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Project Description: 

The main objective of this proposed research is to provide state DOTs practical tools for supporting human-centered steel bridge 
inspection with real-time defect (e.g., fatigue cracks and corrosion) detection, documentation, tracking, and decision making. The 
proposed research will not only bridge the gaps identified in the IDEA project, but also expand the existing capability by developing 
AI algorithms for crack and corrosion detection. In addition to AR headsets, the project will also develop AR-based inspection 
capability using tablet devices.  The tablet device can be used to perform AR-based inspection directly in a similar way to the AR 
headset. It can also leverage Unmanned Aerial Vehicles (UAV) for remote image and video acquisition during inspections, enabling 
bridge inspections from a distance in a human-centered manner. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Progress this Quarter 

(includes meetings, work plan status, contract status, significant progress, etc.): 

 

1. Task 1: CV and AI algorithms for crack and corrosion inspection  
This quarter, progress was made in the development and refinement of Meta Ensemble Learning techniques 
specifically designed for the automated inspection of structural defects like corrosion and cracking. The research 
focused on moving beyond traditional single-model architectures to leverage ensemble methods (specifically 
Stacking) to improve detection accuracy and robustness. Stacking involves training different models in parallel 
and using their collective predictions as inputs for a final meta-learner model, which learns the optimal strategy 
for combining these diverse outputs. This approach is particularly effective for complex infrastructure inspection 
because it can mitigate the individual biases and errors of standalone models. 

2. Task 2: AR-based software for human-centered bridge inspection 
AR infrastructure inspection tool development has continued with significant progress being made. Persistent 
anchorage has now been successfully implemented, with anchors demonstrating reliable long-term stability 
across sessions and inspection spaces. With persistent anchorage solved, focus shifted onto database 
construction. The results database has begun development with the majority of core database functionality 
completed. All inspection results are now automatically stored within the database as a Binary Large OBject (BLOB) 
file, along with their creation dates, and are organized by inspection site. The database can be easily extracted 
from the Magic Leap headset, enabling inspectors to review and analyze inspection results more easily.  

 

Anticipated work next quarter: 

1. Task 1: CV and AI algorithms for crack and corrosion inspection  
For the upcoming quarter, the work will focus on refining the MetaCNN architecture to enhance its ability to 
handle complex structural patterns through the integration of mechanisms such as attention and residual blocks. 
These architectural improvements aim to prioritize critical defect regions and facilitate the training of deeper, 
more stable networks, specifically to address the lower mean IoU currently observed in crack detection. Parallel 
to these structural changes, research will be conducted into the implementation of a hybrid loss function that 
combines Binary Cross-Entropy, Dice Loss, and Focal Loss. This composite objective function is designed to 
improve pixel-level classification, maximize segmentation overlap, and mitigate the severe class imbalance 
inherent in infrastructure images where defect pixels are significantly outnumbered by background elements.  

2. Task 2: AR-based software for human-centered bridge inspection 
During the upcoming reporting period, for AR headset, development will focus on the completion of database 
implementation and expanding its functionality. We plan to add the “time travel” feature that will allow inspectors 
to view inference results from specific inspection dates or quickly access the most recent inspection data for a 
given site. We will also spend time polishing the overall user experience to improve usability in the field. 
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Additionally, we will investigate alternative methods of saving and displaying inspection results for better long-
term accuracy and reliability of stored data. 
For the AR software environment on tablet devices and UAVs, we will downsample the visual mesh to improve its 
visualization when overlaid on RGB imagery. We will also optimize the computational efficiency of mesh construction to 
support real-time streaming from the UAV to the tablet device. 

Significant Results: 

 

1. Task 1: CV and AI algorithms for crack and corrosion inspection  
The development of the MetaCNN architecture represents a significant shift from single-model frameworks 
to a robust Stacking ensemble approach for automated infrastructure inspection. As illustrated in Figure 1, 
this methodology utilizes three parallel variants of the YOLOv8 model (small (s), medium (m), and large (x)) 
which are trained on an 80-10-10% data split. By using models with different parameter counts, the system 
captures a diverse range of features. These base model predictions are then fed into a final meta-learner, 
which is specifically trained to combine these inputs into a more accurate final prediction for structural defects 
like corrosion and cracking. 

 
Figure 1: Stacking Ensemble Learning Framework 

As shown in Figure 2, the meta-learner's internal structure is designed to refine these predictions through a 
sequence of specialized layers. It employs multiple convolutional stages, beginning with two layers of 128 
channels followed by a 256-channel layer, all using 3x3 filters to extract high-level features. Each stage 
includes Batch Normalization to stabilize the feature maps and ReLU activation to introduce the non-linearity 
required for learning complex patterns. The network concludes with a 1x1 convolution without activation, 
providing the flexibility needed to output a continuous range of values for various regression tasks. To further 
enhance training, future iterations will implement a hybrid loss function combining Binary Cross-Entropy, 
Dice, and Focal Loss to better address class imbalances.

