstract……………………..….………………….…….………….…………..………..….46 
1.0 Introduction……………………..….………………….…….……………..………..….46 
2.0 Experimental Methods.................................................................................................... 48 

2.1 Concrete Materials and Mixture Proportions……………...…………………..….48  
2.1.2 Concrete Mixing………………………..……….………..………....….49  

2.2 Concrete and Mortar Sampling and Testing……………………………..……….49 
2.2.1 Sampling of Concrete and Mortar……..……..….……………..…....….49 
2.2.2 Sequential Air Method (SAM)………………….….…………..…....….50 
2.2.3 Hardened Air Void Analysis Sample Preparation…..…………….…….50 

2.3 Mortar Testing………………………..…………..….……………..………....….51 
2.3.1 Measurement of Ca(OH)2…………..………….….……….………..….51 
2.3.2 Coring and Saturation of Samples………...…….….……….…..……....51 
2.3.3 Mortar Sample Mass and Length Measurements…………..………..….52 
2.3.4 Temperature Cycling of Samples………………….….……..………….52 
2.4 Micro Computed Tomography (Micro-CT)………………….....……..….53 
2.5 Image Processing and Analysis ………………….….…………….…..….55 



3 
 

2.5.1 Alignment of Micro-CT Datasets ………..……………………….....….55 
2.5.2 Segmentation …………………………………………….……..…..….55 

3.0 Results…………………………………………………...……………….....……...…….56 
3.1 Ca(OH)2 Content…………………………………………………..…………..….56 
3.2 Mortar Sample Mass and Length Changes………………………………..………56 
3.3 Micro-CT Imaging Analysis…………………………………..……..………..….57 

3.3.1 Micro-CT Imaging Compared to Segmentation of Voids…………..….57 
3.3.2 Quantifying Damage within Samples………………………..……...….59 
3.3.3 Micro-CT Imaging of Individual Voids …………………………….….62 

4.0 Mechanisms of CaOXY Damage …………………………………………..…...…..….66 
5.0 Practical Significance…………………………………………….……….……..…..….67 
6.0 Conclusions………………………………………………………………..……….…….68 
7.0 Acknowledgements……………………………………………….……….…………….69 
8.0 References………………………………………………………………....……….…….69 
 

Field-Based Measurement of Freeze–Thaw Damage in Cementitious Materials 
 
Abstract……………………………………………………………………….……….…….80 
1.0 Introduction……………………………………………………………….…..…..…….81 
2.0 Experimental Materials and Methods………………………………………...……….83 

2.1 Field Sample Preparation………………….…………………….……..……...….83 
2.2 Instrumentation and Data Collection…………………………………….……….83 
2.3 Field Samples Placement ………………………………………………..……….86 
2.4 Determining the Number of FT Cycles……………………………………..…….87 
2.5 Determining the Number of Damaging FT Cycles…………..……………..…….88 

3.0 Results and Discussion…………………………………...…………….……..…..…….89 
3.1 Variation of DOS Based on Month, Region, and Year…………………..……….89 
3.2 Total and Damaging FT Cycles…………………………………….…..…..…….90 

3.2.1 Wet + FT ………………………………………….…………....…….92 
3.2.2 Dry + FT ……………………………………………………….…….92 
3.2.3 Wet + Low FT…………………………………….….……..……..….93 
3.2.4 Variable Saturation + FT……………..…….………….……....…….93 

3.3 Comparison to Other Climate Models………………….………….……….…….94 
3.4 Year-to-Year Variability in FT Cycles…………………….……….…………….96 

4.0 Practical Significance…………………………………………………….……..…...….97 
5.0 Conclusions…………………………………………………………….….…………….98 
Acknowledgment…………………………..………………………………….……..…….100 
References………………………………….………………………………….……..…….100 
Appendixes…………………………...……………………………………….……..….….104 

Appendix A: Field Samples Mix Design……………………………….……..…….104 
Appendix B: Resistivity and Temperature Calculation………………………..…….105 
Appendix C: Field Locations Details for FT Analysis…………………..………….108 
Appendix D: Relationship Between Resistivity, Temperature, and DOS for Mortar 
Samples…………………………………………………………………...…..…….109 
Appendix E: Year-Specific DOS Maps by Location Across Four Winter Seasons (2020-
2024)………………………………….…………………………………...…..…….111 
Appendix F: Average Monthly DOS Data and Variability Metrics ………….…….114 



4 
 

Appendix G: Year-Specific Total and Damaging FT Cycles Maps by Location Across 
Four Winter Seasons (2020–2024)……………...………………………...…..…….115 
Appendix H: Standard Deviation and Coefficient of Variation (CV) of DOS, Total, and 
Damaging FT Cycles Across the Four Winter Seasons.…………..…………...…...117 

 
Predicting Concrete Freeze–Thaw Damage with Weather Data-Based Machine Learning 

Abstract……………………………………...…………………………………...…..…….120 
1.0 Introduction……………...……………………………...…………………...…..…….120 
2.0 Methodology……………...…………………………………………..……...…..…….122 

2.1 Data Collection and Preprocessing………………..……………………...…..….….122 
2.1.1 Field-Measured DOS Data…………………………………………...……….122 
2.1.2 Weather Data……………...…………………………...…………...…..…….124 
2.1.3 Data Collection Period and Study Timeframe……………...…….……...…….125 

       2.2 Model Development ……………..……...……………..………………...…..…….126 
2.2.1 Segmenting the Data ……………...………………………………...…..…….126 
2.2.2 Fitness Function: Bhattacharyya Distance……………………….....…..…….127 

2.2.2.1 Converting Trinary Codes to Probability Distributions………....….127 
2.2.2.2 Computing the Bhattacharyya Coefficient and Distance……..…..….128 
2.2.2.3 Fitness Function Evaluation and Optimization……………….…….130 

2.2.3 Genetic Algorithms Framework……………...…………...………...…...…….130 
2.2.3.1 Mutation……………...………………………………...…..…….….131 
2.2.3.2 Crossover……………...……………………………..…...…..……..131 
2.2.3.3 Selection……………...…………………………………...…..….….132 
2.2.3.4 Optimization and Convergence…………..…………….….…..…….133 

2.3 Lookup Table and Prediction Process for New Data ……….………..……….....….133   
2.4 Prediction Evaluation……………...……………………………..…….....…...…….134 
2.5 Predicting Freeze-Thaw Cycles……..………...…………..……………...…...…….134 

2.5.1 Detecting Actual FT Cycles ……………...………………………...…..….….134 
2.5.2 Predicting FT Cycles……………...………………………………...…..…….135 
2.5.3 Detecting Damaging FT Cycles ……………...……………………………….136 

3. Results and Discussions……………...……………………………..………...…..…….136 
       3.1 Air and Concrete Temperatures Relationship ……………...……………….…...….137 
       3.2 DOS Prediction Evaluation……………...……………..……………...…..………..139 

3.2.1 Regional Threshold Development…………...……………………...…..….….139 

           3.2.2 Development and Application of the Lookup Table for DOS Prediction……….140 
           3.2.3 DOS Prediction Accuracy Across Years and Regions………….….……….….141 
       3.3 Freeze-Thaw Cycles Prediction……………...…….…………………...….....…….142 
4.0 Practical Significance……………...………………………………………...…..…….145 
5.0 Conclusions……………...…………………………………..…….……………..…….145 



5 
 

References……………...………………………………………………………...…..…….147 
Appendices………………………………......…………………………………...…..…….153 

Appendix A: Initial Threshold Ranges for Weather Variables Before GA 
Optimization………………………………………………………………….……..153 
Appendix B: Freezing Temperature Optimization for Predicting FT Cycles……….155 
Appendix C: Comparison of Air Temperature and Concrete Temperature………....161 
Appendix D: Comparison with Traditional Machine Learning Models ……..……..163 
Appendix E: Predicted and Measured Total FT Cycle Data for All Regions…...….165 
Appendix F: Predicted and Measured Damaging FT Cycle Data for All Regions….168 

Appendices References…..………………......……………………………...…...…..…….170 
 
 

Creating Maps of Freeze–Thaw Exposure Based for Concrete 
 
Abstract………………………………………………………………......…………..…….171 
1.0 Introduction ……………………………………......………………....….....…..…..….171 
2.0Methodology………………………………......……...…………………………..…….172 

2.1 Weather Data Collection and Preprocessing………………..……………….….172 
2.2 Freeze-Thaw Cycles Prediction………………………………..……...…...…....173 
2.3 Development of Freeze–Thaw Cycles Maps……………………...…..…..…….174 

2.3.1 Interpolation and Smoothing……………………...………...…...…….174 
2.3.1.1 Interpolation Method………………..............……...……….174 
2.3.1.2 Smoothing Filters…………………..…………..….......…….175 

2.4 Color Mapping and Visualization Design………………………...……….....….176 
3.0 Results and Discussions……………………………………....……………...…..…….177 
3.1 Long-Term Spatial Distribution of Freeze–Thaw Cycles…………………...…….….….177 

3.2 Difference Between the Total and Damaging Cycles…………………...…....….178 
3.3 Long-Term Variability in Freeze–Thaw Cycles…………..………...…….....….179 

3.3.1 Standard Deviation of Freeze-Thaw Cycles…………………...…..….179 
3.3.2 Coefficient of Variation to Measure Variability……………….......….180 

3.4 Comparison with Existing Models and Standards…………………...……....….182 
3.4.1 LTPP Climate Classification…………………….…...……...…..…….182 
3.4.2 ASHRAE 90.1 Climate Zone Map………………………...…….…….183 

4. Practical Implications…………………...……...………………………………...…….185 
5. Conclusions…………………...……...…..…………………………………………..….186 
References …………………...…………………………...……………………...…..…….188 
Appendices………………………………………………………...……………………….193 

Appendix A: Regional Classification Used for Predicting Freeze–Thaw Cycles…..193 
Appendix B: Freezing Temperature Thresholds for DOS Categories…….......…….193 
Appendix C: Variability Analysis and Coefficient of Variation Maps for Freeze–Thaw 
Cycles….…………………………………………………………………………....195 

 
The Effects of Concrete Temperature on Air Void Parameters in Pumped Concrete 

 
Abstract……………………………………………………………………………....…….197 



6 
 

1. INTRODUCTION………..……………………………………………………………..197 
2. EXPERIMENTAL METHODS…………………………………………………….….198 

2.1. Constituent Materials………………………………………………….……….198 
2.2. Mix Proportions…………………...……...…………………………………….199 

2.2.1. Concrete Mixtures……………………………………..….…….…….199 
2.2.2. Grout Mixtures…………………….……………………......…..…….199 

2.3. Mixing Procedure…………………….………………………...…………...….199 
2.3.1. Grout Mixtures…………………….……………………......…..…….199 
2.3.2. Concrete Mixtures…………………….……………….……......…….199 

2.4. Equipment and Pipe Configuration………………………………….………….200 
2.4.1. Concrete Pump……………………………………………………….200 
2.4.2. Pipe Configurations …………………….…………….........…..…….200 

2.5. Pumping Procedure …………………………………………………………....201 
3. RESULTS and discussion……………………………………………………………….203 

3.1. Change in Air Volume Before and After Pumping ………..…………………….203 
3.2. Change in SAM Number Before and After Pumping……………..…………….207 
3.3. Freeze-Thaw Performance …………………………………………………….210 
3.4. Hardened Air Void Analysis (HAV)………..…………………………………...211 
3.5. Practical Significance…………………….………………………..…..……….212 

4. Conclusions………..………………………………………………………………….….212 
References…………………….…………………………………………….........…..…….214 
. 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

The Influence of Air Voids and Fluid Absorption on Salt-Induced 
Calcium Oxychloride Damage 

 
Rita M. Ghantous1, Keegan Zetterberg1, Hope Hall Becker2, Amir Behravan2, M. Tyler Ley2, 

O. Burkan Isgor1, and W. Jason Weiss1 

1School of Civil and Construction Engineering, Oregon State University, 1491 SW Campus 

Way, Corvallis, OR 97331, USA 

{ritamaria.ghantous; zetterbk; Burkan.Isgor ; Jason.Weiss}@oregonstate.edu  

2Oklahoma State University, Department of Civil and Environmental Engineering, Stillwater, 

OK 74078, USA 

{hhall; tyler.ley}@okstate.edu  

 

Abstract 

Calcium and magnesium deicing salts may damage concrete due to calcium oxychloride 

formation (CaOXY). Previous work has shown that replacing a portion of the cement in a 

mixture with supplementary cementitious materials reduce CaOXY formation. AASHTO PP-

84 was developed to help specify damage-resistant mixtures by limiting the CaOXY amount 

in paste. This limit was established based on empirical observations; however, this did not 

consider other aspects of the mixture such as paste volume or air content.  This paper 

investigates how fluid absorption, paste volume, and air content are all key parameters in 

determining damage from CaOXY. Concrete with a higher paste volume has more CaOXY 

and is more susceptible to damage. Concrete with a higher air content is less susceptible to 

damage as the voids provide space for fluid absorption and CaOXY formation; however this 

only occurs for mixtures with a specific range of calcium hydroxide (Ca(OH)2) (between 7 and 

12 g Ca(OH)2/100g paste). This paper incorporates these factors to provide a more 

comprehensive explanation for CaOXY-induced damage in concrete. 
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Introduction  

Some portland cement concrete pavements (PCCP) have exhibited premature deterioration at 

the joints [1-5]. This distress has been related to the accumulation of fluid in the joints that 

contains deicing chemicals specifically in the form of calcium and/or magnesium chloride [1-

5]. When the salt concentration is low, this fluid can increase the degree of saturation and 

increase the potential for freezing and thawing damage [6-10]. As the salt concentration 

increases, the accumulating fluid can result in the formation of several solid phases such as 

Friedel’s salt (FS), Kuzel’s salt, and calcium oxychloride (CaOXY) [11-23].  

Calcium monosulfoaluminate present in the cementitious paste (𝐶𝐶4𝐴𝐴𝑆𝑆̅𝐻𝐻12) reacts with the 

chloride ions (Cl-) to form FS (𝐶𝐶3𝐴𝐴.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2.𝐻𝐻10) (equation (1)) [20, 24-26]. The release of 

sulfate ions (SO4
2-) when Friedel’s salt forms can react with the remaining calcium 

monosulfualuminate to form secondary ettringite (SE) (𝐶𝐶6𝐴𝐴𝑆𝑆3̅𝐻𝐻32) (Equation (2)) [20, 24-26].  

 𝐶𝐶4𝐴𝐴𝑆𝑆̅𝐻𝐻12 + 2𝐶𝐶𝐶𝐶− → 𝐶𝐶3𝐴𝐴.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2.𝐻𝐻10 + 𝑆𝑆𝑆𝑆42− (1) 

 𝐶𝐶4𝐴𝐴𝑆𝑆̅𝐻𝐻12 + 2𝑆𝑆𝑆𝑆42− → 𝐶𝐶6𝐴𝐴𝑆𝑆3̅𝐻𝐻32 (2) 

Equation (3) describes the chemical reaction that occurs when calcium hydroxide (Ca(OH)2) 

reacts with the salt solution (CaCl2 + H2O) to form CaOXY  [27-38]. Various forms of CaOXY 

have been reported in the literature [22, 39-42]; however, the form shown in equation (3) 

(3Ca(OH)2.CaCl2.12H2O) has been widely reported as responsible for concrete deterioration 

[6, 7, 12, 14, 18-20, 24, 42-50]. 

 3 𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 + 12 𝐻𝐻2𝑂𝑂 ⇌  3𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2. 12𝐻𝐻2𝑂𝑂 (3) 

Equation (3) is a reversible phase change that is dependent on the temperature and the CaCl2 

content as illustrated in Figure 1 [51]. The dashed line in Figure 1 is the liquidus line for 

CaOXY. For a given CaCl2 concentration, when the temperature is above the dashed line the 

system is a fluid and there is no CaOXY present. When the temperature falls below the liquidus 

line, a phase change occurs and solid CaOXY begins to form. This occurs at temperatures 
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above freezing (i.e., the solid lines shown in Figure 1). For instance, Figure 1 shows that with 

CaCl2 concentrations of 10%, solid CaOXY forms at approximately room temperature.  

 
Figure 1- Phase isopleth of Ca(OH)2-CaCl2-H2O [51] 

 

CaOXY is particularly problematic since its volume is 303% larger than the volume of 

Ca(OH)2 [45, 47, 48]. This expansion can cause pressure that may exceed the tensile strength 

of the paste, which often results in damage [14, 23, 52-54].  Qiao et al. [55] demonstrated 

measurements that showed that CaOXY formation induced a decrease in volume during the 

phase change to a solid (i.e., cooling), followed by a volume increase when CaOXY went 

through a phase change from solid to liquid during heating (Figure 1). This is important as it 

indicates that damage is less likely to occur on cooling than heating. Further, this indicates that 

the reason of damage development may be more complicated than a simple volume change.  

Previous studies [15, 48] showed that damage development increased when the samples were 

immersed in salt solution and less damage occurred for samples not in solution [48]. However, 

a full explanation of the role of immersion in fluid on damage development was not provided 

in those studies. As such, it is essential to understand the role that access to fluid has in salt 

damage development and this work attempt to provide insight into the role that submersion in 

fluid plays. 

Several approaches have been recommended to reduce the potential for CaOXY-induced 

damage.  The vast majority of these approaches outline reducing the formation of CaOXY. For 

example, one approach is to use supplementary cementitious materials (SCM) that reduce 

Ca(OH)2 content to levels where damage is reduced or eliminated [56-62]. Another approach 
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is to use topical treatments [33, 63-65] to provide a barrier between the Ca(OH)2 and the 

deicing salts. A third approach is to carbonate the concrete [66, 67] which reduces CaOXY due 

to both a reaction that reduces the Ca(OH)2 and the formation of a barrier around the Ca(OH)2. 

A fourth approach is to reduce the paste content of concrete, which reduces the Ca(OH)2  and 

thus CaOXY [64]; however, a specific amount of paste reduction was not recommended. 

Current specifications have focused on limiting the CaOXY content to 15g per 100g of paste 

based on empirical evidence [57] as measured using low temperature differential scanning 

calorimetry according to AASHTO T-365. It has been speculated that air may reduce damage 

and some experimental evidence has been gathered to confirm this speculation but this has not 

been fully confirmed [68].  Further, the CaOXY specification limit was established empirically 

and was assumed to not depend on the paste content, air content, or other aspects of the mixture.  

These approaches do not identify the air content that is necessary to accommodate the CaOXY 

formation and delay the onset of damage.  Research is needed to examine this hypothesis and 

to develop approaches to quantify this effect.  

This paper examines three factors to determine their influence on the potential CaOXY-induced 

damage: First, a series of experiments are performed to evaluate the hypothesis that fluid 

absorption is a critical part of CaOXY damage development.  If validated, this has a practical 

implication on the use of topical treatments to limit fluid ingress as a potential solution for 

CaOXY-induced damage.  In addition, this would open the possibility that CaOXY-induced 

damage requires cumulative fluid absorption (i.e., repeated CaOXY formation through heating 

and cooling cycles).  Second, the paper examines whether concrete with a higher air content is 

less susceptible to damage and whether a higher air-to-paste content ratio will lead to lower 

salt induced damage. The hypothesis is based on the fact that the voids would permit more 

space for fluid absorption and CaOXY formation with reduced damage (i.e., concrete with 

higher air content has a lower degree of saturation). While the current AASHTO PP-84 limit 

on the amount of CaOXY that can form is a strong first step to limiting damage, if damage is 

dependent on the ratio of air content to paste content, this would indicate that this threshold 

may be able to be modified based on concrete mixture design.    
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Experimental Procedure  

Materials  

Type I ordinary portland cement (OPC - ASTM C150 - 19a) and Class C fly ash (FA) (ASTM 

C618) were used. The physical and chemical properties of the cement and FA are described in 

Table 1. The reactivity of the FA was 27.47% as measured using the  Pozzolanic Reactivity 

Test [69]. The Blaine finesses of the cement was 386 m2/kg. Natural river sand was used as a 

fine aggregate. The natural sand had a specific gravity of 2.61 and an absorption of 0.44%. 

Two coarse aggregates were used in this study with specific gravity of 2.75 and 2.72, an 

absorption of 0.73% and a maximum size of 19.1 mm. A wood rosin air-entraining admixture 

(AEA) was added to the mixtures.  

Mixture preparation, sample curing and sample conditioning 

Twelve different concrete mixtures were prepared, with varying air void and Ca(OH)2 content.  

The Ca(OH)2 content was varied by varying the FA content (0, 20, 25, 30, 35, 40% replacement 

levels by mass). For each fly ash replacement level, two different air void content were 

targeted: low air void content (~2%) and high air void content (~5%). The paste content was 

kept constant for mixtures with different air void content. The water-to-binder ratio for all 

mixtures is equal to 0.45. The fresh concrete was mixed using the procedure described in [70]. 

The Sequential Air Method (SAM) number was used to indicate the air void quantity and 

quality (air void content, size, and spacing) based on AASHTO TP 118-17 [70-72]. The 

mixture characteristics are shown in Table 2. The mortar was obtained from the fresh concrete 

by removing the coarse aggregates by wet sieving according to ASTM C172-17. Wet sieving 

was done by hand in less than 10 minutes. The concrete was placed on a #4 sieve (4.76 mm) 

and the large aggregates were removed.  Next, the remaining material was pushed through the 

openings. It should be noted that a small loss in air content (averaged to 0.5% when the air 

content is determined by pressure [73]) was caused by wet sieving as mentioned in ASTM 

C172-17. The air content in mortar is listed in Table 2. Please note that in all the figures of this 

manuscript, the air content of the parent concrete will be displayed.  The mortar was cast in 

cylindrical plastic molds of 102 mm (4 inches) in diameter and 203 mm in height (8 inches). 

The mortar was cured in the molds (i.e., under sealed conditions) for 91 days at 23 ± 2°C.  
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Table 1. Properties of the cement used in this study 

Cement Oxides Type I cement (OPC) Class C fly ash 
Percent by mass (%) Percent by mass (%) 

Silicon Dioxide (SiO2) 21.10 27.04 
Aluminum Oxide (Al2O3) 4.70 18.11 

Ferric Oxide (Fe2O3) 2.60 4.56 
Calcium Oxide (CaO) 62.10 30.51 

Magnesium Oxide (MgO) 2.40 6.36 
Sulfur Trioxide (SO3) 3.20 2.56 
Sodium Oxide (Na2O) 0.20 2.73 

Potassium Oxide (K2O) 0.30 1.07 
Loss on Ignition (LOI) 2.70 0.12 

Bogue phase composition Percent by mass (%)  
Tricalcium Silicate (C3S) 56.70 - 
Dicalcium Silicate (C2S) 17.80 - 

Tricalcium Aluminate (C3A) 8.20 - 
Tetracalcium Aluminoferrite (C4AF) 7.80 - 

Specific gravity 3.15 2.74 
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Table 2. The mixture proportions and fresh properties of the concrete mixtures  

Mixture CA* 
(kg/m3) 

Sand 
(kg/m3) 

Cement 
(kg/m3) 

FA* 
(kg/m3) 

Water 
(kg/m3) 

AEA 
(g/m3) 

AC* 
(%) 

Am* 
(%) 

SAM 
number 

 A/P* 
(%)  

1 1161 754 340 0.0 153 2.7 2.6 4.5 0.51 9.9 

2 1123 729 329 0.0 148 16.7 5.8 9.8 0.13 22.9 

3 1120 729 296 74 167 1.6 2.6 4.3 0.35 9.0 

4 1088 707 287 72 162 5.2 5.4 9.0 0.16 19.4 

5 1105 722 274 91 165 3.0 2.1 3.6 0.66 7.5 

6 1048 685 260 87 156 11.0 7.2 11.9 0.10 26.5 

7 1107 723 257 110 165 2.5 1.8 3.14 0.63 6.4 

8 1064 695 247 106 159 10.6 5.7 9.5 0.13 20.6 

9 1104 721 238 128 165 2.9 2.0 3.4 0.55 6.9 

10 1046 683 225 121 156 10.8 7.1 11.8 0.10 26.2 

11 1117 724 222 147 166 2.2 2.6 4.3 0.57 8.9 

12 1079 700 214 142 160 5.8 5.9 9.7 0.10 20.9 

*CA is coarse aggregate,  FA is fly ash, AC is the air content in concrete, Am is the air content in mortar, A/P* is 
the air to paste content ratio  
 

After curing, the mortar samples were demolded and cut using a water-cooled diamond saw 

into slabs before being cored to cylinders with 10 mm diameter and 30 mm heights. These 

cylinders edges were then trimmed using a precision diamond saw that was water cooled in 

order to have parallel surfaces as described in [74]. The final dimensions of the cylindrical 

cores are 10 mm in diameter and 20 mm in height. The cores were thereafter exposed to 60°C 

temperature until reaching a constant mass (mass evolution over 24 hours is less than 0.01%). 

The change in the microstructure of the samples after drying was not assessed in this study. 

The samples were then vacuum saturated with lime-water solution under a vacuum pressure of 

0.8 MPa according to AASHTO 1.6a. The mortar cores were immersed in lime solution for an 

additional 24 hours at 23 ± 2°C. They were then kept immersed in lime solution at 50 ± 1°C 

for an additional 24 hours. The samples were removed from the lime solution and placed 

directly in 20% CaCl2 solution that was equilibrated at 50 ± 1°C for an additional 24 hours. 

The immersion in salt solution at 50°C was to allow the saturation of the pores of the mortar 

cores with chloride ions without the formation of CaOXY [55] (as illustrated in Figure 1, where 

values above the liquidus lines are solutions without CaOXY). During the immersion of the 

samples in salt solution at 50°C, the chloride ions diffused through the pore solution until 

reaching equilibrium. The uniformity of the chloride profiles throughout the cross section of 
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the sample was confirmed using EDAX Orbis micro X-ray fluorescence (mXRF) spectroscopy 

[75].  

 

Salt damage testing procedure  

After the saturation, the samples were exposed to 15 temperature cycles from 50°C to 5°C as 

illustrated in Figure 2. At the end of each temperature cycle, the samples were kept at 50°C for 

a duration of 30 minutes. It should be noted that the temperature of the samples remained above 

the solidus temperature as well as above freezing (-20°C for a 20% CaCl2 solution by weight) 

as shown in Figure 1. Consequently, any damage that is observed is primarily caused by the 

formation of CaOXY and not by ice formation. As stated in the introduction, Equation (3) is 

completely reversible and thus CaOXY is expected to undergo a phase change forming a solid 

when the temperature is reduced below the liquidus line and then forming a liquid again when 

the temperature is raised above the liquidus line (Figure 1). According to Figure 1, at 50°C the 

pores of the samples will be filled with dissolved Ca(OH)2 and salt solution, and at 5°C CaOXY 

will solidify and form in the pores of concrete.  

 

Figure 2- Temperature cycle during the salt damage testing 

 

Three conditions were tested as illustrated in Figure 3.  

• Condition #1 (Figure 3(a)): samples were saturated by 20% CaCl2 solution and exposed 

to temperature cycling while being immersed in 20% CaCl2 solution. This condition 

was used to study the impact of fluid absorption and air void content on salt damage 

development in mortar samples.  
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• Condition #2 (Figure 3(b)): Samples were saturated by 20% CaCl2 solution and exposed 

to temperature cycling while wrapped in aluminum tape. This was done to limit 

moisture evaporation and not allow solution to enter the samples during the cycles. The 

impact of fluid absorption on salt damage development can be determined by 

comparing the damage on samples exposed to this condition with the one measured on 

samples exposed to condition # 1. 

• Condition #3 (Figure 3(c)): samples were only saturated with lime-water solution 

without any salt exposure and exposed to temperature cycling while being immersed in 

lime solution. The samples in this condition were used as a control sample where no 

salt damage is expected.  

 
Figure 3- Testing conditions during temperature cycling (a) in salt solution, (b) wrapped 

in aluminium, (c) in lime solution  

 

The length change of the cores was measured using a micrometer with 2.54 µm resolution at 

the beginning and end of each cycle. The residual strain was then calculated according to 

equation (4): 

 
𝜀𝜀 =  

𝑙𝑙 − 𝑙𝑙0
𝑙𝑙0

 
(4) 

where, 𝜀𝜀 is the residual strain, l is the length of the sample at the end of each cycle, l0 is the 

initial length of the sample. A positive residual strain value indicates expansion which is likely 

due to damage development as shown in earlier studies [74, 76-78].  

The mass was measured at each cycle and the change in mass was determined using equation 

(5).  



16 
 

 ∆𝑀𝑀 =  
𝑀𝑀 −𝑀𝑀0

𝑀𝑀0
 (5) 

where, ∆𝑀𝑀 is the change in mass, M is the mass of the sample during the test, M0 is the initial 

mass of the sample.  

A visual inspection for the mortar cores was also performed at the end of each temperature 

cycle in order to investigate the development of cracks. The samples were imaged using a 

camera at the beginning of the test and during the test in order to provide a qualitative 

comparison of the damage between different samples.     

CaOXY content determination 

The CaOXY content was measured using the Low-Temperature Differential Scanning 

Calorimetry (LT-DSC) according to the procedure for mortar defined in [79] and in AASHTO 

T365. A portion of the central part of the mortar cylinder (102 mm in diameter and 203 mm in 

height) was ground using a lathe grinder. The collected powder was then sieved through a 

75 µm sieve. The particles that did not pass the sieve were ground using a mortar and pestle to 

pass through the 75 µm sieve. 20 mg of the ground powder was then mixed in a high volume 

stainless steel pan with 5 mg of 20% CaCl2 solution according to the procedure defined in [79]. 

The pan was then sealed and subjected to temperature cycling inside the low-temperature 

differential scanning calorimetry (LT-DSC). The temperature was kept constant at 25°C for 

60min, and then decreased to -90°C at 3°C/min rate; this was followed by a temperature loop 

from -90°C to -70°C to -90°C at the same rate. The temperature was then increased at 

0.25°C/min up to 50°C [80]. The amount of CaOXY was quantified according to equation (6).  

 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =
𝐿𝐿
𝐿𝐿0

 (6) 

 where, MCaOXY is the amount of CaOXY (g/gmortar), L is the latent heat measured during the 

phase transition of CaOXY at a temperature around 30°C, L0 is 186 J/g which is the latent heat 

of pure CaOXY. For each mixture design, three LT-DSC tests were performed from the ground 

powder. The average and standard deviation values of CaOXY content were then calculated 

from these three tests for each mixture.  

Ca(OH)2 content determination 

Thermo-gravimetric analysis (TGA) was performed to determine the amount of Ca(OH)2 using 

the mass loss of the sample between 400°C and 500°C. For each mixture design, a small 
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powder sample (35-50 mg) was collected from the powder that was sieved through the 75 µm 

sieve as described previously [79]. This powder sample was oven dried at 105°C, placed in a 

platinum crucible, and then loaded into the TGA Q50 TA instrument. The sample was first kept 

at an isothermal condition (23°C) for 3 min and then heated up to 990°C at 10°C/min under a 

nitrogen purge.  

Ca(OH)2 content was calculated using equation (7) [81].   

 
𝑀𝑀𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 =

74.1
18

×
𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑆𝑆 − 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒
𝑆𝑆

𝑀𝑀0
 

(7) 

 

where, 𝑀𝑀𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 is the Ca(OH)2 content (g/gmortar),  𝑀𝑀𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆  and 𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆  are the sample masses (g) 

recorded at the start point and the end point of decomposition of Ca(OH)2, respectively [81], 

and M0 is the mass of the mortar powder used during the TGA test.  For each mixture design, 

three TGA tests were performed from the ground powder. The average and standard deviation 

values of Ca(OH)2 content were then calculated from these three tests for each mixture. 

Theoretical calculations  

Thermodynamic modeling  

Thermodynamic modeling was used to determine the volume of hydration products, mainly 

calcium monosulfoaluminate and Ca(OH)2, that form in the mixture designs listed in Table 2 

[82]. Once the Ca(OH)2 content and calcium monosulfoaluminate content are known for each 

mixture, the filling of air voids by FS, SE, and CaOXY can be calculated using the procedures 

described later in this paper. The thermodynamic calculations are done using GEMS3K [83] 

which uses the Gibbs free energy minimization technique to determine the reaction products 

for a given set of inputs compositions and mixture proportions. CemData v18.01 [84] and 

PSI/Nagra [85] databases are used in conjunction with the GEMS3K for the calculation of 

reaction products of cementitious systems. These calculations provide the amounts of solid, 

aqueous, and gaseous species that form in these reactions, including key compositions for this 

work such as Ca(OH)2 and calcium monosulfoaluminate. 

The prediction of hydration products using thermodynamic modeling and kinetic model has 

been validated in several studies in the literature for both ordinary plain cement systems (OPC) 
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[86-88] and OPC+SCM cementitious systems [84, 89-92]. In order to determine the hydration 

products at 91 days of sealed curing, the mass fraction of oxide phases that dissolve from the 

FA was considered to be equal to the reactivity of the FA (27.47% as measured using the  

Pozzolanic Reactivity Test [69]) [84, 89-92]. The mass of alkali oxides (Na2O, K2O, MgO, 

SO3) that dissolve from OPC was calculated based on the clinker dissolution as described in 

[93]. The Modified Parrot-Killoh kinetic model [82] was used to calculate the mass fractions 

of clinker phases (C3S, C2S, C3A, C4AF) that dissolves from OPC.  

Volume of void filling due to FS and SE 

The volume of void filling due to calcium monosulfualuminate consumption was determined 

using equation (8).  

𝑉𝑉1 = (𝑉𝑉FS + 𝑉𝑉SE) − (𝑉𝑉Afm,r1 + VAfm,r2) (8) 

where, V1 is the volume of void reduction induced by FS and SE, VAfm,r1 is the volume of 

calcium monosulfoaluminate that reacted to form FS according to equation (1), VAfm,r2 is the 

volume of monosulfoaluminate that reacted to form SE according to equation (2). VFS and VSE 

are the volume of FS and SE respectively.  

Using equation (1) and equation (2), the volume of FS and SE can be determined as a function 

of VAfm,r1, and VAfm,r2 according to equation (9) and (10) respectively.    

𝑉𝑉FS =
𝜌𝜌Afm.𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴,𝑟𝑟1

𝑀𝑀Afm
𝑀𝑀FS

𝜌𝜌FS
 = 0.88 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴,𝑟𝑟1 

 

(9) 

𝑉𝑉SE =
𝜌𝜌𝐴𝐴𝐴𝐴𝐴𝐴.𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴,r2

𝑀𝑀Afm
𝑀𝑀SE

𝜌𝜌SE
 = 2.28 𝑉𝑉Afm,r2 (10) 

 

where, ρAfm is the density of calcium monosulfomaluminate (2.015 g/cm3), MAfm is the molar 

mass of calcium monosulfoaluminate (622.53 g/mol), ρFS and MFS are the density (2.064 

g/cm3) and molar mass (561.33 g/mol) of FS respectively, ρSE and MSE are the density (1.778 

g/cm3) and molar mass (1255.11 g/mol) of SE respectively [94].  

The maximum volume of FS (VFS) that can develop in cement paste samples with varying FA 

content was determined based on the work by Qiao et al. [95]. The volume of calcium 

monosulfoaluminate (VAfm,r1) that is needed to react in order to form this maximum amount 

FS was calculated using equation (9) for each mixture in Table 3.   
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Using equation (1), the number of moles of sulfate generated with the formation of the 

maximum amount of FS was determined and used in order to compute the number of moles of 

calcium monosulfoaluminate that can react with these sulfate to form SE according to equation 

(2). VAfm,r2 was then determined for all mixtures and illustrated in Table 3.   

