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Abstract
 
High-resolution connected vehicle (CV) trajectory and event data has recently become commercially
available. With over 500 billion vehicle position records generated each month in the United States, these
data sets provide unique opportunities to build on and expand previous advances on traffic signal perfor
mance measures and safety evaluation. This report is a synthesis of research focused on the development
of CV-based performance measures. A discussion is provided on data requirements, such as acquisition,
storage, and access. Subsequently, techniques to reference vehicle trajectories to relevant roadways and
movements are presented. This allows for performance analyses that can range from the movement- to
the system-level. A comprehensive suite of methodologies to evaluate signal performance using vehicle
trajectories is then provided. Finally, uses of CV hard-braking and hard-acceleration event data to as
sess safety and driver behavior are discussed. To evaluate scalability and test the proposed techniques,
performance measures for over 4,700 traffic signals were estimated using more than 910 million vehicle
trajectories and 14 billion GPS points in all 50 states and Washington, D.C. The contents of this report
will help the industry transition towards a hybrid blend of detector- and CV-based signal performance
estimations with rigorously defined performance measures that have been peer-reviewed by both academ
ics and industry leaders. 
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EXECUTIVE SUMMARY

Motivation

Traffic signals have significant impacts on mobility. It is

therefore important for agencies to have scalable techniques to

monitor the performance of traffic signals and prioritize their

maintenance and retiming activities.

During the last decade, substantial efforts have been focused on

the development and adoption of Automated Traffic Signal

Performance Measures (ATSPMs). These detector-based techni-

ques use high-resolution (i.e., tenth-of-a-second) controller event

logs and rely on communication equipment to collect data that

is used for report generation. The Utah Department of Trans-

portation (UDOT) has taken the lead in the development of an

open-source implementation of ATSPMs, and virtually all traffic

signal vendors now incorporate high-resolution data logging in

their controllers and offer ATSPM capability as an option in their

central systems.

ATSPMs require significant capital investments for network-

wide deployment and can be a barrier for some agencies to adopt

these techniques. Furthermore, depending on the speed limit,

volumes, movements at a facility, and the various types of

detection technology available, not all traffic use cases may be

captured at every approach because of the instrumentation and

mode of operation. Connected vehicle (CV) data can complement

infrastructure-based ATSPMs.

Connected Vehicle Trajectory-based Traffic Signal
Performances Measures

Recently, high-resolution CV trajectory data, comprised of

journey-based vehicle trajectories with reporting intervals in the

order of seconds, has become commercially available. With over

500 billion vehicle position records generated each month in the

United States, and with a spatial accuracy of 3.0 meters (,10 ft.)

for each datapoint, this data set provides unique opportunities

to build on and expand previous advances in traffic signal perfor-

mance measures. This report details the work of the multi-state

Transportation Pooled Fund (TPF) team to develop a suite of

performance measures that estimate split failures, arrivals on

green, downstream blockage, travel time, and level of service

derived from CV trajectory data.

Throughout this project, the team has produced 14 technical

papers that have discussed CV data sets, trajectory processing,

derivation of performance measures, and use cases applied

to a variety of intersections and configurations. The techniques

have been piloted at almost 5,000 signals in all 50 states and

Washington, D.C., to demonstrate and confirm scalability. This

report summarizes lessons learned and key research findings. The

manuscript is designed to complement preceding Pooled Fund

Study (TPF-5(258)) reports (1, 2), also known as ‘‘blue books’’,

and is organized in the following chapters.

N Chapter 1 provides context on the current state of traffic

signal performance assessment and lists benefits of utilizing

commercial CV data.

N Chapter 2 discusses the CV data sets’ attributes, limitations,

and management. This chapter includes a discussion of

cloud resources and how this approach can be particularly

important for the handling of data since it can quickly adapt

to various needs and process large volumes of data.

N Chapter 3 presents geographical representations of raw CV

data and a technique to linear reference vehicle trajectories

along roads. The linear referencing process is a fundamental

requirement for efficiently deriving CV-based performance

measures since it allows for the mapping of operational

conditions in relation to points of interest, such as the far

side of an intersection.

N Chapter 4 describes techniques to assign intersection move-

ments to vehicle trajectories, which is necessary for move-

ment-level performance analysis (3).

N Chapter 5 introduces a trajectory-based visualization, called

Purdue Probe Diagram (PPD), from which delay, arrivals on

green, split failures, and downstream blockage at the

movement-level can be estimated (4). This chapter also

compares arrivals on green (AOG) derived with the new

PPD and the traditional detector-based Purdue Coordi-

nation Diagram (PCD) (5).

N Chapter 6 discusses techniques to calculate trajectory-

derived arterial travel times (6, 7). Corridor-level travel time

gives valuable information for before-after studies and the

resiliency of the intersection systems.

N Chapter 7 presents visualizations to evaluate traffic signal

performance at the arterial- (8) and system-level. Since the

CV-based analysis of four performance measures at a signal

generates approximately 3,072 measures for 8 movements

over 96 15-minute intervals, a corridor of 10 intersections

generates over 30,000 performance datapoints. This chapter

describes efficient tools developed to visualize this level of

information at-a-glance.

N Chapter 8 provides before-after studies that show corridor

performance changes as a result of diversions (9) and signal

control upgrades (10). This chapter outlines frameworks that

can be used to assess the impacts of increased demand as well

as the deployment of any system improvement, ranging from

simple retiming to more extensive investments such as added

turn lanes, upgraded detection, or the implementation of

adaptive signal systems.

N Chapter 9 presents a technique to identify systemwide signal

retiming opportunities (11). The technique evaluates all

movements at each signalized intersection using CV trajec-

tory data to locate operational challenges and opportunities

to reallocate green time to reduce split failures. This

approach can help agencies focus engineering resources for

retiming activities on locations that have the greatest

potential to improve operations.

N Chapter 10 discusses CV-based methodologies to evaluate

the performance of tightly-coupled and alternative intersec-

tions (12–14). This includes three- and four-phase diamond

interchanges, diverging diamond interchanges, and contin-

uous flow intersections.

N Chapter 11 provides a framework to evaluate roundabout

performance from CV trajectory data (15). Although

roundabouts are not controlled by signals, most of the same

performance fundamentals can be applied to roundabouts.

These techniques are particularly useful for applying at

locations adjacent to signalized corridors in order to provide

consistent systemwide operational assessment at a move-

ment- and time-of-day (TOD) level.

N Chapter 12 evaluates the use of CV hard-braking (HB)

and hard-acceleration (HA) event data to assess safety (16)

and driver behavior change (17) at signalized intersection

approaches.

N Chapter 13 discusses the scalability capabilities of the

presented techniques.



N Chapter 14 provides a summary of the report.

N Appendix A shows 14 arterial-level performance report

summaries derived from approximately 4 million vehicle

trajectories and 60 million GPS points passing through

157 signals along 12 corridors in 11 states. This appendix

provides a summary of how to read these reports and is also

published as a standalone reference (8) on the Purdue Open

Access Repository along with print quality PDFs of these

poster reports. Additionally, a report published in (18)

expands on (8) by providing 58 arterial-level performance

reports of corridors located in 14 different states.

N Appendix B provides a list of relevant media files that have

been used to explain research concepts, evaluate signal

operations, and better understand traffic conditions.

Adoption, Implementation, and Dissemination

The PPD, first proposed in 2020 and published in 2021 (4), is

now following a similar adoption evolution as the PCD. INRIX

subsequently introduced a variation of their own into their Signal

Analytics product in 2022 (19). Similarly, various research efforts

have referenced and built upon the developed techniques (20–24).

As with past Purdue traffic signal performance measure work,

significant efforts have been made to disseminate findings to

agencies and industry concurrent with the research. In addition to

the technical papers, the team has shared results in several dozen

webinars, professional conference presentations, and poster

sessions. For example, the Federal Highway Administration

(FHWA) hosts monthly webinars with industry, government,

and academia participants to disseminate and discuss advances in

the traffic signal performance monitoring space. The Purdue team

has partnered with the organizers to share findings on several

occasions over the course of this research (see table).

Research Results

Several technical papers were prepared throughout the devel-
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1. INTRODUCTION

The 2019 Traffic Signal Benchmarking and State of
the Practice Report indicates that traffic signals contri-
bute up to 10 percent of all traffic delay on the National
Highway System. This represents a cost of $22.9 billion
in urban areas (25). With over 400,000 traffic signals
across the United States, it is important for agencies
to systematically evaluate signal performance with the
objective of identifying locations where operations
could be improved (26).

An approach to improve signal operations that has
proven to be effective is signal retiming. During the
signal retiming process, timing parameters, phasing
sequences, and control strategies are implemented or
modified to better serve current demand (27). Properly
managed traffic signals can reduce congestion, improve
mobility and safety, and decrease vehicle stops and
delays (28). For these reasons, it is important to deter-
mine when and where signal retiming is warranted.

Traditionally, agencies have retimed signals every
3–5 years, with motorist complaints as the main perfor-
mance measure (29). During this process, a traffic
engineer goes to the field to collect vehicle counts and
assess operations. Then, models are created to attempt
to replicate observed conditions from which timing
adjustments are tested and then implemented (26). This
methodology is reactive as traffic patterns may have
changed dramatically even before the complaint. Fur-
ther, the proposed timing changes are usually based on
observations obtained during short periods of time
which may not properly caption operational conditions.

During the last two decades, significant efforts focused
on the development of systematic techniques to evaluate
signal performance. The first in-cabinet high-resolution
traffic signal performance measures were developed in
Indiana in 2005, and subsequently in 2007 in Minnesota.
A consensus among traffic controller manufacturers on
data logging and enumerations convention was reached
in 2012 (30). In 2014, the Utah Department of Transpor-
tation (UDOT) released the first version of the Auto-
mated Traffic Signal Performance Measures (ATSPMs)
dashboard that incorporated the signal metrics into
an open-source web platform. ATSPMs have surged in
popularity as an effective data-driven proactive approach
to assess signal operations (29). Figure 1.1 provides an
approximate chronology of ATSPMs and its identifica-
tion as an implementation-ready technology in Every
Day Counts (EDC)-4 (31).

1.1 State-of-the-Practice of Traffic Signal Evaluation

ATSPMs are enriched data, visualizations, and tools
that use traffic signal controller high-resolution (tenth-
of-a-second) event data (i.e., changes in signal outputs
and detector states) to evaluate signal performance (33).
Through modern communication and data infrastruc-
ture, these performance measures continuously assess
signal operations with enough resolution to allow for a
prompt identification of challenges and needed changes

(26). During a previous Pooled Fund Study (TPF-
5(258)), a report titled Performance Measures for
Traffic Signal Systems: an Outcome-oriented Approach
was produced which presents a collection of ATSPMs
(1) and another report titled Integrating Traffic Signal
Performance Measures into Agency Business Processes
was published which discusses the uses and require-
ments to implement ATSPMs from an agency’s per-
spective (2).

By 2019, agencies within 31 states had demonstrated,
assessed, or institutionalized implementation of ATSPMs.
Even though that is significant progress, the number of
states with some level of ATSPM implementation fell
short from the original EDC-4 goal of 35 (29). One
challenge of deploying controller-based high-resolution
data collection is the significant initial capital invest-
ment and communication costs. In 2014, the 10-year
cost of implementing high-resolution data collection at
a traffic signal was estimated to be $7,320, without
considering maintenance (1).

Though developed around the same timeframe as
ATSPMs in its infancy, the use of crowdsourced data to
evaluate signal systems in recent years has significantly
increased with greater vehicle penetration. These data
sets have historically provided corridor-level travel
times reflecting the overall user experience while
traversing a system of intersections. A major benefit
of utilizing crowdsourced data is that no infrastructure
investment and maintenance is required. By 2021, 38
states had demonstrated, assessed, or institutionalized
implementation of crowdsourced data to evaluate
transportation operations, two more states than the
EDC-5 goal at the time (34).

A crowdsourced data set that has been used to
evaluate signal performance is segment-based probe
vehicle data, usually comprised of aggregated minute-
by-minute average speeds and travel times for a given
road segment (35). This data set has extensively been
used to evaluate highway mobility (36, 37) and sig-
nalized arterial progression (35, 38, 39). However,
vendor-defined segments often differ from queueing
and deceleration boundaries at signalized intersection
approaches, and 1-minute aggregations do not provide
enough temporal fidelity to discern platoons within a
cycle. Evaluations derived from segment-based probe
vehicle data usually make some compromises when
intersection-level assessments are made. This makes
pinpointing sources of operational challenges a difficult
task (35, 38).

1.2 Connected Vehicle Traffic Signal Performance
Measures

Recently, crowdsourced high-resolution connected
vehicle (CV) trajectory and event data have become
commercially available. These data sets provide posi-
tional and descriptive information on individual
vehicles as they traverse through road networks. With
over 500 billion trajectory records and over 1 billion
event records generated each month in the United

1



Figure 1.1 ATSPM technology timeline (31, 32).

2

States, unique opportunities arise to make use of these
data sets to systematically evaluate signal efficiency and
safety. Some of the benefits of utilizing CV data to
evaluate traffic signal performance are the following.

N No detection or communication equipment is required.

N Practitioners have access to entire vehicle trajectories and

are not constrained to limited detection areas or segments.

N Performance analysis at the movement-, approach-,

intersection-, arterial-, and system-levels are possible

due to the resolution and ubiquity of the data.

N Evaluation techniques are scalable to any location where

CV data is available due to the homogeneity of the data

attributes.

2. CONNECTED VEHICLE DATA

One in every 28 vehicles in the United States provides
telematics-based CV data through one of the commer-
cial data vendors (40). With 276 million registered
vehicles in the country in 2020, there are nowadays an
estimated 9.85 million connected vehicles on the roads

(41). Furthermore, this number is expected to grow
significantly as 470 million connected vehicles are
anticipated to be in operation in the United States,
Europe, and China by 2025 (42).

This chapter explains the composition of the CV
trajectory and event data sets that are used in the
different studies presented in this report, as well as data
requirements and best practices. CV data is obtained
from a third-party data vendor that works directly with
original equipment manufacturers (OEMs). Both data
sets are generated from passenger vehicles that are
factory-equipped with the required technology for
sampling and transmission. It is important to mention
that only vehicle information is available from the CV
data sets and no infrastructure attributes, such as Signal
Phase and Timing (SPaT) or MAP messages (43, 44),
are provided.