 
 

Figure 2: Architecture of the MetaCNN 

The implementation of this Meta Ensemble approach yielded substantial improvements in defect detection 
accuracy. In corrosion detection tasks, the MetaCNN achieved a mean IoU of 69.8%, a significant increase 
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from the previous stacking benchmark of 55%. The model also reached a mean Dice score of 73.4% and an 
mAP50 of 67.5%. These results are supported by an expanded dataset of 1,079 corrosion images, which 
includes images from TxDOT and KDOT.  
 

Table 1: Corrosion segmentation accuracy based on various 
metrics 

Metric Value 

IoU_mean 69.8% 

Dice_mean 73.4% 

mAP50_mean 67.5% 

 
The mean recall across the three classes for the test image set is 0.662, indicating that on average the 
MetaCNN model correctly detects about 66% of corrosion instances across all classes. Figure 3 shows two 
sample segmentation results, in which the model demonstrated high accuracies with an IoU as high as 91% 
and Recall 100% for the first image and an IoU of 69% and perfect 10083% recall rate for the second image.  

 

 

 

 

Figure 3. Sample corrosion segmentation results (left: Input, Middle: Ground Truth, Right: MetaCNN) 

For crack detection, based on a dataset of 680 images, the ensemble learning approach still demonstrated 
measurable improvement. The architecture achieved a mean IoU of 44.1%, surpassing the previous 
benchmark of 37%. Other key metrics for crack detection included a mean Dice score of 49% and an mAP50 
of 35.3%. While fine cracks present a higher level of difficulty, test scenarios presented in Figure 4 showed 
the MetaCNN architecture reaching an IoU of 75% with a 100% recall rate for the first image and an IoU of 
53% with a 100% recall rate for the second image. Future work will focus on integrating other mechanisms 
such as attention and residual blocks to further improve these metrics. The mean recall for the test image set 
is 0.42 for crack detection, indicating that on average the MetaCNN model detects about 42% of crack 
instances.  
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Figure 4. Sample crack segmentation results (left: Input, Middle: Ground Truth, Right: MetaCNN) 

 
2. Task 2: AR-based software for human-centered bridge inspection 

Subtask 2.3: AR software environment for AR headset 
Significant progress has been made in advancing the AR inspection app on the Magic Leap 2 platform. This 
quarter a major milestone was achieved with the successful integration of Magic Leap’s spatial anchors. Stable 
anchors are now created with every inspection result; they are stored long term and reloaded across 
inspection sessions, enabling consistent alignment of digital inference results.  

 
Figure 5. Magic Leap Hub Example Files 
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Previously, we faced challenges with integrating Magic Leaps spatial anchor storage system with our unity 
project due to a version mismatch in Unity. After consulting with the Magic Leap dev forum, we were informed 
that there are example files for spatial anchor storage inside newer Unity environments in the magic leap 
hub’s example files, as shown in Figure 5.  

 
Figure 6. Example Scene 

Inside the example files was an example unity scene, as seen in Figure 6. The scene contained the scripts and 
plugins as well as the scene contents/structure that was necessary for the spatial anchor storage system to 
work. We built this scene and deployed it on the headset for testing. Once it was seen that the storage was 
correct and reliable, we shifted focus to moving implementing the necessary changes from this scene into the 
inspection project to achieve the same functionality.  

 
Figure 7. SQLite4Unity3d Github Page 

With persistent anchorage solved, development continued to creation and management of the database for 
storing inspection results long term. For this purpose, we adopted a branch of SQL called SQLite for the 
purpose of running and managing small databases locally on a device. This decision was also driven by the 
fact that SQLite has been used previously to integrate with Unity, and there are various methods of doing so. 
We found that the most straight forward method of doing so was through a 3rd SQLite integration plugin 
available on GitHub. The GitHub repository featured in Figure 7 contained the necessary files to access read 
from and write to an SQLite database inside of unity, as well as examples on how to do so.  
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Fig 8. SQLite Database Example 

With this plugin installed, we began construction of the database. We drafted a model for what the database 
would look like, as shown in Figure 8. The database would include multiple tables, one for each inspection 
site, inside each table the inferences are stored as BLOB files, that can be read as images. The inferences 
would be stored with its date of creation, as well as an anchor ID that corresponds to their spatial anchor, so 
that when the app loads a persistent spatial anchor (from a previous inspection) it can search for the anchors 
corresponding inspection result, and use it for projection. 

Subsequently, the scripts necessary to query and insert into the SQLite database were created. The 
inference pipeline was altered to incorporate the new permanent solution for saving inference results, and 
the spatial anchors were also updated to draw their images from the SQL database. 