Table 3. Original volume of calcium monosulfoalumionate and the volumes consumed 
to form Friedel’s salt and secondary ettringite for different mixture designs  

Fly ash 

(%) 

𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴 

(cm3/cm3 paste) 

 𝑉𝑉𝐹𝐹𝐹𝐹 ** 

(cm3/cm3 paste) 

𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴,𝑟𝑟1 

(cm3/cm3 paste) 

𝑉𝑉Afm,𝑟𝑟2 

(cm3/cm3 paste) 

0 0.171 0.041 0.047 0.023 

20 0.160 0.059 0.067 0.033 

25 0.152 0.065 0.074 0.037 

30 0.144 0.070 0.080 0.040 

35 0.136 0.075 0.085 0.042 

40 0.128 0.080 0.091 0.036* 
*Limited due to percentage of AFm consumed to form Friedel’s salt 

** Maximum amount of Friedel’s Salt that can be produced 

 

Consequently, the volume of void filling (V1) due to the formation of FS and SE can be 

determined using equation (11).  

𝑉𝑉1 = 1.28𝑉𝑉Afm,𝑟𝑟2 − 0.12𝑉𝑉Afm,𝑟𝑟1 (11) 

 

The values of  VAfm,r1 and VAfm,r2 are illustrated in Table 3 for the different FA content tested 

in this study.  

Volume of void filling by the solution absorbed after CaOXY formation  

Qiao et al. [55] measured a volume decrease when CaOXY formed, this is in accordance with 

the stoichiometry of equation (3). It is hypothesized in this study that the solution surrounding 

the concrete, if available, will be drawn by suction into the voids generated by CaOXY 

formation and this hypothesis has been confirmed based on mass measurements that will be 

shown later in this study. The volume of the solution absorbed by the concrete at each 
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temperature cycle was assumed equal to the volume reduction accompanying CaOXY 

formation according to equation (12).  

𝑉𝑉2 = 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 + 𝑉𝑉𝑠𝑠 − 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (12) 

 

where, V2 is the volume of absorbed solution accompanying CaOXY formation, 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 is 

the volume of Ca(OH)2 dissolving to react with salt solution, 𝑉𝑉𝑠𝑠 is the volume of salt solution 

reacting with Ca(OH)2 to form CaOXY, 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the volume of CaOXY developing at each 

temperature cycle. 

Using equation (3), the volume of salt solution (𝑉𝑉𝑆𝑆) and CaOXY (𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) can be determined 

as a function of 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 according to equation (13) and (14).  

𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 =  

𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 𝜌𝜌𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2
3 𝑀𝑀𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2

×𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 = 3.02 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 

 

(13) 

𝑉𝑉𝑆𝑆 =  

𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 𝜌𝜌𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2
3 𝑀𝑀𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2

×𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2+
𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 𝜌𝜌𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2

3 𝑀𝑀𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2
×12𝑀𝑀𝐻𝐻2𝑂𝑂

𝜌𝜌𝑠𝑠
 = 2.45 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 

 

(14) 

 

where, 𝜌𝜌𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 is the density of Ca(OH)2 (2.21 g/cm3), 𝜌𝜌𝑆𝑆 is the density of the solution (1.325 

g/cm3), 𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶  is the density of the CaOXY (1.805 g/cm3 [96, 97]; 𝑀𝑀𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2, 

and 𝑀𝑀𝐻𝐻2𝑂𝑂 are the  molar mass of Ca(OH)2 (74.093 g/mol), CaOXY (549.259 g/mol), calcium 

chloride (110.98 g/mol) and water (18 g/mol) respectively.  

Consequently, the volume of void filling (V2) due to the absorption of solution after CaOXY 

formation can be determined as a function of the volume of Ca(OH)2 reacting with the salt 

solution  �𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟� according to equation (15).  

𝑉𝑉2 = 0.428𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 (15) 

 

where, 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 is dependent on the volume of Ca(OH)2 obtained from thermodynamic 

simulation for each of the mixtures in Table 2. The correlation between 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 and the 

volume of Ca(OH)2 for each mixture will be defined later in this paper based on the results of 

the LT-DSC and TGA measurements.  
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Number of temperature cycles needed to fill the voids of the concrete  

Figure 4 is an illustration for the filling of voids (i.e., unfilled porosity) for mixture 2 in Table 

2 as the temperature is cycled. Some phases are not shown in Figure 4. These phases 

corresponds to those that does not react: coarse aggregate with a volume fraction of 41%, fine 

aggregate with a volume fraction of 28%, unhydrated cement with a volume fraction of 1.1%, 

C-S-H with a volume fraction of 9.3%, other minor hydration products (such as Goethite and 

Brucite) with a volume fraction of 0.6%, pore solution that will not react with Ca(OH)2 with a 

volume fraction of 0.31%. In this illustration, after exposure to salt, the matrix pores were 

assumed to be filled with calcium chloride solution of 20% concentration by mass. In field, this 

will not be the case and longer duration is needed for calcium chloride ions to diffuse and fill 

all the matrix pores with 20% concentration. Consequently, the results of the theoretical 

calculations aim only to illustrate dependency of salt damage on volume of air voids and paste 

content and not to show the duration it takes for the chloride ions to diffuse in the concrete and 

start inducing damage.   

After exposure to salt solution, there is a reduction in the void space from the formation of FS 

and SE (equation (11)) [98, 99]. With each temperature cycle, CaOXY forms and leads to 

additional void space.  This additional void space develops because the volume of the CaOXY 

solid is smaller than its liquid constituents.  This creates additional void space that will allow 

solution to be absorbed from the surrounding environment. With the temperature increase and 

CaOXY phase change to a liquid, there is an increase in volume because of the previously 

absorbed fluid. This absorbed fluid is expected to fill the open void space. This process of fluid 

movement may cause damage to the concrete if no space is available to accommodate for its 

volume. 

This work assumes that all dissolved Ca(OH)2 will react with the salt solution to form CaOXY 

during the first temperature cycle. In reality, it may take several temperature cycles for this to 

happen. Consequently, the evolution of the volume of void space in concrete with respect to 

temperature cycles can be determined according to equation (16).  

𝑉𝑉𝑟𝑟 = 𝑉𝑉0 − 𝑉𝑉1 − 𝑖𝑖𝑖𝑖2 (16) 

 

where, Vr is the remaining volume of void space in the concrete after chemical interaction with 

salt solution, V0 is the original volume of void space, V1 is the volume of voids filled by FS 
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and SE as described by equation (11), i is the number of temperature cycles as shown in Figure 

2, V2 is the volume of voids filled by the solution absorbed after CaOXY formation as described 

by equation (15). In this work, V0 is assumed equal to the volume of entrained air voids because 

the matrix porosity is assumed to be filled with solution.  

By rearranging equation (16), the number of cycles needed to fill the void space (i.e., all 

unfilled pores) can be determined.  The filling of the void space could be thought of as one way 

to quantify when damage should occur.  As such determining the number of cycles to fill the 

voids can be determined as shown in equation (17).  

𝑖𝑖 =
 𝑉𝑉0−𝑉𝑉1

0.428 × 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟
 

(17) 

 

The impact of the air void content, Ca(OH)2 content (i.e. FA content), and paste content of the 

concrete on this number of cycles needed before damage development was investigated in this 

research study. It should be noted that the cycles reported in this paper are not directly applied 

for a field application in concrete slabs due to differences in sample size, thermal gradients and 

fluid availability. Ongoing work will relate the cycles in field conditions for use in pavement 

prediction. 
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Figure 4. Illustration of the filling of void space with temperature cycles due to the 

absorption of solution accompanying CaOXY, Friedel’s salt and secondary ettringite 
formation in mixture 2. 

 

Results and Discussion 

Ca(OH)2 and CaOXY content  

Ca(OH)2 content and CaOXY content as a function of the FA replacement level by mass of 

cement are illustrated in Figure 5(a) and Figure 5(b) respectively. As the FA content increases, 

the Ca(OH)2 and CaOXY values decrease [6, 60].  

Filled circles are the experimental values of Ca(OH)2 content obtained from TGA 

measurements, while the line represents the Ca(OH)2 content obtained from thermodynamic 

simulation. There is a strong correlation between the experimental measurements and the 

theoretically predicted values of Ca(OH)2.  
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(a) 

 
(b) 

Figure 5- (a) Ca(OH)2 content with respect to fly ash, (b) CaOXY content with respect 
to fly ash  

 

In Figure 6, the experimental values for Ca(OH)2 and CaOXY content collected in this study 

were added to data points existing in the literature [6, 60, 80]. A line was fitted to these 

experimental data points while fixing the slope to the theoretical stoichiometric value of 2.47.  

An intercept of -3.27 was obtained from the fit with an R2 value of 0.94.  This indicates that 

approximately 1.32g/100gpaste of Ca(OH)2 does not react with CaCl2 solution to form CaOXY. 

Consequently, 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟, needed for equation (15), was determined according to equation (18).   

The value 1.32g/100g paste may vary depending on what portion of the Ca(OH)2 is inaccessible 

because it is possibly surrounded by hydration products, similar to the mechanism described in 

[67], but this seems to be a good value for the data points summarized in Figure 6.  

𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2,𝑟𝑟 = 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 −
1.32/𝜌𝜌𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2

100( 1
𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

)
 

(18) 

where, 𝑉𝑉𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 is the volume fraction of Ca(OH)2 determined for each mixture using 

thermodynamic simulation, 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the density of the paste. This plot illustrates that the 

potential for CaOXY production can be determined by knowing the amount of Ca(OH)2 

produced in the material. 
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Figure 6- CaOXY content with respect to Ca(OH)2 content for both cement paste and 
mortar samples 

 

Impact of salt solution suction on the salt damage development  

Figure 7 illustrates the residual strain that develops in mortar samples as a function of the 

number of temperature cycles for three different exposure conditions illustrated in Figure 3. It 

should be noted that the strains reported on the y-axis are quite large, much larger than the 

strains typically observed for mechanical failures of cementitious systems in tension. However, 

when expansion occurs in the paste matrix, as in the case of delayed ettringite formation where 

strains of 10,000 µε were observed [100], these large strains can be expected. 

The residual strain increases more for the samples surrounded by salt solution than it does for 

the sealed samples or samples in lime solution. The damage that develops in the sample 

surrounded by salt solution is significant.  In fact, several of the samples broke before reaching 

15 cycles (6 and 9 cycles respectively) and their length became non-measurable.  

The residual strain measurements collected on samples saturated with salt solution and sealed 

during the temperature cycles are comparable to those collected on samples saturated with lime 

solution. The samples saturated with lime solution and exposed to temperature cycling while 

being immersed in this solution are not expected to develop damage because the temperature 
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remained above freezing temperature (>0°C) and no CaOXY is forming due to the absence of 

salt.  

 
(a) 

 
(b) 

Figure 7. Residual strain with respect to the number of cycles for the three different 
conditions tested in this study (a) in 0% fly ash (high Ca(OH)2 content), (b) in 25% fly 

ash (lower Ca(OH)2 content) 

 

Figure 8 provides a plot illustrating the mass evolution in mortar samples with respect to the 

number of temperature cycles for the three different exposure conditions. The samples 

surrounded with salt solution had a measurable increase in mass (1.9 % in Figure 8(a) and 1.3% 

in Figure 8(b)) before visible damage was observed (3.5 cycles in Figure 8(a) and 7.5 cycles in 

Figure 8(b)). The average maximum mass gain recorded in this study from all the samples 

immersed in salt before visible damage was +2.0 ± 0.6%, while a value of 0.4 ± 0.2 % was 

determined for samples immersed in lime solution. This mass increase was not observed for 

sealed samples. The sealed samples showed a slight mass loss on average value of -1.2 ± 0.2 % 

after 15 temperature cycles for all mixtures tested in this study due to evaporation.   

Figure 4 illustrated that the formation of CaOXY is accompanied by a volume reduction of the 

materials in the pores of the sample. This volume reduction appears to occur with a suction 

stress that causes fluid to be absorbed from the solution surrounding it to fill in vacancies 

created by CaOXY formation. This increase in fluid can explain the increase in the samples’ 

mass (Figure 8). The mass increases with an increase in the number of thermal cycles, almost 

like a ‘pumping’ effect where more and more solution is absorbed.  As the fluid moves through 

the paste it may cause microcracks. These microcracks may also allow more solution to be 

absorbed, which would also increase the mass of the sample.  The mass increase in all the 

mixtures tested in this study is illustrated in [101]. 
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After 3.5 temperature cycles in Figure 8(a) and 7.5 temperature cycles in Figure 8(b)), cracking 

increases, which can result in flaking off of particles from the sample leading to a decrease in 

the mass of the sample. The salt damage was first visible and localized around the aggregates.  

This is likely due to the high Ca(OH)2 content at aggregates surface [102], and it is the 

dissolution of the Ca(OH)2 and reaction with CaCl2 (Equation(1)) that results in the reaction 

product resulting in CaOXY formation [64]. As the number of thermal cycles increases, 

additional loss of paste and particles from the sample cause a continuous mass decrease. This 

observation holds for all the mixture designs tested in this study as shown in the [101].  

 
(a) 

 
(b) 

Figure 8- Mass evolution with respect to the number of cycles for the three different 
conditions tested in this study (a) in 0% fly ash, (b) in 25% fly ash 

Figure 9 illustrates the residual strain as a function of the Ca(OH)2 content (and FA content) 

for the three exposure conditions tested in this study after 9 temperature cycles for the sample 

with the low air content of 2.3%. This shows the performance of a mixture by only varying the 

Ca(OH)2 content. Visible damage was clearly identified in the samples with a residual strain 

of 15,000 µm/m, and as such, this value was selected as a limit for the residual strain 

measurements. Samples with Ca(OH)2 content higher than 6 g/100gpaste developed higher 

residual strain values when surrounded with salt solution during CaOXY formation as 

compared to samples wrapped in aluminum, or just immersed in lime solution. The absorption 

of fluid during CaOXY formation appears to be critical for salt damage development in these 

mixtures. This reinforces that the pumping or movement of solution surrounding the sample is 

important for the damage.  
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Figure 9- Comparison of the residual strain measured after 9 temperature cycles with 
respect to the Ca(OH)2 content and three different conditions of testing  

 

Impact of the air void content on the salt damage development  

The impact of air void content on the salt damage development is shown in Figure 10. The 

evolution of the residual strain is plotted with respect to the number of temperature cycles for 

samples with different Ca(OH)2 contents (achieved by varying the FA content from 0% to 40%) 

and different air voids contents. As shown in Figure 9 and 10, as the Ca(OH)2 content decreases, 

the damage decreases.   

The residual strain for mixtures with a Ca(OH)2 content of 16.9 g/100gpaste and 10.6g/100gpaste 

increased with temperature cycling as illustrated in Figure 10(a) and Figure 10(b), 

independently from the air void content. However, samples with high air void content lasted 

three more temperature cycles than low air void content.  

This shows that air void content can influence salt damage development in mixtures with 

intermediate Ca(OH)2 content of 9 g/100gpaste and 7.5g/100gpaste (i.e. obtained by a FA content 

of 25% and 30% FA by mass respectively). Samples with 7.5 g/100gpaste Ca(OH)2 and a high 

air void content lasted up to 15 cycles while samples with a low air void content broke and 

their length became non-measurable after 12 cycles (Figure 10 (d)). The impact of air void 

3 6 9 12 15
0

3000

6000

9000

12000

15000

9 temperature cycles
Low air (∼2.3%)

 In 20% CaCl2
 Wrapped in aluminum
 In lime solution

R
es

id
ua

l S
tr

ai
n 

(µ
m

/m
)

Calcium hydroxide content 
(g/100gpaste) 

Fly ash content (%) 

02025303540



29 
 

content on mixtures containing 9 g/100gpaste Ca(OH)2 is visible but less advanced as compared 

to mixtures with 7.5 g/100gpaste Ca(OH)2 (Figure 10 (c)).  

The salt damage measured in both mixtures containing low Ca(OH)2 content (35% FA or 40% 

FA) is negligible as illustrated in Figure 10 (e) and Figure 10 (f) respectively. This is due to 

the pozzolanic reaction that consumes Ca(OH)2 and reduces its availability to react with CaCl2. 

This results in a reduction in CaOXY content and thus in salt damage development regardless 

of the air void content [57].  
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(a) 

 
(b) 

 
(c) 

   
(d) 

 
(e) 

 
(f) 

Figure 10- Residual strain with respect to the number of temperature cycle for mortar 
samples with 2 different air void content (a) Mixture 1 and 2, (b) Mixture 3 and 4, (c) 

Mixture 5 and 6, (d) Mixture 7 and 8, (e) Mixture 9 and 10, (f) Mixture 11 and 12.  
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Figure 11 illustrates the residual strain measurements after 9 temperature cycles as a function 

of Ca(OH)2 content, and air void content. As illustrated in Figure 11, the impact of air void 

content on salt damage development become more significant for mixtures with intermediate 

Ca(OH)2 content (mixtures with 25% and 30% FA content by mass) and this is in accordance 

with the visual inspection of the sample as illustrated in [101]. The Ca(OH)2 threshold value 

corresponding to 15g CaOXY/100 g paste is theoretically equal to 6g Ca(OH)2/100g paste 

(Figure 6). For the mortar samples tested in this study with a low air void content (empty dots 

in Figure 11), this threshold value seems to hold true as samples with Ca(OH)2 content higher 

than 6g/100 g paste developed significant damage while samples with a lower Ca(OH)2 content 

did not display significant damage. While for mortar samples with a higher air void content 

(filled dots in Figure 11), this threshold value seems to be conservative and can be increased to 

the value of about 8g Ca(OH)2/100g paste. This observation illustrates that the threshold value 

for CaOXY to limit salt damage is dependent on air void content rather than being a constant 

single value.  

 

    

 
Figure 11- Residual strain measured on samples with different Ca(OH)2, and different 

air voids content after 9 temperature cycles  
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Impact of paste content and air void on CaOXY threshold value  

Figure 12 illustrates the number of cycles needed to fill the void spaces of concrete, determined 

using equation (17) with respect to the air to paste content ratio and fly ash content. The number 

of cycles needed to fill voids increased with the FA content (i.e. increased with a decrease in 

Ca(OH)2 content), and with the air to paste content.Based on Figure 12, it can be noted that 

mixtures with a high air void content, low paste content and low Ca(OH)2 content (i.e. high fly 

ash content) will resist longer against salt damage development. It should be noted that the 

number of cycles illustrated in this figure is not representative to the number of cycles of a 

concrete pavement exposed to real environmental conditions. The calculations in this paper do 

not apply for a full-scale application with different size samples, environmental boundary 

conditions and aims only to illustrate the dependency of salt damage on the paste content, air 

void content and Ca(OH)2 content. Consequently, CaOXY threshold limit may vary depending 

on these parameters.    

   

Figure 12. Number of cycles needed to fill the void space in concrete with respect to the 
air void content to paste content ratio, and fly ash content. Note the number of cycle in 

this figure only applies to the laboratory sample sizes and boundary conditions.  

 

By combining equation (17) and equation (13), the amount of CaOXY that can develop in a 

mixture before filling the unfilled voids of concrete can be determined as a function of the 

number of temperature cycles, original volume of voids in a concrete mixture (V0), and paste 

content of the concrete mixture according to equation (19).  
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𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =
𝑉𝑉0− 𝑉𝑉1
0.43𝑖𝑖

×
3.02
𝐶𝐶

×
𝜌𝜌𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

× 100 
(19) 

where, MCaOXY-limit is the amount of CaOXY that can develop before filling all the voids of 

concrete with solution (g/100gpaste), C is the paste content of the concrete mixture.  

For a given number of temperature of cycles, the impact of the air void content to paste content 

ratio on the threshold value of CaOXY to limit salt damage development can be determined 

according to (19).  

 

Conclusion 
AASHTO PP-84-20 recommend that mixtures be designed using SCMs to limit the amount of 

CaOXY that forms to be less than 15g/100gpaste. This limit has been established empirically and 

does not consider other aspects of the mixture design. This paper discusses the impact of fluid 

absorption, entrained air void content, and paste content (i.e, air content /paste content) on 

CaOXY-induced damage. This was studied on mixtures containing different Ca(OH)2 content 

and different air void contents.  

The air void content did not influence salt damage development in mixtures with high Ca(OH)2 

content (FA replacement was between 0 and 20% of the cement by mass)), due to the large 

amount of CaOXY that can form (i.e., the volume of voids was insufficient to control the 

expansion).  

Similarly, the air void content did not impact the salt damage development in mixtures with a 

low Ca(OH)2 content (FA replacement higher than 35% by mass)). That is due to the dilution 

and pozzolanic reaction leading to a reduction in the Ca(OH)2 content and CaOXY content 

(i.e., there was not a sufficient expansion to result in substantial damage in either case).  

The air void content does however impact salt damage in mixtures with moderate Ca(OH)2  

content (FA replacement of  25% and 30% by mass)). Samples in this range of Ca(OH)2 content 

with higher air content had improved resistance to salt damage (compared to those with a lower 

entrained air content).  This indicates the value of the void space (i.e., air content) in reducing 

the expansive pressure caused by CaOXY. 

This study showed that the absorption of fluid during CaOXY formation is an important factor 

for salt damage development. CaOXY formation at low temperatures is accompanied by a 
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volume reduction of the materials in the pores of the mortar. The sample absorbs fluid from 

the solution surrounding the sample, due to capillary suction, and fills in void space created by 

CaOXY formation. When the temperature increases, a phase change occurs of solid CaOXY 

into liquid, which has a bigger volume than the solid phase. The absorbed solution at low 

temperature will reduce the available volume to accommodate for the volume expansion 

accompanying the phase change of CaOXY with the temperature increase. This may lead to 

pressure development and salt damage.  
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Abstract 

Deicing salts may accumulate within concrete paving joints which, over time, may cause 

damage due to calcium oxychloride formation.  This study looks at mixtures with similar air 

contents and 20% and 40% fly ash replacement by mass that are saturated in calcium chloride 

solution and cycled through a range of temperatures.  3D X-ray micro-computed tomography 

scans are used to sequentially image the changes in the same sample after different temperature 

cycles.  These images are correlated, and the damage propagation can be observed.  This study 

shows the formation of a damage gradient within the sample that is the highest at the surface.  

The cracking is also observed to begin at the aggregate interface and progress into the matrix.  

These observations provide insights into the mechanisms of the damage and provide guidance 

to design concrete to resist this deterioration.   

Keywords: Concrete, Air entrained concrete, Fly ash, Calcium oxychloride, Micro-Computed 

Tomography 

1.0 Introduction 
Concrete pavements have experienced damage near the joints due to the accumulation of deicing salts 

solution [1-6].  The absorption of this solution can result in an increase in the degree of saturation, 

which increases the potential for freezing and thawing damage for solutions with a low chloride 

concentration [7-11].  As the salt concentration increases, the potential for deleterious reactions 

between the solution and reacted products in the concrete increases resulting in the potential 

formation of Friedel’s salt (FS), Kuzel’s salt, and calcium oxychloride (CaOXY) [12-24].  
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Specifically, the calcium hydroxide Ca(OH)2 that occurs as a part of the hydration reaction is 

susceptible to reaction with the deicing salt [25-36].  A typical chemical reaction for CaOXY is 

shown in Equation (1) [7, 8, 13, 15, 19-21, 37-47]; however, the amount and form of water may 

change with temperature and CaCl2 concentration. 

 3 𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2 + 12 𝐻𝐻2𝑂𝑂 ⇌  3𝐶𝐶𝐶𝐶(𝑂𝑂𝑂𝑂)2.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2. 12𝐻𝐻2𝑂𝑂 (20) 

Equation (1) is a reversible phase change that depends on the temperature and the CaCl2 content 

as illustrated in Figure 1 [6, 47].  For systems in which the temperature is above the liquidus 

line, the Ca(OH)2 + H2O + CaCl2 solution is a miscible fluid.  When the temperature of the 

solution is decreased to below the liquidus line, the solution undergoes a phase change, and 

solid CaOXY begins to form.  This phase change occurs above the temperatures necessary to 

freeze water.  Figure 1 shows that at 20 percent CaCl2 and 20ºC, solid CaOXY is present within 

the solution that can cause damage to the concrete.  

 

Figure 13 – Phase diagram of Ca(OH)2-CaCl2-H2O system with 20% CaCl2 solution, after [6, 40, 
47]. 

The formation of CaOXY occurs on cooling and causes a reduction in volume [39, 41, 43]. On 

reheating, this volume change is reversed, and the material expands.  The rearrangement of products 

during this phase change, accompanied by fluid absorption during cooling, can result in the 

development of pressure on reheating that may cause damage [15, 24, 48-50].  While studies have 

documented the overall volume changes associated with CaOXY formation [47, 51], there is a lack 
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of information about the distribution of the phases and how this causes damage to the concrete.  This 

work uses X-ray micro computed tomography (Micro-CT) to capture 3D images of the same sample 

at different levels of CaOXY damage.   

Micro-CT is a non-destructive x-ray tool that can be used to investigate the three-dimensional 

microstructure of materials [52, 53].  It has been widely used in medical science to investigate 

biological organisms [54-56]. This method has also been used to study construction materials to 

analyze crack propagation [57-59] and air void distribution [60-63].  The Micro-CT captures a series 

of radiographs from different angles.  These radiographs can be used to build a three-dimensional 

model of the structure called a tomograph.  This tomograph can then be used for qualitative and 

quantitative analyses [64-69]. Because Micro-CT is non-destructive, each sample can be scanned over 

time to observe changes.  Previous examples of this to study the microstructure of concrete and 

mortar samples that have been exposed to freezing and thawing cycles [69-73].  However, for this 

study, the samples will not be exposed to freezing temperatures to ensure that the damage is only 

caused by CaOXY phase changes.  Micro-CT will be used to quantify the product growth in air voids 

and crack formation within each sample at a high level of Degree of Saturation (DOS).     

2.0 Experimental Methods 

2.1 Concrete Materials and Mixture Proportions 

Table 1 provides the oxide composition for the cementitious materials used in this study.  The 

cement was an ASTM C150 Type I ordinary portland cement.  The fly ash was an ASTM C618 

Class C fly ash.  Crushed limestone and natural sand from Oklahoma were used as aggregates.  

Both the fine and coarse aggregates met ASTM C33 standards.  The maximum nominal 

aggregate size of the limestone was 19 mm (3/4 in).  Table 2 shows the admixtures used that 

met the ASTM C260 and ASTM C494 standards.  
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Table 4 – Oxide composition of cementitious materials 

Oxide 
(%)

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O C3S C2S C3A C4AF LOI

Cement 21.1 4.7 2.6 62.1 2.4 3.2 0.2 0.3 56.7 17.8 8.2 7.8 2.7

Fly Ash 27.0 18.1 4.6 30.5 6.4 2.6 2.7 1.1 - - - - 0.12
 

An air entraining admixture (AEA) was used in this study.  The AEA is a wood rosin (WROS).  

Table 2 shows the two different mixture proportions studied in the laboratory testing.  All the 

mixtures used a Class C fly ash replacement of 20% or 40% of the portland cement by weight.  

Each mixture also contained an air content of about 2.5% and 6%.  This created four different 

concrete mixtures.   

Table 5 – Concrete Mixture Proportions at SSD

 

2.1.2 Concrete Mixing  

Aggregates from outdoor storage piles were gathered and moved indoors to a controlled 

temperature of 23° C +/- 1°C.  After 24 hours, the aggregates were loaded into the mixer and 

spun.  Samples were collected from the mixer for moisture correction.  After moisture 

corrections were calculated, all the aggregate and two-thirds of the water were placed in the 

mixer and spun for three minutes [ASTM C566].  This time allowed for evenly distributed 

aggregates and for the aggregates to be closer to saturated surface dry (SSD).   

The residual water, cement, and fly ash were added next and mixed for three minutes.  While 

the mixing drum was scraped, the concrete mixture rested for two minutes.  Following the rest 

time, the admixtures were added, and the mixer spun for an additional three minutes.     

2.2 Concrete and Mortar Sampling and Testing 

2.2.1 Sampling of Concrete and Mortar 

Immediately after mixing the concrete was tested for slump (ASTM C143) and unit weight 

(ASTM C138) [74, 75].  Two 7L samples were tested simultaneously with the SAM (AASHTO 

T 395) by different operators [76].  These were used to find the average SAM Number of a 

Mixture w/cm
Cement 
kg/m3

Fly-Ash 
kg/m3

Paste 
Volume 

(% )

Coarse 
Aggregate 

kg/m3

Fine 
Aggregate 

kg/m3

Water 
kg/m3

Admixture 
Used

20FA 0.45 202 36 21 981 971 125 WROS
40FA 0.45 218 145 29 1098 712 163 WROS
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mixture.  One hardened air-void analysis (ASTM C457) sample was made from each concrete 

mixture for testing [77].   

After the concrete samples were made, mortar samples were prepared.  The mortar samples 

were obtained from the same concrete mixture [78].  using a wet-sieving process.  A 9.5 mm 

sieve was used to remove the coarse aggregate from the concrete.  Two mortar cylinders were 

made from each sieved sample in 102 mm by 203 mm molds.  Further testing was completed 

on these samples that will be discussed in section 2.3.  

2.2.2 Sequential Air Method (SAM) 

The SAM testing was performed as defined in AASHTO T 395 [76].  The SAM device applies 

three sequential pressures to fresh concrete and the equilibrium pressures are recorded.  After 

the first pressure step, the air content is found like the ASTM C 231 Type B meter [79].  The 

pressure is then released, and the same steps are applied again to the fresh concrete.  The SAM 

Number is calculated by taking the numerical difference between the final pressure steps.  The 

difference between the pressure responses has been shown as indication of the air void size and 

spacing in the concrete [80].   

2.2.3 Hardened Air Void Analysis Sample Preparation 

Concrete samples were cut into 19 mm thick slabs and polished with sequentially finer grits 

[77].  The surface of the sample was preserved with an acetone and lacquer mixture to 

strengthen the surface before it was inspected under a stereo microscope.  After an acceptable 

surface was obtained, the sample is cleaned with acetone.  The surface was then colored with 

a black permanent marker, the air voids were filled with less than 1 µm white barium sulfate 

powder, and the air voids within the aggregates were blackened under a stereo microscope.  

This process makes the concrete sample black and the voids in the paste white.  Sample 

preparation details can be found in other publications [81, 82].  The sample analyzed with 

ASTM C457 method C using Rapid Air 457 from Concrete Experts, Inc.  A single threshold 

value of 185 was used for all samples in this research and the results do not include chords 

smaller than 30 µm.  A traverse length of 2286 mm was used for all samples to satisfy the 

requirements of ASTM C457.  These settings and sample processing methods are like methods 

used in other publications [82-84].  All air voids were used for the volume of chords less than 

300 μm [85]. 
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2.3 Mortar Testing 

2.3.1 Measurement of Ca(OH)2 

Thermogravimetric Analysis (TGA) was performed on the ground powder from the mortar 

samples to determine Ca(OH)2. The test was performed using approximately 30 mg of ground 

powder from the mortar.  The sample was heated to 1000 °C at a rate of 10 °C/min under a 

nitrogen atmosphere. Corrections were made for the loss on ignition of the constituent 

ingredients in their relative volume. The amount of calcium hydroxide in the paste was 

estimated based on its mass loss during decomposition between 380 °C and 460 °C. For 

reference, a tested samples of plain cement paste had a coefficient of variation of Ca(OH)2 of 

approximately 1% [86, 87].  

2.3.2 Coring and Saturation of Samples 

After curing, the mortar samples (obtained by wet sieving) were demolded and cut using a 

water-cooled diamond saw into 30 mm thick discs before being cored to cylinders with 10 mm 

diameter and 30 mm heights [47].  The cylinders were then trimmed using a water-cooled, 

precision diamond saw to have parallel surfaces [88].  The final dimensions of the cylindrical 

cores are nominally 10 mm in diameter and 20 mm in height.  The cores were then exposed to 

60°C temperature until reaching a constant mass (mass evolution over 24 hours is less than 

0.01%).  The samples were then vacuum saturated with lime-water solution under a vacuum 

pressure of 6 Torr.  The mortar cores were immersed in lime solution for an additional 24 hours 

at 23 ± 2°C.  They were then kept immersed in lime solution at 50 ± 1°C for an additional 24 

hours. 

 

Table 6 – Mortar samples investigated. 

Air 
Content

SAM 
Number

Spacing 
Factor 
[µm]

Specific 
Surface 
[mm-1]

Initial 
Mass [g]

Initial 
Length 
[mm]

20FA 20 5.4% 0.16 157 27.9 3.40 19.16
40FA 40 5.9% 0.10 163 29.3 3.70 21.45

Sample ID %  Fly 
Ash

Fresh Concrete 
Properties

Hardened Concrete 
Properties

Hardened Mortar 
Properties
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2.3.3 Mortar Sample Mass and Length Measurements 

All the samples were measured for mass using a scale with accuracy of 0.01g and length using 

a micrometer with accuracy of 0.00254 mm.  The samples were measured at the completion of 

each cycle.   

2.3.4 Temperature Cycling of Samples 

To prepare the samples for CaOXY formation a thermal cycling process was used.  Figure 2 

outlines the temperature cycling and scanning timeline for each sample.  After the samples 

were removed from the lime solution, they were scanned (Scan1) using the Micro-CT.  

Following the scan, the samples were placed directly in 20% CaCl2 solution that was 

equilibrated at 50 ± 1°C for an additional 24 hours, then scanned (Scan2) again using the Micro-

CT.  The amount of the solution was three times the volume of the sample.  Based on a pore 

volume of 20%, this results in an actual concentration of 18.75% CaCl2 in the pore solution.  

With the binding of chlorides within hydration products, the CaCl2 concentration in the pore 

solution will further decrease.  The immersion in salt solution at 50°C was to increase the 

penetration of the salts into the pores of the mortar before forming CaOXY [47, 51].  After 

scanning the sample, it was placed in a temperature-controlled chamber to be cycled through a 

series of temperatures: 5°C for 12 hours, 23°C for 10 hours, and 50°C for 30 minutes.  This 

cycle time was based on [47].   

 

Figure 14 – Temperature cycling versus time.  The timing for each scan is also shown.   
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The mortar samples were scanned with the Micro-CT at different stages throughout the process.  

These stages are listed in Table 4.   

Table 7 – Scans throughout soaking and temperature cycling 

 

2.4 Micro Computed Tomography (Micro-CT) 

The scanning was done by a ZEISS XRADIA 410 with a photon energy of 90 keV at a resolution of 

4.97 μm/pixel using glass filter LE6 from the manufacturer.  The volume of the interest (VOI) was a 

cylinder 5.0 mm in diameter and 5.0 mm in height located near the surface of the sample as shown in 

Figure 3.  The Micro-CT x-ray settings for each scan are shown in Table 5.  

 

Figure 15 – Location and dimension of the investigated volume of interest (VOI). 
Table 8 – ZEISS XRADIA 410 scan settings. 

