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Project Description: 

The main objective of this proposed research is to provide state DOTs practical tools for supporting human-
centered steel bridge inspection with real-time defect (e.g., fatigue cracks and corrosion) detection, 
documentation, tracking, and decision making. The proposed research will not only bridge the gaps identified in 
the IDEA project, but also expand the existing capability by developing AI algorithms for crack and corrosion 
detection. In addition to AR headsets, the project will also develop AR-based inspection capability using tablet 
devices.  The tablet device can be used to perform AR-based inspection directly in a similar way to the AR headset. 
It can also leverage Unmanned Aerial Vehicles (UAV) for remote image and video acquisition during inspections, 
enabling bridge inspections from a distance in a human-centered manner. 

Progress this Quarter 

(includes meetings, work plan status, contract status, significant progress, etc.): 

 
1. Task 1: CV and AI algorithms for crack and corrosion inspection  

 
Building upon the hybrid framework introduced in the initial report—combining transfer learning and domain 
adaptation—we have implemented an active learning-based pipeline to further reduce dependency on large-scale 
manual annotation for crack and corrosion segmentation. In our earlier setup, corrosion was treated as a single 
class; however, in the current implementation, we have expanded the label taxonomy to include three severity 
levels: Fair, Poor, and Severe, enabling more granular damage assessment. 
 
Additionally, while the previous approach relied exclusively on public datasets, we now incorporate a very small 
portion of labeled domain-specific data to better align the model with the visual feature distributions of the target 
dataset. This minimal supervision dataset facilitates partial transfer of domain-specific features into the training 
process and improves the model's generalization to field conditions. 
 
The updated workflow (Figure 1) integrates a confidence-based active learning loop, where a model trained on 
public and minimally labeled domain data is iteratively fine-tuned using high-confidence pseudo-labels generated 
from unlabeled target-domain images (Texas bridge dataset). 
 
As shown in the flowchart, the pipeline begins with a small, labeled set and public annotated data to fine-tune a 
YOLOv12 model pretrained on large-scale damage datasets. This initial model performs inference on a large 
portion of unlabeled images, and a confidence thresholding mechanism is applied to extract reliable pseudo-
labels. These are merged into the training set and used to retrain the model in iterative cycles. The process 
continues until a predefined performance threshold (e.g., plateau in mAP50) is achieved on the validation data. 

 
Fig 1. Active learning loop for crack and corrosion segmentation 

 
This active learning approach substantially improves labeling efficiency, reduces reliance on fully annotated 
domain data, and progressively integrates domain-relevant features through pseudo-label refinement. The use of 
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the YOLOv12 backbone ensures real-time inference capability while maintaining high segmentation accuracy, 
benefiting from recent architectural advancements such as R-ELAN, attention modules, and area-based feature 
aggregation. 

 
2. Task 2: AR-based software for human-centered bridge inspection 

Development of the AR infrastructure inspection tool has continued and progressed steadily. The transition from 
HoloLens to Magic Leap 2 platform has been going smoothly, with all features previously implemented working as 
expected on the new headset. In addition to preserving core functionality, a series of quality-of-life improvements 
have been integrated into our application to enhance the convenience of use during field inspections. Some 
progress has been made with spatial persistence, particularly in the anchorage of the Magic Leap’s spatial mesh. 
However, further development is necessary to ensure that inspection inference results remain anchored and 
stable across sessions/inspections.  
 
In terms of the second approach based on UAV and tablet devices, we have investigated the ability of an RBG-D 
camera to reconstruction the 3D environment. This ability is critical as the 3D environment allows accurate 
anchorage of holograms during the human-centered bridge inspection.   
  

Anticipated work next quarter: 

1. Task 1: CV and AI algorithms for crack and corrosion inspection  
Integrating additional publicly available data and incorporating a small portion of labeled domain-specific samples 
has enhanced the model's ability to generalize to real-world field conditions. The active learning framework 
developed in this task enables the generation of high-confidence pseudo labels, which are iteratively added to the 
training set to improve model performance through self-supervised refinement. 
 