2.1 Trajectories

CV trajectory data consists of a set of waypoints for
an entire (i.e., from on to off) vehicle trajectory with a



reporting interval of 3 seconds and a spatial accuracy
of 3 meters (,10 ft.). Every waypoint contains the
following information: GPS location, timestamp, speed,
heading, and anonymous unique trajectory identifier.
The range of heading values is [0u, 360u), where 0u is the
true north and it increases clockwise.

By linking individual waypoints with the same tra-
jectory identifier and sorting them by timestamp, a
complete chronological vehicle journey can be obtained.
Therefore, a trajectory � is defined as the set of its
waypoints wi, with i 5 1, 2, …, n where i 5 1 is the first
sample collected after the vehicle is turned on and i 5 n
is the last sample collected before the vehicle is turned
off. That is:

t~ wif gn
i~1 ðEq: 2:1Þ

wi~{identifier, latitudei, longitudei, timestampi,

speedi, headingig Eq: 2:2Þð

Figure 2.1 shows the number of trajectory waypoints
generated during 1 month by state. In total, 503 billion
records were produced nationwide in December 2022.
Texas is the state with the most records (64 billion), and
Washington, D.C., is the entity with the fewest records
(0.69 billion).

2.1.1 Market Penetration

A relevant characteristic of CV trajectory data that
must be considered is its level of representativeness.
This is often measured by calculating the CV market

Figure 2.1 Vehicle trajectory records generated by the state in December 2022.
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penetration as the ratio of sampled vehicles to all
vehicles (obtained either by a roadway sensor or
manual counting). The market penetration percentage
is important because it provides a level of confidence on
whether a CV-based study sufficiently characterizes on-
the-ground conditions.

Several studies have looked at the market penetra-
tion required for assessing traffic signal performance
measures. Waddell et al. concluded that penetration
percentages smaller than 0.04% can be enough to
estimate signal performance (45). Day et al. used CV
trajectory data with penetration rates ranging from
0.09% to 0.80% to optimize signal offsets on two
different corridors. It was concluded that only 2 weeks
of trajectory data are required to obtain positive results
(46). Argote-Cabañero et al. estimated minimum CV
penetration percentages to obtain accurate performance
measures at signalized arterials under different traffic
conditions. The authors concluded that penetrations
between 5.6% and 29.89% are required for average
speed estimations, between 4.92% and 15% for average
unitary delay, and between 2.68% and 13.01% for
average number of stops (47).

A useful technique to increase the level of confidence
on whether the CV data sufficiently characterizes on-
the-ground conditions is to aggregate samples. For
example, if 10% penetration is required for a particular
study, but only 2% is available from a given data
set, then five days of CV data can be aggregated to
comply with the requirements. This practice assumes
that the CV data represents random samples and that
similar traffic conditions are exhibited over the multi-
ple days within the time periods from which data is
aggregated.

The penetration percentage of the CV trajectory data
for eleven states is calculated by comparing data from
Departments of Transportation (DOT) permanent
count stations and unique CV trajectory counts.

Permanent count stations make use of vehicle detection
technology, such as inductive loop detectors, piezo-
electric sensors, or magnetic sensors to count the
number of vehicles that traverse a specific section of
the roadway (48). Over 340 continuous count stations
are selected to be geographically distributed, represent
varied operational conditions, and provide information
on interstate and non-interstate roadways as well as
urban and rural areas (49).

The unique CV trajectory counts are obtained from
quarter-mile-long geofenced regions near the count sta-
tions that cover the entire width of the road. All way-
points found within the geofenced regions are selected
and the unique vehicle identifiers are counted (49).

Considering vehicle counts obtained from the per-
manent count stations as ground truth, the statewide
CV trajectory monthly penetration percentage Sp can
be calculated using:

Sp~

P
Vm

Cm

� �
100 ðEq: 2:3ÞP

where Vm is the monthly count of unique vehicle
trajectory identifiers within a geofence, and Cm is the
monthly count of vehicles that pass a count station
within that same geofence. The sum of both counts
across all geofences and all count stations within the
same state is performed and the percentage is calcu-
lated. Figure 2.2 shows estimated penetration percen-
tages for California, Connecticut, Georgia, Indiana,
Minnesota, North Carolina, Ohio, Pennsylvania, Texas,
Utah, and Wisconsin in August 2021 (49).

2.1.2 Limitations

Even though CV trajectory data provides unique
benefits for traffic signal performance estimation, it has
some limitations that need to be considered.

Figure 2.2 Passenger CV trajectory penetration across eleven states in August 2021 (49, 50).
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The CV trajectory data used for these series of
studies has a latency from 30 to 60 seconds, which is not
low enough to be used in real-time signal control (51).
Furthermore, the level of confidence on whether CV
data characterizes on-the-ground conditions can be
increased only when the analysis aims at evaluating
performance trends rather than operational singula-
rities. For this reason, cycle-by-cycle performance eva-
luations are still not feasible with the current data
penetration rates.

Additionally, given the large volume of data, its
storage and analysis can be challenging with tradi-
tional, on-premise, relational database management
systems (RDBMS). For example, 1 month of data for
the state of Georgia is comprised of over 14 billion
records and is over 1.8 terabytes of storage.

2.2 Events

CV event data consists of individual hard-accelera-
tion (HA) and hard-braking (HB) records that include
the vehicle’s GPS location within a spatial accuracy
of 3 meters (,10 ft.), timestamp, speed, and heading.
HA and HB events are recorded as soon as a vehicle’s
on-board accelerometer experiences an acceleration
(or deceleration) greater in magnitude than 8.76 ft/s2

(0.272 g), as defined by the data supplier. The range of
heading values is [0u, 360u), where 0u is the true north
and it increases clockwise.

Figure 2.3 shows the number of event records
generated during 1 month by state. In total, 1.09 billion
records were produced nationwide in December 2022.
California is the state with the most records

Figure 2.3 Event records generated by the state in December 2022.
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(128 million) and Wyoming has the fewest records (0.76
million). The next subsection discusses data require-
ments and techniques to manage CV data sets.

2.3 Data Requirements

There are a few approaches for managing large data
sets such as CV data. The current research has explored
leveraging cloud-based data warehouse technology.
Large amounts of CV data can be challenging not only
to store, but also difficult to access and query due to its
temporal and spatial nature. For many agencies this
can be a barrier for creating reports and dashboards
from the raw data for stakeholder consumption. Tradi-
tional RDBMS typically would require extensive
upgrades and high-performance components to ensure
that large data sets can be effectively leveraged. Cloud
providers can give organizations flexibility in terms of a
usage fee-based model that incurs charges based on the
size of the data stored and the amount of querying and
extracting performed. However, it may be difficult to
estimate expenditures accurately prior to procuring such
a system as costs vary based on different management
practices, unforeseen query complexities, and uncer-
tainty of the demand by users accessing the system.

2.3.1 Acquisition

Secure File Transfer Protocol (SFTP) and cloud
storage services have been widely accepted as two data
delivery methods for acquiring CV data. On-premise
systems with an SFTP endpoint can be made accessible
to the data vendor for sending files. For cloud
platforms, the vendor can provide access or send data
to an agency-owned web storage ‘‘bucket’’, such as
Google Cloud Storage (GCS) or Amazon Web Services
(AWS) S3. Using buckets, the vendor’s data is passed
between cloud systems and would not be transferred
through on-premise systems unless specific Virtual
Private Network (VPN) rules or data governance polices
are in place. In some cases, the execution of commands
for the initiation of transfers may be performed at an
on-premise workstation. An important distinction
between on-premise and cloud storage systems is the
speed of the network and disk bandwidth that deter-
mines the rate of data uptake. This can be a limiting
factor on some on-premise systems, but usually not for
cloud platforms. Typically, a state similar to Indiana
(average for the United States) would amass 2.5 GB of
compressed CV trajectory data in a peak hour of a
weekday.

The raw data is provided compressed in flat-file or
binary-packed format. Data files can come in various
formats, including compressed JavaScript Object Nota-
tion (JSON) or parquet (52). For conventional systems
that are hosted on-premise, using applications such as
Apache Spark (53), or developing data extraction code
on platforms such as Python or .NET C# by making
use of pre-existing extraction libraries, the data from
the files can be unpacked and prepared for processing

into a database. For cloud platforms, many data
warehouses natively support the staging of flat-file data
from a bucket directly in the database store, such as
Google’s BigQuery. Other systems may require addi-
tional data transformation steps, such as setting up
a data pipeline, to process the flat-file data into a
database store.

The data can be acquired or delivered in batches or
in real-time, depending on the needs of the agency.
Depending on the size of the data delivered, real-time
processing performance of the system must be adequate
to sustain the ingress rate of the data, especially while
running queries and backups simultaneously.

2.3.2 Storage

CV data stored in databases enables running queries,
generating dashboards, and creating reports. Tradi-
tional RDBMS platforms can be hosted either on-
premise or in the cloud, and consist of tabular stores of
rows and columns. RDBMS stores are often used to
host traffic-related data, such as high-resolution con-
troller logs (2), because of its structured nature.

The challenge of using RDBMS for large CV data
sets is that scaling capacity and performance as the data
set grows becomes more difficult over time. Increasing
the number of disks or adding servers to accommodate
a quickly growing database may be viable options but
are time-intensive and cost-prohibitive in many cases.
RDBMS that are not hosted as a service, such as on-
premises systems, may quickly run into a situation
where a server chassis has been outgrown (i.e., no more
slots available for additional disk drives). Additionally,
a performant system requires fast disks for random
access, such as multiple solid-state drives (SSD), to
improve query speed. Other considerations include
having a redundant array of independent disks
(RAID) to combine multiple disk drives into a single
volume to protect against failures and increase perfor-
mance; having one or more high-speed hard-drive
controller cards to ensure the data streams reach the
memory and processor quickly; having fast and
abundant random-access memory (RAM); and having
enough processing power.

A cloud data warehouse is an alternative database
system where data storage and queries are provided as a
service. The data is not stored at an agency’s data
center but at a remote location such as a server farm
or cluster. For redundancy and depending on the
availability of options for storage regions or zones, the
data may be replicated across different geographic
areas around the world to protect against single-point
failures.

Cloud data warehouse products are provided by
many vendors and have different architectures, though
the common purpose of these products is to produce
aggregated data metrics from a large volume of under-
lying disaggregated data, such as developing traffic
signal performance metrics from uncategorized CV
trajectory data. Typically, systems that use structured
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data schemas work well with CV data as the underlying
data attributes are strictly typed with expected ranges,
and do not often change. Many cloud data warehouse
platforms also conform to the familiar SQL standard
that has been common in traditional RDBMS to access
and manage the data, which allow users to quickly
immerse in the platform and minimize workforce train-
ing. A few examples of cloud data warehouses include
DataBricks, Azure Synapse Analytics, Amazon Redshift,
Google BigQuery, and Snowflake.

2.3.3 Data Access

There are numerous ways that an agency and stake-
holders can be provided access to the data, whether for
ad hoc querying, report generation, application ser-
vices, backups, or auditing purposes. Depending on the
platform, the data can be made accessible using a
specific set of authentication schemes. For on-premise
databases, a centralized directory of access-enabled
users, groups, or roles can be applied to most database
authenticators. In some cases, typically for testing
environments, manually-generated usernames and pass-
words are used. As all agencies are behind private
networks, access from outside of the network would
require VPN connectivity.

For cloud data warehouses, identity, and access
management (IAM) can be delegated using dedicated
principals (i.e., user accounts, service accounts, groups,
or domains). Each principal may be assigned one or
more roles that allow a specific type of access to a
resource, or to groups where a predefined set of roles
may apply. User accounts permit access for end users,
while service accounts enable access via automated
means, such as for dashboard applications, data pro-
cesses, or automated report generators. Service account
requests are verified and granted by a dedicated security
key in JSON format or hash message authentication
code (HMAC). Extreme precaution must be taken in
the generation, dissemination, and storage of these keys
since they are tied to the underlying principle, which
has enabled permissions to use resources that would
incur costs.

2.3.4 Best Practices

For the efficient analysis of large data sets, steps to
optimize the structure of the data should be considered
to ensure the platform is performant and to reduce

costs. For instance, read and write operations in real-
time while running backups on the same data set would
often stress a database if there were a large volume of
transactions occurring in parallel. In the data pipeline,
additional sets of procedures to aggregate the raw data
into key performance metrics may be helpful to reduce
the size of the resulting data set. This could also be
leveraged by user-facing dashboards that report more
efficiently than having applications process the raw
data for each query. Figure 2.4 shows an example of
how data can be brought into a cloud data warehouse,
enriched, and aggregated for web applications.

Compared with traditional on-premise architectures
where the server hardware and software are purchased
up-front and additional costs are incurred for the
maintenance and operation of the systems, cloud-based
platforms typically charge per use, or with a pre-
negotiated cost for committed use of selected amount of
resources. A key design element for ensuring the data
warehouse performs as efficiently and as cost-effectively
as possible is the partitioning of data.

As an example, Figure 2.5 shows 192 trajectories
stored over a 24-hour period, partitioned in 1-hour
blocks. Since charges are incurred by the amount of
data analyzed in a query, if a report requests metrics to
be generated for a 3-hour period, design the query to
only target the interested hours to maximize efficiency
and minimize cost. Similar methods to cluster and index
the data can be applied to the spatial domain, where
only a subset of the data is analyzed over a geographic
boundary, such as on a route or town, to further reduce
costs. While the cost structure is different, these
methods can also be applied to traditional RDBMS
to improve operational efficiency of queries.

2.3.5 Cost

Traditional server procurement involves specifying
how much storage is required, type of storage,
processing power, memory, database software licen-
sing, and backups. Recent advancements allow storage
and database management to be done in the cloud.
While there are no upfront costs associated with this
approach, the pricing depends on how much data is
stored, how long it is stored for, and what analytics are
performed against the data set.

There are several major cloud data providers
available for an agency to choose from. A representa-
tive cloud cost for the Indiana CV data is $20 per

Figure 2.4 Data architecture of an on-demand smart mobility platform.
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Figure 2.5 Query design and efficient partitioning of CV data in a data warehouse.