Resolution 4.97 µm/pixel
Source Energy 90 keV
Optical Magnification 4X
Exposure Time 8.5 seconds
Number of Projections 2100
Total Exposure Time 5.5 hours  

The images were reconstructed using XMReconstructor to create a library of 2D cross-sectional 

images.  These images were stacked to enable a 3D image of the entire scan.  A dataset from a 

Scan1 Scan2 Scan3 Scan4 Scan5

24hr Lime 
Soak @ 50C

24hr CaCl 
Soak Solution 

@ 50C

CaCl Soak 
Solution for 

2 cycles

CaCl Soak 
Solution for 

5 cycles

CaCl Soak 
Solution for 

7 cycles
20FA M1 20 1 1 1 1 1
40FA M1 40 1 1 1 1 1

Sample ID %  Fly 
Ash

Micro-CT Scans
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representative sample is shown in Figure 4.  This shows a 3D tomography, a 2D cross-section of the 

reconstructed image, and the corresponding grayscale histogram for a sample [66].  Each 16-bit 

image consists of pixels with gray values ranging from 0 to 255 corresponding to x-ray absorption 

which is a function of density and composition of the material [89, 90].  The range in gray values can 

be used to separate the sample into different elemental phases by an image segmentation process [57, 

61, 91].  The main mortar components are air voids, paste, and aggregates. The x-ray absorption for 

air voids is the lowest because they are the least dense.  The lower the density of the element, the 

darker the voxels in the reconstructed images.  The aggregates and un-hydrated cement particles have 

higher densities, which makes them appear lighter gray to nearly white.  The paste of the sample falls 

somewhere between the voids and aggregate gray values. This can all be observed in Figure 4. 

 

Figure 16 – (A) An example of the Micro-CT dataset with the 3D tomography, (B) a 2D cross-

section of the reconstruction image, and (C) the corresponding grayscale histogram for a sample 

[66]. 

(A) (B) 

(C) 
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2.5 Image Processing and Analysis  

All images were processed, investigated, and visualized using ImageJ software and MATLAB codes.  

These techniques were used to provide quantitative and qualitative data from Micro-CT images.  Each 

set of images was aligned with the initial set of images.  This alignment would improve accuracy for 

segmentation and phase identification of each set. 

2.5.1 Alignment of Micro-CT Datasets  

For each set of images, 16-bit reconstruction images were created.  To compare each sample from one 

scan to another, alignment was necessary.  Before aligning the images, a histogram shift was used to 

match the grayscales in the images [62, 66, 69].  This would correct any grayscale shift in values 

between scans due to automatic normalization during reconstruction.  Matlab coding was then used to 

align the Micro-CT image datasets from one cycle to another.  The alignment algorithm was used with 

Scan2 as the reference scan for the subsequent scans.  In this process, some identifiable feature 

regions such as void clusters or high-density sand grains were handpicked throughout all scans, and 

their coordinates were used to find the 3D affine transformation matrices to align the following scans 

with the reference scan.  Details of the technique can be found in other publications [57, 92, 93].  

However, this alignment technique did not fully account for the rigid body movement of the sample 

between the scans.  If the regions of the sample moved in different directions from changes in the 

microstructure from the formation of cracks, it is difficult to find a single affine matrix that could 

consider those individual movements.  That makes the full region of the sample difficult to align using 

this technique.  To solve this, the alignment was completed on a smaller region so that the relative 

movements would be small and so the alignment was still possible.  For quantitative analyses, some 

small regions with some identifiable features with the dimensions of 1 mm x 1 mm x 1 mm were 

cropped and aligned individually to compare between different scans. 

2.5.2 Segmentation  

Segmentation of the Micro-CT imaging was used to create quantitative data. In this study, a 

threshold value was chosen to segment the regions of voids.  This paper uses the term void to 
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describe the measurements that do not contain solids.  There are voids that are below the 

resolution of the Micro-CT that are not included in this analysis.  The threshold value was 

adjusted and then chosen when the overall void percentage of Scan 1 matched the results from 

the fresh testing.  The voids observed in the initial scan are labeled “air voids”.  This same 

segmentation process was used in subsequent scans.  If a void space was observed in 

subsequent scans that did not exist in the initial scan, then this volume is labeled as a “crack” 

as this is void space that has formed in the hardened matrix.  It was also observed that volumes 

that were initially air voids in Scan 1 were later filled with a solid with additional temperature 

cycles.  These volumes were labeled as “products” as they are materials that are forming in 

previously existing void space.   

3.0 Results 

3.1 Ca(OH)2 Content 

The Ca(OH)2 content in the 20% fly ash and 40% fly ash mixtures was determined to be equal to 

10.6 g/100gpaste and 4.5 g/100gpaste  respectively [47].  This decrease in Ca(OH)2 content is caused by 

the pozzolanic reaction with fly ash that was added.  The lower amount of Ca(OH)2 will decrease the 

CaOXY content, which is expected to decrease the damage to the sample.  The CaOXY content in 

each sample is equal to 13.6 g/100gpaste and 5.4 g/100gpaste for mixtures containing 20% and 40% fly 

ash respectively [47].  This also shows that the sample with 40% fly ash replacement is expected to 

have less damage than the 20% fly ash sample.   

3.2 Mortar Sample Mass and Length Changes 

Figure 5 shows the results from the measurements for the 20FA M1 sample and the 40FA M1 

sample.  Each percent change in length measurement is labeled by the cycle time and scan.  

The percent change in length is the length of the sample minus its initial length divided by its 

initial length.  The figure shows that the sample with 40% fly ash stays below 0.50 percent 

length change, while the sample with 20% fly ash steadily increases in length after cycle 2.  

The increase in length could be internal damage from the formation of cracks.  This damage 

will be discussed later in the paper.  At cycle 7, the sample was visibly damaged with crumbling 

particles falling off the edges of the sample. 
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Figure 17 – Length measurement versus percent change. 

3.3 Micro-CT Imaging Analysis 

3.3.1 Micro-CT Imaging Compared to Segmentation of Voids 

Table 6 shows a 3 mm square scan from an interior volume from the 20FA M1 mixture.  This is 

the sample that showed expansion in Figure 5.  The first row of images are the raw scans from 

different cycles.  The second row of images shows the segmented voids.  The black represents 

the solids within the sample and the white represents air.  At cycle 5, there is a decrease in the 

volume of the air voids and an increase in cracking.  Cycle 7 shows further damage to the 

sample.  The cracks primarily form at the transition zone around the aggregate.  The cracks 

may form here because the transition zone is expected to have a higher concentrations of 

Ca(OH)2 than the other parts of the structure which has been often seen in field samples with 

damage around aggregate.  Further, the cracks may start at the interface due to dissimilar 

stiffness, moisture content, and coefficients of thermal expansion between the paste and 

aggregate resulting in stress concentrations [94].   

Table 9 – Images from the grayscale histogram correction process and segmentation of voids for 

the 20FA M1 sample.  Each image is 3 mm x 3 mm in size. 



58 
 

Description Lime 50C 
soak 

CaCl2 50C 
soak CaCl2 cycle 2 CaCl2 cycle 5 CaCl2 cycle 7 

Image after 
gray value 
histogram 
correction 

     

Segmentation 
of voids 

 
     

 

Table 7 shows a slice from a 3 mm cube from the interior VOI displayed in Figure 3 for 40FA 

M1 mixture.  This is the sample that showed minimal expansion after 7 cycles in Figure 5.  The 

first row of images shows a slice without segmentation and the second row of images shows the 

same slice after segmentation. This matches what is shown in Table 7.  The voids in these scans 

are not changing in size and there is no cracking observed as the temperature cycles increase.  

The lack of damage is due to the higher fly ash replacement, which decreases the level of 

Ca(OH)2 within the mixture [95, 96].  
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Table 10 – Images from the grayscale histogram correction process and segmentation of voids 

for the 40FA M1 sample.  Each image is 3 mm x 3 mm in size. 

Description Lime 50C 
soak 

CaCl2 50C 
soak CaCl2 cycle 2 CaCl2 cycle 5 CaCl2 cycle 7 

Image after 
gray value 
histogram 
correction 

     

Segmentation 
of voids 

 

     
 

3.3.2 Quantifying Damage within Samples 

To quantify the damage within the sample throughout each scan, the total volume of voids is 

plotted for different temperature cycles.  In Figure 6, the 20FA M1 sample shows an increase in 

the volume of air voids and cracks in the sample.  This matches the visual observations from 

Table 7 but this provides quantitative evidence.  The increase in cracks begin after the second 

temperature cycle where the sample is soaked in CaCl2.  The 40FA M1 sample shows a 

consistent volume of air voids and cracks within the sample.  This result agrees with the images 

shown in Table 7. 
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Figure 18 – Total volume of air per scan for 20 percent and 40 percent fly ash replacement.  

To obtain more information about the distribution of the voids in the sample, the samples were 

evaluated from the surface of the sample to a depth of 3.8 mm.  The plot shown in Figure 6 

shows the change in the volume of air voids and cracks over the depth of the sample.  Figure 7 

also contains slices from a depth near the surface and 3.0 mm from the surface from CaCl2 

solution cycle 7 for the 20FA M1 sample.  This plot shows the change in volume of air voids 

and cracks compared to the initial scan taken after placing the sample in lime water solution at 

50ºC.  The data is plotted this way to help show the difference between the scans.  For example, 

the total volume of voids at the surface (0.0 mm) for CaCl2 cycle 7 was 7.3% greater than the 

volume of voids at the surface for the lime soak.  The image included in the figure shows the 

surface of the sample and the significant cracking that is observed.  There are several large 

cracks visible around the aggregates in the image.  These changes are noticeable starting at 

cycle 2.  The change in volume of voids for cycle 7 at 3.0 mm depth was 1.5%.  This is 5.8% 

less void volume than at the surface.  This means that there is more damage at the surface of 

the sample compared to the interior.  This is probably because the surface of the sample was in 

contact with the CaCl2 solution.  As damage increases this will allow more solution to enter 

the concrete and damage the sample.    
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Figure 19 – Change in the total volume of air over the depth of the 20 percent fly ash sample.  

Each image is 3 mm x 3 mm in size. 

Figure 8 shows the same plot and slices as Figure 7, but for the 40 percent fly ash sample.  

There was minimal change in the volume of air voids and cracks for each cycle.  These small 

changes are likely caused by noise in the images.  Cross section images are included from the 

surface and at a depth of 3.0 mm.  The difference in performance is because the damaged 

sample in Figure 7 used 20% fly ash replacement and contained 10.6 g/100gpaste of Ca(OH)2 

and the sample in Figure 8 with 40% fly ash replacement contains 4.5 g/100gpaste of Ca(OH)2. 
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Figure 20 – Change in the total volume of air over the depth of the 40 percent fly ash sample.  

Each image is 3 mm x 3 mm in size.     

3.3.3 Micro-CT Imaging of Individual Voids  

Smaller regions of the sample were investigated to follow the changes of individual voids.  In 

Table 8, a raw scan from each cycle for sample 20FA M1 is shown along with a segmented 

version of the image, a 3D model of an individual air void, the volume of that air void, and the 

change in measured volume compared to the initial scan.  Each image represents a 1 mm cube 

within the 3 mm cube previously studied.     

The segmentation of voids shows air voids filling and cracks forming as the sample was cycled 

through temperature changes.  The 3D model shows how the volume of a single air void 

changed over time, which is circled in the segmented image.  The percentage of initial void 

starts at 100 percent for the lime soak at 50ºC.  By cycle 5, the volume of air void has reduced 

to 66 percent of the initial void volume and by cycle 7, it has reduced to 43 percent of the initial 

air volume.  These air voids appear to fill with solids over time.  These solids may be formed 

by water being forced into the voids by the phase change of the CaOXY.  If the air voids are 

filled over time by solids, then these voids can no longer protect the concrete from freezing 



63 
 

events or from the pore pressure increases by the CaOXY phase change.  Although this study 

did not examine the chemical makeup of the material in the voids, others have investigated this 

and determined that it is made up of ettringite and CH [69].     

 Table 11 – Imaging and air volume analysis of 20FA M1 scans 1 through 5.  Each image is 1 

mm x 1 mm in size. 

Description Lime 50C 
soak 

CaCl2 50C 
soak CaCl2 cycle 2 CaCl2 cycle 5 CaCl2 cycle 7 

Image after 
gray value 
histogram 
correction 

     

Segmentatio
n of voids 

 

     

3D void 
model 

     

Volume of 
void [µm3] 1171125 1129250 1152125 768750 501750 

Volume 
change 

compared to 
Lime 50C 

soak 

100% 96% 98% 66% 43% 

 

In Table 9, each cycle for sample 40FA M1 is shown that mirrors Table 8.  The most volume 

reduction observed is 3%.  This is a minimal decrease in volume compared to the 57% 

reduction in volume shown in Table 9.  The 3D images also show minimal change in the void.  

Minimal damage is observed because of the higher fly ash replacement and therefore the 

reduced CaOXY formation.   

Table 12 – Imaging and air volume analysis of 40FA M1 scans 1 through 5.  Each image is 1 

mm x 1 mm in size. 
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Description Lime 50C 
soak 

CaCl2 50C 
soak CaCl2 cycle 2 CaCl2 cycle 5 CaCl2 cycle 7 

Image after 
gray value 
histogram 
correction      

Segmentatio
n of voids 

 

     

3D void 
model 

     

Volume of 
void [µm3] 441500 434875 440375 454375 427250 

Volume 
change 

compared to 
Lime 50C 

soak 

100% 98% 100% 103% 97% 

 

Figures 9 and 10 extend the results from Tables 9 and 10 to the entire sample.  The results reported do 

not include cracks.  The air voids are determined in the scan after soaking the sample in 50ºC lime water 

and these same volumes are revisited in subsequent scans to determine their change in volume. 

In Figure 9 and 10, the line for the sample soaked in lime water at 50ºC shows the initial air void 

distribution.  As the lines move lower this shows a decrease in the air void volume.  In both figures, the 

sample soaked in CaCl2 for the first and second cycles is slightly lower than the initial air volume.  This 

is possibly due to pore filling.  Also, there is minimal difference between the “CaCl2 50C soak” scan 

and the “CaCl2 cycle 2”.  This shows that the experimental method is repeatable.    

In Figure 9, significant changes in the total volume of air begin to occur starting at cycle 2.  

The results show that the cumulative air void volume has decreased by roughly 56% by cycle 

5 and 70% by cycle 7.   This shows the significant air void filling that occurs from temperature 
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cycling in the 20% CaCl2 solution.  As stated previously, once these air voids fill, the protection 

against freeze thaw and CaOXY damage is reduced. 

 

Figure 21 – Cumulative air void volume for the 20% fly ash sample. The results reported do 

not include cracks.  The air voids are determined in the scan after the 50ºC lime soak, and these 

same volumes are revisited in subsequent scans to determine their change in volume. 

The 40% fly ash sample shows a significantly different performance when compared to the 

sample with 20% fly ash.  The total reduction in air void volume is only 20% at the end of the 

testing.  Also, this volume change occurs in voids with a diameter greater than 80 µm.  It is 

important to note that these larger voids are not as critical in providing protection against freeze 

thaw damage compared to the smaller voids [97].  This occurs because less CaOXY is expected 

to form in this sample because of the higher fly ash replacement level.     
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Figure 22 – Cumulative total volume of air in relation to the air void diameter for each scan of 

sample 40FA M1.  The results reported do not include cracks.  The air voids are determined in 

the scan after the 50ºC lime soak, and these same volumes are revisited in subsequent scans to 

determine their change in volume.  

4.0 Mechanisms of CaOXY Damage  

This work provides a direct observation of the progressive damage caused by CaOXY in 

concrete.  This provides insights into the location, rate, and volume of damage.  Since this work 

investigated a 20% fly ash sample that was damaged and a 40% fly ash sample that was not 

damaged then this allows a comparison to be made of the accuracy and repeatability of the 

experimental techniques.   

Figure 7 shows that between cycle 2 and cycle 5, the sample with 20% fly ash shows an increase 

in damage from the surface to 1 mm deep within the sample.  At this same time, the air voids 

are starting to fill, and the sample is changing length.  This continues between temperature 

cycle 5 and cycle 7.  The damage continues to increase at the surface and extends up to 1.5 mm 

deep within the sample.  By the end of cycle 7, the air voids between 20 µm and 100 µm lose 

70% of their volume from infilling.   
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The higher damage at the sample surface occurs because that is where the 20% CaCl2 solution 

is in direct contact with the sample.  As the concrete cracks, this allows a higher amount of 

CaCl2 within the sample, which reacts to form more CaOXY.  As the cycles increase, this 

causes more damage to the sample.  Within the sample, the cracking is first observed in the 

transition zone around the aggregates.  This occurs because the transition zone is expected to 

have a higher concentration of Ca(OH)2. 

The air void filling is likely due to high concentration of dissolved ions in the pore solution.  

As the temperature decreases, the CaOXY phase change will occur, causing an increase in 

volume.  This increase in volume forces the solution from the capillary pores into the air voids.  

These air voids are likely empty because the sample is below the critical degree of saturation.  

Once the forced pore solution reaches the air void, the pressure is relieved because the pore 

solution is no longer confined.  Once the pressure is reduced, the ions saturated in the pore 

solutions will form solids.  As the temperature rises, the CaOXY phase change occurs causing 

a decrease in volume.  This allows the solution in the voids to drain into the capillary pores 

leaving the formed solids in the air voids.  As this process repeats, the air voids will continue 

to fill with solids.  As the air voids decrease in volume, this reduces the amount of protection 

from future CaOXY phase changes.   

5.0 Practical Significance 

The damage observed in this paper resembles the damage observed at sawed joints with poor 

drainage in field pavements that receive chloride deicing chemicals.   Because of the sawing, 

these joints often have aggregates with exposed transition zones that can react with the salt 

solution.  Many field projects have observed air void filling near the joints [98].  The 

observations and mechanisms discussed in this paper explain why this occurs.   

It is important to note that the temperature cycling that causes damage occurs at moderate 

temperatures and does not require temperatures typical of freezing water.  This means that the 

temperature cycles can be experienced outside winter months and so the cycles caused by 

CaOXY may be high for these pavements.   

If the air voids within the sample fill because of the CaOXY phase change then the air voids 

will lose their effectiveness to protect the concrete from both CaOXY and freeze thaw damage.  

This means that concrete could be damaged in the winter from freeze thaw and continue to be 
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damaged in other months by CaOXY.  This is why the damage can be so rapid and severe in 

the field.   

A critical takeaway from this work is that CaOXY damage can be stopped by using enough fly 

ash in the mixture to reduce the Ca(OH)2 in the sample below a critical limit.  While the air 

void content is helpful, it will only temporarily delay the CaOXY damage if enough Ca(OH)2 

is present.  One practical method to address CaOXY is to use a supplementary cementitious 

material like fly ash and to entrain air in the sample.  This has been investigated in previous 

research and for typical air contents of 6% and when fly ash is used at 30% replacement by 

mass, this seems to be sufficient to prevent damage from CaOXY [47].   

6.0 Conclusions 

For this study, mortar samples that were wet sieved from concrete were examined using Micro-

CT imaging and length change measurements.  Both samples had similar values of entrained 

air but different fly ash replacement levels.  One sample used 20% fly ash replacement and the 

other had 40% fly ash replacement.  Throughout the study it shows that the sample with 20% 

replacement experiences more air void filling and cracking than the 40% fly ash sample.  The 

following can be observed from this work: 

• For the 20% fly ash sample, the length change steadily increased by 2.50% between 

cycles 2 and 7, while there was only 0.50% length change for the 40% fly ash sample.   

• The cracks were primarily observed around the aggregates.  This may be because of 

the higher amount of Ca(OH)2 in the transition zone that may form CaOXY. 

• For the sample with 20% fly ash replacement, there was an 8% increase in volume at 

the surface and a 2% increase in volume at 3 mm from the surface from CaOXY 

damage.  There was no cracking observed in the 40% fly ash replacement sample 

under the same conditions.     

• The sample with 20% fly ash replacement had a 56% reduction in the air voids 

between cycle 2 and 5, and a 70% reduction in the air voids between cycles 2 and 7.  

While the sample with 40% fly ash replacement showed no changes.   
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This work provides fundamental insights into the changes in the microstructure and air voids 

caused by the formation of CaOXY.  The observations in this work also match previous field 

observations and other publications [47]. CaOXY is an issue that has caused significant 

destruction, and these observations provide insights and discussions about the mechanisms of 

CaOXY formation and how the damage propagates in concrete and reduces the ability to resist 

freeze thaw damage.   
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Abstract 

This research represents four years of direct, concrete field data of degree of saturation (DOS) 

and damaging freeze-thaw (FT) cycles from 42 sites in 14 states in the U.S. While present 

methods of estimating FT damage are either using regional climatic data, or a result of lab tests, 

this research directly measures site-specific variations in concrete moisture and temperature 

that affect FT durability. The results show that damaging FT cycles occur only when low 

temperatures and high DOS levels overlap. Therefore, this overlap can differ widely even 

within the same regions. Based on these observations, four climate zones are identified and 

mapped. Also, this study analyzes how DOS, total FT cycles, and damaging FT cycles vary 
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across locations. Overall, this work reveals the importance of using site-specific evaluations 

for designing concrete with FT durability. 

Keywords: Resistivity, Freeze-Thaw Durability, Damaging Freeze-Thaw Cycles, Degree of 

Saturation, Freeze-Thaw Maps. 

1.0 Introduction 

FT damage is one of the main concrete durability challenges in cold and wet climates (Kosior-

Kazberuk and Jezierski 2004; Jacobsen 2005). Thus, predicting damaging FT cycles accurately 

is important for designing concrete mixtures that are more durable in cold regions. However, 

many previous studies relied on laboratory testing or broad climate zones that do not always 

represent what concrete experiences in the field (ASTM 2015; RILEM TC 117-FDC 2004; Li 

et al. 2012; Yu et al. 2013; Abdelrahman and Ley 2024; ACI Committee 201 2016; Schaefer 

and Wang 2006). Current standards, such as the Long-Term Pavement Performance (LTPP) 

Climate Region Classification (FHWA 2013)  and ACI 318 (ACI Committee 318 2019), 

provide general exposure guidance, but they are not based on field measurements recorded 

directly from concrete, and they do not account for local weather variability within a single 

region. Therefore, this work presents concrete field measurements of DOS and FT cycles at 

different locations across the U.S. to better understand the actual performance of the concrete 

under real environmental conditions. 

FT damage is mainly controlled by freezing temperature and moisture content in the concrete, 

which is commonly represented by the DOS (Beaudoin and MacInnis 1974; Bentz et al. 2001; 

Sutter et al. 2006; Sun et al. 2007; Leech et al. 2008). However, local weather conditions such 

as air temperature, humidity, and precipitation can significantly change both the freezing 

temperature and the DOS within the concrete (Akita et al. 1999; Liu et al. 2016). DOS stands 

for percentage voids in concrete saturated with water, and it plays a major role in determining 
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concrete susceptibility to FT damage (Ghantous et al. 2019; Fagerlund 1977). Several factors 

influence DOS, such as porosity, air content, pore structure, and the amount of free water within 

the concrete. Although air void spacing does not directly change DOS, it affects the critical 

DOS, the critical saturation level when damage starts to develop (Li et al. 2012; Fagerlund 

1977; Moradllo et al. 2019; Fagerlund 1973). The critical DOS is typically between 78% and 

90% (Li et al. 2012; Fagerlund 1977; Moradllo et al. 2019; Fagerlund 1973), and FT cycles are 

considered damaging when the DOS in concrete is above the critical DOS.  

Temperature is also a key factor in FT damage. In cold, wet regions, when the concrete 

temperature drops below freezing, water inside the concrete freezes, resulting in hydraulic and 

crystallization pressures. As a result, cracks will develop, especially when the DOS is above 

the critical value, leading to more concrete durability issues (Fagerlund 1977; Powers 1945; 

Shang and Yi 2013; Barham et al. 2021; Obaidat et al. 2020). Therefore, measuring DOS and 

detecting ice formation in real time under field conditions has historically been a challenge. 

To address this challenge, a novel field-based method was developed that uses electrical 

resistivity and temperature measurements to measure DOS, ice formation, and ice melting 

inside concrete in real time (Chen et al. 2023). This study showed a direct relationship between 

DOS and freezing temperature, as higher DOS increases the freezing temperature of 

cementitious materials, while lower DOS results in freezing at lower temperatures (Chen et al. 

2023; Bager and Sellevold 1986; Farnam et al. 2015). Thus, this work showed that damaging 

FT cycles can be detected in situ, offering a practical way to quantify the number of damaging 

FT cycles. However, the method was only applied at two locations throughout one winter. 

This study extends earlier work (Chen et al. 2023) by expanding the field measurements to 42 

sites in 14 U.S. states, monitored over four consecutive winters from September to April (2020–
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2024), to investigate how the DOS and the FT cycles change in real environmental conditions 

across different locations. 

This novel dataset of field location-specific measurements offers a valuable methodology for 

establishing tools and maps that can identify and measure damaging FT cycles for various 

climatic conditions. Therefore, it becomes feasible for these tools and maps to help enhance 

durability design and analysis, which are currently a prominent missing area in available 

literature. 

2.0 Experimental Materials and Methods 

2.1 Field Sample Preparation 

The samples for this work were prepared using cylindrical specimen mortar samples with a 

diameter of 152.4 mm, a height of 127.0 mm, a water-to-cement ratio of 0.45, and no 

supplementary cementitious materials were included to minimize variability in resistivity over 

time (Chen et al. 2023). This mixed design for the samples ensures that all locations have 

identical samples. Another reason for using a mortar sample in this test is that it provides easy 

construction, calibration, and measurement for electrical resistivity. Since FT durable coarse 

aggregates are not expected to absorb much moisture, this test result will also work for 

concrete. 

A fiber-reinforced concrete cover was constructed to protect the samples and wiring using a 

0.45 w/c mix with 2% macro synthetic fibers by volume. The final concrete block measured 

457 mm × 305 mm × 178 mm, providing structural support and insulation (Chen et al. 2023). 

Each field sample block contained two mortar specimens, allowing for redundant 

measurements for data reliability. More details about the mixture design are available in 

Appendix A. 

2.2 Instrumentation and Data Collection 
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Each field sample block was embedded with four thermocouples for temperature monitoring, 

and stainless-steel rods, referred to as electrodes, were used for resistivity measurements. The 

electrodes had a horizontal spacing of 92.7 mm and were centered in the middle of the 152.4 

mm diameter cylinder. The rods are vertically spaced at 12.7 mm from the surface to create 

seven levels of measurement. Thermocouples were also installed to measure the temperature 

of the sample at 12.7 mm from the surface, and then at 50.8 mm and 88.9 mm from the surface.  

Based on previous publications, the rods are 51 mm from the surface. This was chosen as the 

previous research (Chen et al. 2023) has shown that this depth experiences the most FT cycles 

and the highest DOS. Therefore, this depth is considered the worst-case scenario for evaluating 

FT damage in this study. These findings were also verified with the sites investigated for this 

work. 

The uppermost steel rods and thermocouples were exposed above the mortar surface to capture 

water accumulation and air temperature readings (Chen et al. 2023). To simulate poor drainage 

conditions, the mortar surface was set 25.4 mm below the top of the mold, allowing 

precipitation to collect and evaporate naturally. This was done to simulate an area of poor 

drainage on a pavement or bridge deck.  Fig. 1 illustrates the configuration of the mortar 

samples. Samples were connected to an instrument box with a data logger mounted on a post. 

Temperature and resistivity measurements were recorded every 30 minutes and stored on an 

SD card. Fig. 2 describes in detail the samples used in the field for monitoring the mortar 

specimens. Additionally, Fig. 3 illustrates the monitored samples installed in the field. Further 

information on data processing is in Appendix B. 
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Fig. 1. Mortar cylindrical specimen configuration (acquired from Chen et al. 2023). 

 

Fig. 2. Configuration of the field samples setup, showing the concrete block dimensions, 

instrument box,  and solar panel connection. 
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Fig. 3. Installed field samples, with the instrumentation box and solar panel set up for data 

collection. 

2.3 Field Samples Placement  

To test how FT cycles affect concrete durability, concrete samples were distributed in 14 states 

in the U.S. The reasons for this are that these states are expected to expose their concrete to 

varying amounts of FT cycles, and these are also states that are sponsoring this research. The 

period of this experiment lasted for four successive winter periods: 2020, 2021, 2022, and 2023. 

Every winter period lasted from September to April. This is tabulated in Table 1. The locations 

and states are shown on the map in Fig. 4. Each state contains three instrumented blocks placed 

at three different locations. The field sites in each state are labeled A, B, and C, starting with 

the furthest west site. The layout is shown in Fig. 4. Detailed locations for each field site are 

provided in Appendix C. 
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Table 1.  Study Periods for the Field Samples. 
 

Year Period 
Winter of 2020 September 2020 –  April 2021 
Winter of 2021 September 2021 – April 2022 
Winter of 2022 September 2022 – April 2023 
Winter of 2023 September 2023 – April 2024 

 

 

 

Fig. 4. Locations of the 42 field samples across 14 U.S. states. 

2.4 Determining the Number of FT Cycles 

The detection of FT cycles is based on the relationship between the DOS and freezing 

temperature (Chen et al. 2023). The freezing temperature is defined as the temperature at which 

the water inside the concrete begins to freeze, and this temperature depends on the DOS of the 

concrete (Chen et al. 2023). Fig. 5 shows the relationship between DOS and freezing 

temperatures, which was developed from previous work (Chen et al. 2023). More details about 

this relationship can be found in Appendix D. 
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Fig. 5 shows that concrete samples with higher DOS values freeze at higher temperatures than 

the samples with lower DOS. This means it is easier for the concrete to freeze and be damaged 

from ice formation at high DOS. For this study, the FT cycle is defined as a temperature drop 

below the freezing temperature followed by a rise above 0°C. The analysis uses the rods located 

51 mm below the surface, as this is where the samples showed the highest DOS (Chen et al. 

2023). 

 

Fig. 5. DOS vs. freezing temperature relationship (acquired from Chen et al. 2023). 

2.5 Determining the Number of Damaging FT Cycles 

In this study, the FT cycle is considered damaging if the DOS increases above 80% and ice 

forms within the sample. The 80% DOS limit was selected as it represents a conservative lower 

limit when FT damage is likely to occur. Setting the critical DOS at 80% ensures caution, as 

the potential for damaging FT cycles is reduced below this value, and ice formation within the 

sample is less likely to cause damage. Therefore, this value helps avoid underestimating 

potential FT damage and aligns with findings from previous studies, which identify the critical 

DOS range as 78–90% (Li et al. 2012; Fagerlund 1977; Moradllo et al. 2019; Fagerlund 1973). 

This provides further justification for selecting 80% as a conservative value to account for 

potential measurement variability and ensure a margin of safety in evaluating FT damage. 

Thus, in this study, FT damage is detected when the concrete has frozen, based on the freezing 
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temperature shown in Fig. 5, and coincides with a DOS above the critical 80%. Any FT cycles 

occurring below this critical DOS are not considered damaging cycles. 

3.0 Results and Discussion 

3.1 Variation of DOS Based on Month, Region, and Year 

Fig. 6 shows the average DOS at the 42 locations during winter 2020–2021, along with regional 

variation. Results for other winters are provided in Appendix E, and the average monthly DOS 

data are presented in Appendix F. Across the four winters, Oregon Location C has the highest 

Coefficient of Variation (CV) at 5.6% and a standard deviation of 4.9%. This indicates that the 

DOS values were generally consistent over the winters for each location measured. The high 

CV at this site was likely due to local weather variability, though the variation remained 

relatively small.  The variation in the damaging FT cycles is discussed later in the document. 

Fig. 6 shows that different regions have different DOS levels.  As explained previously, 

locations where the DOS is high will freeze at higher temperatures (see Fig. 5) and will be 

damaged more easily from the FT cycles. While locations with low DOS require lower 

temperatures to freeze (see Fig. 5), they are less of a concern for FT damage.  This observed 

variability in DOS means that using a single FT strategy for an entire state or region may be 

inaccurate, since moisture levels can vary widely in the same region. This highlights the need 

for location-based FT exposure assessments based on actual field measurements to better 

analyze and design more durable concrete in cold regions. The variation in the DOS between 

sites is impacted by a complex combination of weather. Understanding how different weather 

factors impact the DOS will be discussed in other publications.  
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Fig. 6. Location-specific average DOS (%) measured at field sites during winter 2020–2021. 

 

3.2 Total and Damaging FT Cycles 

This section presents the total and damaging FT cycles measured in field concrete samples 

across U.S. states during winter 2020–2021. Results for other years are presented in Appendix 

G. Fig. 7 shows the total and damaging FT cycles measured in the field concrete samples, 

where the first number represents the total cycles and the second number indicates the 

damaging cycles (i.e., cycles occurring when the DOS exceeds 80%). Based on the DOS and 

FT data, each location can be grouped into different regions, which are summarized in Table 2 

and illustrated in Fig. 8. 
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Fig. 7. Total and damaging field-measured FT cycles during winter 2020–2021. 

 

Table 2. Summary of Environmental Conditions and Freezing Event Scenarios. 
 

Possible Case Wet + FT Dry + FT Wet + Low FT Variable Saturation + 
FT 

Precipitation High Low High Moderate 
DOS% High (>80%) Low (<80%) High (>80%) Variable (> or < 80%) 

FT Cycles  High High Low (<15 Cycles) High 
Damaging FT Cycles High No Low (<15 Cycles) Moderate 

Example Location Minnesota (A) Oklahoma (A) Oregon (A) Illinois (B) 
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     Fig. 8. Geographic distribution of FT cases assigned to each field location. 

3.2.1 Wet + FT  

Fig. 7 shows that in northern states like Idaho, North Dakota, Minnesota, Wisconsin, Iowa, 

Nebraska, and Pennsylvania, every FT cycle was damaging, as the DOS consistently exceeded 

80% during freezing. This shows the vulnerability of colder, wetter regions where the DOS 

remains above 80%.   

3.2.2 Dry + FT  

While some locations experienced frequent FT cycles, these do not always lead to damage. 

This occurs because the DOS was always <80% during freezing at these locations. This 

highlights that damaging FT cycles are not caused by freezing alone but by the coincidence of 

freezing events with high DOS. This can be seen in Fig. 7 in locations B and C in Colorado. 

These locations experience freeze–thaw cycles (67 and 66), but none were damaging because 

the DOS stayed below 80% (75% and 79%). A similar pattern was observed at Location A in 

both Oklahoma and Kansas, where high cycle counts were not damaging because the DOS was 
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below the critical DOS (both had a DOS of 79%). It should be noted that all of these locations 

were in a dry climate, which can explain why the DOS of this concrete was lower.   

3.2.3 Wet + Low FT 

Some locations had an average DOS above the critical threshold of 80% but experienced 

relatively few freeze–thaw cycles.  For this work, a few FT cycles are defined as fewer than 15 

cycles over the winter season. In these cases, nearly all FT cycles were damaging, but the total 

number of FT cycles was limited due to warmer temperatures. For example, Oregon Location 

A and Oklahoma Location C had average DOS values above 80% during winter, yet recorded 

only a small number of FT cycles. This shows that even in wet regions where concrete remains 

highly saturated, limited freezing events can reduce the overall FT damage. However, when 

freezing does occur, the high DOS ensures that nearly every cycle contributes to damage. 

3.2.4 Variable Saturation + FT 

It is also possible that the DOS is sometimes above the critical limit of 80% and sometimes it 

is below. This can be seen at Illinois Locations B and C. For example, 33 and 27 FT cycles 

were recorded, but only 19 and 22 were damaging. Although the average DOS for this region 

is 82% and 85%, temporary drops in the DOS below 80% by drying before a freeze meant that 

some of the FT cycles were not damaging. This shows that it is not enough to know the average 

DOS, but instead it is important to know the DOS when the freezing event occurs. This work 

classified any location where this occurred as having variable saturation. 

To show a detailed example, individual measurements of the temperature and DOS from 

December 2020 for Location B in Illinois are shown in Fig. 9. The dashed blue vertical lines 

indicate points where the concrete has frozen. The vertical dashed green lines then indicate 

where the concrete has thawed. Note that the temperature may be below 0°C, but this is not 

low enough for the concrete to freeze based on the DOS of the sample. However, it should be 
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emphasized that if the DOS is below 80% then the freezing event will not cause damage. 