In future stages, we will focus on automatically setting an optimal confidence threshold to select only the most 
reliable inferences such as pseudo labels. This thresholding strategy will help maximize training quality while 
minimizing the introduction of noisy labels, allowing the model to gradually improve its segmentation accuracy 
across successive learning loops. This pipeline ensures scalability, label efficiency, and improved adaptation to 
challenging visual conditions found in field inspections of cracks and corrosions. 
 

2. Task 2: AR-based software for human-centered bridge inspection 
During the current reporting period, we plan to complete our implementation of the Magic Leap’s spatial 
persistence for all inference outputs and inspection results. We will focus efforts on resolving issues with Magic 
Leap video capture while demonstrating the applications' features. Additional research will be done to support 
the development of a handheld or drone-based inspection tool in the future. Once all headset features are 
completed, particularly spatial persistence, we will begin work on a database to store inspection results. 
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Significant Results: 

 
1. Task 1: CV and AI algorithms for crack and corrosion inspection 

  
To initiate model development, we curated a training dataset comprising both publicly available and domain-
specific labeled data. For crack segmentation, 1,040 annotated images were sourced from public datasets, 
supplemented with 5 manually labeled images from the Texas bridge dataset to inject domain-specific context. 
For corrosion detection, we used 430 publicly labeled images and incorporated an additional 10 labeled images 
from the Texas dataset to improve domain adaptation. 
 
A standard 80/20 split was employed to partition the dataset into training and validation subsets to ensure 
unbiased performance evaluation. We trained and fine-tuned two separate YOLOv12 models independently for 
crack and corrosion segmentation tasks. This decoupled training approach allows the architecture to learn optimal 
features tailored to each type of damage. To further transfer structural and visual patterns specific to the Texas 
bridges, we manually labeled an additional 15 images and integrated them into the training set, enhancing the 
model's ability to generalize to real-world field conditions. The performance metric, mAP@0.5 for each damage 
type, is reported in Table 1.  
 

Table 1. Performance Index for YoloV12 

Damage Type mAp50 

Fair corrosion 0.15 

Poor corrosion 0.16 

Severe corrosion 0.05 

Crack 0.25 

 
After training, the models were deployed to perform inference on the full unlabeled Texas dataset. Sample 
segmentation results for corrosion and crack identifications are illustrated in Figures 2 and 3, respectively. Here, 
fair, poor and severe corrosions are highlighted in green, yellow, and red colors, respectively. 
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Figure 1. Inference Results for Corrosion Detection  
 

As demonstrated in the inference results, the trained model can identify both the location and severity level of 
corrosion on previously unseen data with reasonable accuracy. The multi-class segmentation (Fair, Poor, Severe) 
enables detailed damage assessment. However, the model occasionally produces false negative inferences, 
particularly for low-contrast or small-area corrosion regions. These errors can be mitigated by refining the training 
dataset through the active learning pipeline, where high-confidence pseudo-labeled outputs are manually 
reviewed, corrected if necessary, and incorporated into subsequent training iterations. This iterative process is 
expected to enhance the model’s robustness and reduce misclassification in challenging scenarios. 
 

  
Figure 2. Crack Detection inferences 

 
A similar trend was observed in the crack segmentation task, where some regions were left undetected due to 
false negative errors as shown in Fig 2. This issue arises primarily because crack pixels constitute a very small 
fraction of the total image area, making them harder to learn and detect reliably. To address this imbalance, it is 
necessary to augment the training data with additional crack examples and leverage pseudo-labeled samples 
generated from the unlabeled dataset. 
 
At the current stage, pseudo labels have been generated; however, incorporating all of them into the training 
pipeline would introduce noise and degrade model performance. Therefore, a selection strategy is needed to filter 
out low-quality predictions. Specifically, we propose selecting pseudo-labeled samples that exhibit minimal false 
positives and false negatives by setting an optimal confidence threshold and evaluating the predictions using 
Intersection over Union (IoU). By prioritizing pseudo labels with high IoU and strong confidence scores, the training 
dataset can be refined iteratively to improve model accuracy and robustness. 
 