8

month per terabyte to store the data and $5 to analyze
each terabyte. To put it in perspective, running an
analysis on a corridor with 100 million waypoints, or
about 10 gigabytes, would cost five cents (54). Depen-
ding on the use case and data retention policy, agencies
now have several options between cloud platforms and
infrastructure maintained on-premise. In many cases,
the data architecture and retention policies will have the
most significant impact on cloud computing costs.

3. DATA EXPLORATION

In this chapter, examples of raw CV trajectory and
event data at signalized intersections and corridors are
given. Additionally, a technique to perform necessary
linear referencing of trajectory waypoints in relation to
a point of interest is presented.

The CV trajectory and event data sets are indepen-
dent from each other, and a HA or HB event cannot
be directly linked to a particular vehicle trajectory. If
necessary, this could be estimated by matching loca-
tions, timestamps, and headings. However, this
approach assumes that the same vehicle that provides
event data also provides its trajectory information.
If this is not the case, results would be erroneous.
Regardless of this limitation, each data set can provide
valuable information separately.

3.1 Trajectories

Figure 3.1 shows 6,278 trajectory waypoints sampled
during one day near a signalized intersection. Since
trajectory waypoints are available every 3 seconds if a
connected vehicle is online, there is data available far
upstream from the intersection (callout i), at the stop

bar (callout ii), within the intersection (callout iii), and
at the exiting approach (iv). With such a wide coverage,
CV trajectory data provides flexibility to develop
different types of traffic signal studies and performance
metrics.

Figure 3.1b and Figure 3.1c show vehicle speeds and
headings, respectively, of each trajectory waypoint
record. As expected for this uncongested intersection,
speeds are faster farther away from the intersection
(callout v) as vehicles approach, and slower near the
intersection (callout vi) as some vehicles must stop or
turn. It can also be observed that vehicles approach the
intersection northbound (NB) with headings near 0u
(callout vii), eastbound (EB) with headings around 90u
(callout viii), southbound (SB) with headings neighbor-
ing 180u (callout ix), and westbound (WB) with
headings near 270u (callout x).

Even though showing the geospatial location of
trajectory waypoints by its attributes may provide some
insights into the operational conditions at an intersec-
tion (Figure 3.1), it is difficult to estimate signal
performance from raw data. By stitching individual
vehicle trajectories by their unique identifiers, and by
linear referencing their waypoint locations to a point of
reference, it is possible to meticulously evaluate vehicle
experience while traversing an area of interest.

3.1.1 Linear Referencing

Linear referencing is the process by which the
linearized location of CV waypoints along a route is
calculated. This allows to situate and report perfor-
mance within the route of interest as well as the
estimation of operational conditions. Before accom-
plishing the linear referencing of vehicle trajectory
waypoints, the following steps need to be observed.



Figure 3.1 Trajectory waypoints around a signalized intersection (n: 6,278) (map data: Indiana Geographic Information
Council).
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1. Identify a route of interest. This can be any road segment

for which a direction of travel is defined. The end of the
route of interest is the reference r, which is the reference
point from which road distances are measured.

2. Obtain the waypoints found within the route of interest.

3. Obtain individual vehicle trajectory segments by group-
ing all waypoints by their trajectory identifier.

4. Chronologically sort all waypoints for each trajectory
grouping.

Once individual vehicle trajectories that traversed the
route of interest are acquired, grouped, and sorted, the
linear referencing of their waypoints can be estimated.

Given the set of waypoints w1, …, wn from trajectory
t that lie within the route of interest, where w1 is the last
sampled waypoint within the route, therefore closest to
r, and wn is the first sampled waypoint, hence farthest
from r, the linear distance c of the i-th waypoint is given
by:

ct(i)~dg(r,w1)z
Xi{1

k~1

dg(wk,w(kz1)) ðEq: 3:1Þ

where dg is the geodesic distance (55) between two
points and can be calculated with popular open-source
geospatial analysis computation packages, such as

Python’s geopy (56) or R’s sf (57). The units of c are
the same as the units for dg.

Figure 3.2 is a graphical representation of Equation
3.1. Figure 3.2a shows the route of interest where linear
referencing is required. The beginning of the route is
upstream of the SB approach of a signalized intersec-
tion and the end of the route is located at the far side
(FS) of the intersection, designated by r. Within this
route, five waypoints of the same trajectory are obtained,
where w5 is sampled first and w1 last. Therefore, using
Equation 3.1, the linear distance of w1 within the route
is dg(r, w1), for w2 is dg (r, w1) + dg (w1, w2), and so on.
Figure 3.2b shows a time-space diagram of the linear
referenced progression of the vehicle trajectory segment
shown in Figure 3.2a.

The presented linear referencing technique, in which
a particular linear waypoint location is based on the
cumulative distance to a reference point, provides the
ability to estimate a number of metrics when working
on studies at the intersection- and corridor-level. How-
ever, for studies where the route of interest is several
miles long, for example, when analyzing mobility at the
interstate-level, the linear distance error accumulated
from a much greater number of samples may add up to
a significant quantity. In these scenarios, an alternative

Figure 3.2 Trajectory waypoints linear referencing.
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approach could be to create closely spaced geospatial
refences along the route of interest for which each linear
distance along the route is known. Then, to linear
reference a trajectory waypoint, the closest geospatial
reference is found, and its linear distance assigned to
the waypoint.

Once vehicle trajectories are linear referenced, their
progression along routes of interest can be assessed.

3.1.2 Trajectories Along Intersections

Figure 3.3a displays 301 waypoints that belong to
ten different vehicles that traveled SB-through at a
signalized intersection. Figure 3.3b shows a time-space
diagram of the ten linear referenced trajectories where
the route of interest begins upstream and ends down-
stream of the intersection. One can distinguish how

Figure 3.3 Vehicle trajectories along intersections (map data: Indiana Geographic Information Council).
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these vehicle trajectories start approaching the intersec-
tion over 500 ft. upstream from the stop bar (callout i).
Then, before crossing the intersection, some of these
trajectories become completely horizontal. This means
that they have come to a full stop since the distance does
not change as time advances (which can be verified by
reviewing the speed). For example, callout ii points to a
vehicle trajectory segment that stopped just before the
stop bar. Additionally, callouts iii and iv point to vehicle
trajectory segments that stopped behind queues 200 and
500 ft. upstream from the stop bar, respectively. Finally,
vehicles are discharged, and their trajectories track
downstream from the intersection (callout v).

Depending on the type of intersection analyzed,
vehicle behavior may vary significantly. For example,
Figure 3.3c shows 25 waypoints from a vehicle that
traveled NB-through at a roundabout. In a round-
about, vehicles entering the intersection may modulate
their speed to avoid conflicts and coming to a full
stop. Figure 3.3d shows a time-space diagram of the

linear referenced trajectory from Figure 3.3c where
the route of interest begins upstream and ends down-
stream of the roundabout. In this case, the vehicle slows
down, denoted by a shift in the slope of the trajec-
tory (Figure 3.3d, callout vi), but does not come to a
full stop.

A more thorough assessment of vehicle experience
while traversing intersections, from which signal perfor-
mance measures are estimated, is presented in Chapter 5.

3.1.3 Trajectories Along Corridors

Vehicle progression can be evaluated by expanding
the above analysis across several intersections. Figure
3.4a displays 663 waypoints that belong to eight
different vehicles that traversed SB-through for the
entirety of the route of interest which encompasses four
signalized intersections marked A to D. Figure 3.4b
shows a time-space diagram of the eight linear
referenced trajectories where the route of interest begins

Figure 3.4 Vehicle trajectories along a corridor.
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upstream of intersection A and ends downstream of the
intersection D.

From Figure 3.4b, the number of vehicles that stop
before passing a particular intersection can be deter-
mined. For example, all eight vehicles passed through
intersection B without stopping. However, different
operational conditions are shown for intersection C.
Before crossing through this location, a few vehicles did
not stop (such as callout i), a few vehicles stopped once
(such as callout ii), and a vehicle stopped twice (vehicle
pointed by callout iii stops first at callout iv and then at
callout v).

Figure 3.4b provides a framework from which cor-
ridor performance can be estimated. Additional assess-
ments of vehicle experience while traversing arterials
are presented throughout the report.

3.2 Events

Figure 3.5 shows 102 recorded CV events that
occurred during one day near a signalized intersection.

HA and HB events are differentiated on Figure 3.5a.
It becomes apparent how HB events mostly occur
upstream from the intersection (callout i) as vehicles
may decelerate quickly during their approach for the
left turn movement or upon entering the dilemma
zone (58, 59). On the other hand, HA events mainly
occur near the stop bar or inside the intersection
(callout ii) as vehicles may try to promptly proceed after
an onset of yellow or rapidly accelerate after the onset
of green.

Figure 3.5b and Figure 3.5c show vehicle speeds and
headings, respectively, at the moment when samples
were collected. From a qualitative evaluation, it can be
determined that both types of events can occur at
different speeds. It can also be identified that vehicles
approach the intersection NB with headings near 0u and
360u (callout iii), EB with headings around 90u (callout
iv), SB with headings neighboring 180u (callout v), and
WB with headings near 270u (callout vi).

The use of CV events to evaluate safety and driver
behavior is discussed in Chapter 12.

13



Figure 3.5 CV events around a signalized intersection (n: 102) (map data: Indiana Geographic Information Council).
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4. MOVEMENT IDENTIFICATION

A movement describes the course undertaken by a
vehicle at an intersection (60). It usually entails the
combination of approaching directions (e.g., NB, EB,
SB, and WB) and turn types (e.g., through, left, and
right). For example, a vehicle approaching an intersec-
tion NB and continuing through is described as a NB-
through movement, a vehicle approaching EB and
turning right is described as an EB-right movement,
and a vehicle approaching WB and turning left is
described as a WB-left movement.

Practitioners need the ability to evaluate the perfor-
mance of their managed intersections at the movement-
level because traffic signal phases serve one or more
movements at the same time (60). Therefore, by analy-
zing the performance of specific movements, practi-
tioners can identify the signal phase that may have
operational challenges. Once a poor-performing move-
ment is pinpointed, the signal phase parameters and its
associated detection hardware can be evaluated to deter-
mine a possible remedy (e.g., maintenance, split reba-
lance, offset modification, or changes in cycle length).

Figure 4.1 shows all trajectory waypoints sampled
over a day at a typical four-legged, bidirectional, signa-
lized intersection and the 12 different movements a
vehicle can take when proceeding, except U-turns.
Conventional traffic signal phase and overlap identifiers
are used to differentiate the movements, where through
movements are even numbers, left movements are odd
numbers, and right movements are assigned a letter.

The objective of the movement identification is to
assign one of the 12 movement identifiers to trajectories
that proceed through an intersection of interest. This
chapter provides two different techniques to accomplish
this task—one using geofences and the other using CV
data itself.

4.1 Geofencing

Geofencing is a technique that uses virtual boundaries,
called geofences, over geographical areas of interest to
monitor mobile objects equipped with GPS devices (61).
Geofences can be used to assign movements to vehicle
trajectories that traverse an intersection.

First, geofences that encompass the route that
specific movements would follow need to be manually
defined. Figure 4.2a and Figure 4.2b show sets of
geofences to capture NB-through and NB-left move-
ments at a signalized intersection, respectively. Each
movement requires the following three different geo-
fences.

1. A geofence upstream of the intersection (callout i) to

retrieve waypoints that approach the intersection on the

lanes used by the movement of interest.

2. A geofence downstream of the intersection (callout ii) to

retrieve waypoints that leave the intersection on the lanes

used by the movement of interest.

3. A geofence to link upstream and downstream geofences

(callout iii) to retrieve waypoints passing the intersection

following the movement of interest.

Vehicle trajectories that lie within the geofences for
the movement of interest, which waypoints are found
both in the upstream (callout i) and downstream
(callout ii) sections, are retrieved and assigned the
movement. Figure 4.2c and Figure 4.2d show the selec-
ted trajectory waypoints from the geofences created to
identify NB-through and NB-left traversing vehicles,
respectively.

Another important application for the created
geofences is to use them as route of interest to perform
linear referencing. With this approach, the geofences
can provide a framework to evaluate traffic signal
performance.

Figure 4.1 Turning movements at a signalized intersection (map data: Indiana Geographic Information Council).
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Figure 4.2 Waypoint selection with geofences (map data: Indiana Geographic Information Council).
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However, the 12 movements of a conventional four-
legged, bidirectional, intersection would require 36
different geofences. Manually defining these geofences
is cumbersome and labor-intensive. For example, if 100
intersections are to be evaluated, the geofencing
required to produce such a study could take up to 13
entire working days. Therefore, it is important to
develop movement identification techniques that scale
without significant manual input.

4.2 Data-Driven Movement Detection

A scalable approach of associating vehicle trajec-
tories with intersection movements uses the heading
information from the vehicle waypoints (3). The method
consists of classifying trajectory movements based on
the entry and exit vehicle headings at the intersection.
This technique relies on the notion that vehicles follow-
ing the same movement would also have similar



headings when entering and exiting the intersection.
This process broadly consists of the following three
steps.

1. Obtain waypoints located in the vicinity of the intersec-
tion.

2. Acquire entry and exit headings of waypoints.

3. Evaluate entry and exit heading clusters to identify
movements.

A detailed explanation of these steps is provided
below.

4.2.1 Trajectory Waypoint Selection

The first step in the data-driven movement identifi-
cation process is to obtain CV waypoints located near
the intersection. These waypoints will eventually be
used to estimate signal performance, and a subset of
those will be used to acquire entry and exit heading
boundaries.

Relevant trajectory waypoints of vehicles passing an
intersection are obtained by selecting the waypoints that
lie within a buffered intersection center that can be
manually defined. Figure 4.3a shows all the vehicle
waypoints located within 1,250 ft. from the defined
center at a signalized intersection. As the retrieval radius
increases, the number of trajectory waypoints that can
be evaluated also increases. This is relevant when, for
example, it is desired to assess how far away from an
intersection vehicles stop. If the retrieval radius is too
short, then stops may be missed. Nevertheless, the
longer the retrieval radius, the more noise is included in
the data set. For example, callouts i highlight waypoints
outside the approaches that were also retrieved but are
not directly affected by the traffic signal.

To limit the amount of noise included in the way-
point data set, a subset of the initially retrieved data
near the intersection is used. Figure 4.3b shows a subset
area (callout ii) used to identify entry and exit headings.
The inner radius (175 ft. long) filters out waypoints that
are passing the center of the intersection and the outer
radius (350 ft. long) provides enough coverage to
capture entry and exit headings as vehicles approach
and depart the intersection. Even though the subset
area provides a good compromise between noise and
coverage, further processing is required to determine
the entry and exit waypoints of vehicle trajectories that
actively pass the intersection.