Examples of this are shown in Fig. 9b.   

This shows that even at sites with a high average DOS, it is possible that variations in the 

moisture content can create non-damaging FT cycles. This highlights the importance of the 

DOS of the sample and the timing of the FT event.  

 

(a) 

 

(b) 

Fig. 9: Temperature and DOS at Illinois Location B in December 2020, highlighting 

damaging and non-damaging FT cycles; (a) temperature, (b) DOS. 

 

3.3 Comparison to Other Climate Models 

Current standards classify FT exposure by using broad regional climate categories, but they 

often overlook the site-specific conditions that cause actual damage. Thus, it is important to 

understand the limitations of these standards as they affect the concrete durability of design 
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decisions and analysis. For instance, the LTPP (FHWA 2013) divides regions into wet and dry 

zones based on precipitation. Wet regions are defined as receiving more than 508 mm of 

precipitation per year, while dry regions receive less. Freeze severity is then described using 

the Freezing Index (FI), which adds up the degree-days below 0°C in a year and is meant to 

indicate how severe the freezing exposure is. Areas with FI values below 50 are classified as 

No-Freeze, those between 50 and 400 as Moderate-Freeze, and those above 400 as Deep-Freeze 

(FHWA 2013). One problem with this approach is that it does not consider whether freezing 

happens when the concrete is highly saturated. As shown in this study, even if the average DOS 

is higher than the critical threshold, short-term drops in saturation during freezing events can 

reduce the number of damaging FT cycles. Many locations move above and below the 80% 

DOS level throughout the winter, and this variability is not captured by LTPP categories. 

Another limitation is that the LTPP zones describe only the severity of freezing but do not 

indicate how many damaging FT cycles occur at a location, which is a key factor in durability. 

ACI 318 (ACI Committee 318 2019) has exposure classes (F0–F3) based on whether or not 

concrete will freeze in moist conditions, but it does not provide engineers with clear guidance 

on how to determine this, leading most to make conservative assumptions. 

This work has used location-specific field data in combination with measured DOS and timing 

of freezing events. This allows regional variability to be taken into account and offers a much 

more accurate assessment and basis for design for FT exposure and durability of concrete in 

cold regions. It also more accurately represents the true exposure of concrete to damaging 

cycles than the zones that are offered by some guidelines, but misrepresent local conditions, 

and can either overestimate or underestimate actual FT exposure. 
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3.4 Year-to-Year Variability in FT Cycles 

Table 3 groups sites by CV and lists the percentage of locations in each variability group; 

results for individual locations are given in Appendix G. A low CV of less than 15% indicates 

little variation from year to year and suggests that sites had relatively stable FT 

behavior. Moderate variability between 15% and 40% still shows some noticeable variation 

over the years in terms of FT cycles. High variability of greater than 40% suggests that there 

were substantial differences between years in FT cycle numbers. Locations with a very low 

number of FT cycles, in general, had inflated values of CV as the effect of even minor 

variations is magnified. Consequently, only locations that have more than five FT cycles per 

year have their CV reported as values at sites where there are a very small number of cycles 

that can be easily inflated and are not very meaningful. The resulting values show that the 

plurality of locations had low variability (52%), and a very large portion had moderate 

variability (43%). This suggests that there was year-to-year variability in damaging FT cycles 

at many locations, but only 5% had high variability. The year-to-year changes are largely the 

result of annual variations in the weather and the DOS. This finding emphasizes the point that 

measuring FT cycles for just one year is not sufficient, and multiple years of monitoring are 

necessary to improve understanding and predictability of FT damage. In general, there was a 

stable pattern of damaging FT cycles at most locations for the duration of the study. This will 

be investigated in more detail in future publications. 

Table 3. Classification of Site Variability Based on CV for FT Cycles (Only Sites with >5 
Cycles per Year are Included). 
 

CV (%) Variability Number of Locations for Damaging FT 
Cycles 

<15% Low 52% 
15 – 40% Moderate 43% 

>40% High 5% 
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4.0 Practical Significance 

This research provides the first large-scale, field-based dataset of damaging FT cycles 

measured directly in concrete. The results show that FT damage occurs only when freezing 

temperatures coincide with high saturation levels. Many locations experience FT cycles, but 

they do not damage concrete because the DOS remains below the critical DOS. This highlights 

the importance of site-specific evaluations for designing more durable concrete to better 

capture the complex relationship between DOS and freezing events. 

Contrary to conventional methods that are dependent on large climatic areas, these results 

imply that present design practices either overlook regions with high potential for damaging 

FT cycles or result in designs that are excessively conservative when, in reality, low potential 

for damaging cycles exists. These findings also indicate that a level of variation in damaging 

cycles, as well as in air content requirements, exists in a given area.  

Furthermore, this research examines the annual variation of DOS values and damaging cycles 

of FT, illustrating how a region can experience considerable variation in damaging cycles of 

FT from year to year. On this basis, it provides for better decisions concerning FT durability, 

design and maintenance. Lastly, this research has found four different types of FT climatic 

conditions and has produced a map of their geographic distribution among the regions 

analyzed. 

This lays the groundwork for developing a measurement-based mapping system to quantify 

damaging FT cycles and to establish procedures that incorporate local weather data for 

predicting FT cycles using machine learning or other data-driven models that are the focus of 

future work. This could create a significant improvement to current methods of classifying FT 

exposure.   

 



98 
 

5.0 Conclusions 

This research builds on work (Chen et al. 2023) by extending the methodology to a larger 

number of locations and seasons and providing a more detailed understanding of damaging FT 

cycles in the field. This study evaluated FT exposure using a combination of electrical 

resistivity and temperature data collected from 42 field locations in the United States over four 

consecutive winters. A damaging FT cycle was determined as a cycle where ice developed 

when the value of DOS exceeded 80%. This research effort, in total, adds to a realistic, practical 

understanding of FT damage as a function of the inclusion of comprehensive field measurement 

data over a period of four winters. The observations derived from this research effort are as 

follows: 

1. The findings show that FT durability is strongly dependent on both freezing 

temperature and DOS. Areas with consistently high DOS and frequent freezing, such 

as Wisconsin, Minnesota, and North Dakota, experienced a high number of damaging 

FT cycles each year. Conversely, locations like Oklahoma recorded frequent freezing 

but minimal damage due to low DOS. This difference highlights the importance of 

accounting for both temperature and DOS, rather than temperature alone, when 

evaluating FT damage. 

2. In dry climates, some locations experienced many FT cycles without damage because 

the DOS stayed below 80% during freezing. This verifies that the FT cycles do not 

cause damage if the DOS is low. 

3. At some locations, the average DOS was above the critical DOS of 80%, but temporary 

drops in DOS during freezing prevented damage. This shows that seasonal average 

DOS alone is not enough; the timing of saturation relative to freezing determines 
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whether cycles are damaging. This highlights the importance of location-specific 

evaluations to understand the complex relationship between DOS and FT cycles. 

4. Although some locations with high DOS experienced limited overall damage due to the 

few FT cycles, every cycle that was detected was damaging. This highlights the critical 

role of DOS in determining FT damage. 

5. The relationship between DOS cycles and FT cycles was grouped into four different 

groups, including: (Wet + FT), (Dry + FT), (Wet + Low FT), and (Variable Saturation 

+ FT), as per actual data of field observations and actual conditions that are not 

represented in current standards. 

6. Over the four winters, the CV for DOS was low at all locations. Oregon Location C had 

the highest variability, with a CV of 5.6% and a standard deviation of 4.9%. These low 

values indicate that DOS did not change much from year to year, aside from small 

weather-related variations. 

7. Most sites (95%) had low to moderate variability in damaging FT cycles (CV <40%). 

Only about 5% showed high variability, with CV values above 40%. This suggests that 

damaging FT cycles are consistent at most locations, but some sites do experience large 

year-to-year variations due to small weather variations. 

This study shows that location-specific field measurements provide a more accurate and 

realistic evaluation of FT damage risk. Consequently, this will provide a more reliable 

design against FT damage. Categorizing the observed exposure conditions into four distinct 

categories and providing limits for this classification is an important step in developing a 

weather-based recommendation for FT durability design methods. This work also supports 

an artificial intelligence-based approach to use more specific weather data to predict the 

number of damaging FT cycles. This is an area of future work. 
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Appendixes 

Appendix A: Field Samples Mix Design 

Table A1. Mortar mixture summary (acquired from Chen et al. 2023). 

Cement (kg/m3)  Water (kg/m3) Fine Aggregate (SSD kg/m3) 

603.7  265.7 1514.2 

 

Table A2. Type I cement oxide analysis (acquired from Chen et al. 2023). 

Oxide 

(%) 
SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O C3S C2S C3A C4AF LOI 

Cement 21.1 4.8 3.1 64.5 2.33 3.2 0.17 0.58 50 23 7 9 2.6 

 

Table A3. Concrete mixture summary (acquired from Chen et al. 2023). 

Cement (kg/m3) Water (kg/m3) Fine Aggregate (SSD kg/m3) Coarse Aggregate (SSD kg/m3) 

366.4 157.8 728.6 1071.4 
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Appendix B: Resistivity and Temperature Calculation 

Resistivity Calculation 

This work builds on a previous study (Chen et al. 2023) that used the AD5933, a 12-bit 

impedance converter, to measure resistivity. The AD5933 combines a frequency generator with 

a high-precision 12-bit analog-to-digital converter (ADC) capable of sampling at 1 mega-

sample per second (MSPS). To provide accurate results, calibration was performed using 

resistors of 560 Ω and 2000 Ω. In working mode, it calculates the magnitude and phase of 

impedance at a particular frequency (Chen et al. 2023).  

The AD5933 gathers signals from the sample via its ADC during use. Using its DSP system, it 

applies DFT to these signals. The DFT yields real (R) and imaginary (I) values representing 

impedance, which are stored in the data registers for further processing. The calculation for the 

magnitude of the impedance is given by Eq. 1:  

Magnitude =  �(𝑅𝑅2 + 𝐼𝐼2                                                                                                                       (1) 

Here, 𝑅𝑅 represents the real impedance, and 𝐼𝐼 represents the imaginary impedance. 

A scaling factor, called the gain factor, multiplies the magnitude to get the impedance value. 

During the calibration process, the gain factor is calculated by using an already-known value 

of impedance of a resistor. Calibration in this study was done using resistors with values of 560 

Ω and 2000 Ω at 4 kHz frequency. Using Eq. 2, the magnitude value received from the 

calibration gave the gain factors as 1.43E-7 and 4.84E-8, respectively. Using these gain factors, 

the unknown impedance of each mortar layer was calculated using Eq. 3, where the magnitude 

of the unknown layer is determined through the DFT process described in Eq. 1. 

Gain Factor = 1
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

                                                                                                   (2) 
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Impedance = 1
(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑥𝑥 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)

                                                                                (3) 

Temperature Measurement 

The MAX31855T thermocouple-to-digital converter was utilized for temperature 

measurements in the previous study (Chen et al. 2023). This advanced chip includes a 14-bit 

analog-to-digital converter (ADC) and provides cold-junction compensation for accurate 

sensing and correction. Different versions of the MAX31855T are available to work with 

various thermocouple types, and the T-type thermocouple was selected for this research. The 

MAX31855T incorporates signal-conditioning hardware that converts the thermocouple's 

output signal into a voltage compatible with the ADC input channels. To minimize noise-

induced errors, the thermocouple wires (T+ and T−) were connected directly to the data logger. 

The device assumes a linear relationship between temperature and voltage, providing output 

data based on this approximation. For a T-type thermocouple, the voltage output changes 

approximately by 52.18 µV/°C. This relationship can be modeled by Eq. 4, where 𝑉𝑉OUT 

represents the thermocouple's output voltage (µV), 𝑇𝑇𝑅𝑅 is the temperature of the remote 

thermocouple junction (°C), and 𝑇𝑇𝑅𝑅 is the temperature of the device (Analog Devices 2007; 

Maxim Integrated 2015). 

𝑉𝑉OUT = (52.18 µV/°C) x (𝑇𝑇𝑅𝑅 – 𝑇𝑇AMB)                                                                                                                              (4) 

References 

Chen, L., Ley, M. T., Ghantous, R. M., Weiss, W. J., and Master, N. F. (2023). “Measuring 

damaging freeze–thaw cycles in the field.” Construction and Building Materials, 387, 

131660. 



107 
 

Analog Devices, Inc. (2007). AD5933 impedance converter, network analyzer datasheet. 

Analog Devices, Inc., Wilmington, MA. https://www.analog.com/media/en/technical-

documentation/data-sheets/AD5933.pdf 

Maxim Integrated. (2015). MAX31855 cold-junction compensated thermocouple-to-digital 

converter datasheet. Maxim Integrated, San Jose, CA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD5933.pdf


108 
 

Appendix C: Field Locations Details for FT Analysis 

Table C1. Field locations for FT analysis. 

State Location Latitude Longitude 

Oklahoma 
Stillwater 36.16238° -97.08931° 

McCurtain County 34.04799° -94.40157° 
Texas County 36.68185° -101.50515° 

Illinois 
Spring Field (Central) 39.83079° -88.87192° 

Dixon (Northern) 41.93167° -88.70806° 
Carbondale (Southern) 37.78329° -89.24533° 

Wisconsin 
Green Bay 44.47958° -88.1371° 
Madison 43.14069° -89.34521° 

Rhinelander 45.63143° -89.4824° 

New York 
Watertown 43.98872° -76.02609° 
Clifton Park 43.1111° -76.10384° 
Hauppauge 40.95956° -72.25183° 

Minnesota 
Baxter 46.40206° -94.12734° 

Maplewood 44.93234° -93.05586° 
Thief River Falls 48.06667° -96.18333° 

North Dakota 
Bismarck Site 46.7680° 

 

-100.894° 
Grand Forks Site 47.96667° -97.4000° 

Fargo Site 46.92424° -96.81186° 

Pennsylvania 
Clearfield 41.04647° -78.4112° 
Cyclone 41.79835° -78.63543° 

Harrisburg 40.1962° -76.77249° 

Nebraska 
Lincoln 40.84781° -96.76467° 

Thedford 41.96444° -100.56861° 
Chadron 42.83736° -103.09806° 

Iowa 
Fairfield 41.05306° -91.97889° 

Mason City 43.1544° -93.32611° 
Ames 41.99045° -93.61852° 

Colorado 
Denver 39.84657° -104.65623° 
Seibert 39.24148° -102.28192° 

Glenwood 39.52791° -107.71965° 

Kansas 
Oakley 38.8701° -100.9627° 

Hutchinson 38.06824° -97.86075° 
Topeka 38.94144° -95.65125° 

Idaho 
Coeur d Alene US-95 48.29944° -116.5600° 

Mt Home I-84 43.0500° -115.86667° 
Paddy Flat SH-55 44.89425° -116.09978° 

Oregon 
Bend 44.0950° -121.200° 

Hinsdale Wave Research Lab 44.5000° -123.28333° 
Newport 44.58333° -124.0500° 

Missouri 
Central Laboratory 38.9470° -92.6830° 
Northwest District 39.819848° -93.576951° 
Southeast District 36.76973° -90.32241° 
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Appendix D: Relationship Between Resistivity, Temperature, and DOS for Mortar 

Samples 

The DOS for a mortar sample can be estimated using temperature and resistivity data through 

a two-step linear interpolation process, based on the calibration sample dataset. For instance, 

Fig. D1 illustrates an isotherm at 20°C, derived through interpolation between the data points 

at 21°C and 17°C. Given a resistivity value of 0.4 kΩ·cm, the corresponding DOS can be 

calculated as 70% by performing a second step of linear interpolation along the isotherm. This 

method allows for the practical estimation of DOS under varying temperature and resistivity 

conditions. 

 

Fig. D1. DOS evaluation using two-step linear interpolation (adapted from Chen et al. 2023). 

The relationship between Freezing Temperature and DOS is expressed by the following 

equation: 

 𝐹𝐹𝐹𝐹 = 𝑎𝑎0 .  𝐷𝐷𝐷𝐷𝐷𝐷5 + 𝑎𝑎1 .  𝐷𝐷𝐷𝐷𝐷𝐷4 + 𝑎𝑎2 .  𝐷𝐷𝐷𝐷𝐷𝐷3 + 𝑎𝑎3 .  𝐷𝐷𝐷𝐷𝐷𝐷2 + 𝑎𝑎4 .  𝐷𝐷𝐷𝐷𝐷𝐷 +  𝑎𝑎5                               

(1) 
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Table D1. Parameter values in eq. 1 (acquired from Chen et al. 2023).   

Parameters 𝒂𝒂𝟎𝟎 𝒂𝒂𝟏𝟏 𝒂𝒂𝟐𝟐 𝒂𝒂𝟑𝟑 𝒂𝒂𝟒𝟒 𝒂𝒂𝟓𝟓 

Value 3.81e-08 1.2e-05 1.4e-03 -8.1e-02 2.3e+00 -2.9e+01 
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Appendix E: Year-Specific DOS Maps by Location Across Four Winter Seasons (2020–

2024) 

 

 

                                                                       (a) 
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                                                                       (b) 
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Fig. E1. Location-specific average DOS (%) measured at field sites: (a) winter 2020–2021, 

(b) winter 2021–2022, (c) winter 2022–2023, (d) winter 2023–2024. 
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Appendix F: Average Monthly DOS Data and Variability Metrics  

Table F1. Average monthly DOS data and variability metrics (September 2020 – April 2021). 
 

State Location 
Average DOS (%) Total 

Average* 
Standard 

Deviation** CV (%)*** Sep Oct Nov Dec Jan Feb Mar Apr 

Idaho 
A 94 96 97 97 98 98 97 95 97 1.4 1.5 
B 88 87 90 91 92 93 93 91 91 2.2 2.4 
C 88 91 90 92 91 89 88 88 90 1.6 1.8 

Oregon 
A 90 93 89 91 90 89 91 90 90 1.3 1.4 
B 77 78 77 79 81 83 81 80 80 2.1 2.7 
C 80 83 85 85 84 82 84 84 83 1.7 2.0 

North Dakota 
A 89 89 91 92 91 90 91 90 90 1.1 1.2 
B 88 90 92 93 91 90 91 92 91 1.6 1.7 
C 91 93 93 94 95 91 92 92 93 1.4 1.5 

Minnesota 
A 92 98 96 98 98 97 97 96 97 2.0 2.1 
B 92 93 95 96 96 95 94 94 94 1.4 1.5 
C 90 91 92 92 91 89 91 90 91 1.0 1.1 

Wisconsin 
A 97 96 98 98 99 97 98 97 98 0.9 0.9 
B 95 94 96 98 97 96 95 95 96 1.3 1.3 
C 91 90 94 92 97 95 93 91 93 2.4 2.5 

Nebraska 
A 90 89 93 94 94 93 93 92 92 1.8 2.0 
B 81 83 86 88 89 86 85 84 85 2.6 3.1 
C 87 90 90 89 90 88 87 88 89 1.3 1.5 

Iowa 
A 88 87 87 86 87 89 88 88 88 0.9 1.1 
B 85 87 86 88 87 85 86 85 86 1.1 1.3 
C 84 88 89 89 90 91 87 88 88 2.1 2.4 

Colorado 
A 81 83 85 88 86 87 87 86 85 2.3 2.7 
B 72 73 75 76 76 75 75 75 75 1.4 1.9 
C 77 77 76 79 80 81 79 79 79 1.7 2.2 

Kansas 
A 76 79 77 78 79 82 80 79 79 1.8 2.3 
B 82 88 86 88 88 85 86 84 86 2.2 2.5 
C 92 93 96 96 96 95 94 94 95 1.5 1.6 

Missouri 
A 89 89 90 93 94 94 91 90 91 2.1 2.3 
B 88 85 89 87 90 88 86 84 87 2.0 2.3 
C 74 78 81 82 82 80 80 80 80 2.6 3.3 

Illinois 
A 88 85 88 86 87 85 84 83 86 1.8 2.1 
B 80 81 84 85 82 81 81 82 82 1.7 2.1 
C 84 84 88 87 87 85 82 82 85 2.3 2.7 

Oklahoma 
A 77 77 79 80 78 79 79 79 79 1.1 1.4 
B 79 81 84 85 86 83 82 81 83 2.3 2.8 
C 78 83 89 85 86 84 86 85 85 3.2 3.7 

Pennsylvania 
A 92 92 91 92 94 91 90 92 92 1.2 1.3 
B 95 95 97 98 97 99 98 94 97 1.8 1.8 
C 93 91 92 94 91 93 92 92 92 1.0 1.1 

New York 
A 81 84 83 82 80 83 80 80 82 1.6 2.0 
B 90 91 93 92 94 91 91 90 92 1.4 1.5 
C 79 82 81 84 85 83 84 82 83 1.9 2.3 

Maximum Value 97.5 3.2 3.7 
Minimum Value 74.6 0.9 0.9 

* Average Value of the Average Monthly DOS Values. 
** Standard Deviation of the Monthly Average DOS Values. 
*** Coefficient of Variation (%) of the Monthly Average DOS Values. 
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Appendix G: Year-Specific Total and Damaging FT Cycles Maps by Location Across 

Four Winter Seasons (2020–2024) 

 

                                                          (a)  

 

                                                                      (b)  
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                                                                      (c)  

 
                                                                      (d)  

Fig. G1. Total and damaging field-measured FT cycles: (a) winter 2020–2021, (b) winter 

2021–2022, (c) winter 2022–2023, (d) winter 2023–2024. 
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Appendix H: Standard Deviation and Coefficient of Variation (CV) of DOS, Total, and 

Damaging FT Cycles Across the Four Winter Seasons. 

Table H1. Yearly field-measured DOS at each location with Corresponding Standard 
Deviation and CV. 
 

State Location DOS (%)  4-Year DOS 
Average 

Standard 
Deviation of DOS 

CV (%) 
of DOS Year 1 Year 2 Year 3 Year 4 

Idaho 
A 97 98 96 95 97 1.3 1.3 
B 91 97 95 90 93 3.3 3.5 
C 90 84 80 81 84 4.5 5.4 

Oregon 
A 90 87 81 82 88 2.1 2.4 
B 80 78 84 NA 81 3.1 3.8 
C 83 92 91 NA 89 4.9 5.6 

North 
Dakota 

A 90 93 96 NA 93 3.0 3.2 
B 91 95 96 NA 94 2.7 2.8 
C 93 94 95 NA 94 1.0 1.1 

Minnesota 
A 97 96 97 96 97 0.6 0.6 
B 94 96 96 96 96 1.0 1.0 
C 91 92 91 97 93 2.9 3.1 

Wisconsin 
A 98 94 96 NA 96 2.0 2.1 
B 96 95 93 NA 95 1.5 1.6 
C 93 91 92 87 91 2.6 2.9 

Nebraska 
A 92 91 92 86 90 2.9 3.2 
B 85 80 84 88 84 3.3 3.9 
C 89 91 93 87 90 2.6 2.9 

Iowa 
A 88 85 87 88 87 1.4 1.6 
B 86 88 85 NA 86 1.5 1.8 
C 88 87 87 90 88 1.4 1.6 

Colorado 
A 85 93 90 88 89 3.4 3.8 
B 75 77 79 77 77 1.6 2.1 
C 79 85 84 79 82 3.2 3.9 

Kansas 
A 79 84 81 83 82 2.2 2.7 
B 86 80 81 85 83 2.9 3.5 
C 95 93 92 90 93 2.1 2.3 

Missouri 
A 91 95 91 88 91 2.9 3.1 
B 87 83 82 83 84 2.2 2.6 
C 80 87 82 80 82 3.3 4.0 

Illinois 
A 86 88 84 84 86 1.9 2.2 
B 82 84 87 82 84 2.4 2.8 
C 85 87 81 NA 84 3.1 3.6 

Oklahoma 
A 79 75 78 81 78 2.5 3.2 
B 83 80 80 83 82 1.7 2.1 
C 85 87 88 85 86 1.5 1.7 

Pennsylvania 
A 92 90 91 96 92 2.6 2.9 
B 97 93 94 98 96 2.4 2.5 
C 92 95 94 97 95 2.1 2.2 

New York 
A 82 80 80 84 82 1.9 2.3 
B 92 91 90 93 92 1.3 1.4 
C 83 87 83 88 85 2.6 3.1 
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Table H2. Yearly field-measured total FT cycles with standard deviation and CV. 
 

State Location 
Total FT Cycles FT Cycles 

Average 
Total FT Cycles 

Standard Deviation 

Total 
Freeze-FT 

CV (%) 
Year 1 Year 2 Year 3 Year 4 

Idaho 
A 121 110 123 113 117 6 5 
B 130 102 123 110 116 13 11 
C 68 50 56 55 57 8 13 

Oregon 
A* 0 1 6 3 3 3 - 
B 21 26 35 NA 27 7 26 
C 54 42 48 NA 48 6 13 

North 
Dakota 

A 99 97 83 NA 93 9 9 
B 71 66 57 NA 65 7 11 
C 90 81 73 NA 81 9 11 

Minnesota 
A 97 79 88 102 92 10 11 
B 97 74 83 97 88 11 13 
C 67 79 85 90 80 10 12 

Wisconsin 
A 90 85 81 NA 85 5 5 
B 75 79 65 NA 73 7 10 
C 60 50 56 49 54 5 10 

Nebraska 
A 88 94 99 89 93 5 6 
B 76 64 74 66 70 6 8 
C 64 56 77 50 62 12 19 

Iowa 
A 66 39 49 56 53 11 22 
B 90 97 94 NA 94 4 4 
C 54 48 41 33 44 9 21 

Colorado 
A 95 83 85 98 90 7 8 
B 67 48 70 75 65 12 18 
C 66 71 50 45 58 13 22 

Kansas 
A 83 70 96 70 80 13 16 
B 53 48 54 52 52 3 5 
C 48 41 54 53 49 6 12 

Missouri 
A 53 44 52 35 46 8 18 
B 33 44 46 32 39 7 19 
C 31 37 33 35 34 3 8 

Illinois 
A 96 78 83 NA 86 9 11 
B 33 40 34 25 33 6 19 
C 27 33 24 NA 28 5 16 

Oklahoma 
A 49 42 41 30 41 8 19 
B 14 23 29 33 25 8 33 
C 9 17 11 12 12 3 28 

Pennsylvania 
A 78 58 85 71 73 12 16 
B 81 78 83 75 79 4 4 
C 56 40 49 43 47 7 15 

New York 
A 71 55 49 47 56 11 20 
B 47 57 40 67 53 12 22 
C 53 45 30 30 40 12 29 

* CV values are only reported for sites with more than five cycles per year; sites with lower averages are 
marked with (–). 
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Table H3. Yearly field-measured damaging FT cycles with standard deviation and CV. 
 

State Location 
Damaging FT Cycles FT Cycles 

Average 

Damaging   FT 
Cycles Standard 

Deviation 

Damaging FT 
Cycles CV 

(%) 
Year 

1 
Year 2 Year 3 Year 4 

Idaho 
A 121 110 123 113 117 6 5 
B 130 102 123 110 116 13 11 
C 68 50 48 42 52 11 22 

Oregon 
A* 0 1 3 1 1 1 - 
B 11 8 17 NA  12 5 38 
C 54 42 48 NA  48 6 13 

North 
Dakota 

A 99 97 83 NA  93 9 9 
B 71 66 57 NA  65 7 11 
C 90 81 73 NA  81 9 11 

Minnesota 
A 97 79 88 102 92 10 11 
B 97 74 83 97 88 11 13 
C 67 79 85 90 80 10 12 

Wisconsin 
A 90 85 81 NA  85 5 5 
B 75 79 65 NA  73 7 10 
C 60 50 56 49 54 5 10 

Nebraska 
A 88 94 99 89 93 5 6 
B 76 63 74 66 70 6 9 
C 64 56 77 50 62 12 19 

Iowa 
A 66 39 49 56 53 11 22 
B 90 97 94 NA  94 4 4 
C 54 48 41 33 44 9 21 

Colorado 
A 95 83 85 98 90 7 8 
B* 0 0 0 0 0 0 - 
C* 0 4 6 0 3 3 - 

Kansas 
A* 0 6 3 5 4 3 - 
B 53 34 37 46 43 9 20 
C 48 41 54 53 49 6 12 

Missouri 
A 53 44 52 35 46 8 18 
B 28 26 17 22 23 5 21 
C 16 31 15 3 16 12 71 

Illinois 
A 96 76 78 NA  83 11 13 
B 19 20 29 25 23 5 20 
C 22 27 17 NA  22 5 23 

Oklahoma 
A* 0 0 0 1 0 1 - 
B 14 9 11 27 15 8 53 
C 9 17 11 9 12 4 33 

Pennsylvania 
A 78 58 85 71 73 12 16 
B 81 78 83 75 79 4 4 
C 56 40 49 43 47 7 15 

New York 
A 60 47 36 40 46 11 23 
B 47 57 40 67 53 12 22 
C 53 45 30 30 40 12 29 

* CV values are only reported for sites with more than five cycles per year; sites with lower averages are 
marked with (–). 
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Abstract 

This paper presents a machine learning model to predict the number of damaging freeze-thaw 
(FT) cycles based on weather data. The model combines a genetic algorithm (GA) to identify 
the most effective environmental thresholds for six major weather variables across four regions 
in the United States. Training was performed on data from 42 sites within 14 states over the 
course of a year, then testing was performed using data from the subsequent three years. The 
model correctly predicted the DOS category 89% of the time for all years and regions. Based 
on a 95% confidence interval, the number of predicted FT cycles and damaging FT cycles were 
within 15% of the measured values in all years and regions, meaning that the model provides 
reliable and consistent performance across varying climatic conditions. Thus, this model 
allows for an important new ability to predict FT cycles from weather only. This can aid in 
improving these predictions and lead to the development of better tools to aid specifiers in 
getting the needed FT durability of their concrete. 

1. Introduction 

Freeze-thaw (FT) durability of concrete is often critical to the longevity of concrete structures 

in cold regions. The FT resistance of concrete is primarily a function of its internal degree of 

saturation (DOS) [1,2]. Damage from FT occurs when water freezes and expands within the 

pore structure, leading to microcracking, scaling, and long-term degradation [3,4]. The 

phenomenon was first modeled by Powers [5] and Fagerlund [6], who discovered damage when 

the material became saturated, and the temperature fell to the freezing point. Critical DOS is 

the moisture level above which the growth of stresses created by the freezing of water can 

damage the concrete, which subsequently leads to gradual deterioration [5-7]. It has been 

demonstrated that the critical degree of saturation was between 78–90% [7-10]. This range is 

impacted by the size, spacing, and overall volume of air voids within the concrete, which can 

allow for relief of the hydraulic pressure due to the ice formation [11-14]. A FT cycle occurs 

when the temperature of the concrete falls below the freezing temperature and then returns 

back above 0°C. Therefore, a damaging FT cycle occurs when the DOS is at or above the 
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critical DOS. If the cycle occurs when the DOS is below this critical value, then the cycle does 

not count as a damaging cycle [7, 14-16]. 

Presently, concrete design for FT durability is typically prescriptive exposure classes (ACI 

201.2R, ACI 318 ) [16,17]. These documents use the designer or specifier to determine the 

appropriate exposure category based on the severity of the freezing and thawing to be 

experienced. While this is simple to understand, the specifier must make assumptions about 

local weather, the saturation level within the concrete, and the anticipated frequency of FT 

cycles. This can lead to either under-design or over-design of the structure. In contrast, the 

desired tool should utilize local climatic information and provide recommendations on both the 

level of saturation in the concrete and the frequency of FT cycles. 

Machine Learning (ML) has been an increasingly common research direction in concrete 

research. Concrete properties of value are often the targets to be predicted. The nature of 

concrete research data is nonlinear and multivariate, leading to well-suited for ML 

approaches. Numerous studies have developed predictive models of concrete properties, 

including compressive strength [18–22], crack propagation [23], thermal expansion [24], and 

other mechanical properties [25–28]. The common thread among these papers is that they 

demonstrate the ability of ML models to capture and represent the complex behavior of these 

materials. ML has been widely used to model the mechanical properties of concrete. However, 

only a few studies have explored its potential for assessing concrete durability, particularly 

under FT conditions. A handful of authors have developed ML models to predict FT resistance 

based on mixture design parameters and laboratory test results [29]. A few studies have 

proposed using a framework to extract microstructural features (pore structures) with deep 

learning and image-based data for the assessment of FT durability indices [30,31]. ML 

techniques have also been used to predict the FT behavior of aggregates [32]. However, this is 

still a reduced system and does not represent the full complexities of concrete systems exposed 

to real-world conditions. 

Predicting the FT performance in concrete requires understanding how the moisture content, 

temperature, and ice formation evolve over time. Previous work has collected this information 

from 42 different field locations over the course of four years [33,34]. This work aims to 

employ ML techniques to relate the DOS and the number of damaging FT cycles to local 

weather parameters. Extensive previous research has been completed in predicting the soil 

moisture content of an area based on the local weather parameters [35-44]. The research was 
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consistent in identifying six key weather parameters. This included: temperature, precipitation, 

relative humidity, solar radiation, wind speed, and air pressure [35-44]. These same parameters 

will be used to predict the moisture content of concrete. However, in order to predict FT cycles, 

they will be used to predict damaging FT cycles by incorporating the moisture information to 

predict the number of damaging FT cycles. 

Traditional ML models often struggle to represent the complex relationships between 

environmental factors such as temperature, relative humidity, and precipitation [45–47]. These 

variables interact in nonlinear ways that make it difficult for models to identify the specific 

conditions that cause damaging FT cycles. For example, in this study, ten machine learning 

models were assessed, and the GAs showed the best overall performance; further details are 

discussed later in the results section and also in Appendix D. The GA uses one year of training 

data, including measured DOS, FT cycles, and six key weather parameters, to predict the 

number of damaging FT cycles in a concrete slab.  

This work addresses a major gap by providing a data-driven approach to directly connect local 

weather conditions to concrete DOS and FT performance using a large field dataset from 42 

locations across the U.S. This tool can use either measured or simulated weather data to provide 

estimates of FT damage under different environments. This paper lays the foundation for 

developing measurement-based mapping systems and tools of damaging FT cycles for different 

locations using long-term historical weather records, which offer practical guidance for FT 

durability design, which will be developed in a future study. 

2. Methodology 

2.1. Data Collection and Preprocessing 

2.1.1. Field-Measured DOS Data 

The DOS represents the proportion of voids in concrete that are filled with water and is an 

important factor in determining its FT durability. Field-measured DOS data from 42 locations 

across the United States were collected in a previous study over four consecutive winters [34]. 

The locations were chosen to capture a wide range of climate variability and include the state 

agencies that funded the research.  

A single, mortar mixture was used for all field samples at each location. The use of the same 

mixture at each location enables direct comparison of DOS behavior. However, the results are 

specific to this material and mixture design. The mixture design chosen was representative of 
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pavement and bridge deck concrete, and so this makes this work applicable to a wide variety 

of applications. For this study, the DOS data from each location were averaged for each month, 

and these monthly average values were grouped into three categories representing practical 

thresholds of FT vulnerability. By using monthly averages from the concrete and the weather 

data, this minimizes the short-term variability. This approach allows the model to capture more 

meaningful relationships between the environmental conditions and the saturation level of the 

concrete.   

Previous studies identified the critical DOS range to be between 78% and 90% [7-10]. Thus, 

80% 80% was chosen as a practical lower limit and was a convenient place to segment the data.  

Locations with a DOS <80% are considered to have minimal risk for FT damage, locations 

with a DOS between 80% and 90% suggest a moderate risk, and DOS values >90% have the 

highest risk of FT damage. The developed predictive model is used to classify the DOS of a 

location into one of these ranges based on six weather parameters.  