 
 
 
 
 

  
Images Inferences 
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2. Task 2: AR-based software for human-centered bridge inspection 
 
Subtask 2.3: AR software environment for AR headset 
 
Migration from the HoloLens 2 to the Magic Leap 2 platform has been completed with all features functioning as 
intended on the new hardware. With this, we can now turn to implementing new features into our AR inspection 
tool. Several changes were made to the functionality of the user interface panel seen in Fig. 3. Functionality has 
been given to the two buttons outlined in red, and the functionality of the exit button has been altered for the 
comfort of the AR application user.  
 

  
Figure 3. User interface with updated functionality Figure 4. Confirmation of exit message 

 
As we were developing the application, we found that it was very easy to accidentally press any button on the 
user interface, including the exit button. This was not only frustrating to development, as it would interrupt our 
tests as we work on the program, but this could be catastrophic to active human centered inspection, as a user 
could easily close the program unwillingly and without realizing. This oversight could cost several hours of work 
and inspection to be lost if not saved properly beforehand. To solve this, a simple addition was made. The exit 
button no longer immediately quits the program, instead it will prompt the user, as seen in Fig. 4, and ask them if 
they are certain they want to quit and allow them the option to cancel this decision.  
  
Additionally, in Fig. 3, you can see that the ”delete cracks” and the ”toggle overlay” buttons are outlined in red. 
These are also new additions and have recently been given functionality. The “delete cracks” function was planned 
to be a tool to allow the inspector to delete projections of images/inferences of cracks that they had seen. This 
would serve useful if the inspector took a bad photo or wanted to redo inspection of a specific surface. We thought 
about how to properly implement this functionality, as a mere “delete all” button would not be very useful and 
would force users to start over on all inspections. Instead, inspectors needed to be able to delete specific 
inspections/projections so as to not have undesired deletions. 

  

  
Figure 5. Left - Projectors before this update are visible and can be distracting.  Right - Projectors when hidden. 
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 Figure 6. After pressing ”delete cracks” inspectors can now interact with projectors and are able to delete them. 
  
To implement this, we created a system that works as such and can be explained using Figs. 5 and 3. In Fig. 5, on 
the left you can see a projector and its projection as they were shown to the user/inspector before this new 
change. The projector is visible as a blue box from which the inference is projected onto a wall that the inspector 
can see. On the right, you can see that we have hidden the projector from the inspector's view by default. This 
helps declutter the inspection work and allows the user to get a better view so that the holograms do not end up 
hampering inspection. This is the default state of the program. Images can be taken, inferences can be made, and 
results are shown to the inspector, while projectors are hidden in the background. Fig. 6 illustrates what happens 
upon pressing the “delete cracks” button. Each individual projector is made visible to the inspector, and the 
inspector is then allowed to interact with the projector (the user may want to slightly alter the location of the 
projector if it has become slightly misaligned with  the crack/fatigue that it is imaging) and also given the option 
to delete it. To make sure no accidental deletions are made, the user must confirm their decision to delete the 
projector. 
  

 
Figure 7. Image overlay demonstration. Left – projector attached to user’s head showing where images will be 
taken from and where they will be projected to. Right – after image is taken and inference is made projections are 
within bounds of the overlay. 
  
As for the” toggle overlay” button, this is an option that was implemented to allow the inspectors more clarity 
over what they are imaging and inspecting. As we developed the program, we noticed that it was not easy to 
predict exactly where you were imaging simply by looking at it, and we sought to make it more obvious to the user 
what they were framing before they took an image for inference and inspection. To solve this issue, we 
implemented the ”toggle overlay” feature. To allow the user to see the dimensions and borders of the image they 
are going to take before they take it, we attach a projector to the main camera of the unity scene (which aligns 
with the headset, or inspector’s head in the real world) and project a red rectangle with the same dimensions and 
aspect ratio as the camera that will be taking images for inspection. This can be seen in Fig. 7, where on the left 
you can see the projector outlining where the projection will land once an inference is made on an image, and on 
the right, you can see how the projections align with each other's shape and size. Please note, the projector 
attached to the head of the inspector is not itself visible by default as this would impair the user’s vision. We have 
made all projectors visible for the sake of demonstration here. 
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Figure 8. Left – example crack image. Middle – example of output with background image. Right – example of 
output with only inference mask. 
 