4.2.2 Entry and Exit Waypoint Identification

The second step in the data-driven movement
identification process is to obtain the entry and exit
headings of vehicle trajectories that pass the intersec-
tion.

From the previous step, a subset of waypoints near
the intersection is made available (Figure 4.3b). How-
ever, this data set still contains waypoints of vehicles
that are not actively approaching or leaving the inter-
section (Figure 4.3b, callout iii). These waypoints would
generate miscalculations when estimating entry and exit
headings. For this reason, further filtering is needed.

Based on the assumption that vehicles’ headings
entering an intersection point towards the center and
headings exiting point away, vehicles that actively
proceed through the intersection can be determined.
From the waypoint subset acquired in Figure 4.3b, only
the first (entry) and last (exit) samples of each unique
trajectory are analyzed. An entry waypoint is deemed
correct if its heading value is within ¡20u from the

Figure 4.3 Waypoint retrieval radiuses (map data: Google).
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direction of a vector that goes from the waypoint to the
center of the intersection. An exit waypoint is deemed
correct if its heading value is within ¡20u from the
direction of a vector that goes from the center of the
intersection to the waypoint. If either the entry or exit
waypoint heading is incorrect, the trajectory is rejected.

Figure 4.4a shows an example of a trajectory’s entry
and exit waypoints deemed correct. The entry waypoint
has a heading of 90u (callout i). Similarly, a vector that
goes from the entry waypoint to the center of the
intersection also has a 90u direction (callout ii). Since
these two values are within ¡20u (callout iii), the entry
waypoint is accepted. Meanwhile, the exit waypoint has
a heading of 0u (callout iv) and a vector that goes from
the center of the intersection to the exit waypoint has
a 5u direction (callout v). Since these two values are
within ¡20u, the exit waypoint is also accepted.
Because both the entry and exit headings are accepted,
the waypoints are kept.

In comparison, Figure 4.4b shows an example of a
trajectory’s entry and exit waypoints that are deemed
incorrect. The entry waypoint has a heading of 180u
(callout vi) and a vector that goes from the entry
waypoint to the center has a 145u direction (callout vii).
Because these values are not within ¡20u, the entry
waypoint is rejected. Similarly, the exit waypoint is also
rejected since it has a 180u heading (callout viii) and the
vector that goes from the center to the exit waypoint is
135u (callout ix). Because at least one waypoint is
rejected, both points are eliminated.

Figure 4.5 shows the filtering impact on entry and
exit waypoint selection. Almost 16,000 waypoints are
initially acquired from the entry and exit collection
boundaries (Figure 4.5a). This data set includes a
significant number of datapoints that belong to vehicles

that are not actively passing through the intersection
(callout i). Figure 4.5b shows the results of the filtering
technique explained previously. The trajectory way-
points that are not approaching or leaving the inter-
section are eliminated (callout ii) and only under 5,000
waypoints are deemed as entry or exit datapoints. This
reduced waypoint data set can be further evaluated to
determine intersection movement heading boundaries.

4.2.3 Movement Identification from Heading Clusters

Once entry and exit waypoints are identified, the next
step to determine the heading boundaries is to group
entry and exit heading clusters.

Figure 4.6a shows a scatterplot where each datapoint
represents the entry and exit heading values, from the
waypoints selected in Figure 4.5b, that belong to indi-
vidual vehicle trajectories. Various clusters are formed
for which vehicles’ approaching directions (e.g., NB,
EB, SB, and WB) can be determined by evaluating
entry headings. Additionally, cluster turn types (e.g.,
left through right) can be identified by comparing entry
and exit headings. When combining the estimated
approach directions and turn types, intersection move-
ments can be assigned to each cluster.

Figure 4.6a also indicates which movement identi-
fiers, shown in Figure 4.1, belong to the different
heading clusters. For example, movement B (EB-right)
belongs to the heading cluster with entries around 90u
and exits near 180u.

To automate the intersection movement identifica-
tion process, the number of clusters and their centroids
need to be estimated. Then, entry and exit move
ment heading boundaries can be calculated. However,
before this can be accomplished, the results obtained in

Figure 4.4 Heading-based filtering to identify actively passing vehicles (map data: Google).
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Figure 4.5 Heading-based filtering results (map data: Google).

Figure 4.6 Entry and exit heading clusters.
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Figure 4.6a need to be normalized by eliminating
clusters of vehicles making U-turns (callouts i) since
the performance of those movements is usually not
evaluated. Additionally, trajectory clusters that have a
certain movement and appear more than once (e.g.,
movement identifier 2 appears four times), due to the
heading values wrapping around after crossing 360u,
are consolidated with the cluster with the most trajec-
tory points. The result of normalizing Figure 4.6a is
shown in Figure 4.6b.

After the heading clusters are normalized, the
k-means clustering method (62) is used to detect the

number of clusters and their centroids. In k-means, for
any set C of k clusters, and any set of centroids m1, …,
mk, the error sum of squares is defined as:

where nj is the number of observations in the j-th cluster
and xij is the i-th observation in the j-th cluster. The
objective of k-means is to find the set C and set of
centroids that would minimize ESS. To accomplish
this, the following steps are taken.



1. Provide an initial set of k centroids.

2. Create k clusters by grouping the datapoints nearest to
each centroid.

3. Calculate the centroids for each cluster.

4. Re-assign datapoints to the closest calculated centroid.

5. Repeat steps 3 and 4 until no datapoints are reassigned.

To select a proper value of k clusters (or k
movements), the k-means algorithm is run for k values
from 1 to 12 to account for all the possible movements
at intersections with different number of legs up to a
four-legged bidirectional intersection. The k value that
has the highest reduction in ESS is selected for further
analysis. Then, the average Euclidean distance dj

between the nj observations and the mj centroid for all
the k clusters in C are calculated as:

dj~
1

nj

Xnj

i~1

xij{mj

� �
ðEq: 4:2Þ� �

If an average distance dj is greater than 10u (thresh-
old selected by testing the method for various loca-
tions), k is increased by one and the k-means algorithm
is run again. This is done to avoid clustering more than
one intersection movement together.

For the normalized scatterplot shown in Figure 4.6b,
a k value of 12 is estimated. This means that the ana-
lyzed intersection has 12 different movements. The
calculated cluster centroids are also shown with red
crosses.

Then, entry and exit heading boundary limits can be
mapped to the different movements identified by assess-
ing the range of each cluster. Table 4.1 shows the
estimated heading boundaries for the 12 movements
identified at the evaluated intersection.

At this point, entire vehicle trajectories can be
assigned a particular movement by analyzing their
entry and exit headings in relation to the intersection.
However, movement assignments could include vehicles
that trip-chained between the first time they entered
and the last time they exited. To filter out these trajec-
tories, the distance traveled by all vehicles assigned with

a particular movement within the retrieval radius can be
evaluated. Once the distance traveled distribution is
available, outliers that likely performed trip chaining
can be identified and filtered (3).

Other useful results for practitioners that can be
obtained after assigning movements to sampled trajec-
tories are turning counts. Table 4.2 shows turning
counts from a month of data at the analyzed inter-
section. The heaviest volumes are the mainline through
movements with Identifiers 2 and 6, each with 30% of
the sampled trajectories. The side-street through move-
ments 4 and 8 follow with 9% and 8% respectively.
Even though the trajectory counts are just a sample of
vehicles that pass through the location, the distribution
of movements can provide insight on which approaches
have the highest demands.

4.2.4 Comparison with Geofencing

To assess the performance of the data-driven move-
ment identification method, CV trajectories that passed
through eight signalized intersections, located in a south
segment of SR-37 in Indianapolis, Indiana, during the
month of July 2020 are analyzed. The presented tech-
nique is used to assign intersection movements and the
results are compared to those obtained from geofencing,
which is used as baseline.

Table 4.3 shows the number of trajectories identified
with a particular movement by retrieval radius and by
method used. The percentage of trajectories identified
with a specific movement by the data-driven method
that match the selection by the geofencing technique is
shown. The matching ratio is calculated by dividing the
number of trajectories identified with a particular
movement with the data-driven method that are also
identified with the same movement by the geofencing
technique, by the total number of trajectories identified
with the same movement by the data-driven method.
The geofencing method typically captures more trajec-
tories because it employs no filters to assure the
accuracy of the traversal.

TABLE 4.1
Calculated entry and exit heading limits by movement

Mov ID Dir T-Type

Entry Lower

Limit (deg)

Entry Upper

Limit (deg)

Exit Lower

Limit (deg)

Exit Upper

Limit (deg)

2

4

6

8

5

7

1

3

A

B

C

D

NB

EB

SB

WB

NB

EB

SB

WB

NB

EB

SB

WB

T

T

T

T

L

L

L

L

R

R

R

R

0

87

177

263

357

84

177

261

0

89

179

265

3

98

190

271

359

99

181

269

4

95

183

270

0

85

176

265

265

355

85

177

84

177

265

0

2

93

184

278

271

359

91

185

89

182

272

10

Note: Mov 5 movement, Dir 5 direction, T-type 5 turn-type, T 5 through, L 5 left, and R5 right.
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Even though a higher matching percentage does not
necessarily mean better results, since the data-driven
technique can potentially identify more trajectories
than with geofences, high values still reassure the

accuracy of the methodology. Matching trajectories
range between 88% and 98%. Further, the longer the
trajectory retrieval radius is (Figure 4.3a), the more
trajectories that are evaluated and assigned a move-
ment. However, as this radius increases, more trajec-
tories can be filtered based on their distance traveled, as
it is more likely that vehicles will take different paths or
perform trip chaining.

The data-driven movement identification technique
can enhance scalability of any analysis that uses CV
trajectory data that must be referenced by intersection
movements. This is because the only manual labor
required is the identification of the intersection’s center
and retrieval radius, which usually only takes under
5 minutes. For example, if 100 intersections are to be
evaluated, under 9 hours of manual labor would be
needed.

The automated classification of movements is critical
for systematically analyzing traffic signal performance
of thousands of signalized intersections necessary to
efficiently manage surface street networks.

TABLE 4.2
Sampled trajectories turning counts

Mov ID Trajectory Count Percentage of All Movements

2

4

6

8

5

7

1

3

A

B

C

D

23,616

7,063

23,741

6,498

2,526

2,857

2,130

1,672

1,428

2,391

2,647

2,259

30

9

30

8

3

4

3

2

2

3

3

3

Note: Mov 5 movement.

TABLE 4.3
Trajectories identified with a specific movement by method

Retrieval Radius (ft.) Movement

Number of Trajectories by Method

Match (%)Geofencing Data-Driven (Heading Cluster)

250 Through 424,485 84,950 91

750 Through 424,485 446,110 88

1,250 Through 424,485 418,137 88

250 Left 46,488 16,652 92

750 Left 46,488 31,067 93

1,250 Left 46,488 28,613 93

250 Right 50,450 15,037 88

750 Right 50,450 31,067 98

1,250 Right 50,450 27,767 98
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5. SIGNAL PERFORMANCE MEASURES:
PURDUE PROBE DIAGRAM

Once CV trajectories are linear referenced and
assigned an intersection movement, movement-level
signal performance can be calculated. This chapter
discusses the use of a developed trajectory-based visua-
lization tool, called Purdue Probe Diagram (PPD),
to estimate the following traffic signal performance
measures (4):

N traditional Highway Capacity Manual (HCM) level of
service (LOS),

N number of vehicles experiencing arrivals on green
(AOG), sometimes also presented as the percentage on
green (POG),

N percentage of vehicles experiencing split failures (SF),
and

N percentage of vehicles experiencing downstream blockage
(DSB).

Additionally, a comparison between AOG calculations
from detector-based techniques and the PPD is pre-
sented. Finally, a temporal performance evaluation of a
movement at a signalized intersection is conducted to
identify time-of-day (TOD) periods where challenges exist.

5.1 Delay Performance Measures

The two most popular delay definitions used to
evaluate intersections are stopped and control delay
(Figure 5.1) (1, 63). Stopped delay (ds) is defined as the
amount of time that a vehicle has a speed of zero while
approaching an intersection and is given by:

ds~t3{t2 ðEq: 5:1Þ

where t2 is the time when the vehicle speed initially
became zero and t3 is the time when the speed became
non-zero after stopping. Control delay (dc) includes the
delay caused by deceleration, stopped delay, and the
delay caused by acceleration. It can be calculated as:

dc~(t4{t1){
L1{L4

sf

ðEq: 5:2Þ

where t1 is the time when the vehicle started decelerat-
ing, t4 is the time when the vehicle stopped accelerating,
L1 is the distance where deceleration started, L4 is the
distance where acceleration ended, and sf is the speed of
a free-flow trajectory (FFT) (i.e., trajectory of a vehicle
traveling at the posted speed limit without stopping).
Control delay is particularly important as the HCM
bases its LOS estimations on this value.

5.1.1 Control Delay Level of Service

LOS is a qualitative description of the operating
conditions at an intersection. It is based on the control
delay experienced by vehicles (64). Table 5.1 shows the
different LOS ratings with their respective range of
control delay.

By utilizing Equation 5.2 and the criteria presented in
Table 5.1, individual trajectories can be assigned a LOS
rating. Figure 5.2a depicts a LOS PPD. A PPD is a
time-space diagram where the vertical axis is the
distance to the intersection’s FS (callout i) and the
horizontal axis is the time in seconds relative to when a
vehicle crosses the same FS. Therefore, the PPD pivots
on the time and space where vehicles exit the inter-
section. Additionally, an FFT is included for reference

Figure 5.1 Delay definitions (63).
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TABLE 5.1
HCM level of service criteria for signalized intersections (64)

Level of Service Average Control Delay (s/veh) Description

A

B

C

D

E

F

#10

.10–20

.20–35

.35–55

.55–80

.80

Free flow

Stable flow (slight delay)

Stable flow (acceptable delays)

Approaching unstable flow (tolerable delay)

Unstable flow (intolerable delay)

Forced flow (congested and queues fail to clear)

Figure 5.2 LOS in a Purdue Probe Diagram.
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(callout ii). Callouts iii–viii are a series of CV trajec-
tories of vehicles following the same movement color-
coded by their different LOS classifications. The farther
to the left a trajectory approaches the FS from the FFT,
the greater its delay is.