To account for geographic variability, the field sites were divided into four regions, Northwest, 

South, North, and Northeast, based on climate variations. Climate variation strongly influences 

both DOS and FT durability of concrete, with northern regions generally experiencing lower 

temperatures and greater FT exposure than southern states. Some states, such as Illinois and 

Missouri, have regions that are assigned to the north and south regions because of their 

differences in weather. These regional distinctions are used because the weather was found to 

be different in each region, so the prediction was improved by using a ML model that is specific 

to the region. These regions are shown in Fig. 1.   
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Fig. 1. Regional classification used for FT cycle prediction, showing the four regions applied 

to field samples. 

 

2.1.2. Weather Data 

The study considered six weather variables presented in Table 1. These parameters were 

chosen as they are the most commonly used in the soil literature for the assessment of 

environmental impact on the saturation and drying process of porous media such as soils [35–

44]. Thus, these same parameters also control moisture movement and retention within 

concrete, making them suitable inputs for predicting DOS and FT cycles. Precipitation is the 

liquid-equivalent of rain and snowfall combined. Snowfall amounts were converted to liquid-

equivalent precipitation amounts, using the standard water-equivalent amounts that weather 

stations report, so that rain and snow contributions to total precipitation can be compared on a 

common volumetric basis across areas.  

Solar radiation was expressed as Global Horizontal Irradiance (GHI) in kWh/m², which 

quantifies the total solar energy incident on a horizontal surface. Weather data for each field 

location across the United States were collected from the Open-Meteo API [48], an open-

source, research-oriented climate database that compiles long-term, quality-controlled records 

from established meteorological networks and provides broad spatial coverage. Because 

precipitation accumulates over time, monthly totals were calculated by summing the daily 

precipitation values. In contrast, the remaining parameters, air temperature, relative humidity, 
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solar radiation, wind speed, and air pressure, reflect average environmental conditions and were 

therefore averaged over each month to reduce random short-term fluctuations. This allowed an 

average DOS to be used for each location.   

Table 1 

Selected weather variables and their relevance to moisture behavior in concrete.  

Variable Unit Role and Relevance 

Air 
Temperature 

°C Governs evaporation, condensation, 
and FT cycles. 

Precipitation mm Represents the moisture ingress into 
concrete pores. 

Relative 
Humidity 

% regulates vapor exchange and internal 
drying 

Solar 
Radiation 
(GHI) 

kWh/m²/day Influences surface heating, drying 
rates, and temperature gradients 
within concrete. 

Wind Speed m/s Affects convective moisture loss 
from exposed concrete surfaces and 
accelerates drying. 

Air Pressure kPa Impacts vapor diffusion and moisture 
transport through capillary pores. 

 

2.1.3. Data Collection Period and Study Timeframe 

The DOS and weather data were collected during the winter seasons, spanning from September 
to April, over four consecutive years (September 2020 to April 2024). The model was trained 
and developed using data from the first winter season (September 2020 to April 2021). It was 
then used to predict the DOS category and FT cycles for the following three winters, as shown 
in Table 2. 

Table 2  

Summary of Model Training and Prediction Periods. 

Purpose Time 

Training Year 1 September 2020 to April 2021 

Prediction Year 1 September 2021 to April 2022 

Prediction Year 2 September 2022 to April 2023 

Prediction Year 3 September 2023 to April 2024 
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2.2. Model Development  

The predictive model was developed using a GA framework, selected for its ability to 
efficiently explore complex, nonlinear relationships between environmental variables and 
DOS. GA is an optimization technique based on the concept of natural selection. A population 
of candidate solutions to an optimization problem is evolved toward better solutions by 
repeatedly selecting and applying genetic operators like selection, crossover, and mutation to 
individual candidates in the population [49-56]. In this work, the GA was used to determine 
the combination of thresholds of the six weather variables that most accurately predict the 
measured DOS categories.   

2.2.1. Segmenting the Data  

ML algorithms are more efficient when the data are binned into discrete classes. This limits the 
number of possible results and minimizes the impact of scale and units of measurement. As a 
preprocessing step for modelling, it was decided to sort each weather parameter with two 
thresholds (Threshold 1 and Threshold 2), which can be used as a boundary value to separate 
the weather data into high, medium, or low with respect to the DOS of the concrete. This 
segmentation procedure can be organized with a trinary code. The trinary code is summarized 
below:     

                                  0,          if 𝑥𝑥 ≤ Threshold 1 

Trinary Code =       1,         if Threshold 1 < 𝑥𝑥  ≤ Threshold 2 

                                 2,         if 𝑥𝑥  > Threshold 2 

 

Where 𝑥𝑥  represents the value of the weather parameter.  

The GA continuously adjusts the thresholds for each weather parameter to determine the 

combination of threshold values that best predicts the measured DOS for the regions shown in 

Fig. 1. Once these threshold values have been found, each measurement location can be 

categorized by a six-digit number made up of a 0, 1, or 2 in each digit (x₁, x₂, x₃, x₄, x₅, x₆). The 

value of 0, 1, or 2 is determined by comparing the average monthly weather parameter in 

comparison to the threshold values. Each digit in the code corresponds to a specific weather 

variable in the following order: air temperature, precipitation, relative humidity, solar radiation, 

wind speed, and air pressure. This was done to enable effective categorization. 

The thresholds for each parameter were initially defined based on statistical analysis of the 

four-year dataset, where the lower and upper thresholds correspond to the 33rd and 66th 

percentiles of each feature’s distribution. This ensured that the coding captured low, medium, 

and high ranges representative of realistic weather variability across all sites. These threshold 

values were then optimized by GA, which iteratively adjusted the values to improve the 



127 
 

model’s classification accuracy for predicting the DOS.  The established upper and lower limits 

from the GA model are shown in Appendix A.   

2.2.2. Fitness Function: Bhattacharyya Distance 

In GAs, the fitness function determines the objective numerical value for each member of the 

population of solutions. A good fitness function helps the algorithm drive better threshold 

combinations that enhance DOS class separation by progressively selecting threshold sets that 

can offer greater degrees of separation for each optimization cycle [57]. In this case, the fitness 

function calculates a measure of separability between the distributions of weather-variable 

threshold combinations that belong to different measured DOS categories. This process is 

essential to the model development as it helps the model identify how different weather 

conditions impact the DOS of concrete and its vulnerability to FT damage. The selection of 

weather-variable threshold combinations that result in the highest degree of separability 

between measured DOS categories should result in a model that can better represent the impact 

of temperature, precipitation, relative humidity, solar radiation, wind speed, and air pressure 

on moisture accumulation and its associated damage.  

The Bhattacharyya distance was used as the fitness function. The Bhattacharyya distance is a 

nonparametric, distribution-based measure that directly compares two probability distributions 

[57–59]. Unlike distance-based measures of performance, it is independent of any parametric 

assumptions on the data and is well-suited for nonlinear environmental datasets. The 

Bhattacharyya distance can range from 0 to infinity, with higher values indicating lower 

overlap between DOS categories and better classification performance [57–59]. 

2.2.2.1. Converting Trinary Codes to Probability Distributions 

The frequency of each six-digit trinary weather code in the training set was counted and then 

normalized by the total counts in that category so that the probabilities summed to 1. The 

resulting distributions, denoted P (for <80%), Q (for 80–90%), and R (for >90%), represent the 

likelihood of each six-digit code occurring within its respective DOS category, and were 

compared pairwise using the Bhattacharyya distance to quantify separability. 

For instance, consider the category P corresponding to DOS <80%. Suppose the six-digit 

trinary code (e.g., 000000) appears 10 times within this category, and the total number of codes 

recorded for P is also 10. The probability of observing this code within the category is therefore 
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𝑝𝑝𝑖𝑖 =
Count of six-digit trinary code (𝑒𝑒.𝑔𝑔. 000000) in category 𝑃𝑃

Total number of six-digit trinary codes in category 𝑃𝑃
=

10
10

= 1.0 

indicating that this particular trinary code (𝑒𝑒.𝑔𝑔. , 000000) occurs in all observations within the 

<80% DOS category. Conversely, if the same six-digit code does not appear in the other 

categories (Q (for 80–90%), or R (for > 90%)), its probability becomes zero (𝑞𝑞𝑖𝑖 = 0 and 𝑟𝑟𝑖𝑖 =

0), indicating that this six − digit trinary code is unique to the <80% DOS category. Thus, 

differences in code probabilities across categories capture distinct weather–DOS relationships, 

which are later quantified using the Bhattacharyya distance. 

Because six weather features each have three possible trinary codes (0, 1, 2), there are 36 =

729 unique combinations (bins), each representing a distinct weather pattern. These 

normalized probability distributions (𝑃𝑃, 𝑄𝑄, and 𝑅𝑅) were then used to compute the 

Bhattacharyya coefficient (BC), which measures the overlap between the probability 

distributions of any two DOS categories. 

 

2.2.2.2. Computing the Bhattacharyya Coefficient and Distance 

The Bhattacharyya coefficient (BC) measures the similarity between two probability 

distributions. In this study, the three distributions 𝑃𝑃, 𝑄𝑄, and 𝑅𝑅 represent the normalized trinary 

weather-code probabilities for the three DOS categories, where 𝑃𝑃 corresponds to DOS (<80%), 

𝑄𝑄 to DOS (80–90%), and 𝑅𝑅 to DOS (>90%). The BC quantifies how much the two distributions 

overlap, (𝑃𝑃 𝑣𝑣𝑣𝑣.𝑄𝑄), (𝑃𝑃 𝑣𝑣𝑣𝑣.𝑅𝑅),𝑎𝑎𝑎𝑎𝑎𝑎 (𝑄𝑄 𝑣𝑣𝑣𝑣.𝑅𝑅), which is a critical property when the goal is to 

separate classes effectively. For the first pair, 𝑃𝑃 and 𝑄𝑄, the BC is calculated as shown in 

Equation (1) [57]: 

𝐵𝐵𝐵𝐵 (𝑃𝑃,𝑄𝑄) =  ∑ �𝑝𝑝𝑖𝑖. 𝑞𝑞𝑖𝑖𝑛𝑛
𝑖𝑖=1                                                                                         Equation (1) 

where 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 represent the normalized probability values of the weather variable across two 

DOS categories being compared. Similarly, the BC was computed for the other two category 

pairs, (𝑃𝑃 vs. 𝑅𝑅) and (𝑄𝑄 vs. 𝑅𝑅). 

The square root term in Equation (1) plays an important role. Multiplying 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 without the 

square root, the coefficient is dominated by the high probability regions. In this case, a low-

probability but meaningful overlap between the two distributions will have less influence on 

the value of the coefficient. Taking the square root counteracts this compression of high values 

and expansion of lower values and leads to a more uniform, symmetric measure of overlap that 
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is not dominated by one of the distributions even in the case when the two distributions are 

very different (e.g. one distribution is much sharper or more skewed than the other) [60]. 

Since the  𝐵𝐵𝐵𝐵 ranges from 0 to 1, the Bhattacharyya distance (𝐷𝐷𝐵𝐵 ) transforms this coefficient 

into a measure of dissimilarity through a logarithmic function, as shown in Equation (2) 

[57,58]: 

𝐷𝐷𝐵𝐵 (𝑃𝑃,𝑄𝑄) =  −ln (𝐵𝐵𝐵𝐵)                                                                                             Equation (2) 

The negative natural log transformation yields an infinite range (0 to ∞), in which larger 

𝐷𝐷B values represent better separability between DOS categories. Logarithmic transformation 

mathematically changes multiplicative relationships between probabilities into additive ones, 

and this renders the metric more sensitive to small differences in overlap and therefore more 

amenable to optimization in the GA setting [61, 62]. 

For example, if the trinary code (2, 0, 0, 0, 2, 2) appears only in the >90% DOS category and 

never in the <80% or 80–90% categories, the corresponding probabilities are 𝑝𝑝𝑖𝑖 (>90%) = 1, 

𝑞𝑞𝑖𝑖, (<80%) = 0 and 𝑟𝑟𝑖𝑖 (80–90%) = 0. For this case, the coefficient between the >90% and <80% 

categories is 𝐵𝐵𝐵𝐵 = √1 × 0 = 0, giving 𝐷𝐷𝐵𝐵 = −ln (0) = ∞. This means that the trinary code 

here is unique, and there is no overlap between these two categories of DOS. The same logic 

holds for each other category pair in Table 3. This represents perfect separability where the 

weather pattern of this code is uniquely characteristic of the >90% DOS category. 

For comparison, if a trinary code occurs equally across two DOS categories, the probabilities 

would be 𝑝𝑝𝑖𝑖 = 𝑞𝑞𝑖𝑖 = 0.5, giving 𝐵𝐵𝐵𝐵 = √0.5 × 0.5 = 0.5 and 𝐷𝐷𝐵𝐵 = −ln (0.5) = 0.69, which 

represents overlap between the categories. 

Thus, larger 𝐷𝐷𝐵𝐵values indicate greater separability between the DOS categories. When two 

DOS categories have nearly identical probability distributions, 𝐵𝐵𝐵𝐵 ≈ 1 and 𝐷𝐷𝐵𝐵 ≈ 0, indicating 

complete overlap. Conversely, when their distributions are entirely distinct, 𝐵𝐵𝐵𝐵 ≈ 0 and 𝐷𝐷𝐵𝐵 ≈

∞, representing maximum separation between the DOS categories [57]. In our study, we 

consider higher 𝐷𝐷B values to be more desirable. In this case, the probability distributions of the 

two DOS categories overlap minimally, and the GA can find weather-variable thresholds to 

create better distinctions. This metric helps to ensure the model is as effective as possible at 

predicting outcomes. It is important to make this distinction, as the fundamental goal of the GA 

model is to create distinctions between the DOS categories by determining the best weather-

variable thresholds. By making the Bhattacharyya distance the fitness function of the 
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algorithm, we can directly optimize how distinct these categories are in probabilistic terms and 

ensure the resulting model is effective at not only differentiating between DOS categories but 

also capturing information about the environmental effects on FT durability. 

Table 3 
Example Calculation of the Bhattacharyya Coefficient and Distance for the Trinary Code (2, 0, 
0, 0, 2, 2).  

DOS Category Pair and 
Probability Substitution 

Bhattacharyya 
coefficient (BC) 

Bhattacharyya distance 
(𝑫𝑫𝑩𝑩 ) =  - ln (BC) 

Interpretation 

𝒑𝒑𝒊𝒊 (>90%) = 1, 𝒒𝒒𝒊𝒊 (<80%) = 0 
𝐵𝐵𝐵𝐵(𝑃𝑃,𝑄𝑄) = �𝑝𝑝𝑖𝑖𝑞𝑞𝑖𝑖  

= √1 × 0 = 0 
𝐷𝐷𝐵𝐵 (𝑃𝑃, 𝑄𝑄) = −ln (0)

= ∞ 
Perfect separation; 

no overlap 

𝒑𝒑𝒊𝒊 (>90%) = 1, 𝒓𝒓𝒊𝒊 (80–90%) = 0 
𝐵𝐵𝐵𝐵(𝑃𝑃,𝑅𝑅) = �𝑝𝑝𝑖𝑖𝑟𝑟𝑖𝑖  

= √1 × 0 = 0 

𝐷𝐷𝐵𝐵 (𝑃𝑃, 𝑅𝑅) = −ln (0)
= ∞ 

Perfect separation; 
no overlap 

𝒓𝒓𝒊𝒊 (80–90%) = 0, 𝒒𝒒𝒊𝒊 (<80%) = 0 
𝐵𝐵𝐵𝐵(𝑄𝑄,𝑅𝑅) = �𝑟𝑟𝑖𝑖𝑞𝑞𝑖𝑖  

= √0 × 0 = 0 
𝐷𝐷𝐵𝐵 (𝑄𝑄, 𝑅𝑅) = −ln (0)

= ∞ 
Perfect separation; 

no overlap 

 

2.2.2.3. Fitness Function Evaluation and Optimization 

The fitness was determined as the negative value of the sum of the Bhattacharyya distances 

between all pairs of DOS categories as per Equation (3) [57,58]. 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  −∑ 𝐷𝐷𝐵𝐵𝑘𝑘3
𝑘𝑘=1                                                                                   Equation (3) 

where 3 represents the number of DOS categories. 

This approach allows the GA to favor solutions that produce greater separation between DOS 

categories. Since larger 𝐷𝐷𝐵𝐵 values indicate better distinction, summing them captures the total 

separability across all categories. The negative sign is used because GA evaluates fitness by 

minimizing the objective function. Since larger 𝐷𝐷𝐵𝐵 indicate greater separation between DOS 

categories, taking the negative sum reverses the direction of optimization. This way, 

minimizing the fitness value corresponds to maximizing the overall separability among the 

DOS categories. 

2.2.3. Genetic Algorithms Framework 

The algorithm begins by generating an initial population, which in this case consists of possible 

threshold sets for the six weather variables. In this study, a population size of 200 was chosen, 

meaning that 200 different combinations of weather thresholds were created in the first 

generation. This number was chosen to provide sufficient diversity for reliable convergence 

without excessive computational time. Each threshold set represents one possible way that 
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weather conditions could be divided to classify the DOS categories. The algorithm then 

evaluates how well each threshold set separates the measured DOS categories using the fitness 

function. By starting with a broad and diverse population, the algorithm increases its chances 

of identifying combinations that best capture the complex, nonlinear relationships between 

weather variables and concrete saturation behavior [63–65]. 

2.2.3.1. Mutation 

Mutation is performed on the first population to diversify and explore the parameter search 

space for new combinations. Mutation slightly perturbs the existing threshold combinations to 

create new candidate threshold combinations that have the potential to perform better at 

separating DOS categories [65, 66]. Mutation is an essential part of this operation as without it 

the algorithm would converge prematurely and limit itself to a small portion of the search 

space. Mutation allows for the exploration of new areas of the parameter space through the 

generation of new combinations of weather thresholds that may or may not be represented in 

the initial population. 

This process is essential to identifying the most appropriate weather thresholds that will 

separate the two measured DOS categories. The weather thresholds that most accurately reflect 

environmental conditions will result in DOS distributions with the least overlap between 

categories. This work used the Differential Evolution (DE/rand/1) mutation strategy. This 

strategy was used because it is a simple yet effective mutation scheme that maintains 

population diversity while simultaneously biasing the search toward better-performing 

individuals. It achieves this by generating new members through a combination of randomly 

selected threshold sets [65, 66]. The method is computationally inexpensive and exploits the 

search space between existing members to improve performance.  

A mutation factor of 0.2 was used to control the extent of the change introduced with each 

mutation step. A smaller factor would have led to small changes, resulting in slow 

exploration. A larger factor would have been computationally expensive and led to an unstable 

search. The value of 0.2 was empirically selected as it offered a good balance between 

exploration and exploitation. 

2.2.3.2. Crossover 

Once a mutation generates new threshold combinations, the algorithm proceeds to the 

crossover step, which mixes the weather-variable thresholds from different threshold 
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combinations. This step creates a new trial combination of thresholds by taking a portion of a 

newly mutated threshold set and combining it with a portion of a previously existing threshold 

set. The purpose of crossover is to further combine the best thresholds (those that most 

effectively separate the DOS categories) from different sets while still maintaining diversity in 

the trial runs [63–67].  

For this study, a crossover rate of 0.8 was used, which means that approximately 80% of 

threshold values in a new combination were inherited from the mutated set, with the remaining 

20% of the values being inherited from the original set. This way, the algorithm can preserve 

useful threshold patterns that may have been developed in earlier generations, while still 

exploring the full space of possible threshold combinations that could lead to improved 

classification.  

Conceptually, crossover can be thought of as a controlled form of experimentation. The 

algorithm tests to see if taking thresholds from different, but still well-performing, sets of 

weather variables can lead to a better overall separation of the DOS categories. For example, a 

combination of thresholds that is effective for temperature could be combined with a 

combination that better represents the effects of relative humidity, and an improved overall set 

of thresholds could result.  

This step is important as it maintains diversity in the population and allows the algorithm to 

test multiple, potentially promising, paths simultaneously. Without crossover, the population 

of threshold combinations could quickly become too similar from generation to generation, and 

the algorithm would be less able to identify new and more effective threshold configurations 

to describe the DOS of the concrete [63–67]. 

2.2.3.3. Selection 

For each generation after crossover, the algorithm has to decide which threshold combination 

should continue. This selection process essentially determines which candidates are fittest in 

terms of being able to separate the different DOS categories. Several selection strategies are 

available, but in this case the fitness function described earlier is simply used to compare the 

fitness values of the newly generated (trial) and the existing threshold sets and the one with a 

better (higher) fitness value is carried forward to the next generation (replaces the other if the 

trial set is fitter) [50, 68]. 
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In a conceptual sense, the selection process is essentially the judgment phase of the 

optimization process. It determines which set of weather-threshold values is best at 

distinguishing the different saturation states of concrete, and it only lets the fittest combinations 

survive and be subject to further variation. By iteratively and automatically performing this 

selection process over many generations, the algorithm applies a kind of survival of the fittest 

pressure on the evolving threshold combinations.  

In this way, the overall fitness of the population is slowly but continuously improved. The 

algorithm eventually converges when the incremental improvements of the fitness function 

become insignificant, and the algorithm then converges to the set of weather thresholds that 

most effectively discriminate between different saturation states in concrete [50, 68]. 

2.2.3.4. Optimization and Convergence 

During this optimization process, the algorithm automatically monitored the best fitness value 

in each generation to track convergence, and the algorithm was deemed to have converged 

when improvements in the best fitness score became negligible. In this study, optimal 

thresholds refer to a particular set of threshold values for the six weather variables that most 

effectively separate the measured DOS categories. This particular set of thresholds is 

associated with a particular set of environmental limits that may be used to directly associate 

weather conditions and the DOS of the concrete.  

For repeatability of the optimization procedure and thus produce the same results each time, a 

fixed random seed of 42 was used in both the initialization and the evolutionary phases of the 

GAs. The random seed marks the start of the sequence of pseudorandom numbers, which are 

later used to determine how the initial population is generated and which mutations are applied 

in the subsequent evolutionary steps of the algorithm. Fixing the random seed to the same value 

thus implies that with every restart of the algorithm, the same sequence of random operations 

is generated and that the complete optimization procedure can therefore be repeated bit by bit 

with identical results [69].  

The value 42 was chosen arbitrarily, but consistently for all weather variables and all runs of 

the model. This procedure allows for complete transparency and repeatability of the model, 

both of which are essential for judging the predictive performance of the developed model. 

2.3. Lookup Table and Prediction Process for New Data     
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Once the best thresholds were defined, a lookup table was generated that associates the various 

combinations of weather values with the corresponding categories of DOS. This table acts as a 

kind of summary of all the relations discovered between weather variables and measured DOS 

values in the training data. It encodes each combination of the six weather variables and the 

DOS category that was observed with those conditions. In other words, it reduces the complex 

relations between weather and concrete DOS into a simple reference system. This allows for 

fast and direct classification of new weather data, while still being exactly the same as the 

trained model. 

When a new weather dataset is presented, the same thresholds are used to assign each variable 

to a low, medium or high value. The combination of these categories together can be considered 

a simple pattern that describes the overall state of the weather. The algorithm then looks up this 

pattern or the most similar one in the lookup table and assigns the associated category of DOS. 

If an exact match for the new pattern does not exist in the lookup table, the algorithm selects 

the closest match using the Hamming distance, which counts how many positions differ 

between two patterns. In simpler terms, it finds the trinary code that is most similar to the new 

one [70-73]. For instance, if the new weather pattern differs from an existing one in only a 

single variable (e.g., temperature slightly higher but all other variables similar), that closest 

match is used to predict the DOS category. 

In cases where a trinary code does not exactly match any existing code but shows equal 

similarity to multiple classified codes, the category that appears most frequently in the training 

data is selected. For example, if a specific trinary code has been associated with both the 80–

90% and >90% DOS categories, but that trinary code occurred more often in the DOS >90% 

category in the training data (e.g., a trinary code observed 15 times in DOS >90% and 3 times 

in DOS 80-90%), the algorithm will assign >90% to that trinary code. When both categories 

occur with equal frequency, the higher DOS category is chosen, as it represents a more 

saturated and potentially more critical condition for FT damage. 

2.4. Prediction Evaluation 

The model’s accuracy is evaluated through two metrics: correct predictions and incorrect 

predictions.  

• Correct Prediction: A prediction is considered correct if the predicted trinary code exactly 

matches a code from the training data, and the corresponding DOS category is the same. 
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Alternatively, if the predicted trinary code does not exactly match but is the closest to a code 

in the training data (based on the Hamming distance), and the predicted DOS category matches 

the measured value from the field, then this is considered a correct prediction. 

• Incorrect Prediction: A prediction is considered incorrect if the predicted trinary code 

matches a code from the training data, but the predicted DOS category does not align with the 

measured DOS category.   

2.5. Predicting FT Cycles 

2.5.1. Detecting Actual FT Cycles  

The detection of field freezing events was based on the relationship between the DOS and the 

freezing temperature of concrete. The freezing temperature is defined as the point at which the 

pore solution within the concrete begins to freeze, and this temperature depends directly on the 

DOS of the material [33,34]. As illustrated in Fig. 2, concrete with a higher DOS freezes at 

warmer temperatures, meaning it is more susceptible to ice formation and potential freeze–

thaw damage. Conversely, concrete with a lower DOS requires colder temperatures to reach 

the freezing point. 

The field-measured FT cycle, defined as a temperature below the freezing temperature that was 

followed by a rise to temperatures above 0°C, was used in this study to compare with the values 

predicted by the model. The analyses of the field-measured data were limited to the sensors 51 

mm below the surface since this depth had the highest DOS values in all cases [33,34]. 

 

Fig. 2. Relationship between freezing temperature and DOS (adapted from [33]). 

2.5.2. Predicting FT Cycles  
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Fig. 2 shows how the freezing temperature varied for samples with different DOS. Instead of 

using the curve shown in Fig. 2, a single freezing temperature was assigned to each DOS 

category to simplify the analysis. The values used for the analysis are listed in Table 4. These 

values were selected by testing multiple freezing temperatures within the range of each DOS 

category, as shown in Fig. 2, to determine which provided the most accurate prediction of 

freeze–thaw cycles. More details are provided in Appendix B. 

In summary, a freeze event was defined as any period when the air temperature dropped to or 

below the freezing temperature outlined in Table 3, based on the DOS category for the location, 

based on the weather, and a thaw event occurred when the air temperature increased to or above 

0°C. A complete freeze–thaw cycle was identified when the sample goes from a freezing point 

to a thawing point. 

Table 4 

Selected Freezing Temperatures Assigned to Each DOS Category. 

DOS Category 
Freezing Temperature 
(°C) 

<80% -4.0 

80–90% -3.5 

>90% -1.5 

 

2.5.3. Detecting Damaging FT Cycles  

The FT cycles were considered damaging only when the moisture level exceeded the critical 

DOS, which is assumed to be 80% or higher for this study. This threshold was selected based 

on previous research that identified the critical DOS range to be approximately 78–90% [7–

10]. The chosen 80% cutoff has the advantage of giving a conservative lower limit on FT 

damage. This is cautious, in that it is less likely that ice formation below 80% will lead to 

severe damage. Given that the temperature, DOS, and presence of ice were known, it was 

possible to assess whether the observed freezing event occurred when the DOS was at or above 

80%. This approach allowed for the quantification of potentially damaging FT cycles. 

Specifically, FT cycles for predicted DOS categories >90% and 80–90% were considered 

damaging, while those with DOS <80% were not deemed damaging. 

3. Results and Discussions 
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3.1. Air and Concrete Temperatures Relationship  

In this research, air temperature was employed instead of concrete temperature for a few 

reasons. Air temperatures are available from numerous sources and monitored frequently by 

weather stations. Their data are consistent and easily accessible as well. Air temperature is a 

practical and cost-effective means of detection of FT cycles, and it performs well for this 

purpose if the difference between air and concrete temperature at 51 mm from the surface is 

minimal, and the coefficient of correlation between the two is high.  

A statistical test was performed to show whether air temperature can replace concrete 

temperature in FT. In order to determine the consistency between air and concrete temperature 

data, these two datasets were compared. For determining whether the difference in means of 

air and concrete temperature was statistically significant, the Z-test was used.  

The Z-test for two population means is the test for differences in the population means of two 

samples of continuous data drawn from a normal distribution when each sample has more than 

30 records [74, 75]. The Z-score is calculated based on the following formula: 

𝑍𝑍 =  𝑋𝑋
�1− 𝑋𝑋�2

�𝜎𝜎1
2

𝑛𝑛1
+
𝜎𝜎2
2

𝑛𝑛2

                                                                                                                Equation (4) 

where 𝑋𝑋�1 and 𝑋𝑋�2 are the sample means, 𝜎𝜎1 and 𝜎𝜎2 are the standard deviations, and 𝑛𝑛1, 𝑛𝑛2 are 

the sample sizes. The sample sizes were large and equal, justifying the use of the Z-test over a 

t-test [75]. 

In this study, one location was selected from each geographical region to prevent any bias or 

generalization and to represent the diversity of regions. The selected location was presented 

with the detailed value of each statistical test in Table 5, and the rest were reported in Table 

6. The results of the Z-test for all four locations showed no statistically significant difference 

(p ≥ 0.05) (Tables 5 and 6). These results mean that the measured air temperature and concrete 

temperature at 51 mm from the surface are statistically similar. Pearson's correlation coefficient 

was also computed to more closely assess the relationship between the two variables. This test 

determines the strength and direction of the linear relationship between two continuous 

variables [75,76]. A Pearson correlation close to +1 indicates a strong positive relationship. All 

locations showed strong positive correlations (r >0.85), confirming that concrete and air 

temperatures are statistically similar. Plots showing the relationship are included in Appendix 

C. 



138 
 

This supports using air temperature as a reliable input for assessing FT cycles in large-scale 

analyses. This is useful where direct concrete temperature measurements are not available. 

Table 5 
Statistical Comparison of Air and Concrete Temperatures from September 2021 to April 2022 
at Four Different Locations, Including Z-Test Results and Pearson Correlation Coefficients. 

Location North 
(Wisconsin – 
Green Bay) 

South 
(Oklahoma -

Texas County) 

Northeast 
(Pennsylvania – 

Cyclone) 

Northwest 
(Idaho – Coeur 
d'Alene US-95) 

Sample Size 11,616 11,616 11,616 11,616 
Mean Concrete 

Temperature (°C) 
1.53 8.43 6.73 6.66 

Mean Air 
Temperature (°C) 

1.44 8.13 6.70 6.45 

Standard Deviation 
(Concrete) (°C) 

9.287 11.901 7.977 9.189 

Standard Deviation 
(Air) (°C) 

9.063 10.085 7.417 9.239 

Standard Error 
(Concrete) (°C) 

0.107 0.124 0.385 0.097 

Standard Error (Air) 
(°C) 

0.104 0.136 0.094 0.122 

Standard Error of 
Difference (°C) 

0.149 0.185 0.369 0.156 

Z-score 0.599 1.589 0.075 1.348 
P-value 0.549 0.112 0.940 0.178 

Significance 
(α=0.05) 

Not Significant 
(p ≥ 0.05) 

Not Significant 
(p ≥ 0.05) 

Not Significant 
(p ≥ 0.05) 

Not Significant 
(p ≥ 0.05) 

Pearson Correlation 0.952 0.937 0.968 0.963 
 
 
 
 
Table 6 
Pearson Correlation Coefficients of Air and Concrete Temperatures from September 2021 to 
April 2022. 

State Location Pearson Correlation P- Value 

Oklahoma 
Cooper Lab 0.954 0.235 

McCurtain County 0.922 0.552 
Texas County 0.937 0.112 

  
Spring Field (Central) 0.945 0.531 

Dixon (Northern) 0.903 0.203 
Carbondale (Southern) 0.958 0.640 

Wisconsin 
Green Bay 0.952 0.549 
Madison 0.960 0.460 

Rhinelander 0.924 0.335 

New York 
Watertown 0.953 0.197 

Clifton Park 0.922 0.756 
Hauppauge 0.900 0.623 

Minnesota 
Baxter 0.860 0.101 

Maplewood 0.887 0.267 
Thief River Falls 0.967 0.310 
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Pennsylvania 
Clearfield 0.913 0.554 
Cyclone 0.968 0.940 

Harrisburg 0.947 0.910 

Nebraska 
Lincoln 0.925 0.646 

Thedford 0.939 0.501 
Chadron 0.915 0.397 

Iowa 
Ames 0.908 0.631 

Fairfield 0.956 0.241 
Mason City 0.895 0.200 

Colorado 
Denver 0.923 0.122 
Seibert 0.898 0.298 

Glenwood 0.909 0.534 

Kansas 
Oakley 0.927 0.115 

Hutchinson 0.945 0.621 
Topeka 0.969 0.322 

Idaho 
Coeur d Alene US-95 0.963 0.178 

Mt Home I-84 0.911 0.386 
Paddy Flat SH-55 0.893 0.476 

Oregon 
Bend 0.975 0.678 

Hinsdale Wave Research Lab 0.913 0.834 
Newport 0.967 0.568 

Missouri 
Central Laboratory 0.905 0.178 
Northwest District 0.922 0.433 
Southeast District 0.930 0.754 

North Dakota 
Bismarck Site 0.889 0.756 

Grand Forks Site 0.914 0.989 
Fargo Site 0.927 0.854 

 

3.2. DOS Prediction Evaluation 

3.2.1. Regional Threshold Development 

This section shows the values of the upper and lower boundaries of each weather variable that 
are found to be optimal for distinguishing the measured values into DOS categories, referred 
to as thresholds. These thresholds for each region are found using the training dataset of 1 year 
(September 2020–April 2021), and the GA model is run.  

The result suggests that different regions have different threshold values, as listed in Table 
7. This is also a representation of the fact that regional climate behavior is a dominant feature 
in dictating the DOS classification. For instance, the threshold of air temperatures in the North 
and the South are between –7.6 and 5.3°C and between 10.8 and 14.8°C, respectively. This is 
a concrete example showing that the climate of a region determines the classification of a 
particular weather condition into a specific DOS category. By using the regionally varying 
thresholds, the proposed model is more representative of the weather behavior of different 
regions and therefore improves prediction accuracy.  

The regional thresholds are then utilized to predict the DOS categories of the following three 
winter seasons, i.e., September 2021–April 2022, September 2022–April 2023, and September 
2023– April 2024. 
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3.2.2. Development and Application of the Lookup Table for DOS Prediction 

A lookup table was established during the training to link each trinary code to a DOS category 
during training. When the model is applied to new monthly weather data, the regional 
thresholds obtained from the GA training period are used to generate trinary codes for each 
location and month. These codes are then matched to their corresponding DOS categories using 
the lookup table. This lookup-based approach simplifies the prediction process by turning the 
complex relationships between weather and concrete DOS into an easy-to-use reference 
system. It allows rapid classification of new weather data while maintaining consistency with 
the trained model. 

Table 8 summarizes the lookup table results generated from the 2020–2021 training data and 
presents an example from Lincoln, Nebraska (North Region) for one representative year 
(September 2021–April 2022). These results illustrate how the lookup table was used to predict 
DOS categories for each month within that region and year. The prediction results for the other 
regions are presented in the following section. 

Table 7 
Optimal Thresholds of Weather Variables for Each Region. 