Another alteration has been made to the inferences and their projections. Previously, when images were taken 
and inferences were made, the inspection software would return an image that contained both the background 
image of what was taken by the camera, as well as the inference of the crack overlayed as a mask on the image. 
This can be seen in the middle image of Fig. 8. This could sometimes be disorienting to the user, as they would see 
both the physical object in front of them, as well as a projection of an image of that object overlayed on top of the 
object itself. To fix this we have altered the inference/projection pipeline to instead allow us to only project the 
mask of the cracks and fatigue themselves (as seen on the right in Fig. 8), and place those directly on top of the 
physical structure so the user isn’t forced to see features and objects duplicated on top of one another. 

  
 Figure 9. Magic Leap Spectator illustration  

 https://developer-docs.magicleap.cloud/docs/guides/features/magic-leap-spectator/ml-spectator/ 
  
While developing our tool for Magic Leap 2, we ran into some issues with documentation of our application. It 
seems it is quite complicated for the magic leap to allow you to record video of the user’s view while that user is 
currently in an application that uses the headset camera. This issue is not unresolvable but is still currently being 
worked on, as we have been communicating back and forth with the development support team at Magic Leap. 
However, while looking into solutions for this issue, our team discovered a feature known as Magic leap Spectator. 
Magic Leap Spectator is a plugin for the Magic Leap headset that allows users to pair a mobile device to the headset 
and allow mobile users to view the hologram content produced by the headset as seen in Fig. 9. Our team will be 
exploring this option not only for demonstration purposes but also to allow multiple inspectors to view inspection 
inferences and results in real time using only one headset. 
 
Subtask 2.4: AR software environment for tablet device and UAV 
 
To enable 3D awareness of the bridge environment for UAV-based inspections, we  investigated an Intel D455 
RealSense Depth Camera. The RGB-D camera captures synchronized and spatially aligned color and depth 
information, providing a depth value for each pixel in the image. This capability makes it highly suitable for bridge 
structural monitoring, where both surface appearance and geometric information are critical. From the captured 
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data, surface and structural features can be extracted to support the detection of damage, deformation, or other 
anomalies. 
  
The motivation for using an RGB-D camera, such as the Intel RealSense D455, lies in its ability to simultaneously 
acquire high-resolution visual and depth data in real time. This is particularly valuable for drone-enabled, AR-based 
bridge inspections, where accurate 3D models of the structure are essential for anchoring holographic overlays. 
By generating dense and geometrically consistent 3D meshes from aerial RGB-D scans, virtual annotations or 
damage markers can be precisely aligned with real-world bridge components in augmented reality applications. 
The D455 offers several advantages for this context, including a depth range of up to 6 meters, a global shutter 
for both RGB and depth sensors to reduce motion blur during drone flight, and a field of view of 86° × 57°. 
Additionally, its depth accuracy of less than 2% at 4 meters ensures that the reconstructed 3D models maintain 
sufficient fidelity for visualization and measurement tasks. These specifications, combined with its compact form 
factor and robust hardware synchronization, make the D455 an effective choice for onboard drone inspection and 
real-time AR anchoring. 
 
An example of the raw data collected by the camera is illustrated in the top two figures in Fig. 10: the top-left 
shows the RGB image, while the top-right displays the corresponding depth map. Using the camera's intrinsic 
parameters, such as focal length and principal point, a colored 3D point cloud can be reconstructed, as shown in 
the bottom-left figure. Furthermore, a 3D textured mesh can be generated from the RGB image and depth 
information, as demonstrated in the bottom-right figure, offering a more complete and interpretable 
representation of the structure. 
  

 
Figure 10. An example of an RGB image (top left) and a depth map (top right) with constructed point 
cloud (bottom left) and 3D mesh (bottom right) in a lab room 
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Circumstance affecting project or budget.  (Please describe any challenges encountered or 
anticipated that might affect the completion of the project within the time, scope and fiscal 
constraints set forth in the agreement, along with recommended solutions to those 
problems). 

 
N/A 
 
 
 
 
 
 
 
 
 
 

 

Potential Implementation:   