Further, callout ix points to a segregation line that
helps to visually separate trajectories by their LOS (in
this case, the boundary between LOS E and F). It is
important to note that the objective of the segregation
lines is merely to help set visual boundaries since they
are only based on the deceleration and ds components of
control delay, neglecting some of the acceleration delay.

Figure 5.2a is a subset of Figure 5.2b, which shows
all 137 trajectories of vehicles following the same
movement during the same TOD over 5 weekdays.
Additionally, Figure 5.2b shows a pie chart of what
percentage of the trajectories are categorized with the
different LOS ratings. Only 7% of the trajectories
sampled during the analysis period are classified as
LOS A, while a considerable number of trajectories are
LOS E or F (24% and 26%, respectively). It is worth
stating that because of the 3-second frequency of the
waypoints, some individual vehicle trajectories may be
misclassified by one LOS (e.g., C instead or B, or vice-
versa). Nevertheless, the distribution of this error is
uniform; therefore, on average, no statistical bias is
introduced.

Table 5.2 shows the estimated stopped and control
delay values for the trajectories called out in Figure
5.2a. The distinction between these two delay defini-
tions is clear when trajectories do not stop while
approaching the intersection but slow down due to a
discharging queue or to modulate their speed approach-
ing at the end of red (callouts iii and iv). It is evident
that control delay is always greater than stopped delay.

5.2 Operational Performance Measures

Apart from experiencing minimum delay, motorists’
general expectations while traversing traffic signals are
the following.

N Well-coordinated signals so that vehicles arrive during
the green interval and do not stop. The degree to which
this occurs can be evaluated by AOG.

N Sufficient green time so they can proceed through after
having to stop. The degree to which this does not occur
can be assessed by estimating the percentage of vehicles
that have to wait for more than one cycle length before
proceeding. These events are known as split failures.

TABLE 5.2
Estimated delays for trajectories in Figure 5.2a

Callout Stopped Delay (s) Control Delay (s) LOS

iii

iv

v

vi

vii

viii

0

0

9

18

51

78

6

18

30

44

72

95

A

B

C

D

E

F

N Sufficient storage and not oversaturated at a downstream

signal so they can proceed through an intersection
unimpeded by downstream queues. The degree to which
this does not occur can be evaluated by calculating the

proportion of vehicles that experience downstream
blockage.

The use of CV-based trajectory data provides an
opportunity to look holistically at these three perfor-
mance measures from the perspective of individual
vehicles. For example, AOG is based on whether each
evaluated vehicle passes the intersection without stop-
ping; SF is based on whether each assessed vehicle stops
more than once during its approach; and DSB is based
on whether each evaluated vehicle is significantly obstruc-
ted by a downstream queue after exiting. In order to
normalize by demand, these operational performance
measures are usually presented as a percentage given by:

Operational Performance Measure ¼ 100

n

Xn

i¼1

j(ti) ðEq: 5:3Þ

where ti is the i-th trajectory out of n analyzed and j is
an indicator function that denotes whether the event
being evaluated by the particular performance measure
occurred. That is:

j(ti)~
0, if ti does not experience the event

1, if ti experiences the event

�
ðEq: 5:4Þ

To obtain performance results as ratios rather than
percentages, calculations obtained from Equation 5.3
are divided by 100.

5.2.1 Arrivals on Green

AOG indicates the number of vehicles that arrive at a
signal during the green phase of the cycle and POG
indicates the percentage of vehicles that do the same.
For simplicity, AOG and POG are used interchange-
ably for the rest of the report. AOG is calculated from
Equations 5.3 and 5.4 with j(ti) 5 1 when ti does not
have to stop before exiting and j(ti) 5 0 when it must
stop. This measurement gives valuable information on
the performance of coordinated intersections, where
low AOG values indicate that vehicle platoons are not
progressing as intended (65).

Figure 5.3a shows a PPD with two vehicle trajec-
tories color-coded based on their number of stops. The
first time a vehicle’s speed goes to zero when app-
roaching an intersection, the trajectory is assigned one
stop and the location where this occurs is regarded as
the queue-length at that time. After this, every time
a vehicle’s speed goes from non-zero to zero, after
traveling for at least 100 ft. following the previous stop,
it is attributed an additional stop. The 100 ft. filtering is
done to avoid counting extra stops when vehicles are
just inching forward when waiting for green in a queue
and can be adjusted depending on the approach.

Callout i points to a green trajectory that does not
stop before exiting the intersection, therefore categor-
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ized as having arrived on green (i.e., j(ti) 5 1). Callout
ii points to an orange trajectory that stopped 200 ft.
upstream from the FS, therefore categorized as not
having arrived on green (i.e., j(ti) 0), also known as
arrival on red. The trajectory that does not stop during
the approach is closer to the FFT; hence, it has a
smaller delay than the trajectory with one stop.

Figure 5.3a is a subset of Figure 5.3b, which shows
all 137 trajectories of vehicles following the same move-
ment during the same TOD over 5 weekdays. Addi-
tionally, Figure 5.3b shows a pie chart of what per-
centage of the trajectories are categorized as having

arrived on green. The movement analyzed at this inter-
section has an AOG value of only 18%, which indicates
that 82% of all vehicles following this movement must
stop before exiting.

5.2.1.1 Comparison with detector-based techniques.
Discrepancies between detector-based ATSPMs and
actual traffic conditions vary depending on the type,
placement, and size of detection, and the traffic opera-
tional regime (66). Qualitatively, these discrepancies
have been known by experienced practitioners for some
time. CV data now provides an opportunity for a more

Figure 5.3 AOG in a Purdue Probe Diagram.
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thorough comparison using real vehicle data. This
subsection compares AOG estimations obtained from
CV-based and detector-based (ATSPM) techniques
under different queue-length conditions (5).

Detector-based techniques estimate AOG by identi-
fying the presence of vehicles with an advance detector
upstream of the stop bar. When a vehicle is detected, its
arrival time at the intersection is projected and the
signal state is evaluated to determine if the vehicle
arrived on green (65). This method may not provide an
accurate estimation under conditions that affect vehicle
arrivals either upstream or downstream from the advance
detector since arrival projections usually assume that
vehicles travel in undersaturated and unimpeded condi-
tions (66).

In contrast, AOG calculations from CV trajectory
data are based on whether vehicles stop at some point
during their entire approach towards a signalized
intersection without the need for projections or assump-
tions, as illustrated on the PPDs in Figure 5.3. This is
possible because trajectory data reports where a CV
vehicle traverses. As long as there is sufficient CV pene-
tration in the traffic stream, CV-based AOG estimations
reflect more accurately the impacts from oversaturation,
residual queues, and speed modulation than those
derived from advance detection. Therefore, it is assumed
that similar AOG estimations from both techniques
indicate accurate detector-based results, whereas distinct
estimations suggest detector-based errors.

Detector-based AOG estimations are usually
obtained and visualized from Purdue Coordination
Diagrams (PCDs) (67). Figure 5.4a shows a PCD of a
movement at a traffic signal. In a PCD, the vertical axis
represents the time-in-cycle of the analyzed movement,
and the horizontal axis is the TOD. Once the end of the
cycle is reached on the vertical axis, the value is reset to
zero to start the next cycle. Therefore, time moves
diagonally from bottom to top and left to right.
Further, a green line represents the beginning of green
(BOG) and a red line indicates the beginning of red
(BOR) of the analyzed movement. Finally, markers
(i.e., dots and crosses) show the estimations of vehicle
arrivals at the signal (1).

AOG values are derived by calculating the percen-
tage of vehicles that are estimated as having arrived
during the green interval of the phase (i.e., markers
above the green line and below the red line). However,
accurate AOG estimations depend on whether the pro-
jection of arrivals reflect the behavior of vehicles and
traffic conditions.

Figure 5.4b shows a PPD for the same movement
and time as the PCD in Figure 5.4a. Callout i points to
the location of the stop bar and callout ii to the location
of the advance detector (295 ft. upstream from the stop
bar). In both subfigures, vehicles correctly identified by
the detector-based technique as having arrived on green
are color-coded in green and vehicles correctly categor-
ized as having to stop are color-coded in orange.
Vehicles that stopped which are incorrectly categorized

as arrived on green by the PCD are color-coded in red
and marked with a cross in Figure 5.4a.

The reason for the PCD misclassifications in Figure
5.4 is because those vehicles stopped before the advance
detection due to queues longer than 295 ft. Once the
vehicles pass through the advance detector (callout iii)
they are projected to arrive on green. This overesti-
mates AOG by 22% using the detector-based technique.
Figure 5.4 compares AOG estimations at one move-
ment; however, it is important to contrast AOG
calculations at the system-level to obtain a complete
picture of estimation differences.

Figure 5.5 shows a scatterplot comparing AOG
estimations from both techniques for 52 intersections
that operate under different traffic conditions. Each
point represents an AOG estimation for a particular
movement and timing plan of a signal. There is a total
of 272 points corresponding to 43 unique timing plans
deployed at the evaluated intersections. The analysis
period is from August 16th to August 20th, 2021. Since
the ATSPM tool from which AOG estimations are
obtained (68) only provides results for entire TOD
plans and no raw data is available, the median value of
the evaluated week for each TOD plan is taken as the
detector-based result.

A blue line with no offset and a slope of one is
plotted for reference. Points near the blue line indicate
a smaller discrepancy between the AOG estimation
methods. Points above the blue line are locations where
detector-based estimations are higher than those from
CV data, such as the case analyzed in Figure 5.4, where
long-queues created a significant discrepancy between
calculations. Points below the blue line are locations
where detector-based estimations are lower than those
obtained from CV data.

A linear least-squares regression line is plotted in
black to show the overall trend of the relation. With an
R2 value of 0.81, it can be stated that, in general, there
is close correlation between measurements. However,
one can also observe that for CV-based AOG values
below 30%, detector-based AOG results can be highly
overestimated for some outliers. As queue-length is the
main factor that cause discrepancies on AOG estima-
tions (5), their impact is further analyzed.

Figure 5.6 shows a negative trend between the
median queue-length and the difference of AOG
estimations. Each point represents a particular inter-
section, movement, and period for locations where the
advance detector is located between 350 and 400 ft.
upstream of the signal (most popular distances due to
prevailing speed limits). For long queues, as in Figure
5.4, detector-based AOG results are overestimated. For
short queues, some detector-based AOG results are
underestimated. This is because approaching vehicles
may pass the advance detection at a time when they are
projected to not arrive on green but may modulate their
speed due to a short standing queue, or to avoid
stopping, which allows them to arrive on green (5).
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Figure 5.4 AOG estimations from different techniques.
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The effects that queue-length have on detector-based
AOG estimation reliability is shown in Figure 5.6.
Detector-based AOG estimation accuracy considera-

tions during long (i.e., past the advance detector) and
short (i.e., not past the advance detector) queue-length
conditions are (5) the following.



Figure 5.5 AOG estimation comparison.
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Figure 5.6 Queue-length effects on AOG discrepancies.



N Long queues: During this condition, detector-based results

tend to be significantly overestimated. This is because
vehicles may stop before the advance detection and the
queue discharge dynamics are unpredictable, making the
detector-based arrival time projections inaccurate. Figure

5.4 illustrates this situation quite clearly.

N Short queues: Under this scenario arriving platoons may
not be significantly affected by the discharging queue. In
this case, detector-based calculations tend to be accurate.
Nevertheless, if the speed of the arriving platoon is affected

by the discharging queue or to avoid red, then the detector-
based AOG results may not reflect real conditions.

5.2.2 Split Failures

A split failure occurs when a traffic signal does not
provide enough green time to allow previously stopped
vehicles to proceed through the intersection, thus
making them wait for longer than one cycle. Split
failures occurring for a movement is an indication of
that movement operating at overcapacity. Detecting
time and location of split failures can help agencies to
systematically identify opportunities to reallocate green
time to improve operations (69).

SF is a performance measure that provides the
percentage of vehicles that experience a split failure
during their approach to a traffic signal. From CV
trajectory data, a split failure is identified when a
vehicle stops more than once before exiting the
intersection. The first stop is the arrival at the back-
of-queue and subsequent stops are failed attempts to
clear the intersection. SF is calculated from Equations
5.3 and 5.4 with j(ti) 5 1 when ti stops more than once
and j(ti) 5 0 when it does not.

Figure 5.7a shows a PPD that illustrates the
trajectory of a vehicle that experiences a split failure
(i.e., j(ti) 51). It first stops almost 500 ft. upstream
from the far side (callout i) and then again 200 ft.
upstream from the far side (callout ii). Figure 5.7a is a
subset of Figure 5.7b, which shows all 114 trajectories
of vehicles following the same movement during the
same TOD over 5 weekdays. Additionally, Figure 5.7b
shows a pie chart of what percentage of the trajectories
experienced a certain number of stops. For the move-
ment and time analyzed at this intersection, only 8% of
the vehicles arrived during green, 57% stopped once,
23% stopped twice, and 12% stopped more than twice.
Therefore, there is a 35% SF.

5.2.3 Downstream Blockage

Downstream blockage occurs when the downstream
intersection has a queue that obstructs the progression
of vehicles exiting the current intersection. Identifying
downstream blockage is important as a means to
pinpoint oversaturated intersections (probably with
high SF values) where challenges are caused by an
adjacent location. Hence, the source of congestion may
be the downstream intersection and not the location
being analyzed. In some cases, an adjustment of the

downstream green may address the problem; in other
cases, an agency must make a policy decision on how to
manage those oversaturated conditions (e.g., change a
two-way street into a one-way street) and the impact on
the overall network.

Downstream blockage has been quite difficult to
assess from traditional high-resolution data as most
detection equipment focuses on the upstream segments
of an intersection, with the exception of some radar and
camera systems. By contrast, CV-based performance
measures enable trajectory segments both upstream and
downstream of the intersection. Downstream blockage
is identified from CV data when a trajectory has at least
a 10-second delay compared to the FFT after passing
the far side of the intersection (4).

DSB is a performance measure that provides the
percentage of vehicles that experience downstream
blockage after exiting the intersection. DSB is calcu-
lated from Equations 5.3 and 5.4 with j(ti) 5 1 when ti

experiences downstream blockage and j(ti) 5 0 when it
does not.