Weather Feature Region Threshold 1a Threshold 2a 

Average Air Temperature (°C) 

Northwest -0.2 8.4 
North -7.6 5.3 
South 10.8 14.8 

Northeast 4.1 7.6 

Total Precipitation (mm) 

Northwest 228.6 260.0 
North 44.9 152.4 
South 269.0 273.0 

Northeast 140.0 148.0 

Average Relative Humidity (%) 

Northwest 51.3 67.6 
North 63.2 82.5 
South 65.6 70.1 

Northeast 60.4 74.8 

Solar Radiation GHI (kWh/m²) 

Northwest 4.6 4.8 
North 4.2 4.7 
South 4.7 4.9 

Northeast 4.3 4.5 

Average Wind Speed (m/s) 

Northwest 2.8 3.1 
North 3.6 4.7 
South 2.3 3.1 

Northeast 2.8 3.3 

Average Air Pressure (kPa) 

Northwest 92.7 97.0 
North 92.6 94.3 
South 86.0 90.0 

Northeast 93.0 98.0 
    a Obtained from the Genetic Algorithms Model.  
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Table 8 
Lookup Table Example for DOS Prediction in Lincoln, Nebraska (September 2021–April 
2022). 

North Region 

 Training Data 
(September 2020 – April 2021) 

Predicted Performance 
(September 2021 – April 2022) Conclusion 

Month Trinary 
Code 

DOS 
Category 

(%) 

Overlap 
(%) 

Trinary 
Code 

Predicted 
DOS 

Category 
(%) 

Overlap 
(%) 

Does the 
Trinary 

Code 
Match? 

Does the 
DOS 

Category 
Match? 

September 002012 >90 0 002012 >90 0 YES YES 
October 111002 >90 0 111002 >90 0 YES YES 

November 221102 >90 0 221102 >90 0 YES YES 
December 201012 80-90 0 201012 80-90 0 YES YES 
January 202102 80-90 0 202102 80-90 0 YES YES 

February 210002 80-90 0 210002 80-90 0 YES YES 

March 112002 >90 0 112012 >90 0 Closest 
Match YES 

April 201022 80-90 0 201022 >90 0 YES NO 
Prediction Accuracy (%)a 87.5 

a Prediction Accuracy (%) = Number of Correct DOS Predictions
Total Number of Months Evaluated

x100                                      Equation (5) 

3.2.3. DOS Prediction Accuracy Across Years and Regions 

Table 9 shows the results for ten traditional ML models. The best performing model was the 
GA model, as the other models did not perform well. This is likely because of the imbalance in 
the dataset. There were fewer training data points in the <80% DOS category than in the 80–
90% and >90% DOS categories. The models had less information from which to learn the 
properties of this category, and the prediction accuracy for it was particularly low, as presented 
in Appendix D. The GA approach, unlike traditional ML models, is able to accommodate the 
imbalanced and non-uniform distribution of data in the three DOS categories [49–51]. The 
result is a large improvement in the accuracy of predicting the DOS category, which speaks to 
the robustness of the GA model and its applicability in making predictions of DOS for different 
years with confidence from weather data. 

Table 10 shows more details of the predictions of the GA model. The table shows where the 
predicted DOS category matches the measured values over three forecasted years. Across all 
regions, the average prediction accuracy was 89%, indicating that the GA model and its derived 
thresholds achieved nearly 90% accuracy in predicting DOS categories over multiple years.  
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Table 9  
Predicting DOS Category Results for the year September 2021 to April 2022. 

Model Model Accuracy in Predicting the DOS 
Category (%) 

Random Forest Classifier 56 
Multilayer Perceptron 31 

Support Vector Machines 31 
SVM with RBF Kernel 31 

Gradient Boosting Classifier 31 
Decision Tree Classifier 44 

LSTM Model (10 epochs) 33 
LSTM Model (60 epochs) 33 

Linear Regression 25 
Nonlinear Regression 30 

Artificial Neural Network (ANN) 35 
Genetic Algorithms 89 

 

 
Table 10 
Prediction Accuracy of DOS Categories for Three Years. 

Time Region Correct Prediction Incorrect Prediction 

September 2021 to April 2022 

Northwest 85% 15% 
North 86% 14% 
South 89% 11% 

Northeast 87% 13% 

September 2022 to April 2023 

Northwest 84% 16% 
North 87% 13% 
South 97% 3% 

Northeast 93% 6% 

September 2023 to April 2024 

Northwest 89% 11% 
North 87% 13% 
South 95% 5% 

Northeast 91% 9% 
Average 89% 11% 

 
3.3. FT Cycles Prediction 

The comparison of the predicted FT cycles is shown in Table 11 for all 42 field locations over 
three years for both total and damaging FT cycles. Some field samples from September 2023 
to April 2024 were damaged, and this caused sensor malfunction. These affected sites are 
labeled as NA in Table 11. In total, 9 out of the 42 locations did not yield actual FT cycle 
measurements for this winter season. 

The predicted DOS categories generated by the GA model were combined with the predefined 
freezing temperatures (Table 4) and the air temperature data to estimate the number of total and 
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damaging FT cycles for each field location. A cycle was considered as damaging when the air 
temperature dropped below the predefined freezing temperature for that DOS category (Table 
4), and the predicted DOS category corresponded to either 80–90% or >90%. FT cycles 
occurring during months with a predicted DOS <80% were considered non-damaging.  

Table 11 summarizes the percentage differences between the predicted and measured FT cycles 
across all locations and years. The measured FT cycles were obtained from instrumentation 
boxes used in the field over four winter seasons. Detailed actual and predicted values for total 
and damaging FT cycles are provided in Appendices E and F. 

On average, the predicted results are within 2% of the measured values for both total and 
damaging FT cycles. To quantify the accuracy of the proposed method, the standard deviation 
of measurements was analyzed. The standard deviation of damaging FT cycles was 7%, 
meaning that the number of predicted damaging FT cycles will be within the 14% of the 
measured value 95% of the time. This is reasonably consistent with this study, as the maximum 
error in this study was 15%, close to the anticipated 14%. The prediction of the total number 
of FT cycles at a 95% confidence interval has a smaller standard deviation of 5%. The GA-
based approach could, therefore, be considered a practical tool for predicting the FT behavior 
of concrete in a wide range of climatic zones. Minor deviations between the predicted and the 
measured FT cycles were, in most cases, linked to a difference in the actual freezing 
temperatures at field locations and the predefined freezing temperatures for each category of 
DOS. The model tends to overpredict the FT cycles when the actual freezing temperature is 
lower than the predefined value, and underpredict when the actual temperature is higher. In 
some cases, the mismatch of predicted and measured DOS category also plays a role in the 
variations. These differences reflect the inherent variability in local weather conditions and the 
nonlinear relationship between DOS and freezing temperature, but remained within acceptable 
limits for the intended predictive accuracy of the model. 

Additionally, it is important to note that the model predictions in this study are based on field 
measurements obtained from mortar without entrained air. This represents a worst-case 
scenario for FT susceptibility, as air-entrained concrete or concrete with different mixture 
proportions would experience fewer damaging cycles under the same environmental 
conditions. Therefore, the predicted number of damaging FT cycles presented here should be 
interpreted as mixture-dependent, and different concrete mixtures may show reduced or altered 
damage potential. 
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Table 11 
Regional and Overall Percent Differences Between Predicted and Measured FT Cycles.  

R
eg

io
n 

State Location 
FT Cycles % Difference(a) 

Year 1b Year 2c Year 3d 
Total Damaging Total Damaging Total Damaging 

N
or

th
 

North Dakota 
Bismarck Site 0 -2 0 0 NAe NA 

Grand Forks Site 0 -8 0 0 NA NA 
Fargo Site 0 -11 0 0 NA NA 

Minnesota 
Baxter 0 -5 0 0 -4 -4 

Maplewood 6 11 0 0 2 2 
Thief River Falls 3 -4 0 5 -4 -2 

Wisconsin 
Green Bay -4 -1 -8 8 NA NA 
Madison -8 -10 -4 -4 0 0 

Rhinelander -5 1 0 2 NA NA 

Iowa 
Ames -3 1 -2 -3 NA NA 

Fairfield -8 -8 -7 -7 0 0 
Mason City 8 -3 -4 -4 0 0 

Nebraska 
Lincoln -7 -7 0 0 14 8 

Thedford 2 -6 0 -8 3 3 
Chadron -5 4 0 0 1 10 

Illinois Dixon (Northern) -4 -1 -2 10 NA NA 
Missouri Northwest District -5 -5 0 0 -3 -3 

Average (%) -2 -3 -2 0 1 1 
Standard Deviation 5 6 3 5 5 5 

So
ut

h 

Colorado 
Denver 0 0 1 0 -1 0 
Seibert -4 0 -4 0 0 0 

Glenwood -1 4 -5 0 -1 -1 

Kansas 
Oakley -1 0 0 0 1 0 

Hutchinson 2 -12 0 -8 4 -9 
Topeka -10 -10 -15 -7 -4 -4 

Oklahoma 
Cooper Lab 0 0 0 9 6 -11 

McCurtain County 0 0 0 -9 8 -11 
Texas County 0 0 0 0 0 0 

Illinois Spring Field (Central) -5 -10 -12 -10 12 12 
Carbondale (Southern) 0 -11 0 -12 13 12 

Missouri Central Laboratory 0 -12 0 -12 6 -14 
Southeast District -3 -13 0 13 0 0 

Average (%) -2 -5 -3 -3 3 -3 
Standard Deviation 3 6 5 8 5 7 

N
or

th
w

es
t 

Oregon 
Bend -10 -12 0 -4 NA NA 

Hinsdale Wave Research Lab -8 0 -9 -12 NA NA 
Newport 0 0 0 0 0 0 

Idaho 
Coeur d'Alene US-95 5 -5 0 2 -1 14 

Mt Home I-84 -12 -12 0 -15 -7 -12 
Paddy Flat SH-55 9 2 0 7 -5 -5 

Average (%) -3 -4 -2 -4 -3 -1 
Standard Deviation 9 6 4 8 3 11 

N
or

th
ea

st
 

Pennsylvania 
Clearfield -5 10 0 0 -3 -3 
Cyclone -8 10 0 0 -6 -6 

Harrisburg -8 -8 0 -2 7 7 

New York 
Watertown 0 -6 4 -11 3 3 

Clifton Park -8 4 -10 -13 4 4 
Hauppauge 0 11 0 0 10 10 

Average (%) -5 4 -1 -4 3 3 
Standard Deviation 4 9 5 6 6 6 

All Years and 
Regions 

Average Difference 
(%) 

Standard Deviation 
(%) 

Maximum 
Difference (%) 

Minimum 
Difference (%) 
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a Difference (%) = 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 𝑥𝑥 100                                                                      Equation 

(6) 
b Year 1: September 2021 – April 2022. 
c Year 2: September 2022 – April 2023. 
d Year 3: September 2023 – April 2024. 
e NA: No Available data due to the damaged field sample. 
 
4. Practical Significance 

The main contribution of this research is the ability to provide a field-validated, scalable model 
to predict the damaging FT cycles of concrete using weather data. By accurately predicting the 
DOS categories to 89% accuracy and damaging FT cycles within 15% of measured values 
Based on a 95% confidence interval in all years and regions. This model enables a specifier to 
perform a reliable evaluation of FT durability without the need for physical measurements, 
which may be costly and time-consuming. 

A single, uniform concrete mixture was used for all field samples at each location. The use of 
the same mixture at each location enables direct comparison of DOS behavior across locations. 
However, the results described here are specific to this material and mixture design.  It is 
encouraging that this mixture is representative of a common bridge deck or pavement.The 
developed model has significance in that it is based on easily acquired and generally available 
weather data. Therefore, the end-user needs only to know the geographic location of a project 
to predict its risk to FT. This research is not only novel, but it has never previously 
existed. Most existing models are based on generalized or region-wide climatic assumptions 
and therefore result in designs that are either overly conservative or under-designed for FT 
durability. 

The developed model could also be used to develop FT maps or web-based tools to allow users 
to input a location and provide predicted FT damage based on historical weather data or 
forecasts. Publications are also being developed that focus on the development of these 
tools. The tools will provide valuable information for data-informed decision-making in 
construction planning, infrastructure maintenance, and resilience strategies, particularly in 
regions where climatic conditions are changing. 

The model will also be expanded in the future by the addition of new field measurements from 
different regions and the use of different concrete mixtures to continue to validate and refine 
the performance. As data are obtained from adjoining climatic zones more widely, the hope is 
to be able to develop a universally applicable model. 

 

5. Conclusions 

This work provides a scalable, regionalized framework to predict the DOS, FT cycles, and 
damaging FT cycles for concrete, given accessible weather data from 42 separate locations. To 

Total FT Cycles -1 5 14 -15 
Damaging FT 

Cycles -2 7 14 -15 



146 
 

characterize a wide range of climatic conditions, GA-based optimization was used to determine 
thresholds for 6 environmental variables, which differ by region, to be used as model inputs 
for the classification of the three DOS categories. Region-specific thresholds were used with 
trinary encoding and the Bhattacharyya distance as a fitness function to accurately predict the 
DOS. The model was also validated against measured FT cycles and damaging FT cycles in 
the field and was shown to provide statistically equivalent and interchangeable results 
compared to the measured values. The field measurements used for both the development and 
validation of this framework were performed on the same standard concrete mixture to allow 
for direct comparison of DOS and FT behavior between locations. As a result, the presented 
findings and suggested thresholds are specific to this mixture design and may need to be 
adjusted when applied to other concrete mixtures. The following conclusions can be drawn: 

1. The GA model that used trinary encoding and Bhattacharyya distance as a fitness function 
yielded an average DOS accuracy of 89% using 1 year of training data and 3 years of validation 
data. 

 

2. Based on a 95% confidence interval, the number of predicted FT cycles and damaging FT 
cycles were within 15% of the measured values in all years and regions, meaning that the model 
provides reliable and consistent performance across varying climatic conditions. 

 

3. The statistical analysis indicates that there is no statistical difference between air temperature 
and concrete temperature at 51 mm, and the Pearson correlation coefficient (r) is greater than 
0.93, showing that they have a strong positive linear relationship. The air temperature can be 
used as an effective substitute for the concrete temperature for large-scale applications where 
concrete temperature is not available for determining FT cycles. 

 

4. A model that uses a simplified freezing temperature based on the DOS was developed.  The 
temperatures used were –4.0°C for DOS <80%, –3.5°C for 80–90%, and –1.5°C for >90%.  
This allowed for simplified calculations to determine when freezing occurred within the 
concrete.   

In summary, this framework represents a significant step towards the state-of-the-art in 
predictive modeling of concrete durability, while also providing a foundation for future 
expansion to larger geographic regions as additional field data becomes available. By 
establishing a strong linkage between environmental exposure conditions and actual field 
measurements, this framework provides a scalable and validated solution for the 
assessment and mitigation of FT damage in infrastructure. 
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Appendices 

Appendix A: Initial Threshold Ranges for Weather Variables Before GA Optimization 

The boundary values were preselected based on the following considerations: 

 Data Boundaries: The boundaries were chosen to include at least 90% of the data, 

ensuring they reflect typical conditions while excluding outliers. 

 Avoiding Extremes: Boundaries were intentionally set away from the absolute 

maximum and minimum values of the weather features to ensure the thresholds 

remain within reasonable limits. 

 Optimal Discriminant Power: The selected boundaries were found to be most 

effective in distinguishing between DOS categories, minimizing overlap between 

them. 

This approach ensures that threshold optimization remains grounded in realistic weather 

conditions, as all threshold values fall within the observed weather data ranges obtained from 

the Open-Meteo API website [1]. By staying within these bounds, the model maintains physical 

relevance and improves its generalizability across different regions and years. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



154 
 

Table A1 
Weather Feature Threshold Boundaries and Optimized Threshold Values for Each Region, 
Derived from the Genetic Algorithms Model (Training Period: September 2020 to April 2021). 

R
eg

io
n 

Weather Feature 

Weather 
Feature 

Min. 
Valuea 

Weather 
Feature 

Max. 
Value* 

Minimum 
Threshold 
Boundary 

Maximum 
Threshold 
Boundary 

Lower 
Thresholdb 

Upper 
Thresholdb 

N
or

th
w

es
t 

Average Air Temperature (°C) -3.75 15.89 -1 12 -0.2 8.4 
Total Precipitation (mm) 0.00 504.95 40 450 228.6 260.0 

Average Relative Humidity (%) 40.94 94.10 45 85 51.3 67.6 
Solar Radiation GHI (kWh/m²) 4.00 5.50 4.2 5.25 4.7 4.9 

Average Wind Speed (m/s) 1.37 4.98 2.2 3.5 2.8 3.1 
Average Air Pressure (kPa) 84.35 101.71 88 99 92.7 97.0 

N
or

th
 

Average Air Temperature (°C) -16.24 17.58 -12 12 -7.6 5.3 
Total Precipitation (mm) 0.00 269.49 30 200 44.9 152.4 

Average Relative Humidity (%) 53.00 93.22 60 85 63.2 82.5 
Solar Radiation GHI (kWh/m²) 4.00 5.75 4.2 5.25 4.25 4.9 

Average Wind Speed (m/s) 2.17 6.04 3 5.2 3.56 4.7 
Average Air Pressure (kPa) 90.01 99.51 92 99 92.6 94.3 

So
ut

h 

Average Air Temperature (°C) -6.17 20.64 -2 16 10.8 14.8 
Total Precipitation (mm) 0.00 657.86 40 450 269.0 273.0 

Average Relative Humidity (%) 38.98 90.02 45 80 65.6 70.1 
Solar Radiation GHI (kWh/m²) 4.00 5.75 4.2 5.25 4.7 4.9 

Average Wind Speed (m/s) 1.53 6.16 2.2 5.0 2.3 3.1 
Average Air Pressure (kPa) 82.96 102.25 85 99 86.0 90.0 

N
or

th
ea

st
 

Average Air Temperature (°C) -5.17 19.86 -1 12 4.1 7.6 
Total Precipitation (mm) 30.23 282.45 70 250 140.0 148.0 

Average Relative Humidity (%) 57.20 84.87 60 80 60.4 74.8 
Solar Radiation GHI (kWh/m²) 4.00 4.75 4.25 4.5 4.3 4.5 

Average Wind Speed (m/s) 1.64 4.70 2.2 4.0 2.8 3.3 
Average Air Pressure (kPa) 93.57 101.89 94 101 93.0 98.0 

a Obtained from Open-Meteo API  website [1]. 
b Obtained from the Genetic Algorithms Model.  
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Appendix B: Freezing Temperature Optimization for Predicting FT Cycles 

Fig. B1 represents the freezing temperature ranges for each DOS category, selected on the 
DOS–freezing temperature curve. For instance, as shown in Fig. B1, freezing temperatures 
between –3.9°C and –4.9°C are the selected range for the DOS <80% category. Several values 
within this range were tested, and the freezing temperature at which the best agreement between 
predicted and observed FT cycles was found was –4.0°C. The same method was used to select 
the best freezing temperature ranges for the other DOS categories in order to ensure high 
accuracy and best matching between predicted and observed FT cycles.  

As a result, a large number of tests at various locations have confirmed that the freezing 
temperatures in Table B1 resulted in the most accurate FT cycle predictions in terms of the best 
matching with the observed number of freeze–thaw cycles at all of the tested locations (as 
presented in the results section). 

 
                  (a)                                         (b)                                          (c) 

Fig. B1. Freezing temperature ranges associated with each DOS category, derived from the 
DOS vs. freezing temperature relationship [2]: (a) <80%, (b) 80–90%, and (c) >90%. 

B.1 Optimal Freezing Temperatures for DOS >90% 

To identify the best fitting predefined freezing temperature in terms of predicting FT cycles in 
the locations with the predicted DOS category >90%, appropriate freezing temperatures for the 
considered category were determined with the DOS–freezing temperature relationship shown 
in Fig. B1. For this purpose, three freezing temperatures were chosen within the temperature 
range shown for this category in Fig. B1(c) (between –0.6 and –2.8°C), namely 1, –1.5, and –
2°C. These were used to test which of these temperatures most accurately predicted the number 
of FT cycles (Table B1). For the sake of simplicity, it was decided to use locations from 
different parts of the considered region with predicted DOS values >90%. 
The fact that actual DOS values (91–99%) and associated freezing temperatures (–0.6 and –
2.8°C) vary significantly supports the notion that the selection of a specific predefined freezing 
temperature influences the resulting number of FT cycles. Table 11 gives the total number of 
actual FT cycles and their differences between the values predicted using a given predefined 
freezing temperature and the actual values (predicted from September 2021 to April 2022) for 
the selected locations.  
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It is clear from the results that the predefined freezing temperatures of –1 and –2°C lead to 
large differences between the predicted and actual values. This means that neither of these 
temperatures is a good fit for the locations with the DOS >90%. In contrast, the predefined 
temperature of –1.5°C has very small variations and can be deemed to be the best fitting 
freezing temperature for predicting the number of FT cycles in this category. 
Table B2 shows the average, maximum, and minimum values of actual and predicted FT cycles, 
as well as the differences between the predicted and actual numbers of FT cycles. It can be seen 
that predictions using the predefined freezing temperature of –1.5°C have smaller absolute 
differences compared with those using the predefined temperature of –2°C. In other words, the 
predicted numbers of FT cycles at –1.5°C are closer to the actual values. Smaller differences 
at a predefined temperature of –1.5°C also have a tighter range with a minimum and a 
maximum of –8 and 7, respectively, than at –2°C, for which a minimum and maximum of –7 
and 15, respectively, were calculated. For example, a large maximum difference of 15 at a 
predefined freezing temperature of –2°C might cause a bias in results for a location. On the 
other hand, predictions using the predefined freezing temperature of –1°C are clearly lower 
than the actual number of FT cycles, which is evident from the negative values of differences 
(Table B2). 
In summary, using the predefined freezing temperature of –1.5°C leads to the most accurate 
and consistent predictions of FT cycles in the DOS >90% category. It minimizes the difference 
between actual and predicted numbers of FT cycles, as well as the range of these differences, 
and avoids systematic underestimation or overestimation of the numbers of FT cycles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



157 
 

Table B1 
Evaluation of Predicted FT Cycles Using Different Predefined Freezing Temperatures for DOS 
Category >90%. 

Predefined Freezing Temperature (-1.0°C) 

Region Location, State 
Actual FT 

Cyclesa 
Predicted FT Cyclesa 

Difference 
(Actual – 

Predicted) 
Northwest Coeur d'Alene US-95, Idaho 61 123 -62 
Northwest Paddy Flat SH-55, Idaho 74 83 -9 
Northeast Cyclone, Pennsylvania 44 64 -20 
Northeast Harrisburg, Pennsylvania 40 51 -11 

North Chadron, Nebraska 94 119 -25 
North Madison, Wisconsin 50 67 -17 
North Baxter, Minnesota 54 67 -13 
South Glenwood, Colorado 70 72 -2 

South McCurtain County, 
Oklahoma 31 50 -19 

South Topeka, Kansas 41 56 -15 
Average 55.9 75.2 -19.3 

Minimum Value 31 50 -62 
Maximum Value 94 123 -1 

Predefined Freezing Temperature (-1.5°C) 
Northwest Coeur d'Alene US-95, Idaho 61 58 3 
Northwest Paddy Flat SH-55, Idaho 74 67 7 
Northeast Cyclone, Pennsylvania 44 52 -8 
Northeast Harrisburg, Pennsylvania 40 43 -3 

North Chadron, Nebraska 94 99 -5 
North Madison, Wisconsin 50 54 -4 
North Baxter, Minnesota 54 54 0 
South Glenwood, Colorado 70 71 -1 

South McCurtain County, 
Oklahoma 31 31 0 

South Topeka, Kansas 41 45 -4 
Average 55.9 57.4 -1.5 

Minimum Value 31 31 -8 
Maximum Value 94 99 7 

Predefined Freezing Temperature (-2.0°C) 
Northwest Coeur d'Alene US-95, Idaho 61 52 9 
Northwest Paddy Flat SH-55, Idaho 74 59 15 
Northeast Cyclone, Pennsylvania 44 51 -7 
Northeast Harrisburg, Pennsylvania 40 40 0 

North Chadron, Nebraska 94 93 1 
North Madison, Wisconsin 50 49 1 
North Baxter, Minnesota 54 50 4 
South Glenwood, Colorado 70 69 1 

South McCurtain County, 
Oklahoma 31 35 -4 

South Topeka, Kansas 41 41 0 
Average 55.9 53.9 2.0 

Minimum Value 31 35 -7 
Maximum Value 94 93 15 

a Total Number of FT Cycles from September 2021 to April 2022. 
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B.2 Optimal Freezing Temperatures for DOS 80-90% 

To reduce complexity, multiple locations from different regions with variable DOS values in 
the range of 80–90% (Table B2) were chosen for this specific category to identify the most 
suitable predefined freezing temperature. This DOS range covers the widest spectrum of actual 
DOS values and their corresponding actual freezing temperatures (Fig. B1(b), approximately 
from −3.8 to −2.8°C). Consequently, three predefined freezing temperatures, 2.5°C, −3.0°C, 
and −3.5°C, were chosen for comparison and testing. 

The actual FT cycles from the selected multiple locations in the DOS 80–90% category (Table 
B2) were used to conclude the most reasonable predefined freezing temperature. As a result, 
−3.5°C is recommended as the predefined freezing temperature to calculate FT cycles in this 
category (Table B2). This is because, in comparison to −2.5°C and −3.0°C, differences between 
actual and predicted FT cycles at −3.5°C generally have smaller absolute values, i.e., they are 
relatively closer to zero, which implies that the prediction using −3.5°C is, on average, closer 
to the actual values. Besides, as shown in Table B2, the predefined freezing temperature of 
−3.5°C produces the smallest average absolute difference (≈1.3) as opposed to −2.5°C (≈10.1) 
and −3.0°C (≈5.3), which further indicates that the latter two cases have more extreme values 
(−18 and −10, respectively) that would disproportionately affect the results and make 
predictions less accurate at certain locations. The absolute average differences between actual 
and predicted FT cycles at −2.5°C are also generally large and consistently negative, which 
would suggest an underestimation bias in those cases. Although those at −3.0°C are much 
closer to zero on average, there are still more positive and extreme values present that could 
cause occasional overestimations. 
On the contrary, differences at −3.5°C are not only on average smaller in magnitude but also 
lack a strong positive or negative direction. As such, it can be concluded that −3.5°C would 
lead to more accurate predictions on average, compared to the two other cases. 
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Table B2 
Evaluation of Predicted FT Cycles Using Different Predefined Freezing Temperatures for DOS 
Category 80%-90%. 

Predefined Freezing Temperature (-2.5°C) 

Region Location, State Actual FT Cyclesa Predicted FT Cyclesa 
Difference 
(Actual – 

Predicted) 
Northwest Newport, Oregon 1 2 -1 
Northwest Mt Home I-84, Idaho 50 61 -11 
Northeast Hauppauge, New York 18 33 -15 

North Lincoln, Nebraska 56 74 -18 
North Mason City, Iowa 39 44 -5 
South Seibert, Colorado 71 87 -16 
South Hutchinson, Kansas 48 53 -5 

Average 40.4 50.6 -10.1 
Minimum Value 1 2 -18 
Maximum Value 71 87 -1 

Predefined Freezing Temperature (-3.0°C) 
Northwest Newport, Oregon 1 1 0 
Northwest Mt Home I-84, Idaho 50 60 -10 
Northeast Hauppauge, New York 18 26 -8 

North Lincoln, Nebraska 56 63 -7 
North Mason City, Iowa 39 40 -1 
South Seibert, Colorado 71 80 -9 
South Hutchinson, Kansas 48 50 -2 

Average 40.4 45.7 -5.3 
Minimum Value 1 1 -10 
Maximum Value 71 80 0 

Predefined Freezing Temperature (-3.5°C) 
Northwest Newport, Oregon 1 1 0 
Northwest Mt Home I-84, Idaho 50 56 -6 
Northeast Hauppauge, New York 18 18 0 

North Lincoln, Nebraska 56 60 -4 
North Mason City, Iowa 39 36 3 
South Seibert, Colorado 71 74 -3 
South Hutchinson, Kansas 48 47 1 

Average 40.4 41.7 -1.3 
Minimum Value 1 1 -6 
Maximum Value 71 74 3 

a Total Number of FT Cycles from September 2021 to April 2022. 
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B.3 Optimal Freezing Temperatures for DOS  <80% 

The results for the DOS category <80% show the effect of the chosen value of predefined 
freezing temperature on the predicted values. Table B3 presents the actual and predicted 
number of FT cycles for three different predefined freezing temperatures (–4.0°C, –4.5°C, and 
–4.7°C) for locations in Texas County, Oklahoma, and Denver, Colorado. The chosen range of 
temperatures is based on the range of actual DOS values and corresponding freezing 
temperatures shown in Fig. B1(a).  

When the predefined freezing temperature is set to –4.0°C, the actual and predicted FT cycles 
are perfectly aligned with no difference in any of the metrics (average, minimum, and 
maximum). This would make the predefined temperature of –4.0°C an ideal choice. At a 
predefined freezing temperature of –4.5°C, there is a clear difference between the actual and 
predicted values. The predicted values underestimate the number of FT cycles with a difference 
ranging from 3 to 5, with an average of 4. When the predefined freezing temperature is further 
lowered to –4.7°C, the difference between actual and predicted values increases, with a range 
from 5 to 7 and an average of 6. This pattern of results shows that lower predefined 
temperatures cause a larger underestimation of the actual values, which affects the prediction 
accuracy in a negative way.  

In conclusion, the most suitable predefined freezing temperature for the <80% DOS category 
is –4.0°C, as it results in a perfect match between actual and predicted FT cycles with no 
difference in the selected locations. 
 
Table B3 
Evaluation of Predicted FT Cycles Using Different Predefined Freezing Temperatures for DOS 
Category <80%. 

Predefined Freezing Temperature (-4.0°C) 
Region Location, State Actual FT 

Cyclesa 
Predicted FT 

Cyclesa 
Difference 

(Actual – Predicted) 
South Texas County, Oklahoma  42 42 0 
South Denver, Colorado 48 48 0 

Average 45 45 0 
Minimum Value 42 42 0 
Maximum Value 48 48 0 

Predefined Freezing Temperature (-4.5°C) 
Northwest Texas County, Oklahoma  42 39 3 
Northwest Denver, Colorado 48 43 5 

Average 45 41 4 
Minimum Value 42 39 3 
Maximum Value 48 43 5 

Predefined Freezing Temperature (-4.7°C) 
Northwest Texas County, Oklahoma  42 37 5 
Northwest Denver, Colorado 48 41 7 

Average 45 39 6 
Minimum Value 42 37 5 
Maximum Value 48 41 7 

a Total Number of FT Cycles from September 2021 to April 2022. 
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Appendix C: Comparison of Air Temperature and Concrete Temperature 

Fig. C1 shows the air and concrete temperatures at all selected locations from September 2021 
to April 2022. Fig. C1 indicates that air temperature generally tracked the concrete temperature 
over time at each location. 

 

 
                                                                  (a)  

 
   (b) 

 
    (c) 

 
     (d) 
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Fig. C1: Comparison of air temperature and concrete temperature from September 2021 to 
April 2022 at the following locations: (a) North – Wisconsin (Green Bay), (b) South – 

Oklahoma (Texas County), (c) Northeast – Pennsylvania (Cyclone), and (d) Northwest – 
Idaho (Coeur d'Alene, US-95). 
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Appendix D: Comparison with Traditional Machine Learning Models 

Initially, standard ML models were applied to the dataset to predict the DOS categories. The 

performance of all models was mediocre, which was further compounded by the low 

performance in the most important class, the <80% DOS category (Table D1). The best-

performing traditional ML model was the Random Forest Classifier, which still only managed 

to achieve 56% accuracy (Table D1), which is no better than making random predictions (Table 

D1). The major problem that plagued all traditional ML models was the imbalanced nature of 

the data. There were fewer data points for the <80% DOS category compared to the 80–90% 

and >90% categories, which made it more difficult for the models to learn this category, 

resulting in worse predictive accuracy for it. 

Furthermore, the traditional ML models are often not good at representing the intricate and 

non-linear interactions that can exist between weather variables. This is because the ML models 

often assume that the inputs to the model are independent from each other, or that their 

relationship is linear, when in fact the relationship between weather variables is dynamic and 

mutually dependent. For example, the effect of a single weather variable, such as temperature, 

on the DOS may change depending on the values of other weather variables, such as humidity 

or precipitation. These kinds of non-linear and context-dependent effects are difficult to model 

using traditional ML algorithms, which operate based on simplified assumptions [3-5]. The 

exhaustive search of the hyperparameter space for the traditional models resulted in only 

marginal increases in performance, and even then, performance in the DOS <80% category 

still remained very low (Table D1). As a result of all of the above, it was decided to use 

GAs. The principal reason for this is that they are able to search through a larger solution space 

with little to no need for training data [6-8]. GAs is particularly useful for threshold 

optimizations, and as an added benefit, it can also work with imbalanced and non-uniform 

distributions of data [6-8]. It was also able to circumvent the manual weighing of the different 

categories in the decision tree via fitness maximization, which, as seen in the results, 

automatically enforces the importance of all categories, which also contributed to a large 

increase in performance in the <80% category. 

GAs clearly outperformed the traditional machine-learning method in dealing with the 

imbalanced data and in threshold optimization, which resulted in a large improvement in the 

prediction of the DOS categories. 
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Table D1  
Predicting DOS Category Results for the year September 2021 to April 2022. 
 

Model 

DOS Category 

Overall Model Accuracy (%) <80% 80-90% >90% 

Prediction Accuracy (%) 
Random Forest Classifier 20 38 76 56 

Multilayer Perceptron 0 31 57 31 
Support Vector Machines 0 20 67 31 

SVM with RBF Kernel 20 20 50 31 
Gradient Boosting Classifier 0 14 44 31 

Decision Tree Classifier 20 25 67 44 
LSTM Model (10 epochs) 0 22 67 33 
LSTM Model (60 epochs) 0 0 44 33 

Linear Regression 0 22 48 25 
Nonlinear Regression 0 33 57 30 

Artificial Neural Network (ANN) 0 20 60 35 
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Appendix E: Predicted and Measured Total FT Cycle Data for All Regions 
Tables E1, E2, and E3 display the predicted and measured total FT cycles for all years and 
regions, as well as the absolute and relative (percentage) differences between measured and 
predicted total FT cycles. 

Table E1 
Predicted and Measured Total FT Cycles from September 2021 to April 2022 Across All 
Regions and Locations. 

R
eg

io
n 

State Location Measured FT 
Cycles 

Predicted FT 
Cycles 

Difference in 
FT Cyclesa % Differenceb 

N
or

th
 

North Dakota 
Bismarck Site 97 97 0 0 

Grand Forks Site 66 66 0 0 
Fargo Site 81 81 0 0 

Minnesota 
Baxter 54 54 0 0 

Maplewood 49 46 3 6 
Thief River Falls 70 68 2 3 

Wisconsin 
Green Bay 79 82 -3 -4 
Madison 50 54 -4 -8 

Rhinelander 59 62 -3 -5 

Iowa 
Ames 77 79 -2 -3 

Fairfield 48 52 -4 -8 
Mason City 39 36 3 8 

Nebraska 
Lincoln 56 60 -4 -7 

Thedford 64 63 1 2 
Chadron 94 99 -5 -5 

Illinois Dixon (Northern) 48 50 -2 -4 
Missouri Northwest District 44 46 -2 -5 

So
ut

h 

Colorado 
Denver 48 48 0 0 
Seibert 71 74 -3 -4 

Glenwood 70 71 -1 -1 

Kansas 
Oakley 70 71 -1 -1 

Hutchinson 48 47 1 2 
Topeka 41 45 -4 -10 

Oklahoma 
Cooper Lab 23 23 0 0 

McCurtain County 31 31 0 0 
Texas County 42 42 0 0 

Illinois 
Spring Field (Central) 40 42 -2 -5 
Carbondale (Southern) 33 33 0 0 

Missouri Central Laboratory 44 44 0 0 
Southeast District 37 38 -1 -3 

N
or

th
w

es
t Oregon 

Bend 42 46 -4 -10 
Hinsdale Wave Research Lab 26 28 -2 -8 

Newport 1 1 0 0 

Idaho 
Coeur d'Alene US-95 61 58 3 5 

Mt Home I-84 50 56 -6 -12 
Paddy Flat SH-55 74 67 7 9 

N
or

th
ea

st
 Pennsylvania 

Clearfield1 58 61 -3 -5 
Cyclone 48 52 -4 -8 

Harrisburg 40 43 -3 -8 

New York 
Watertown 25 25 0 0 

Clifton Park 25 27 -2 -8 
Hauppauge 18 18 0 0 

a Difference in FT Cycles = Measured – Predicted FT cycles. 
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b Difference (%) = 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 𝑥𝑥 100 

Table E2 
Predicted and Measured Total FT Cycles from September 2022 to April 2023 Across All 
Regions and Locations. 