 
Figure 9. Missing x86-64 plugins for SQLite 

After implementing all these changes, the updated pipeline was tested on the Magic Leap headset; however, 
an issue was encountered. The Magic Leap 2 runs on an x86-64 CPU. This means that in order to use 
SQLite4unity3d, we would have to find the appropriate “.so” plugin file. However, because this is a relatively 
rare type of CPU to be used on an android device, it was difficult to find a precompiled .so file online, and the 
GitHub page for SQLite4Unity3d only included the android .so files seen in Figure 9. To ensure the 
implementation of SQLite would work on the Magic Leap 2, we compiled a .so file for the x86_64 CPU, and 
we were able to test the program on the headset. The changes were successful, and the program is now 
functioning properly with the SQLite database integration.  
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Figure 10. Database retrieval  

Another important requirement for our database integration was that the inspector would be able to easily 
take the database from the headset to view the inspection results and allow for easy data transfer. The 
database retrieval process is quite straight forward, as seen in Figure 10, starting from the magic leap hub, 
the user can click the files icon, from there, they can navigate the headsets file structure. The file path to the 
database is as follows:” Android > data > org.inspectiontool > files > Database SQLite.db” (the name 
“org.inspectiontool” is subject to change and will likely not be the final package name for our app). From here 
the user can download the database to their device, and view the SQL database in a viewing app. Figure 11 
shows  sample inspection result viewed on a PC. The BLOB file can be downloaded as a .png file, and viewed 
as an image. 

 
Figure 11. Database viewing 

 
Subtask 2.4: AR software environment for tablet device and UAV 

In this quarter, we continued investigating the use of a depth camera (Intel RealSense D455) for constructing 
3D point clouds and mesh models of surrounding environments. By establishing correspondences between 
the reconstructed 3D mesh models and 2D images, the mesh can be accurately projected back onto the image 
plane, enabling reliable tracking of anchored objects in a 3D space. 

To evaluate the feasibility of mapping the constructed mesh models back to 2D images, we conducted a 
simple experiment in which a backpack was placed in the corner of a room and a video of the scene was 
recorded. From the video, RGB images and depth maps were extracted along with the camera intrinsic 
parameters. Using this information, 3D mesh models were reconstructed and subsequently projected back 
onto the corresponding 2D images. The results demonstrate that the reconstructed mesh aligns well with the 
image content, indicating that the mapping from 3D to 2D is feasible for object tracking. 

Figure 5 illustrates the experimental results for two RGB images with their corresponding reconstructed 
3D mesh models projected and overlaid onto the images. The mesh models are composed of triangular faces, 
with vertices corresponding to points in the reconstructed point cloud. This local mesh representation 
provides a stable 3D reference for the scene, allowing anchored objects to be tracked consistently in 3D space. 
Unlike 2D image features, which may change due to viewpoint variations or camera motion, the 3D mesh 
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remains geometrically fixed in the environment. As a result, objects attached to or interacting with the mesh 
can be reliably tracked and visualized across video frames, enabling real-time interaction between the 2D 
video stream and the reconstructed 3D world. 

 

         
                                         (a) RGB image                                                      (b) 3D mesh mapped on the 2D image 

                 
                                       (c) RGB image                                                       (d) 3D mesh mapped on the 2D image 

Figure 12. RGB images with their corresponding 3D mesh models overlaid onto the images 

To develop the Unity user interface for the tablet-based AR inspection environment and enable intuitive 
interaction with visual inspection data, two main scripts were implemented in Unity. The first, 
TabletVideoManager, integrates prerecorded inspection videos into the interface, allowing users to load, play, 
pause, and switch between videos using simple UI controls. Video content is displayed on a tablet-style screen 
through Unity UI elements, ensuring smooth visualization within the AR environment. Event-driven logic 
manages video preparation and completion, updating button labels and screen states in real time to provide 
clear user feedback, which is essential for efficient and user-friendly field inspection workflows.  

 
Figure 13. SimpleWebcamFeed in Unity for real-time visual input by streaming live camera. 
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The second script, SimpleWebcamFeed, as shown in Figure 13, provides real-time visual input by 
streaming live camera data directly onto the tablet interface. This enables the tablet to function as a live 
inspection and viewing tool, enhancing AR-based situational awareness by embedding real-world imagery 
into the Unity UI. The system automatically detects available camera devices, initializes the video stream, and 
safely releases camera resources when no longer in use. Together, these UI components form a foundational 
AR software environment for tablet devices, supporting both live and prerecorded visual data and facilitating 
effective interaction between the tablet interface and UAV-assisted inspection operations. 
 

 

Circumstance affecting project or budget.  (Please describe any challenges encountered or 
anticipated that might affect the completion of the project within the time, scope and fiscal 
constraints set forth in the agreement, along with recommended solutions to those 
problems). 

 
N/A 
 
 

 

Potential Implementation:   