Figure 5.8a shows a PPD that illustrates two
trajectories with different downstream blockage classi-
fications. Callout i points to a division line located
10 seconds apart from the FFT. Any vehicle that
crosses this line is categorized as having experienced
downstream blockage. For example, the vehicle indi-
cated with callout ii does not experience downstream
blockage as its downstream segment (gray) does not
have more than a 10-second delay in relation to the
FFT (i.e., j(ti) 5 0). On the other hand, the vehicle
indicated with callout iii experiences downstream
blockage as its downstream segment (blue) has a delay
greater than 10 seconds compared to the FFT (i.e.,
j(ti) 5 1).

Figure 5.8a is a subset of Figure 5.8b, which shows
all 236 trajectories of vehicles following the same
movement during the same TOD over 5 weekdays.
Additionally, Figure 5.8b shows a pie chart of what
percentage of vehicles experienced downstream block-
age. For the movement and time analyzed at this
intersection, 15% of vehicles experienced DSB.

5.2.4 Concepts Examples

The AOG, SF, and DSB concepts have been
explained above in the context of the PPD. However,
it is often useful to see physical examples of these
scenarios. Table 5.3 provides links and QR codes to
short video clips of the occurrence of the relevant
operational events discussed in this chapter.

5.3 Temporal Performance Assessment

The PPD provides a framework to evaluate delay,
AOG, SF, and DSB for a specific movement and time
period. However, practitioners need visualizations to
quickly assess signal performance by TOD to identify
when challenges exist. To address this need, vehicle
trajectories can be color-coded based on their number
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Figure 5.7 SF in a Purdue Probe Diagram.
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of upstream stops and based on the occurrence of
downstream blockage (as in Figure 5.3, Figure 5.7, and
Figure 5.8) with the horizontal axis as the TOD when
the waypoints are sampled.

Figure 5.9a shows all trajectories passing a signalized
intersection color-coded by their number of stops and

occurrence of downstream blockage. The analyzed
period is segmented into four timing plans: AM peak
(AM, 06:00–09:00 hrs.), midday (MD, 09:00–15:00 hrs.),
PM peak (PM, 15:00–18:00 hrs.), and evening (EV,
18:00–22:00 hrs.). From a qualitative evaluation of
Figure 5.9a, it can be determined that no downstream



Figure 5.8 DSB in a Purdue Probe Diagram.
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blockage occurs. Furthermore, it becomes evident that
the PM period presents some challenges as some vehicles
experienced split failures. These operational conditions
seem to spill into the beginning of the EV period.

Figures 5.9b, 5.9c, 5.9d and Figure 5.9e show the
PPDs for the four TOD periods with their respective

AOG, SF, and DSB estimations. During the AM peak
period the highest AOG value exists, with 81% of
vehicles arriving on green. In contrast, the PM peak
period has the lowest AOG value (47%) and the highest
SF estimation, with 12% of the vehicles experiencing a
split failure before exiting the intersection.



TABLE 5.3
Videos showing the occurrence of relevant operational events

Operational Event PPD Reference Video Link Video QR Code

Arrival on Green Figure 5.3a

callout i

https://tinyurl.com/arrivalOnGreen

Arrival on Red Figure 5.3a

callout ii

https://tinyurl.com/arrivalOnRed

Split Failure Figure 5.7a https://tinyurl.com/splitFailure

Downstream

Blockage

Figure 5.8a

callout iii

https://tinyurl.com/downstreamBlockage

No Downstream

Blockage

Figure 5.8a

callout ii

https://tinyurl.com/noDownstreamBlockage
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Figure 5.9 Vehicle trajectories taking the same movement at a signalized intersection during four different TOD plans for all
weekdays in a month.
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6. ARTERIAL TRAVEL TIME

Travel time has long been used by practitioners as a
metric for evaluating roadway mobility. Traditional
techniques leveraged floating car methods, license-plate
matching, and Bluetooth detectors in addition to aerial
videos to record, compute, and track travel times
along a study corridor (70–74). These techniques, while
reliable, are labor, cost, and time intensive and do not
easily scale as some require equipment to be deployed
to ensure reliable and continuous data collection.

On the other hand, emerging CV data provides a
unique opportunity in this respect to compute travel
time through a corridor without the need of sensors.
Additionally, it affords researchers the freedom and
scalability to implement travel time data collection on
any corridor provided CV data is available. The near
real-time availability of these data sets also provides
stakeholders with an opportunity for more dynamic
travel time tracking and implementing maintenance of
traffic changes during construction or roadway clo-
sures. CV waypoint-level information additionally
reveals lane-level effects on travel times as opposed to
link or segment-level analysis which may mask some
local effects due to the inherent aggregation involved.

6.1 Trip Chaining

Trip chaining is defined by multiple characteriza-
tions, with the overarching theme being any trip that
involves a short stop on the way from an origin to a
destination either for leisure or work. This is an
important aspect to consider when performing travel
time studies and evaluating locations where vehicles
may enter or leave an approach to a signal mid-block.
Household travel surveys and theoretical modeling
have been the primary methods for identifying and
analyzing trip chaining activities in the past (75, 76).
However, trip chaining can be identified more precisely
and at scale using CV data.

When computing travel time performance, it is
important to only include relevant trips that do not
detour or trip chain through the corridor, which
otherwise may lead to unnecessary bias in travel time

estimates. As CV data provides waypoint information
for each trajectory, methodologies have thus been
developed to filter out instances of trip chaining or
detouring at scale. This removes outliers and focuses on
travel time estimates for the core of travelers.

Nonetheless, there might be some instances where
trip chaining activities need to be analyzed, for
example, when evaluating mode choice (77, 78). For
these cases, vehicles performing trip chaining should be
included in the study.

6.2 Raw Travel Times

To demonstrate the curation technique, an 11-inter-
section segment of West St. (Figure 6.1) running north-
south in the heart of Indianapolis, Indiana, is evaluated.

Figure 6.2 shows a scatter plot of raw travel times
obtained from 287 CV trajectories passing through the
corridor in the SB direction of travel on February 27th,
2023. The CV trajectories are filtered out by perfor-
ming virtual detection at the start (north-end) and end
(south-end) of the corridor and only picking those
trajectories which are observed to have passed through
both ends of the corridor. Travel times are then calcu-
lated from the selected vehicle trajectories by comput-
ing the difference between their last and first recorded
timestamps.

Travel time values for this nearly 2-mile stretch of
roadway are seen to be varying from 2.9 minutes up to
69.1 minutes. The nominal expected travel time for this
corridor would range from 5–7 minutes, pending
variations introduced by TOD. While a majority of
the travel time values under 15 minutes are within
realistic expectations, a number of trips showing higher
travel times (e.g., callouts i, ii, and iii) appear to be
obvious outliers and should ideally be filtered out of
any aggregate travel time performance measurements
to sidestep bias in the data.

6.3 Travel Time Outliers Examples

Figure 6.3 shows an example of one such outlier
travel time where the vehicle trip deviates from the ana-
lysis corridor just prior to South St. (Intersection 10)

Figure 6.1 West St. intersections (map data: OpenStreetMap).
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Figure 6.2 Raw travel times of sampled vehicles traveling SB on West St.

Figure 6.3 Example trip showing departure from designated corridor as a result of trip chaining (map data: OpenStreetMap).
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Figure 6.4 Example trip showing departure from designated corridor as a result of detouring (map data: OpenStreetMap).
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possibly due to an instance of trip chaining and thus
record a higher travel time than expected. Points in red
indicate waypoints on a trip lying outside of the
designated corridor, indicated by a blue geofence, and
points in green indicate those waypoints lying com-
pletely within the designated corridor in the desired
direction of travel. The travel time for this trip is
recorded as 7.7 minutes. This demonstrates how even
travel times that appear to be within a realistically
expected range may yet represent outlier trips.

Figure 6.4 shows a sample CV trajectory that detours
off of the analysis corridor at Kentucky Ave. (Inter-
section 10) and rejoins the corridor at McCarty St.
(Intersection 11). This detour resulted in the CV trajec-
tory recording a travel time of 36.5 minutes, which was
significantly higher than the expected range of 5–7
minutes.

6.4 Travel Time Curation

With regard to the aforementioned reasons establish-
ing the need for travel time curation on CV trajectory
data, a methodology is developed wherein waypoints
for every CV trajectory are matched within a geofence
to establish a match percentage. The geofence has a pre-
determined width based on the functional class of the
roadway being analyzed, as well as being wide enough
to account for positional inaccuracies in the data.

Having obtained a match percentage for each trajec-
tory, a minimum threshold is established to only filter
out trajectories satisfying this match requirement.

Figure 6.5 shows the same travel time plot as Figure
6.2 with points colorized by their match percent to the
West St. corridor. Trips matching the corridor with a
95% or higher are represented by green markers, while
those with a lower than 95% match rate are shown in
red. This visualization clearly shows how a simple
matching analysis can easily filter out outlier CV
trajectories and help tighten travel time estimates for
this corridor by only including trajectories that truly
traveled the designated route. A 95% match threshold is
empirically chosen as being high enough to capture
relevant trajectories while also leaving enough leeway to
account for minor GPS inaccuracies which may result
in a trajectory waypoint being slightly off the corridor
geofence for a short period of time.

This technique has proved highly effective in analyz-
ing route choice and detour travel times for CV
trajectories diverting off of interstate roadways to
bypass instances of recurring or non-recurring conges-
tion (7). Additionally, parts of this methodology have
also helped researchers identify which interstate exit
and entrance ramps are utilized by CVs (6), which on
the arterial side can correspondingly help decision-
makers identify the most used intersections. A slight
adjustment of spatial geofence parameters and match



Figure 6.5 Raw travel times for West St. SB colored by match percentage.

TABLE 6.1
Summary travel time statistics before and after curation

Summary Travel Raw Travel Times Curated Travel Times

Time Measure (min) (289 trips) (275 trips)

Minimum 2.9 2.9

1st Quartile 4.1 4.0

Median 5.2 5.1

Mean 6.3 5.4

3rd Quartile 6.6 6.3

Maximum 69.1 11.2
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percentage thresholds allows for the same technique to
be adopted for computing curated travel times at the
arterial-level.

6.5 Travel Time Comparison Before and After Curation

Table 6.1 shows a summary statistics comparison of
travel times on the corridor in the SB direction of travel
using raw values as well as curated travel times.
Notably, after the curation procedure, almost 5% of
trips are filtered out (14 trips) due to their waypoints
not matching or lying on the designated corridor
exactly. Median travel time after curation reduces from
5.2 to 5.1 minutes while mean travel time reduces from
6.3 to 5.4 minutes. This points to a more realistic and
tighter bound on the travel time estimates obtained
from CV trajectories.

Figure 6.6 shows a cumulative frequency distribution
(CFD) diagram of the same sets of raw (red) and
curated (green) travel time values where curated travel
times depict a cropping of the tail of the distribution
due to the outlier and high travel times being filtered
out by the preceding analysis techniques. Figure 6.7
thus shows a resulting scatter plot of curated travel
times for the chosen corridor for Monday February
27th, 2023, making it much easier to visualize trends in
travel time rise and falls around the morning and
evening commuter peaks between 06:00–09:00 hrs. and
15:00–18:00 hrs. respectively, which would have possi-
bly been difficult to discern earlier using raw travel time
values.

A final visualization is presented in Figure 6.8
showing a scatter plot of travel times on the analysis
corridor for a 1-week period from February 27th–



Figure 6.6 Corridor-wide CFD for raw (red) and curated (green) travel times.

Figure 6.7 Corridor-wide travel time scatter plot.
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March 5th, 2023. Weekly visualizations such as these
document travel time trends varying from day-to-day.
Morning and evening peaks lining up with commuter
times are easily discernible Monday through Friday

while Saturday and Sunday show singular peaks for
travel times potentially corresponding with recreational
travel among CV trajectories passing through the
corridor.



Figure 6.8 Corridor-wide weekly travel time plot.
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7. PERFORMANCE REPORTING
VISUALIZATIONS

Agencies need performance visualization tools to
quickly assess system-level operations to identify
challenges and opportunities. Chapter 5 presented the
CV-based PPD, from which intersection performance
at the movement-level can be derived. Even though the
discussed PPD can provide practitioners valuable
insights into the operational state at an intersection,
the scope of analysis is too specific to report perfor-
mance estimations at scale.

This chapter provides effective visualization frame-
works to analyze traffic signal performance at the
arterial- and system-levels. Both approaches aim at
using trajectory-based performance estimations and
reporting techniques to aid practitioners understand
high-level operational conditions.

7.1 Arterial-Level Evaluation

An arterial-level performance assessment for
December 2022 weekdays is presented for a corridor
located in a suburban area north of Frisco, Texas
(Figure 7.1, callout i). The intersections evaluated are
listed in Table 7.1 and the traffic volumes range from
42,000 to 57,000 vehicles per day (VPD).

Figure 7.2 show heatmaps summarizing LOS, AOG,
SF, and DSB, and a scatterplot displaying the arterial
travel time by TOD for vehicles traveling WB-through
on the studied corridor. Heatmaps’ results are shown
for every 15-minute period, an interval useful for traffic
studies and signal controller timing plans.

The LOS (Figure 7.2a) 15-minute classification
(Table 5.1) is assigned based on the calculated move-
ment average control delay, given by:

Average Control Delay~
1

n

Xn

i~1

dci ðEq: 7:1Þ

where dci is the control delay of the i-th trajectory out of
n analyzed during the evaluated period. AOG (Figure
7.2b), SF (Figure 7.2c), and DSB (Figure 7.2d) esti-
mations are obtained from Equation 5.3. Arterial raw
travel times (Figure 7.2e) are calculated based on the
techniques presented in Chapter 6.

In general, green indicates good operational condi-
tions, whereas red and purple indicate challenges. From
06:00–15:00 hrs. most intersections are estimated to
function without major problems, resulting in arterial
travel times mostly below 5 minutes. During this time,
no intersection presents significant SF or DSB, and only
Intersections 4 and 9 show low AOG and consistent
LOS D.

In comparison, from 15:00–19:00 hrs. some signifi-
cant challenges arise. LOS E and F appear at Inter-
sections 4, 5, 6, and 9. Additionally, SF values above
25% occur at Intersections 4 and 5. Further, DSB above
25% are estimated for Intersections 5 and 6. These
conditions result in arterial travel times that range from
under 5 to over 10 minutes.