R
eg

io
n 

State Location Measured FT 
Cycles 

Predicted  FT 
Cycles 

Cycle 
Differencea % Differenceb 

N
or

th
 

North Dakota 
Bismarck Site 63 63 0 0 

Grand Forks Site 57 57 0 0 
Fargo Site 73 73 0 0 

Minnesota 
Baxter 83 83 0 0 

Maplewood 85 85 0 0 
Thief River Falls 67 67 0 0 

Wisconsin 
Green Bay 51 55 -4 -8 
Madison 56 58 -2 -4 

Rhinelander 60 60 0 0 

Iowa 
Ames 94 96 -2 -2 

Fairfield 41 44 -3 -7 
Mason City 49 51 -2 -4 

Nebraska 
Lincoln 77 77 0 0 

Thedford 116 116 0 0 
Chadron 99 99 0 0 

Illinois Dixon (Northern) 65 66 -1 -2 
Missouri Northwest District 52 52 0 0 

So
ut

h 

Colorado 
Denver 70 69 1 1 
Seibert 50 52 -2 -4 

Glenwood 85 89 -4 -5 

Kansas 
Oakley 96 96 0 0 

Hutchinson 54 54 0 0 
Topeka 55 62 -7 -15 

Oklahoma 
Cooper Lab 29 29 0 0 

McCurtain County 4 4 0 0 
Texas County 41 41 0 0 

Illinois 
Spring Field (Central) 34 38 -4 -12 
Carbondale (Southern) 24 24 0 0 

Missouri 
Central Laboratory 46 46 0 0 
Southeast District 33 33 0 0 

N
or

th
w

es
t Oregon 

Bend 48 48 0 0 
Hinsdale Wave Research Lab 35 38 -3 -9 

Newport 6 6 0 0 

Idaho 
Coeur d Alene US-95 133 133 0 0 

Mt Home I-84 56 56 0 0 
Paddy Flat SH-55 123 123 0 0 

N
or

th
ea

st
 Pennsylvania 

Clearfield1 83 83 0 0 
Cyclone 85 85 0 0 

Harrisburg 49 49 0 0 

New York 
Watertown 49 47 2 4 

Clifton Park 41 45 -4 -10 
Hauppauge 30 30 0 0 

a Difference in FT Cycles = Measured – Predicted FT cycles. 
b Difference (%) = 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 𝑥𝑥 100 
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Table E3 

Predicted and Measured Total FT Cycles from September 2023 to April 2024 Across All 
Regions and Locations. 

R
eg

io
n 

State Location Measured FT 
Cycles 

Predicted  FT 
Cycles 

Cycle 
Difference(a) 

% 
Difference(b) 

N
or

th
 

North Dakota 
Bismarck Site NA 115 NA NA 

Grand Forks Site NA 105 NA NA 
Fargo Site NA 106 NA NA 

Minnesota 
Baxter 97 101 -4 -4 

Maplewood 90 88 2 2 
Thief River Falls 102 107 -5 -4 

Wisconsin 
Green Bay NA 91 NA NA 
Madison 49 49 0 0 

Rhinelander NA 89 NA NA 

Iowa 
Ames NA 55 NA NA 

Fairfield 33 33 0 0 
Mason City 56 56 0 0 

Nebraska 
Lincoln 50 43 7 14 

Thedford 66 64 2 3 
Chadron 75 76 1 1 

Illinois Dixon (Northern) NA 43 NA NA 
Missouri Northwest District 35 36 -1 -3 

So
ut

h 

Colorado 
Denver 75 76 -1 -1 
Seibert 45 45 0 0.00 

Glenwood 98 99 -1 -1 

Kansas 
Oakley 70 69 1 1 

Hutchinson 52 50 2 4 
Topeka 53 55 -2 -4 

Oklahoma 
Cooper Lab 33 31 2 6 

McCurtain County 12 11 1 8 
Texas County 30 30 0 0 

Illinois Spring Field (Central) 25 22 3 12 
Carbondale (Southern) 16 14 2 13 

Missouri 
Central Laboratory 32 30 2 6 
Southeast District 35 35 0 0 

N
or

th
w

es
t Oregon 

Bend NA 37 NA NA 
Hinsdale Wave Research Lab NA 26 NA NA 

Newport 3 3 0 0 

Idaho 
Coeur d Alene US-95 72 73 -1 -1 

Mt Home I-84 55 59 -4 -7 
Paddy Flat SH-55 110 115 -5 -5 

N
or

th
ea

st
 Pennsylvania 
Clearfield1 75 77 -2 -3 

Cyclone 71 75 -4 -6 
Harrisburg 43 40 3 7 

New York 
Watertown 40 39 1 3 

Clifton Park 67 64 3 4 
Hauppauge 30 27 3 10 

a Difference in FT Cycles = Measured – Predicted FT cycles. 
b Difference (%) = 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 𝑥𝑥 100 
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Appendix F: Predicted and Measured Damaging FT Cycle Data for All Regions 
Table F1 presents the predicted and measured damaging FT cycles for all years and regions, as 
well as the absolute and percentage difference between the observed and predicted. Table F2 
shows the monthly predicted and measured values for selected locations. 

Table F1 
Predicted and Measured Damaging FT Cycles Across All Regions and Locations. 

R
eg

io
n 

State Location 
Measured Damaging FT Cycles Predicted Damaging FT Cycles % Differencea 

Year2b Year3c Year4d Year2b Year3c Year4d Year2b Year3c Year4d 

N
or

th
 

North Dakota Bismarck Site 97 83 NA 99 83 NA -2 0 NA 
North Dakota Grand Forks Site 66 57 NA 71 57 NA -8 0 NA 
North Dakota Fargo Site 81 73 NA 90 73 NA -11 0 NA 

Minnesota Baxter 74 83 97 78 83 101 -5 0 -4 
Minnesota Maplewood 79 85 90 70 85 88 11 0 2 
Minnesota Thief River Falls 79 88 102 82 84 104 -4 5 -2 
Wisconsin Green Bay 79 65 NA 80 60 NA -1 8 NA 
Wisconsin Madison 50 56 49 55 58 49 -10 -4 0 
Wisconsin Rhinelander 85 81 NA 84 79 NA 1 2 NA 

Iowa Ames 97 94 NA 96 97 NA 1 -3 NA 
Iowa Fairfield 48 41 33 52 44 33 -8 -7 0 
Iowa Mason City 39 49 56 40 51 56 -3 -4 0 

Nebraska Lincoln 56 77 50 60 77 46 -7 0 8 
Nebraska Thedford 63 74 66 67 80 64 -6 -8 3 
Nebraska Chadron 94 99 89 90 99 80 4 0 10 
Illinois Dixon (Northern) 76 78 NA 77 70 NA -1 10 NA 

Missouri Northwest District 44 52 35 46 52 36 -5 0 -3 
Average -3 0 1 

Standard Deviation 6 5 5 

So
ut

h 

Colorado Denver 0 0 0 0 0 0 0 0 0 
Colorado Seibert 4 6 0 4 6 0 0 0 0 
Colorado Glenwood 83 85 98 80 85 99 4 0 -1 
Kansas Oakley 6 3 5 6 3 5 0 0 0 
Kansas Hutchinson 34 37 46 38 40 50 -12 -8 -9 
Kansas Topeka 41 54 53 45 58 55 -10 -7 -4 

Oklahoma Cooper Lab 9 11 27 9 10 30 0 9 -11 
Oklahoma McCurtain County 17 11 9 17 12 10 0 -9 -11 
Oklahoma Texas County 0 0 1 0 0 1 0 0 0 

Illinois Spring Field (Central) 20 29 25 22 32 22 -10 -10 12 
Illinois Carbondale (Southern) 27 17 NA 30 19 NA -11 -12 NA 

Missouri Central Laboratory 26 17 22 29 19 25 -12 -12 -14 
Missouri Southeast District 31 15 3 35 13 3 -13 13 0 

Average -5 -3 -3 
Standard Deviation 6 8 7 

N
or

th
w

es
t 

Oregon Bend 42 48 NA 47 50 NA -12 -4 NA 

Oregon Hinsdale Wave 
Research Lab 8 17 NA 8 19 NA 0 -12 NA 

Oregon Newport 1 3 1 1 3 1 0 0 0 
Idaho Coeur d'Alene US-95 110 123 113 115 120 97 -5 2 14 
Idaho Mt Home I-84 50 48 42 56 55 47 -12 -15 -12 
Idaho Paddy Flat SH-55 102 123 110 100 115 115 2 7 -5 

Average -4 -4 -1 
Standard Deviation 6 8 11 

N
or

th
ea

st
 

Pennsylvania Clearfield 78 83 75 70 83 77 10 0 -3 
Pennsylvania Cyclone 58 85 71 52 85 75 10 0 -6 
Pennsylvania Harrisburg 40 49 43 43 50 40 -8 -2 7 

New York Watertown 47 36 40 50 40 39 -6 -11 3 
New York CliftonPark 57 40 67 55 45 64 4 -13 4 
New York Hauppauge 45 30 30 40 30 27 11 0 10 

Average 4 -4 3 
Standard Deviation 9 6 6 
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a Difference (%) = 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 𝑥𝑥 100 

b September 2021 – April 2022. 
c September 2022 – April 2023. 
d September 2023 – April 2024. 
 
Table F2  
Comparison of Predicted and Measured FT Cycles for Selected Locations (September 2021 to 
April 2022). 

Month 
Actual DOS 

(%)a 
Actual DOS 

Category (%) 
Predicted DOS 
Category (%)b 

Actual Number 
of FT Cycles 

Predicted 
Number of 
FT Cycles 

Difference Between 
Actual and 

Predicted FT Cycles 
Maplewood, Minnesota (North Region) 

September 87 80-90 80-90 0 0 0 
October 92 >90 >90 0 0 0 

November 99 >90 >90 6 6 0 
December 99 >90 >90 13 10 4 
January 99 >90 >90 6 6 0 
February 99 >90 >90 7 7 0 

March 97 >90 >90 9 9 0 
April 97 >90 >90 8 8 0 

Total Number of FT Cycles 49 46 3 
Percent Error (%)c 6 

Bend, Oregon (Northwest Region) 
September 68 <80 <80 0 0 0 

October 73 <80 <80 1 1 0 
November 81 80-90 80-90 4 4 0 
December 81 80-90 80-90 8 8 0 
January 82 80-90 80-90 9 9 0 
February 83 80-90 80-90 10 10 0 

March 86 80-90 >90 5 9 -4 
April 79 <80 <80 5 5 0 

Total Number of FT Cycles 42 46 -4 
Percent Error (%)c -10 

Harrisburg, Pennsylvania (Northeast Region) 
September 96 >90 >90 0 0 0 

October 95 >90 >90 0 0 0 
November 95 >90 >90 1 2 -1 
December 93 >90 >90 4 7 -3 
January 94 >90 >90 14 14 0 
February 96 >90 >90 14 14 0 

March 96 >90 >90 8 8 0 
April 97 >90 >90 0 0 0 

Total Number of FT Cycles 40 43 -3 
Percent Error (%)c -8 

Topeka, Kansas (South Region) 
September 92 >90 >90 0 0 0 

October 91 >90 >90 0 0 0 
November 93 >90 >90 4 7 -3 
December 92 >90 >90 9 10 -1 
January 94 >90 >90 14 14 0 
February 93 >90 <80 12 14 -2 

March 94 >90 >90 5 5 0 
April 94 >90 >90 1 2 -1 

Total Number of FT Cycles 41 45 -4 
Percent Error (%)c 10 

a Obtained from the Field Sample [2].  
b Obtained from Genetic Algorithms Model.  
c Percent Error (%) = 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶−𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐹𝐹𝐹𝐹 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
 𝑥𝑥 100 
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Abstract 

Freeze–thaw damage is a major durability concern for concrete in cold regions. This study 

develops maps based on field instrumentation, weather data, and a correlation based on 

machine learning. The maps are based on 24 years of data from 574 weather stations. Maps of 

the average and variation of the combination of freeze-thaw cycles and moisture are combined 

to measure the amount of damaging freeze-thaw cycles. Since this work provides insights into 

the average freeze-thaw exposure and its variability, this information can serve as a starting 

point for performance design against freeze-thaw damage. The map produced is also compared 

to other freeze-thaw exposure maps, such as those developed by the Long-Term Pavement 

Performance (LTPP), which do not capture the localized weather exposure. 

1.0 Introduction  

The durability of concrete can be compromised in cold regions due to freeze–thaw deterioration 

[1, 2]. Repeated freeze–thaw cycles generate internal stresses when pore water freezes at high 

saturation levels, leading to cracking, scaling, and premature degradation of concrete structures 

[3-9]. This highlights the need for reliable methods to predict freeze–thaw damage and improve 

durability design [10]. 

The degree of saturation (DOS), defined as the ratio of pore water to total pore volume in 

concrete, plays a key role in freeze–thaw damage [11,12]. When DOS exceeds a critical 

threshold, typically between 78% and 90%, the risk of damage increases significantly due to 

ice formation in the pores [12–15]. Accordingly, damaging freeze–thaw cycles are defined as 

those that occur when the DOS is at or above the critical DOS, while freeze-thaw events that 

occur below the critical DOS are not damaging [15–18].  

A recent study developed a novel field-based method that combines electrical resistivity and 

temperature measurements to monitor DOS, ice formation, and ice melting within concrete in 

real time [19, 20]. This approach provides in-situ detection of damaging freeze–thaw cycles 

and a practical way to quantify them. The study also showed that higher DOS levels raise the 
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freezing point of cementitious materials, while lower DOS levels result in freezing at lower 

temperatures [19–22]. This highlights the importance of accounting for both temperature and 

moisture conditions when evaluating freeze–thaw exposure, as freeze–thaw damage is 

primarily influenced by freezing temperature and DOS, both of which are influenced by local 

weather conditions [23,24]. 

Building on this framework, the authors’ recent work [25] introduced a novel statistical model 

to predict freeze–thaw cycles directly from weather data. The model was trained on field 

measurements from 42 sites across 14 states and incorporated critical weather parameters. A 

genetic algorithm (GA) was applied to optimize thresholds, systematically identifying the most 

effective cutoff values of the weather variables to classify and distinguish the DOS categories. 

From this process, a region-specific tool was developed to convert weather data into different 

levels of DOS within the concrete. Freeze–thaw cycles were determined to occur if the 

temperature dropped below the freezing temperature based on the moisture of the concrete and 

then subsequently increased to a temperature above 0°C. If the DOS ≥80%, then the freezing 

cycle is classified as damaging, and if the DOS <80%, then the freezing cycle is considered 

non-damaging. The model correctly predicted the DOS in 89% of cases and predicted 

damaging freeze-thaw cycles with 85% accuracy across all years and regions [25]. 

This work uses the developed model and combines it with 24 years of weather data from 574 

locations. Predictions were only made for regions where field data were used to validate the 

model.  This work aims to provide a starting place for an easy-to-use tool, such as a map or 

simple website, where the amount of total and damaging freeze-thaw cycles can be determined. 

This also helps visualize the average, standard deviation, and the coefficient of variation (COV) 

of this exposure.  This offers specifiers and builders a better understanding of regional freeze–

thaw risks, and this supports durability-based decision-making in concrete infrastructure 

design.  

2.0 Methodology 

2.1 Weather Data Collection and Preprocessing 

This study focused on six key weather variables: temperature, precipitation, relative humidity 

(RH), wind speed, solar radiation, and atmospheric pressure. These parameters were selected 

because they are widely used in measuring how environmental factors impact the saturation 

and drying behavior of soils [26-35]. More information can be found in other publications [25]. 
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Weather data were collected from the winter seasons (September through April) between 2000 

and 2024 for 574 weather stations across 14 states. A map of these weather stations is shown 

in Figure 1. The dataset was obtained from the Open-Meteo API [36], an open-source, research-

oriented climate database that compiles long-term, quality-controlled records from established 

meteorological networks and provides wide spatial coverage. The daily records were averaged 

into monthly values for ease of processing.   

 

 
Figure 1: Locations of weather stations used for predicting freeze-thaw cycles in the 

states analyzed. 

 

2.2 Freeze-Thaw Cycles Prediction 

To predict freeze–thaw cycles across all weather stations, this study used the tools developed 

in the previous study [25]. The approach allowed the conversion of weather data into 

categorical representations that could be used to estimate the average DOS for each location 

during each winter season.  The regions used are in Appendix A. 

The freeze–thaw cycles were predicted using air temperature records from each station in 

combination with the predicted DOS category. The air temperature has been shown to closely 

match the temperature at 50 mm from the surface in the concrete, based on field measurements 

[25]. Each DOS category is associated with a specific freezing temperature, and a cycle is 
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counted whenever the temperature falls below that freezing temperature and then increases to 

0°C. Additional details on this procedure are provided in Appendix B and in a previous 

publication [25]. 

Any freeze–thaw cycle that occurred when the predicted DOS was below 80% was considered 

non-damaging, while all cycles at or above 80% were classified as damaging. This threshold 

was selected based on previous studies, which identified the critical saturation range for freeze–

thaw damage as approximately 78–90% [12–15]. Using 80% as the cutoff provides a 

conservative and practical criterion that accounts for the measurement variability and ensures 

a margin of safety when evaluating freeze–thaw durability. 

 

2.3 Development of Freeze–Thaw Cycles Maps 

Geospatial interpolation was used to produce continuous surfaces by interpolating between 

weather measurement sites to visualize the spatial distribution of freeze-thaw cycles to create 

freeze-thaw maps.  Maps of measures of variability (average, standard deviation, and 

coefficient of variation (COV) were generated across the 24 winter seasons for both total and 

damaging freeze–thaw cycles. Total freeze–thaw cycle maps represent all cycles occurring 

when the concrete freezes based on the saturation level, while damaging freeze–thaw cycle 

maps include only cycles when the DOS exceeded 80%, the critical threshold set for this work. 

2.3.1 Interpolation and Smoothing 

Spatial interpolation and smoothing are widely used in geospatial analysis to convert irregular 

point measurements into continuous surfaces that can reveal regional patterns [37,38]. These 

approaches are particularly valuable when site data are limited or unevenly distributed, as they 

help reduce noise, fill gaps, and generate maps that are both interpretable and suitable for 

decision-making.  

2.3.1.1 Interpolation Method 

Surface interpolation in this study was performed using the Inverse Distance Weighting (IDW) 

method, which estimates values at locations without data by averaging nearby measurements 

while giving greater influence to points that are closer. In this approach, the weight of each 

point decreases with distance according to an inverse power function, meaning that spatially 

close sites contribute more strongly to the estimated value. IDW was selected because it 
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performs well with irregularly spaced data, preserves local gradients, and avoids the overshoot 

artifacts that can occur in polynomial or spline-based interpolation methods [38,39].  

The interpolation parameters were empirically tuned to achieve a balance between smoothness 

and local accuracy. The power value, which typically ranges between 1 and 3, controls how 

quickly the influence of a point decreases with distance. A power of 1.9 was chosen in this 

study because it provides an effective balance between emphasizing nearby data points and 

maintaining regional continuity. A higher power would overly emphasize nearby points, 

creating sharp local variations, while a lower power would over-smooth the data and obscure 

meaningful regional trends. 

Each grid cell represents a small, regularly spaced unit on the interpolation grid covering the 

study area, serving as the basic element where the damaging freeze–thaw cycle value is 

estimated. Interpolating values at each grid cell ensures a continuous surface suitable for 

mapping and contour visualization. The model used the 16 nearest neighboring stations within 

a maximum search radius of 1.6° in both longitude and latitude, which defines the geographic 

range (in degrees) within which nearby stations influence the interpolated value. These settings 

ensured that interpolation remained constrained to regions with sufficient data coverage, 

preventing unrealistic extrapolation into data-sparse areas. 

Overall, the chosen IDW parameters allowed the interpolated surface to represent realistic 

spatial transitions in damaging freeze–thaw cycles while maintaining numerical stability and 

visual continuity. The IDW approach has been shown to perform reliably in environmental 

mapping applications where preserving local variability without introducing artificial extremes 

is important [38,39]. 

2.3.1.2 Smoothing Filters 

To reduce small-scale noise and improve the visual clarity of the interpolated surface, two 

smoothing filters were applied in sequence. First, a median filter was used to remove isolated 

pixel-level spikes that resulted from local interpolation noise, with a window size of 0.26° in 

both longitude and latitude. The window size defines the area around each grid cell that the 

filter considers when computing a new value. This value was chosen empirically to allow 

random noise to be removed without distorting meaningful spatial gradients. The median filter 

replaces each grid cell’s value with the median of its surrounding cells within the defined 

neighborhood, effectively removing isolated spikes or speckled noise that may arise from local 
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measurement variability or interpolation artifacts while preserving genuine spatial boundaries 

and gradients [40]. 

After median filtering, a Gaussian filter was applied to further smooth the overall surface. The 

Gaussian filter performs a weighted average of nearby values, giving higher weights to those 

closer to the center and progressively lower weights with distance. This produces a gradual, 

natural-looking transition between neighboring cells rather than abrupt changes. A standard 

deviation (σ) of 0.32° in both longitude and latitude was used to control the degree of 

smoothing, while a truncation factor of 2.5 limited the filter’s influence on about five times σ 

in each direction [41,42]. These parameters were selected empirically through sensitivity 

testing to provide light smoothing that reduced pixel-level irregularities without blurring 

meaningful regional gradients. 

Overall, the combination of median and Gaussian filters effectively enhanced the smoothness 

and readability of the maps while preserving the true spatial variability of damaging freeze–

thaw cycles. The parameters were chosen conservatively to ensure that filtering improved 

visualization without introducing bias or altering the underlying data trends [41,42]. The 

filtering effects at each stage of processing are illustrated in Figure 2, which compares the IDW 

interpolation, IDW with a median filter, and IDW with median and Gaussian filters. 

 

 
                            (a)                                          (b)                                           (c) 

Figure 2: Comparison of the effects of interpolation and filtering steps on freeze–thaw cycle 

maps: (a) IDW interpolation, (b) IDW with median filter, and (c) IDW with median and 

Gaussian filters. 

2.4 Color Mapping and Visualization Design 

For this study, filled contour maps were selected to visualize the distributions of freeze–thaw 

cycles. These maps display continuous color shading to represent regional gradients and 
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contour lines to mark areas of equal value, providing an intuitive and quantitative 

representation of spatial variation. Such maps are widely used in environmental and geospatial 

studies to communicate spatial variation in a way that is both intuitive and quantitative [43,44]. 

Interpolated grids were displayed as filled rasters, meaning that each grid cell was color-shaded 

according to its freeze–thaw cycle value using a sequential colormap, with categories 

increasing in 10-cycle intervals. This continuous color background highlights spatial gradients, 

while contour lines were added at consistent intervals appropriate for each map to provide 

additional clarity. A color bar accompanied each figure for easy interpretation of the result 

[45]. 

These maps highlight geographic variations in freeze–thaw cycles and their potential impact 

on concrete durability. They serve as a practical tool for visualizing freeze–thaw exposure, 

enabling engineers and practitioners to design concrete mixtures suited to specific 

environmental conditions. By clearly identifying regions at higher risk of damaging freeze–

thaw cycles, the maps support informed decision-making in selecting materials and mix designs 

appropriate for different climates.  

3.0 Results and Discussions 

3.1 Long-Term Spatial Distribution of Freeze–Thaw Cycles 

The maps in this work use 24 years of weather information to find the total and damaging 
freeze–thaw cycles. Figures 3a and 3b show significant variability over the regions studied.  In 
some regions, damaging freeze–thaw cycles are frequent, while in nearby areas they are 
minimal. These variations demonstrate how moisture levels can shift over short distances, 
directly influencing damaging freeze–thaw cycles.  
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                                                          (a) 

 

 
                                                          (b) 

Figure 3: 24-Year average of predicted freeze–thaw cycles at all weather stations: (a) total 

freeze–thaw cycles, (b) damaging freeze–thaw cycles. 

3.2 Difference Between the Total and Damaging Cycles 
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Figure 4 shows the average difference between the total and damaging freeze–thaw cycles. 
Areas with large differences, such as eastern Colorado, Oregon, and western Idaho, experience 
frequent freeze–thaw cycling, but the moisture content of these areas was often below the 
critical DOS, resulting in a damage reduction. Conversely, the rest of the regions studied show 
little to no difference between the damaging and effective freeze-thaw cycles. One reason for 
this small difference is that the model assumed the average DOS remained constant throughout 
each month. However, the field data showed that there were periods when the DOS temporarily 
dropped below 80% before increasing again. These fluctuations were not captured in the model, 
leading to a conservative estimate of the number of damaging freeze–thaw cycles. 

 
Figure 4: Average difference between total and damaging freeze–thaw cycles. 

 

3.3 Long-Term Variability in Freeze–Thaw Cycles 

3.3.1 Standard Deviation of Freeze-Thaw Cycles 

Figures 5a and 5b show the standard deviation maps of the total and damaging freeze–thaw 

cycles. This is helpful to understand the variability in the different winter seasons.  While total 

cycles generally show low variability, ranging from 3 to 21 cycles, the standard deviation for 

damaging cycles is much higher, reaching up to 45 cycles in regions such as Colorado, Oregon, 

and Idaho. This demonstrates that these regions have larger variability in the moisture content 

during the freezing cycles.   
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                                                                      (a) 

 

 
                                                                      (b) 
Figure 5: 24-Year standard deviation of predicted freeze–thaw cycles at all weather stations: 

(a) total freeze–thaw cycles, (b) damaging freeze–thaw cycles. 

3.3.2 Coefficient of Variation to Measure Variability 
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The average coefficient of variation was used to quantify the variability of the total and the 

damaging freeze thaw cycles. This was done to create a map of which areas show the most 

variation in the freeze-thaw damage. The individual plots are included in Appendix C, but 

Figure 6 is included in the body of the paper as it shows the coefficient of variation of the 

damaging freeze-thaw cycles in different risk levels. These different groups are a coefficient 

of variability of Low (<15%), Moderate (15–40%), and High (>40%). The locations in the high 

category face substantial swings in the damage potential from year to year. 

Some of these regions typically have a low number of damaging freeze thaw cycles but they 

will have a few winters where these numbers increase significantly. It is possible that these 

regions have variable weather, or that more than 24 years is needed to understand the weather 

patterns for these regions. Overall, the results highlight regions where freeze–thaw damage 

potential is more sensitive to year-to-year climate variability. 

 

Figure 6: 24-Year spatial categories of CV (%) of predicted damaging freeze–thaw cycles at 

all weather stations. 
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3.4 Comparison with Existing Models and Standards 

Unlike traditional approaches that rely on broad climate zones or a single freeze–thaw 

classification for an entire state, the maps developed in this study are based on a predictive 

model that was developed and validated using real field data [25]. Existing standards classify 

freeze–thaw exposure using broad regional categories, but such approaches often overlook the 

site-specific conditions that drive actual damage. Understanding how these models differ is 

important, as they directly influence durability design decisions for concrete in cold regions. 

3.4.1 LTPP Climate Classification 

The Long-Term Pavement Performance (LTPP) climate classification [46,47] divides the 

United States into four general zones, Wet–Freeze, Wet–Non-freeze, Dry–Freeze, and Dry–

Non-freeze, based on annual precipitation and the freezing index (FI). The FI is the summation 

of the average daily air temperature of each day that is below freezing.  The data is then 

classified as No-Freeze (FI < 50), Moderate-Freeze (FI = 50–400), and Deep-Freeze (FI > 400).  

Wet regions are defined as those receiving more than 508 mm of annual precipitation, while 

dry regions receive less.   

Although this framework provides a generalized national classification, it simplifies the 

complex interaction between moisture availability and freezing conditions that controls freeze–

thaw damage in concrete. Total annual precipitation does not determine whether the concrete 

remains saturated when freezing occurs. As shown previously [19, 20, 25], the DOS is 

influenced by several weather variables, and the relationship between concrete and DOS is 

complex.  

Similarly, the freezing index represents an index of the temperature below freezing, but it does 

not capture the temperature fluctuations around 0 °C that define individual freeze–thaw cycles. 

Moreover, previous studies have shown that freezing does not always occur exactly at 0°C; 

concrete with higher DOS freezes at higher temperatures than concrete with lower DOS [19]. 

As a result, the LTPP classification does not specify how many damaging freeze–thaw cycles 

occur annually, how severe they are, or how much they vary from year to year. 

The maps developed in this study overcome these limitations by using a model trained and 

validated with field measurements to predict both total and damaging freeze–thaw cycles for 

specific locations. These maps directly incorporate the effects of temperature and DOS to 

provide a more realistic assessment of freeze–thaw exposure. Figure 7 overlays the LTPP 
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climate zones [47], with the 24-year average damaging freeze–thaw cycle map developed in 

this study for easy comparison. While the general distribution of the Wet–Freeze, Wet–No-

Freeze, and Dry–No-Freeze regions align with the LTPP zones, notable differences appear 

within the Dry–Freeze region. States such as North Dakota, Nebraska, Idaho, Colorado, and 

Kansas exhibit measurable damaging cycles, indicating that these areas are not as dry as 

suggested by the LTPP classification. This highlights the need for long-term, location-specific 

analysis when evaluating freeze–thaw durability. 

 
Figure 7: Overlay of LTPP climate zones with the 24-year average damaging freeze–thaw 

cycles. 

 

3.4.2 ASHRAE 90.1 Climate Zone Map 

The ASHRAE 90.1 Standard [48] divides the United States into eight primary climate zones, 

with further subdivisions based on moisture regime (moist, dry, or marine) (Figure 8). These 

zones are defined using long-term heating and cooling degree days together with humidity 

indices and are primarily intended to guide building energy performance and envelope design. 

In this system, dry (B) zones represent areas with low annual precipitation, humid (A) zones 

correspond to regions with higher precipitation and significant seasonal humidity, and marine 

(C) zones are coastal regions with moderate temperatures, high humidity, and mild summers 

[48].  
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Figure 9 shows the ASHRAE climate zone boundaries overlaid on the 24-year average 

damaging freeze–thaw cycle map developed in this study. Although the ASHRAE map was 

not designed for concrete durability, it shows a noticeable resemblance to the spatial patterns 

of damaging freeze–thaw cycles. For example, regions classified as moist (A), including 

Minnesota, North Dakota, Wisconsin, Iowa, Nebraska, and the northern portions of Illinois and 

Missouri, generally correspond to areas with a higher number of damaging freeze–thaw cycles 

> 50 for this work.  Similarly, the central and southern parts of Illinois and Missouri show 

fewer damaging cycles (30-40 cycles), aligning with the transitional mixed classification in the 

ASHRAE map. In addition, the dry (B) regions in the ASHRAE map, such as western Idaho, 

eastern Colorado, and eastern Oregon, exhibit relatively low damaging freeze–thaw cycles in 

our map (up to 20 cycles). The marine (C) zones along the Pacific Coast also display limited 

freezing, consistent with our observations from the western Oregon site [48]. 

This comparison suggests that both systems reflect similar climatic trends, but the ASHRAE 

framework does not account for concrete DOS or the actual number of damaging freeze–thaw 

cycles, which are critical for assessing material durability. Overall, the ASHRAE classification 

and the maps in this study share some broad climate-driven similarities (e.g., distinguishing 

dry and wet regions), but only the field-calibrated, DOS-based approach presented here 

provides an accurate representation of damaging freeze–thaw exposure relevant to concrete 

durability. 

 

Figure 8: ASHRAE 90.1 climate zone map for the United States (adapted from ASHRAE 

90.1-2016 [48]). 
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Figure 9: ASHRAE climate zone boundaries overlaid on the 24-year average damaging 

freeze–thaw cycle map developed in this study. 

4. Practical Implications 

This research introduces a framework that develops maps of long-term, site-specific damaging 

freeze–thaw cycles in concrete by using a model trained and validated with field measurements 

to predict both total and damaging freeze–thaw cycles based on weather data [25]. These maps 

directly incorporate the effects of local weather conditions and concrete DOS to provide a more 

realistic assessment of freeze–thaw exposure and durability design. The results show that 

designing solely on average or assumed regional exposure may overlook areas with high 

variability or lead to overly conservative designs in regions where the actual risk is low. 

Currently, design engineers are responsible for making durability-related decisions about 

freeze-thaw design, and the maps developed in this work can help them by providing objective, 

data-driven guidance. For example, ACI 318 [49] uses exposure classes (F0–F3) based on 

whether concrete is expected to freeze while saturated, but it does not specify how to determine 

when those conditions occur or how many cycles to design for. As a result, many practitioners 

rely on conservative assumptions that may not reflect real exposure levels. The maps presented 

in this study help fill this gap by quantifying damaging freeze–thaw cycles across regions, 

offering engineers a performance-based and data-driven tool to inform durability design. 

It should be noted that in high-variability regions, designing solely based on the average freeze–

thaw cycles may be insufficient. A more rational approach can be achieved by incorporating a 
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safety margin based on the variability of the damaging freeze-thaw cycles. For example, 

designing for the 95th percentile, assuming a normal distribution, is an approach used in 

structural reliability-based design. This means the number of damaging freeze-thaw cycles to 

design for would be to design for the average number of damaging freeze-thaw cycles plus the 

standard deviation multiplied by 1.65 [51-53]. This approach would account for the years of 

high and low exposure in the design of the concrete.  However, such design guidance is only 

possible when long-term datasets, such as the 24-year records used for this study.   

5. Conclusions 

This study developed long-term, data-driven maps of the average total and damaging freeze–

thaw cycles across 14 U.S. states using a field-validated model and 24 years of weather data.  

The work also shows the spatial variation and the difference in the total and damaging freeze-

thaw cycles.  The following key conclusions can be drawn: 

• The presented maps provide engineers with a scalable and validated framework for 
integrating long-term weather records with field data. This enables location-specific 
durability design, particularly for specifying air-void systems and other measures to 
improve concrete resistance to freeze–thaw damage. 

• The average difference between the total and damaging freeze–thaw cycles was highest 
in regions such as eastern Colorado, Oregon, and western Idaho, where the concrete 
often experienced frequent freezing and thawing but remained below the critical DOS. 
These areas had lower moisture contents during freezing events, reducing the number 
of damaging cycles. Conversely, areas in the North, South, and Northeast showed 
minimal differences, suggesting that their concrete was frequently near or above the 
critical DOS threshold during freezing periods. 