During the most challenging period between 17:00
and 18:00 hrs., interesting operational conditions exist.
For example, Intersection 8 (callout i) seems to function
without major problems, while Intersection 5 (callout ii)
shows significant delay, medium AOG, and high SF



Figure 7.1 Study arterial (map data: OpenStreetMap).

TABLE 7.1
Studied intersection on Eldorado Pkwy

Intersection ID Intersection Name

1 Eldorado Pkwy at Legacy Dr.

2 Eldorado Pkwy at Towne Xing

3 Eldorado Pkwy at Dallas Pkwy S

4 Eldorado Pkwy at Dallas Pkwy N

5 Eldorado Pkwy at Woodsboro Way

6 Eldorado Pkwy at Frisco St.

7 Eldorado Pkwy at N County Rd.

8 Eldorado Pkwy at Rogers Rd.

9 Eldorado Pkwy at Preston Rd.
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and DSB values. The PPDs for these two intersections
are shown in Figure 7.3.

Even though the level of granularity presented in
Figure 7.2 can provide clear indications on which
intersections require further attention, the analysis is
still limited to a single movement. Ideally, arterial-level
reporting would provide practitioners with information
on the operational state of all movements at all signals
being evaluated. This would help determinate possible
mitigation strategies (e.g., split rebalance, offset mod-
ification, or changes in cycle length).

To present a holistic view of a corridor’s perfor-
mance measures to stakeholders and operators, a
template that displays relevant information for all
intersections and movements is provided. The template
is shown in Figure 7.4, which displays Eldorado Pkwy
(Figure 7.1, callout i) signal performance measures
derived from over 340,000 trajectories and 9.4 million
waypoints during December 2022 weekdays. Table 7.2
provides an explanation of the information included in
Figure 7.4.

The reporting template can provide up to 3,072
measures per intersection since it gives information for
eight different movements and four performance
measures for every 15-minute period over 24 hours.
Following the practices presented in Chapter 2, the
queries to generate such a visualization incurred a cloud
cost just under $0.80. A document reporting per-
formance estimations with the provided framework
for 14 different arterials was produced (8). Addi-
tionally, (18) expands on (8) by providing 58 arterial-
level performance reports of corridors located in 14
different states.

7.2 System-Level Evaluation

The framework presented above provides an effective
approach to evaluating arterials. However, agencies
sometimes require extended analyses to gather informa-
tion on the performance of various signals, regardless
of whether they are located on the same road. This
section presents visualization techniques to do the
following.

N Identify the geospatial location of intersections with

challenges that may affect each other.

N Identify the worst performing intersections in a system.

7.2.1 Geographical Representation of Results

A geographical representation of performance results
can show effects that certain intersection may have on
adjacent locations.

Figure 7.5 shows LOS, AOG, SF, and DSB
estimations at the intersection-level for 132 signals in
downtown Indianapolis, Indiana, for all weekdays in
December 2022 from the 17:00 to the 18:00 hrs. From
the presented results, the group of intersections located



Figure 7.2 Signal performance measures for WB-through movements on Eldorado Pkwy.
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north of downtown (callout i) operate without major
problems. In contrast, the center section of downtown
(callout ii) shows some challenges as high DSB
percentages (.25%) may be causing long delays (LOS
D and E). A video presenting a LOS evaluation of these
signals by TOD was created (79).

Furthermore, the eight-intersection corridor of West
St., located west of downtown (callout iii), is of
particular interest as these closely located intersections
present some of the longest delays (LOS D, E, and F)
and have significant SF and DSB estimations. It is
likely that operational challenges at some of these



Figure 7.3 PPDs for highlighted intersections and time periods in Figure 7.2.

TABLE 7.2
Information included in Figure 7.4

Callout Description

i Study location

ii Trajectory counts at the different analyzed intersections

iii Study period

iv Column with LOS results

v Column with AOG results

vi Column with SF results

vii Column with DSB results

viii Row with mainline through movements

ix Row with mainline left movements

x Row with side street through movements

xi Row with side street left movements
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intersections propagate and affect the rest. An in-depth
analysis of this arterial is presented in the next chapter.

7.2.2 Pareto-Sorted Representation of Results

When analyzing the performance of a significant
number of traffic signals in a system, it is useful to
identify the locations that operate in the most challen-
ging conditions. Not only does this help locate the
intersections that require further attention, but it also
provides valuable information on the overall health of
the system.

Figure 7.6 shows all 132 intersections analyzed in
Figure 7.5 pareto-sorted by their overall performance.
Intersections on the left side of the graphic are the worst
performing for each category. All signals have an
average control delay lower than 90 s/veh, AOG values
above 15%, and SF and DSB below 21% and 42%,
respectively. This means that at the worst performing
intersections vehicles experience 90 seconds of control
delay on average, only 15% arrive on green, one out of

five vehicles experience a split failure, and almost half
experience downstream blockage. Once these locations
are identified, further analysis can be performed to
determine if mitigation strategies could be implemented
to improve operations.



Figure 7.4 Month-long summary of performance measures on Eldorado Pkwy for all relevant movements.
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Figure 7.5 Geospatial view of intersection performance in downtown Indianapolis (map data: OpenStreetMap).
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Figure 7.6 Intersections in downtown Indianapolis pareto-sorted by their performance.
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8. BEFORE-AFTER STUDIES

Before-after traffic studies are evaluation techniques
that facilitate the analysis of the effects that particular
events have on the performance of transportation
systems. For example, by conducting before-after
studies, practitioners are able to assess and commu-
nicate the impact that highway work zone diversions
have on local arterials (9, 80) or the effectiveness of
upgraded timing techniques (10). These results provide
agencies with data-driven decision tools to mitigate
degrading conditions, or to further improve operations.

This chapter presents two CV-based before-after
studies (9, 10) that serve as frameworks for agencies to
systematically evaluate traffic signal performance
impacted by particular events.

8.1 Highway Work Zone Impact on a Local Arterial

Highway maintenance and construction can signifi-
cantly impact the surrounding network by creating an
influx of diverting vehicles that can saturate local
streets. This can lead to significant congestion and
delays. According to the 2021 Urban Mobility Report
(81), in 2019 there were 8.7 billion hours of congestion-
related travel delay, which represented a $190 billion
cost in time and wasted fuel. The Federal Highway
Administration (FHWA) indicates that 10% of all
congestion, and 24% of non-recurring congestion, are
caused by work zones (82, 83). Therefore, it is
important for agencies to monitor the impact of work
zones on arterials and local streets.

This subsection demonstrates that current CV
trajectory data can be used to assess the impact that
work zone diversions have on local arterials (9). A case
study was developed based upon an 11-intersection
segment impacted by a long-term closure of the I-65/70
interchange in Indianapolis, Indiana. The case study
performs a longitudinal assessment of the changes in
sampled volumes, LOS, AOG, SF, DSB, and travel
times. Locations that are under-performing are identi-
fied and insights on the type of problems being
experienced (saturation and/or coordination) is pro-
vided, which aids in the identification of potential
solutions.

8.1.1 Study Location and Analysis Period

The I-65/I-70 interchange, located in downtown
Indianapolis, Indiana (Figure 8.1), also known as
North Split, was closed on May 15th, 2021. There-
fore, all analyses presented in this subsection are derived
from 2021 CV trajectory data and focus on the weeks
immediately before and after the closure event.

The North Split usually served approximately
214,000 VPD before being closed (84). As this volume
of vehicles utilizes local streets as detour, the overall
network performance gets degraded. Eleven of the most
affected intersections are studied. They are all located
on West St., a parallel arterial to the North Split

(Figure 8.1) and their names are shown in Table 8.1. It
is important to mention that, as an outlier, Intersection
7 (West St. at Robert D. Orr Plaza) has a constant
green light for vehicles traveling SB-through.

8.1.2 Performance Evaluation

Figure 8.2 and Figure 8.3 show the summary of
5 performance measures by TOD derived from over
47,000 unique trajectories and 500,000 waypoints for
vehicles traveling SB-through on West St. 1 week before
(Figure 8.2, May 10th–14th, 2021) and 1 week after
(Figure 8.3, May 17th–21st, 2021) the North Split
closure. Additional details on how to interpret the
graphics are provided below.

N Figure 8.2a and Figure 8.3a: Traditional HCM LOS

(Table 5.1). Even though LOS does not provide

actionable information by itself, it provides practitioners

with an understanding on the levels of delay. Comparing

these two figures, one can see a very large increase in

experienced delay during the period between the 15:00

and 18:00 hrs. (PM peak period).

N Figure 8.2b and Figure 8.3b: AOG. Comparing these two

figures, one can see a substantial decrease in AOG during

the PM peak period.

N Figure 8.2c and Figure 8.3c: SF. Comparing these two

figures, one can see an important increase in the

occurrence of split failures during the PM peak period,

particularly at Intersection 8.

N Figure 8.2d and Figure 8.3d: DSB. Comparing these two

figures, one can see a significant increase in DSB during

the PM peak period. Interestingly, the block of Inter-

sections 3 to 7 shows high DSB ratios (Figure 8.3d). This

is an indication that queues formed at Intersection 8

affect the progression of upstream platoons all the way

until reaching Intersection 3. This can also be considered

as one long queue that extends from intersection 8 to 3.

N Figure 8.2e and Figure 8.3e: Arterial travel time. Longer

trips are seen during the PM peak period a week after the

North Split closure.

As expected, all the presented performance measures
worsened after the North Split closure, especially from
the 15:00 to the 18:00 hrs. As this period seems the most
critical, further analysis will focus on that time-range.

8.1.2.1 Sampled volumes. As the 214,000 vehicles that
used the North Split on a daily basis have to travel
using alternative routes, a significant increase in the
studied location’s volumes is expected. Figure 8.4 shows
the weekday weekly change in sampled CV volumes of
vehicles that traveled SB through the entire arterial
during the PM peak period. Sampled volumes just after
the start of the North Split closure increased 148%

(from 54 to 134). With such a significant increase in
demand, and with no added capacity, operational
performance is expected to degrade.

Callouts i and ii are the weeks in which Memorial
Day and Independence Day were observed, respec-
tively. Even though these weeks present decreased
demands compared to previous and following weeks,
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Figure 8.1 North Split closure and West St. intersections in downtown Indianapolis (map data: OpenStreetMap).

TABLE 8.1
Studied intersection on West St.

Intersection ID Intersection Name

1 West St. at Clair St.

2 West St. at Indiana Ave.

3 West St. at Michigan St.

4 West St. at Vermont St.

5 West St. at New York St.

6 West St. at Ohio St.

7 West St. at Robert D. Orr Plaza

8 West St. at Washington St.

9 West St. at Maryland St.

10 West St. at South St.

11 West St. at McCarty
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they still have higher traffic volumes than pre-closure
conditions.

8.1.2.2 Arterial trajectories and performance measures
by intersection. To better illustrate the operational
dynamics at the studied intersections, trajectories of

vehicles traveling SB-through are plotted in Figure 8.5a
(week before the closure) and Figure 8.5b (week after
the closure). Next to the trajectories, DSB, SF, and
AOG results are displayed. The performance measures
are placed in such a way that they match the segment of
the trajectories which they represent (AOG and SF for
the upstream section, and DSB for the downstream
section). From performing a before and after
qualitative comparison, the following can be stated.

N By comparing the trajectories, not only is the increase in
demand noticeable, but also in the number of stops and
the time required to traverse the corridor.

N By contrasting DSB, significant increments occurred
from Intersections 3 to 7, which means that long queues
at Intersections 4 to 8 affect upstream locations.
However, this seems to abruptly end after Intersection
8. This suggests that the downstream blockage identified
at upstream locations may be a consequence of
Intersection 8 having queue spillback. If that is the case,
by fixing the congestion at Intersection 8, the state of
operation at the upstream locations may improve.

N By comparing SF, it is clear that an important increase
occurred at Intersections 2, 4, and 8. However, as
Intersection 4 also showed significant downstream



Figure 8.2 Signal performance measures for SB-through movements on West St. 1 week before the North Split closure.
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blockage, this is not necessarily an indication that this
location is operating at overcapacity, but there is a
possibility that its split failures are a result of down-
stream queue spillback.

N By contrasting AOG, a general decline is appreciated.

Figure 8.6 shows an image of vehicles traveling SB
through Intersections 4 to 8, which were identified as

having significant operations challenges in Figure 8.5b
(callout i). It is interesting to note that the queue length
at Intersection 8 stretches over a significant segment of
the roadway, and results in vehicles experiencing split
failures, downstream blockage, and long delays. A
video provided here (85) shows a vehicle experiencing a
split failure at Intersection 8.



Figure 8.3 Signal performance measures for SB-through movements on West St. 1 week after the North Split closure.
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8.1.2.3 Travel times. A valuable and commonly used
metric to assess the performance of a corridor is travel
time. An effective way of analyzing the travel time experi-
enced by traversing vehicles is by generating CFD plots.
In general, a good-performing arterial will show a verti-
cal line (which is an indication of reliability) with the
minimum possible travel time (near free flow).

Figure 8.7 shows corridor travel time CFDs for SB-
traveling trajectories during the analysis period. Travel
times for the 2 weeks before the closure are indicated
by callout i. Travel time increased noticeably since the
May 17th week (callout ii, right after the start of the
closure). In fact, the median travel time increased from
5.4 to 8.5 minutes. Furthermore, a reduction in travel



Figure 8.4 Corridor-wide weekday weekly trajectory counts for SB-through movements from 15:00–18:00 hrs.
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time reliability is shown by the reduction in the slope of
the lines, indicating an increase in travel time variation.

8.1.3 Results

Average corridor-wide AOG, SF, and DSB results
are shown in Figure 8.8. As expected, all performance
measures significantly worsened after the North Split
closure. The maximum changes in performance are a
10% increase in DSB, 7% increase in SF, and a 17%
decrease in AOG.

Results for the corridor travel time are presented in
Figure 8.9. The Interquartile Range (IQR) increased by
up to 140%, and the median travel time rose 74% when
comparing weeks before and after the closure.

8.1.4 Summary

In summary, current CV trajectory data is used to
estimate the before-after performance for an 11-
intersection segment of West St. affected by the
North Split closure. The following results are observed:

N a 148% increase in sampled volumes, which indicates a
significant increase in demand on the arterial;

N a 17% decrease in AOG, indicating the existence of
potential opportunities to improve coordination;

N a 7% increase in SF, indicating an increment of traffic
signals operating at overcapacity;

N a 10% increase in DSB, indicating growing queues; and

N a 74% increase in median travel time.