• The highest variation in damaging freeze–thaw cycles was observed in Colorado, Idaho, 
and Oklahoma, where the standard deviation reached up to ~45 cycles and the COV 
exceeded 60–70%. These large fluctuations indicate that year-to-year moisture 
variability significantly impacts the freezing exposure. In contrast, states in the North 
region, such as Iowa, Wisconsin, and Minnesota, exhibited more consistent patterns 
with low variability, reflecting more stable winter conditions and moisture behavior 
across seasons. 

• The average number of damaging freeze-thaw cycles determined in this study provides 
different recommendations than the LTPP framework currently used in pavement 
design for freeze-thaw exposure. These predictions are different because the maps 
developed in this work account for the DOS and directly quantify damaging-cycle 
counts, while the LTPP map relies on average precipitation and the temperature of the 
days below freezing.   
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Overall, the maps presented in this study incorporate long-term, site-specific data and account 

for both regional and intra-state variability, offering a more reliable and practical foundation 

for freeze–thaw durability design.   
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Appendices 

Appendix A: Regional Classification Used for Predicting Freeze–Thaw Cycles 

 
Figure 2: Regional classification used for freeze–thaw cycle prediction, showing the four 

regions applied to weather stations (adapted from [25]). 

 

Appendix B: Freezing Temperature Thresholds for DOS Categories 

Figure B1 shows how freezing temperature thresholds were assigned for each DOS category 

using the DOS–freezing temperature relationship, where higher DOS levels require warmer 

temperatures to freeze and cause damage. They were also verified in the previous study [25]] 

to have the best match between predicted and measured freeze–thaw cycles. For instance, the 

DOS < 80% category corresponded to a freezing range of approximately –3.9°C to –4.9°C. 

Several values within this interval were tested to evaluate prediction accuracy, and a threshold 

of –4.0°C provided the closest match between predicted and observed freeze–thaw cycles [25]. 

This same process was repeated for the remaining DOS categories to identify the most 

representative freezing temperatures. The final set of thresholds, summarized in Table B1, 

produced cycle predictions that closely agreed with measured values across multiple locations. 

These results confirmed that the selected thresholds gave the most reliable estimation of freeze–

thaw cycles, as further discussed in the results section [25]. 
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                 a)                                               b)                                           c) 

Figure B1: Freezing temperature ranges associated with each DOS category, derived from 

the DOS vs. freezing temperature relationship (adapted from [9]): a) <80%, b) 80–90%, and 

c) >90%. 

Table B1 

Selected Freezing Temperatures Assigned to Each DOS Category. 

DOS Category Freezing Temperature (°C) 

<80% -4.0°C 

80–90% -3.5°C 

>90% -1.5°C 
 

A freeze event was defined as any period during which the air temperature dropped to or below 

the assigned freezing threshold, while a thaw event occurred when the temperature rose to or 

above 0 °C. A complete freeze–thaw cycle was therefore identified as the progression from a 

freezing event to a subsequent thawing event. 
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Appendix C: Variability Analysis and Coefficient of Variation Maps for Freeze–Thaw Cycles 

 
                                                                      (a) 

 
                                                                      (b) 

Figure C1: 24-Year coefficient of variation of predicted freeze–thaw cycles at all weather 

stations: (a) total freeze–thaw cycles, (b) damaging freeze–thaw cycles. 
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Figure C2: 24-Year spatial categories of CV (%) of predicted total freeze–thaw cycles at all 

weather stations. 
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Abstract 

This study investigates the effects of concrete pumping on air content, SAM Number, spacing 
factor, and freeze-thaw performance.  This work focuses on how the air dissolves under 
pressure and then returns to the concrete at room (30°C/86°F), cold (8°C/46°F), and hot 
(40°C/104°F) temperatures. The research reveals that concrete pumping leads to a significant 
reduction in air content, with cold mixtures experiencing higher air loss compared to room 
temperature and hot mixtures. Despite these changes, freeze-thaw performance remains 
satisfactory for mixtures with initial air content above 4% and SAM Number below 0.32. The 
study also observes that the dissolved air bubbles return to the concrete with a similar bubble 
distribution as was in the original mixture. 

Keywords: Air entrainment; air void system; pumping concrete; Super Air Meter; SAM 
Number; freeze-thaw resistance 

 

1. INTRODUCTION 

Concrete pumping is a widely used placement method because of its efficiency, versatility, and 
reduction in labor [1, 2]. Despite the wide use of pumping, concerns have been raised regarding 
the impact of pumping on the air void system of fresh concrete [1, 3-6]. This is important in 
cold regions where air voids play an important role in preventing freeze-thaw damage and 
ensuring the durability of concrete structures [3, 7-10].  Consequently, to address this concern, 
specifiers in freeze-thaw environments often mandate measuring the air volume after pumping 
to ensure that the concrete at placement meets the required air volume specification.  Because 
pumping changes the air volume in an unpredictable manner, this makes it challenging to meet 
the specified range.  This causes issues in practice.   

While measuring the air volume in fresh concrete is common in practice, more recent work 
shows that freeze-thaw durability is ensured by providing a high-quality air void system.  
Recent research shows that this is done if then the air content in the fresh concrete is at least 
4.0% [1, 3, 5, 7] and the Sequential Air Method (SAM) Number is lower than 0.32 [3, 5, 7, 
11]. These recommendations are currently used in the AASHTO R101 document for field 
concrete [12].  

Previous research has studied pumping air-entrained concrete, and it has been found that the 
pressure during pumping caused the dissolution of smaller air bubbles [1, 5, 13, 14]. Several 
studies have shown that concrete pumping can generate pressures ranging from 2000 to 3500 

mailto:Bahaa.abdelrahman@okstate.edu
mailto:tyler.ley@okstate.edu
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kPa [11, 13].  Lab and field measurements show that these pressures regularly decrease the air 
content between 0.5% to 3%, occasionally observing larger losses, and at times even increases 
in the air volume [1, 4, 11, 13, 15].  This research has gone on to show that the dissolved air 
bubbles return to the concrete with a similar bubble distribution as measured by the spacing 
factor prior to pumping [3, 5, 6, 13].  This observation is also supported by satisfactory freeze-
thaw performance, and observations of improved bubble spacing over time as measured by the 
SAM Number.  

Others have suggested that the air is knocked out of the concrete by impacting a surface such 
as a 90-degree elbow during pumping [16].  However, previous work has shown by testing 
concrete in several different places along the pumping line that the air is lost immediately after 
pumping and that there is no change in air after a 90-degree elbow [5].  

While previous studies have focused on analyzing the air void systems and rheological 
properties of concrete during pumping [4-6, 13, 15, 20, 21], these studies examined the concrete 
at ambient temperature or uncontrolled temperatures in the field. This work creates air-
entrained concrete mixtures at different temperatures and measures how pumping changes the 
air volume and the ability of the air to return to the fresh concrete before it has hardened.   

 

2. EXPERIMENTAL METHODS 

2.1. Constituent Materials 

All concrete mixtures used a type I cement that adhered to ASTM C150 standards [22]. Table 
1 presents the oxide analysis and Bogue calculations. The aggregates consisted of locally 
available crushed limestone and natural sand typically utilized in commercial concrete 
applications. The crushed limestone featured a maximum nominal aggregate size of 19 mm 
(3/4 inch), and the natural sand is characterized by a fineness modulus of 2.68. Each mixture 
incorporated a blend of both coarse and intermediate aggregates. Both the crushed limestone 
and sand met the specifications outlined in ASTM C33 [23] and are known for good 
performance in freeze-thaw conditions. The absorption capacity for crushed limestone and sand 
are 0.66% and 0.55%, respectively. All admixtures used in this study adhered to the 
requirements outlined in ASTM C260 and ASTM C494 [24, 25]. Various doses of air-
entraining admixture were used to create concrete with air contents from 4% to 10%. It's 
important to note that one cooled mixture and one heated mixture intentionally did not contain 
AEA.  This was done to examine the performance of concrete with a poor air void distribution.  
A water reducer was used at a constant dosage of 467 mL/100 kg (7 oz./cwt).  This was done 
to get at least a 15 cm (6 in.) slump in the concrete mixture.  Additionally, citric acid was added 
at 0.25% of the cementitious material's weight. Citric acid was used to delay the set time of the 
concrete to ensure that the concrete did not stiffen over120 minutes, which was needed for 
pumping and sampling the fresh concrete.  This intentional delay in setting time was helpful to 
isolate any change in air void system from stiffening from concrete hydration.  Previous 
research with these same materials and equipment showed no impact of citric acid on the 
performance of pumped air-entrained concrete [5].  
 
Table 1 
Type I Cement Oxide Analysis. 
Oxide (%) SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 P2O5 C3S C2S C3A C4AF 

Cement 21.1 4.7 2.6 62.1 2.4 3.2 0.2 0.3 - - 56.7 17.8 8.2 7.8 
Fly Ash 38.7 18.8 5.8 23.1 5.6 1.2 1.8 0.6 1.5 0.4 - - - - 
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2.2. Mix Proportions 

2.2.1. Concrete Mixtures 

The mixtures used 362.5 kg/m3 (611 lbs./yd3) of cementitious material, with a 20% mass 
replacement of fly ash and water to the cementitious material ratio (w/cm) of 0.45.  The paste 
content of each mixture was 28.9%, excluding air content from the calculation. Slight 
adjustments were made to the aggregate proportions in each mixture, aiming to maintain a 
consistent aggregate gradation between mixtures. This approach was guided by the Tarantula 
Curve, an aggregate gradation strategy known to enhance concrete pumpability [26]. Table 2 
presents the mixture design employed in this study. 

Table 2 
Concrete Mixture Summary. 

Cement 
(kg/m3) 

Fly Ash 
(kg/m3) 

Water 
(kg/m3) 

Coarse  
(SSD kg/m3) 

Intermediate Coarse 
(SSD kg/m3) 

Fine  
(SSD kg/m3) 

Paste 
Content 

290 72 163 660 328 886 28.9% 
 

2.2.2. Grout Mixtures 

Before each laboratory pumping session, the pump and pipe network underwent a priming 
process using grout. Priming involved applying a thin lubricating layer of grout to the inner 
walls of the pump and pipe network. The grout mixture used a w/cm of 0.40.  The mixture is 
outlined in Table 3. 

Table 3 
Grout Mixture Summary. 

Cement (kg/m3) Water (kg/m3) Fine (SSD kg/m3) 
597 238.5 1491.5 

 

2.3. Mixing Procedure 

2.3.1. Grout Mixtures 

Fine aggregates were loaded into the mixer, accompanied by approximately two-thirds of the 
mixing water. A mixing duration of at least three minutes ensured thorough blending. 
Subsequently, the binder and the remaining water were mixed for three minutes. Following a 
two-minute rest period, during which the sides of the mixing drum were scraped, mixing was 
resumed for an additional three minutes.  

2.3.2. Concrete Mixtures 

Aggregates were brought from outside stockpiles and placed in a temperature-controlled 
environment at (25°C/77°F) for at least 24 hours before mixing. Aggregates were added into a 
mixing drum and spun for a minimum duration of three minutes. To account for moisture 
content, a representative sample was utilized for moisture content testing and subsequent 
moisture correction. To simulate different temperatures, some concrete mixtures were either 
heated or cooled prior to mixing.  For these mixtures, the aggregate and water were either 
heated to (63°C/ 145°F) or cooled to (1.7°C/35°F) prior to mixing.  The average concrete 
temperature was (40°C/104°F) for the heated mixtures, (8°C/46°F) for cooled mixtures, and 
(30°C/86°F) for the mixtures near room temperature. This paper will refer to (40°C/104°F) as 
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the “hot mixtures” and (8°C/46°F) as the “cold mixtures”.  These temperatures were chosen 
because they represent the extremes of temperatures that may be used in the field.   

During the mixing phase, all aggregates and approximately two-thirds of the required mixing 
water were loaded into the mixer. This blend was mixed for three minutes to ensure uniform 
distribution of aggregates and saturation of their surfaces. Subsequently, the cement, fly ash, 
and remaining water were added and mixed for three minutes.  After a two-minute resting 
period, the sides of the mixing drum were scraped, admixtures were introduced, and the mixing 
process continued for an additional three minutes. 

Care was taken to ensure that the heated and cooled aggregate did not lose water prior to 
mixing.  All storage containers for the aggregate had tight-fitting O-rings, and the weight of 
the container was compared before and after either heating or cooling to ensure that there was 
no moisture loss.  For the cold mixtures, ice was added to the mixer prior to adding the 
aggregates to cool the mixer.  The ice was 0.25% by weight of the water in the mixture. The 
equivalent amount of water was withheld from the mixture to ensure an accurate w/cm. 

2.4. Equipment and Pipe Configuration 

2.4.1. Concrete Pump 

The Putzmeister TK 50 concrete pump shown in Fig. 1 was used for testing.  This pump 
operates through two alternating pistons, ensuring an almost continuous concrete flow. As one 
piston retracts, it draws concrete from the hopper, while the second piston extends to push 
concrete out. An S-valve alternating delivery system facilitates the shift between delivery 
cylinders, ensuring a consistent concrete supply. To maintain the concrete's homogeneity, a 
remixer continuously agitates the concrete within the hopper. The pump settings were 1500 
RPM, with the piston volume set at 0.016 m3 (0.57 ft3).  Both of these parameters were used in 
previous research and so they were repeated in this work [26]. 

 
Fig. 1. The Putzmeister TK 50 Concrete Pump. 

2.4.2. Pipe Configurations 

The laboratory testing employed a standard pipe network configuration, as shown in Fig. 2. 
This network used a 0.102 m (4.0 in.) inner diameter (I.D.) single-wall steel pipe. The 
connection of pipe sections was secured through rubber gaskets and couplings. The pipe 
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network encompassed a 1 m (3.3 ft.) long single-wall steel pipe reducer, which reduced the 
pump output from 0.127 m (5.0 in.) I.D. to 0.102 m (4.0 in.). Following the reducer, a 16 m 
(52.5 ft.) length of 0.102 m (4.0 in.) I.D. steel pipe was incorporated, featuring three 0.457 m 
(1.5 ft.) radius 90° bends. Concluding the steel pipe network, a flexible rubber hose directed 
the concrete back to the pump's hopper, creating a continuous flow. The cumulative volume of 
the pipe network was approximately 0.17 m3 (6.0 ft3). 

                    

 
Fig. 2. Pipe Network Configuration. 

 

2.5. Pumping Procedure 

The grout was added to the pump, and a few piston strokes were used to add the grout to the 
pipe.  Next, concrete was added to ensure that the hopper remained constantly filled to prevent 
introducing air into the line.  Concrete was added to the pump's hopper, and additional pump 
strokes were used to push concrete through the pipes.  This process persisted until all the mortar 
was expelled from the flexible rubber hose. The rubber hose was secured to the pump's hopper 
to redirect the concrete back into the pump.  This established a seamless and uninterrupted 
flow, allowing us to complete a single cycle of concrete pumping. 

Once a continuous flow was completed, the rubber hose was detached from the pump's hopper 
and was used to fill five wheelbarrows with concrete. Wet burlap sheets were carefully draped 
over the concrete in the wheelbarrows to minimize temperature and moisture loss.  One 
wheelbarrow was tested immediately after pumping, and the other four were tested 
approximately every 25 minutes.  This allowed the change in the fresh properties of the 
concrete to be measured before and after pumping and regularly over time until about 120 
minutes after the concrete was pumped.  Fig. 3 illustrates the pumping procedure employed in 
this study. The tests and timing used are outlined in Table 4.     

The following tests were used to evaluate the concrete: Slump (ASTM C143), Unit Weight 
(ASTM C138), SAM (AASHTO T 395), Freeze-Thaw Resistance (ASTM C666), and 
Hardened Air Void Analysis (ASTM C457).  The SAM was used to measure the air volume 
and the SAM Number.  The slump, unit weight, air volume, and SAM Number were measured 
at each time- period.  Freeze-Thaw Resistance and Hardened Air Void Analysis were run 
before pumping, immediately after pumping, and 120 minutes after pumping.  The number and 
timing of the tests are outlined in Table 4. 
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Fig. 3. Concrete Pumping and Wheelbarrow Filling Procedure. 

Table 4 

Number and Timing of Conducted Tests. 

Time of the Tests 
(Minutes) Conducted Tests Number of Samples 

0 
(Before Pumping) 

1) Unit Weight (ASTM C138). 
2) Air % and Sam Number, Super Air Meter (AASHTO T 

395). 
3) Slump (ASTM C143). 
4) Hardened Air Void Analysis (ASTM C457). 
5) Freeze-Thaw Resistance (ASTM C666). 

3 
3 
2 
2 
3 

10  
(Immediately after 

Pumping) 

1) Unit Weight (ASTM C138). 
2) Air % and Sam Number, Super Air Meter (AASHTO T 

395). 
3) Slump (ASTM C143). 
4) Hardened Air Void Analysis (ASTM C457). 
5) Freeze-Thaw Resistance (ASTM C666). 

3 
3 
2 
2 
3 

30 

1) Unit Weight (ASTM C138). 
2) Air % and Sam Number, Super Air Meter (AASHTO T 

395). 
3) Slump (ASTM C143). 

3 
3 
2 

60 

1) Unit Weight (ASTM C138). 
2) Air % and Sam Number, Super Air Meter (AASHTO T 

395). 
3) Slump (ASTM C143). 

3 
3 
2 

80 

1) Unit Weight (ASTM C138). 
2) Air % and Sam Number, Super Air Meter (AASHTO T 

395). 
3) Slump (ASTM C143). 

3 
3 
2 

90 

1) Unit Weight (ASTM C138). 
2) Air % and Sam Number, Super Air Meter (AASHTO T 

395). 
3) Slump (ASTM C143). 

3 
3 
2 

120 

1) Unit Weight (ASTM C138). 
2) Air % and Sam Number, Super Air Meter (AASHTO T 

395). 
3) Slump (ASTM C143). 
4) Hardened Air Void Analysis (ASTM C457). 
5) Freeze-Thaw Resistance (ASTM C666). 

3 
3 
2 
2 
3 
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3. RESULTS and discussion 

3.1. Change in Air Volume Before and After Pumping  

Table 5 provides a comprehensive overview of the fresh and hardened properties of all concrete 
mixtures, before and after 120 minutes of pumping. Figs. 4a, 5a, and 6a summarize the changes 
in air volume before and after the pumping for the concretes of different temperatures and Figs. 
4b, 5b, and 6b show the same data that has been normalized by the original air content.  The 
normalized air content represents the percentage obtained by multiplying the ratio of air content 
measured at a specific time after pumping to the air content measured prior to pumping by 100.  
The data point at zero minutes represents measurements taken before pumping, while the data 
at ten minutes corresponds to the first measurement taken after pumping.  These times were 
used to make it easier to visualize the data. 

Figs. 4, 5, and 6 show that there is a reduction in air content after pumping with the current 
materials and equipment, regardless of the temperature of the concrete.  The reduction in air 
content is attributed in other research work to the dissolution of smaller air bubbles from the 
increased pressures that occur during pumping [1,13,14].  It should be noted that other papers 
have seen that at least a portion of these air bubbles return to the concrete with a similar spacing 
as before they were pumped [3, 5, 6, 13].  From these Figures, it can be deduced that after 
pumping, the air volume decreased by at least 20% of the initial value that was present before 
pumping. In practical terms, if a concrete mixture initially possessed 6% air content before 
pumping, it would have an air volume of approximately 5% when measured after passing 
through the pump, as investigated in other research work [6]. This reduction in air content 
highlights the impact of the pumping process on air voids within the concrete mixture [5]. 
Based on the presented figures, it can be concluded that the percentage of air loss remains 
relatively consistent between room temperature and heated mixtures. Notably, the cold 
mixtures deviate by exhibiting a significantly higher air loss. This implies that colder concretes 
may see a larger air loss during pumping.   

For example, Table 6 shows that the average air content was similar in all three mixtures at 
7.4%, 6.8%, and 5.7%.  The loss in air content for the room and hot temperature mixtures were 
similar at 1.9% and 1.7%, respectively, but the colder mixture lost more air at 2.3%.  When 
comparing the percentage loss of air content between the mixtures, the room and hot 
temperature mixture lost between 26% and 25% of the original air volume, and the cold mixture 
lost 40%.  This suggests that a cold mixture is expected to lose roughly twice as much air as 
room temperature or hot mixtures.  The standard deviations are included in the table to show 
the relative difference.  To investigate this further, a Student t-test was used, and this was found 
to be a statistically significant difference in the results, as shown in Table 7. The t-test results 
indicate that the observed differences in air loss percentage between Room Temperature and 
Hot mixtures are not statistically significant (t-value < t-critical), suggesting comparable 
behavior. In contrast, the Cold mixture exhibits a significantly higher air loss percentage 
compared to both Room Temperature and Hot mixtures (t-value > t-critical for both 
comparisons), emphasizing the considerable impact of lower temperatures on air loss during 
pumping. 

Fig. 7 shows the relationship between measuring the air content before pumping and 
measurement in the fresh concrete 120 minutes after pumping. This plot features a line of 
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equality, indicating that a mixture maintaining the same air content before and after pumping 
would fall on this line.  Moreover, the plot highlights significant changes with 0.7% offset 
lines, exceeding the threshold of two standard deviations. This implies that the sample falls 
outside the 95% confidence interval can be considered as statistically different. However, for 
all mixtures tested at different temperatures, a statistically significant reduction in air content 
was consistently observed after the pumping process.  

From Figs. 4, 5, and 6, we can observe that the air volume does not change significantly up to 
120 minutes after pumping.  However, it should be noted that the air volume measurement may 
not be the most discerning indicator to the change in the air void system over time.  Also, 
changes may occur after the 120-minute period.   

Table 5  

Fresh and Hardened Properties of All Concrete Mixtures at Various Temperatures Before and 
After 120 Minutes of Pumping. 

Temperature (oC) 
Fresh Properties HAV Analysis 666 Beams 

Air% SAM # Air% Spacing Factor 
(µm) Durability Factor (%) 

Before* After 
120 min** Before After 

120 min Before After 
120 min Before After 

120 min Before After 
120 min Before After  

120 min 
30 25 9.1 6.7 0.15 0.10 10.9 8.8 107 160 NA NA 

30 25 7.9 6.0 0.11 0.13 8.5 5.4 130 226 NA NA 

30 25 6.8 4.7 0.17 0.10 7.4 5.8 157 226 NA NA 

30 25 5.9 4.0 0.16 0.32 6.8 4.1 211 188 100 93 

12*** 22 3.4 2.0 0.63 0.35 4.4 3.6 333 353 32 16 

3 15 5.8 3.4 0.15 0.23 6.5 4.6 178 312 100 96 

9 17 5.2 3.0 0.24 0.45 6.0 5.7 231 264 96 100 

8 19 6.3 3.3 0.30 0.48 8.1 4.9 178 307 100 98 

8 19 5.9 3.4 0.20 0.55 8.7 7.2 160 173 83 96 

10 20 5.4 3.8 0.33 0.38 7.4 5.9 239 211 104 96 

44*** 32 3.8 3.0 0.76 0.49 5.3 3.9 257 335 75 19 

39 32 7.7 4.6 0.23 0.17 8.6 6.8 135 229 100 100 

38 30 7.8 4.5 0.25 0.19 7.5 4.0 173 245 100 96 

39 31 6.1 4.4 0.21 0.29 7.9 5.2 175 252 98 98 

38 30 5.7 4.3 0.32 0.26 7.6 12.0 165 99 98 100 

* Before: Measurements Taken Before Pumping the Concrete. 
** After: Measurements Taken 120 Minutes After Pumping Concrete. 
*** Non- Air Entrained Mixtures. 
 
 
 
Table 6  
Average and Standard Deviation of Fresh Concrete Air Content%. 

Mixtures Average Air% of Fresh 
Concrete (%) 

Average Air 
loss (%) 

Percentage Loss of Air 
Content After Pumping (%) 

Standard Deviation of Fresh 
Concrete Air Content % 

Before 
Pumping 

Immediately 
after Pumping 

(Avg Air Loss/Air Before 
Pumping x 100) 

Before 
Pumping 

Immediately after 
Pumping 

Room 
Temperature 

6.9 5.5 1.4 20 0.98 0.78 

Hot 6.8 5.1 1.7 25 1.08 0.57 
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Cold 5.7 3.4 2.3 40 0.45 0.36 

 
Table 7  
Statistical Analysis of Air Loss Percentage and Standard Deviation Differences in Concrete 
Mixtures 
 

Mixtures Average % change 
of Air loss (%) 

Average % Change 
of Standard 

Deviation Difference 
t-critical Mixtures t-Value Comparison Conclusion 

Room 
Temperature 26 4.1 ± 2.365 Room-Hot 0.243 t-Value < t-critical Not Significant 

Hot 25 8.1 ± 2.306 Room-Cold 4.096 t-Value > t-critical Significant 
Cold 40 6.7 ± 2.262 Hot-Cold 3.331 t-Value > t-critical Significant 

 

      
                       a) Air Content vs. Time.                           b) Normalized Air Content vs. Time. 

        Fig. 4. Air Content vs. Time Before and After Pumping of (30°C/86°F) Concrete 
Mixtures.  
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                       a) Air Content vs. Time.                            b) Normalized Air Content vs. Time. 

      Fig. 5. Air Content vs. Time Before and After Pumping of (40°C/104°F) Concrete 
Mixtures.  
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                        a) Air Content vs. Time.                           b) Normalized Air Content vs. Time. 

        Fig. 6. Air Content vs. Time Before and After Pumping of (8°C/46°F) Concrete 
Mixtures.  

 
Fig. 7. Plot of Air Content Before Pumping vs. Air Content After Pumping. 

3.2. Change in SAM Number Before and After Pumping 

Figs. 8a, 9a, and 10a show the change in the SAM Number over time after pumping.  The data 
shows that typically, the SAM Number increases immediately after pumping, followed by a 
subsequent decrease in the SAM Number with time.  

Out of the 13 air-entrained mixtures at three different temperatures, 11 exhibited an increase in 
the SAM Number immediately after pumping by at least 20% over the SAM Number before 
pumping.  The other two had a SAM Number that increased but not to the same degree.  All 
the air entrained mixtures that showed an increase in the SAM Number also showed a decrease 
in the SAM Number over time.  This decrease in SAM Number suggests that small air voids 
are returning to the concrete.  For the hot and room temperature samples, every air entrained 
sample that showed an increase in the SAM Number showed a value within 20% of the original 
value.  Recall that the cold samples showed an air volume loss of almost double from pumping 
over the samples at room temperature and hot samples.  The SAM Number for the cold samples 
increased by almost twice as much as the hot and room temperature samples.   

It is interesting to note that 120 minutes after pumping, the SAM Numbers of the hot and room 
temperature mixtures were close to the original SAM Number.  This matches previous data 
that shows that the small voids lost during pumping are returning to the concrete before the 
concrete has hardened with a similar air void spacing [3, 5, 6, 13].  However, during the 120 
minutes of testing the SAM Numbers of the cold mixtures did not return to the original values.  
The measurements for the cold mixtures show that the SAM Numbers continue to decrease 
over time indicating that at the end of the measurement period the small air voids continued to 
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return to the concrete.  This will be discussed in greater detail later with the hardened air void 
analysis and the freeze thaw-durability testing. 

The increase in the SAM Number after pumping and its subsequent decrease over time can be 
attributed to the temporary dissolution of smaller bubbles during pumping due to increased 
pressures [5, 6, 11, 13]. After decreasing the pressures from pumping, it appears that the 
dissolved air voids are re-forming in liquid-filled space.  This suggests that the air void system 
measured immediately after pumping does not accurately represent the characteristics present 
in the hardened concrete.   

An important observation is that the SAM Number seems to be improving without a significant 
change in the air volume.  This may occur because the SAM Number is sensitive to the amount 
of small bubbles in the concrete while these small bubbles do not have a significant change to 
the air volume [5, 6].   

This difference in the rate of bubbles returning in the cold mixtures could be attributed to a 
slower rate of gas formation in the low-temperature concrete mixtures compared to room-
temperature or high-temperature concrete mixtures [28-32]. However, this lower temperature 
will increase the set time, which will provide more time for the bubbles to return to the concrete. 
This could extend past the 120-minute measuring period for fresh concrete used in this study.  
This will be investigated more with the freeze-thaw and hardened air void analysis. 

 

 
                       a) SAM Number vs. Time.                                   b) Normalized SAM Number. 

      Fig. 8. SAM Number vs. Time Before and After Pumping of (30°C/86°F) Concrete 
Mixtures. 
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                a) SAM Number vs. Time.                                       b) Normalized SAM Number. 

Fig. 9. SAM Number vs. Time Before and After Pumping of (40°C/104°F) Concrete 
Mixtures.  
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                      a) SAM Number vs. Time.                                  b) Normalized SAM Number. 

     Fig. 10. SAM Number vs. Time Before and After Pumping of (8°C/46°F) Concrete 
Mixtures. 

 

3.3. Freeze Thaw Performance  

Fig. 11 illustrates the correlation between the volume of fresh air content and the durability 
factor. Dashed lines are added at 4% air content and a durability factor of 70%, as these are 
typical values that have been used with these materials to recommend freeze-thaw durability 
based on previous work [3, 5, 7]. A data set has been added with light gray dashes.  This data 
uses the same materials from this study to show the performance of air-entrained concrete that 
was never pumped [3]. These data points highlight that as the air content decreases then so 
does the durability factor.  The filled circles represent the air content measured before pumping, 
and the opened circles represent the air content measured after pumping.  Fig. 11 shows that 
several measurements measured immediately after pumping had air contents of 4% or lower 
that showed satisfactory freeze-thaw performance.  While this is useful, there are several 
measurements made of concrete that was not pumped that also showed satisfactory freeze-thaw 
performance at this air volume.  

Fig. 11. Plot of Durability Factor vs. Fresh Air Content for Concrete Mixtures at Different 
Temperatures.    

Fig. 12 shows the relationship between the SAM Number and the durability factor from ASTM 
C 666 testing [33]. The dashed lines show a 0.32 SAM Number and a durability factor of 70%.  
These are typical values used to recommend freeze-thaw durability based on previous research 
[3, 5, 7]. A data set has been added with the same materials to show the performance of air 
entrained concrete that was never pumped [3]. These data points are shown as black dashes.  
The filled circles represent the SAM Number measured before pumping, and the opened circles 
represent the SAM Number measured after pumping.  
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The primary observation in Fig. 12 is that air entrained concrete mixtures with a SAM Number 
below 0.32 before pumping the concrete showed freeze-thaw resistance in the hardened 
concrete even if the SAM Number after pumping increased above 0.32. This shows that 
measurements of the concrete immediately after pumping are not representative of the freeze-
thaw performance using recommendations for non-pumped concrete. 

 

 

Fig. 12. Plot of Durability Factor vs. Fresh SAM Number for the Concrete Mixtures at 
Different Temperatures. 

 

3.4. Hardened Air Void Analysis (HAV) 

Fig. 13 illustrates the relationship between the spacing factor before and after 120 minutes of 
pumping for various concrete temperature mixtures. The graph includes a line of equality and 
lines indicating twice the reported coefficient of variation of the ASTM C 457 test method [34], 
illustrating the expected variation of the test method with a 95% confidence interval.  Notably, 
all measurements fall within the anticipated variation of the test method, indicating that 
pumping did not significantly alter the spacing factor of the hardened concrete samples 
according to this test. 

Despite observing a loss of fresh air volume and an increase in the fresh SAM Number in 11 
out of 13 of the air-entrained mixtures after pumping, the measurements of the hardened air 
voids do not indicate a substantial change in the spacing factor after pumping. These findings 
align with previous studies on air entrained pumped concrete [5, 6]. 
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Fig. 13. Plot of Spacing Factor Before Pumping vs. Spacing Factor After 120 Mins. of 

Pumping. 

 

3.5. Practical Significance 

This work shows that when the concrete had an air content greater than 4% and a SAM Number 
less than 0.32 prior to pumping, then satisfactory freeze-thaw performance was found despite 
air contents or SAM Numbers outside of these limits being obtained after pumping. This 
recommendation is held for concretes with measured temperatures from (8°C/46°F) to 
(40°C/104°F).  This suggests that concrete should not be rejected for measurements of air 
content or SAM Number measured after pumping as the air void system has been temporarily 
modified by pumping, and there has not been enough time for the air void system to recover.  
One solution is to only sample the concrete prior to pumping to use the conventional limits for 
the air content and SAM Number before pumping and to not test concrete after a concrete 
pump.  Another solution is to wait for the air voids to return to the concrete; however, based 
on this work it may be 50 minutes for the air voids to return at room temperature.  Also, this 
return time will depend on the temperature of the concrete as it took more than 120 minutes 
from the air voids to return to the (8°C/46°F) concrete mixtures. 

4. conclusions 

This work examines how different concrete temperatures impact the loss of air during pumping 
and the rate and efficiency of that air to return to the concrete.  Pumping frequently caused 
changes in the air void system of the fresh concrete in this work. However, these changes did 
not affect the hardened air void parameters and freeze-thaw performance of concrete mixtures 
at temperatures between (8°C/46°F) and (40°C/104°F).  Here are the key conclusions drawn: 

• All mixtures tested at different temperatures showed a significant reduction in air 
content by at least 20% of the initial value that was present before pumping.  
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• Despite the hot mixtures (40°C/104°F) and room temperature (30°C/86°F) mixtures 
showing comparable air losses at 1.4% and 1.7%, respectively, the colder mixtures 
(8°C/46°F) experience a more significant air loss of 2.3%. When this is normalized, the 
hot and room temperature mixtures lose between 26% and 25% of the original air 
volume, while the cold mixture loses 40%. This finding implies that a cold mixture is 
anticipated to lose roughly twice as much air as its room temperature or hot counterpart.  
 

• Out of the 13 air-entrained mixtures at three different temperatures, 11 exhibited an 
increase in the SAM Number immediately after pumping by at least 20% over the 
SAM Number before pumping.  The other two had a SAM Number that increased but 
not to the same degree.   
 

• All the air-entrained mixtures that showed an increase in the SAM Number also 
showed a decrease in the SAM Number over time to reach a point that is closer or 
lower than the initial number before pumping. This suggests that the fine air voids are 
returning to the concrete and that they are forming an air void system that is well 
dispersed with a similar spacing factor to the concrete that was added to the pump.  
 

• Spacing factors measured before and after pumping across various temperatures 
exhibited changes within the variation of the test method, indicating that pumping did 
not significantly alter the spacing factor of hardened concrete samples. 
 

• Mixtures with an air volume > 4% and SAM Number < 0.32 before pumping showed 
satisfactory performance in ASTM C666 testing, regardless of changes in fresh air 
content, SAM Number due to pumping, or concrete temperature. 
 

• Cold mixtures (8°C/46°F) experienced an average air content change from 5.73% to 
3.40%, resulting in a 41% air loss. This was about double the air loss air loss 
experienced for the room temperature (30°C/86°F) and hot concrete (40°C/104°F) 
mixtures.  Additionally, for the cold concrete samples, the SAM Number did not return 
to its original value even 120 minutes after pumping. This phenomenon may be 
attributed to the slower rate of diffusion in low-temperature concrete mixtures [28-32]. 
The extended set time in lower temperatures would allow more time for the bubbles to 
return to the concrete as was shown by the spacing factor and satisfactory freeze thaw 
performance.  
 

This work replicates previous measurements and reinforces findings that pumping causes a 

dissolution of smaller air bubbles from the increased pressures and these bubbles seem to return 

to the concrete before hardening.  In summary, these findings indicate that the air volume and 

SAM Number measured immediately after pumping are not representative of the values in the 

hardened concrete.  Therefore, these parameters should not be used to reject concrete for poor 

freeze-thaw durability after pumping. Instead, it is recommended to measure the air volume 

and SAM Number of the concrete before pumping for more accurate assessments. 
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