From Figure 8.5, Intersection 8 (Washington St.) is
identified as a location that influences the operational
state at upstream intersections. This is an example of
how agencies can use these frameworks to identify
critical intersections that affect entire systems.

8.2 Change in Performance After Signal System
Upgrade

Updates to traffic signal timing plans are expected to
either improve operations or mitigate the effects of

increased demand. Longitudinal before-after studies are
important when validating changes to traffic signal
systems, but they have historically required field data
collection as well as deployment of extensive detection
and communication equipment (1).

This subsection describes how current CV trajectory
data can be used to conduct before-after evaluations of
corridor-wide traffic signal timing and system upgrades
(10). A 22-intersection corridor with a recent imple-
mentation of a semi-automated adaptive system to
update timing plans is used to demonstrate these
techniques.

8.2.1 Study Location and Analysis Period

The operation of a 22-intersection segment of US-27,
located north of Cincinnati, Ohio (Figure 8.10), was
upgraded in 2021 from a coordinated-actuated control
to a semi-automated adaptive implementation of the
Purdue Link Pivot Algorithm (86). The new system
suggests timing changes based on traffic conditions and
an operator approves or rejects the recommendations.
To validate the efficiency of the implemented system,
a before-after analysis based on August 2020 and
August 2021 CV trajectory data is performed.

The intersections studied are listed on Table 8.2. It is
important to note that Intersection ID 2, US-27 at
Generation Dr., was installed between the two analysis
periods. Therefore, movement performance measures at
this location are only computed for the after analysis.
However, corridor travel times implicitly capture the
operational performance of the entire corridor.

To have a consistent before-after comparison of
performance measures, CV trajectory data for the same
duration is used to carry out the analysis.

N For the before period, trajectory data from August 3rd,
2020, to August 28th, 2020, weekdays (20 days) are used.
This period will be referenced as August 2020 (week-
days), where 152 intersection movements are analyzed.

N For the after period, trajectory data from August 2nd,
2021, to August 27th, 2021, weekdays (20 days) are



Figure 8.5 SB-through corridor-wide trajectories and intersection performance measures from 15:00–18:00 hrs.
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used. This period will be referenced as August 2021

(weekdays), where 160 intersection movements are

analyzed (eight more since the implementation of

Intersection 2).

8.2.2 Traffic Volume Change

Annual average daily traffic (AADT) for road seg-
ments on the studied corridor in 2020 and 2021 were



Figure 8.6 SB-traveling vehicles on West St. from Intersections 4 to 8.

Figure 8.7 Weekday weekly arterial travel time CFD from 15:00–18:00 hrs.
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obtained from the Ohio Department of Transportation
(ODOT) Traffic Monitoring Management System
(TMMS) (87) and are shown in Table 8.3. For the four
segments for which data is available, there was a
significant total increase of 35% on traffic volume
between 2020 and 2021, which can be attributed to post
COVID-19 rebound of travel.

8.2.3 Performance Evaluation

Figure 8.11 and Figure 8.12 show the estimated
performance measures by TOD of vehicles traveling
SB-through for an 11-intersection section of the studied
corridor. Results are based in August 2020 weekday
trajectories (before timing upgrade) for Figure 8.11 and

in August 2021 weekday trajectories (after retiming
upgrade) for Figure 8.12. Performance measure estima-
tions by TOD for all relevant movements over the
entire corridor are available here (8).

Qualitatively, it can be observed that AOG improved
for most locations, which indicates a more efficient
progression through this corridor’s section. SF and
travel time have no significant change. Regarding DSB
and LOS, some locations have improvements and
others saw degraded conditions.

Considering that traffic volumes increased approxi-
mately by 35%, a significant worsening of performance
would have been expected. The fact that there is only a
modest change in performance suggests that the signal
timing plan updates and adaptive link pivot implemen-



Figure 8.8 Corridor-wide weekday weekly performance measures for vehicles traveling SB-through on West St. from 15:00–
18:00 hrs.
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tation effectively diminished the impact of increased
demand and even improved operations in specific cases.

8.2.3.1 Intersection operational improvements and
influence on adjacent locations. By closely analyzing
the graphics presented on Figure 8.11 and Figure 8.12,

it is possible to obtain insights not only on the opera-
tional changes, but also on the influence between
adjacent intersections.

For example, Intersections 6 and 7 are closely spaced
with a separation of 630 ft. (192 m.), as shown in Figure
8.13; hence, their operation is highly dependent on each



Figure 8.9 Weekday weekly median arterial travel time and IQR for vehicles traveling SB-through on West St. from 15:00–
18:00 hrs.

Figure 8.10 Intersections analyzed on US-27 (map data:
OpenStreetMap).

TABLE 8.2
Studied intersection on US-27

Intersection ID Intersection Name

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

US-27 at Struble Rd.

US-27 at Generation Dr.

US-27 at Dry Ridge C Rd.

US-27 at Dry Ridge Rd.

US-27 at IR 275 WB

US-27 at IR 275 EB

US-27 at Stone Creek

US-27 at Redskin Dr.

US-27 at Springdale Rd.

US-27 at Marshall Square

US-27 at Mall Dr.

US-27 at Commons Circle

US-27 at Round Top

US-27 at Compton Rd.

US-27 at Poole Rd.

US-27 at Joseph Rd.

US-27 at Sovereign Dr.

US-27 at Cross Cty. WB

US-27 at Cross Cty. EB

US-27 at Colerain

US-27 at Salvage Auto

US-27 at Galbraith Rd.
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other, particularly with regards to queue storage.
Callouts i in Figure 8.11 and Figure 8.12 highlight the
performance of these two intersections during the PM
peak period (15:00–18:00 hrs.). As shown, there are
substantial improvements in LOS, AOG, and DSB in
the after period.

The PPDs from which the performance measures are
estimated for Intersections 6 and 7 are shown in Figure
8.14. Before the new semi-automated adaptive system
was implemented, Intersection 7 had 31% AOG, which
is noticeable by a lack of non-stopping (green)
trajectories at its approach (Figure 8.14c, callout i).
This low level of progression had negative effects on the
upstream Intersection 6 since vehicles at this location
experienced queued traffic soon after exiting the

intersection, which is reflected by a high percentage of
DSB (Figure 8.14a, callout ii).

In contrast, after the semi-automated adaptive
system was implemented, Intersection 7 had an
improved AOG value of 78% (Figure 8.14d, callout
iii). This enhanced progression had positive effects on
Intersection 6 since the percentage of DSB was
significantly reduced (Figure 8.14b, callout iv).

This analysis can also be performed solely from
Figure 8.11 and Figure 8.12 by understanding the



TABLE 8.3
Volume change from count stations (87)

North Intersection ID South Intersection ID 2020 AADT 2021 AADT Difference (%)

2

4

6

13

3

5

7

14

29,837

30,092

34,436

29,852

47,535

41,405

38,969

39,504

+59

+38

+13

+32

Total 124,217 167,413 +35

Figure 8.11 Signal performance measures for SB-through movements on US-27 during August 2020 weekdays.
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Figure 8.12 Signal performance measures for SB-through movements on US-27 during August 2021 weekdays.
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Figure 8.13 Aerial view of Intersections 6 and 7 (map data:
Google).
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location of the intersections on the corridor and the
correlation between CV-based performance measures.

8.2.4 Results

August 2020 and August 2021 average corridor-wide
AOG, SF, DSB, and control delay, by movement, are
shown on Figure 8.15. No significant changes are

observed for AOG. SF increased for EB- and WB-
through movements and decreased for EB-left. DSB
improved for EB-through movements but worsened for
NB-through and EB-left. Average control delay
increased for the WB-through movement and the NB-,
EB-, and WB-left movements.

Table 8.4 shows the change in aggregated perfor-
mance measure results for all the intersections and
movements on the studied corridor. Overall, there is a
1% AOG improvement and a 2-second increase of
average control delay. SF, DSB, and LOS did not see
any changes.

Based on the small differences in operational
performance and considering the significant increase
in traffic volume of 35%, it is clear that the semi-
automated adaptive signal system is effective on
diminishing the effects of an increased demand on the
entire corridor.

8.2.5 Summary

Approximately 1 million trajectories and 13.5 million
waypoints are analyzed from August 2020 (before
timing upgrade) and August 2021 (after timing
upgrade) CV data to generate corridor-wide (Figure
8.11 and Figure 8.12) and approach-level (Figure 8.14)
visualizations. Further, the presented technique is
shown to be capable of providing insight into the
influence between adjacent intersections.

Figure 8.15 and Table 8.4 illustrate only very minor
changes in system performance after a 35% traffic
volume increase. The average control delay increased
by only 2 seconds and the overall system level of service
remained as ‘‘C’’.



Figure 8.14 PPDs of vehicles traveling SB-through from 15:00 to 18:00 hrs.
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TABLE 8.4
Performance overview

Measurement

Analysis Period

August 2020 August 2021

Count Station Traffic Volume 124,217 167,413

AOG 70% 71%

SF 1% 1%

DSB 2% 2%

Average Control Delay (s/veh) 25 27

LOS C C

Figure 8.15 Corridor-wide change in performance by movement.

59



9. IDENTIFICATION OF SIGNAL RETIMING
OPPORTUNITIES TO REDUCE SPLIT FAILURES

Traffic signal operations have a significant impact on
road networks. The state-of-the-practice traffic signal
management had a national result of C+ in the 2019
Traffic Signal Benchmarking and State of the Practice
Report (25). With over 400,000 traffic signals in opera-
tion nationwide, it is crucial for agencies to monitor
signal performance and identify locations where timing
improvements could reduce congestion, enhance mobi-
lity, decrease delays, and reduce the number of stops (28).

The implementation and modification of signal
timing parameters, phasing sequences, and control
techniques enables efficient operations to service vehicle
demand (27). To maximize benefits, FHWA recom-
mends agencies to focus resources to maximize favor-
able measures such as progression and throughput and
minimize unfavorable measures such as delay and split
failures (88). The benefit-to-cost ratio of signal retiming
has been estimated to be around 40:1 (27).

The identification of oversaturated movements and
whether green time can be redistributed has previously
been studied using ATSPMs, probe data, and aggre-
gated data (88–91). Achieving this analysis agency-wide
using sensor infrastructure methods typically require
robust and accurate detection (66), which can be costly
to install and maintain (92). Furthermore, analyses
derived from probe data can constrain practitioners due
to the limited spatial and temporal fidelity of segments.

This chapter presents a scalable methodology by
which CV-based performance measures can be used to

identify critical split-failing movements where addi-
tional green time could be provided from either within
or across ring diagram barriers at the intersection (11).
To present the technique, signal retiming is prioritized
for 112 intersections in a Relative Performance Diagram
(RPD) by evaluating SF and DSB of all traffic move-
ments. Over 400,000 trajectories and 6.8 million
waypoints are analyzed. Three intersections are identi-
fied as having opportunities for tactical operational
improvement by adjusting the timing plan. A post-
retiming review of the traffic signal performance
measures is provided at the end of the chapter.

Using the discussed methodology, agencies can
proactively identify systemwide where there are not
only capacity challenges, but where tactical deploy-
ment of retiming resources is likely to result in an
improvement.

9.1 Study Locations

In this chapter, 112 intersections in central and west
Indiana, shown in Figure 9.1, are analyzed to identify
locations where signal timing modifications could
potentially reduce SF at a particular movement.
These intersections function in a wide variety of
conditions (e.g., different volumes and geometries)
and are operated and maintained by INDOT. Most
of the intersections are located in suburban areas with
low pedestrian demand. Figure 9.1b shows the inter-
sections chosen for retiming with callouts 1 to 3 which
will be discussed in detail in a subsequent section.

Figure 9.1 Analyzed intersections (map data: Esri, HERE, Garmin, FAO, NOAA, USGS, EPA, and NPS).

60



9.2 Systemwide Split Failure Assessment

As discussed in Chapter 7, when analyzing the
performance of a significant number of traffic signals,
it is useful to identify the locations that operate in the
most challenging conditions. Not only does this help
locate the intersections that require further attention,
but it also provides valuable information on the overall
health of the system.

Figure 9.2 shows all 112 intersections sorted by their
overall SF ratio during the PM peak (16:00–18:00 hrs.).
This is calculated by dividing the count of all vehicles
that experienced a split failure over the total number of
sampled vehicles that passed the intersection regardless

of movement. All signals have a value below 0.2, which
shows that, at the worst case (left-most intersection),
roughly one out of five sampled vehicles passing the
intersection experienced a split failure.

Although it is valuable to assess the overall SF ratio
of traffic signals, from an operational perspective, it is
more useful to evaluate systemwide performance by
movement. With this approach, practitioners can iden-
tify the source of congestion. Figure 9.3 shows the
movements of the 112 intersections sorted by their SF
ratio. Through movements are shown in Figure 9.3a
and left movements in Figure 9.3b. These enable practi-
tioners to identify which movements are the most
challenged in the system.

Figure 9.2 May 2022 weekday intersection split failure ratio from 16:00–18:00 hrs.

Figure 9.3 May 2022 weekday movement split failure ratio from 16:00–18:00 hrs.
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It is of interest to not only be aware of the worst per-
forming movements, but also the movements that can
be improved by reallocating green time. The following
section discusses a CV-based technique to identify which
signals are good candidates for signal retiming.

9.3 Traffic Signal Retiming Opportunities

Signals where potential retiming opportunities exist
are identified based on the following two criteria (90).

N The movement at the signal that has the highest SF level
needs to be identified. This movement will be referred to
as the ‘‘critical movement’’ and it is the target where
additional split (green time) is desired.

N Movements that could distribute split to the critical
movement need to be evaluated. These movements will
be referred to as ‘‘donor movement(s)’’. If the donor
movements are also saturated, then split rebalance (i.e.,
the practice of taking split from one phase and giving it
to another) cannot be performed. On the other hand,
if the donor movements are undersaturated, there is
potential to reduce SF by reallocating split from the
donor movement to the critical movement.

There are two types of donor movements. The first is
the conflicting movement of the critical movement
within the same barrier and ring. The second considers
movements on the opposite side of the barrier. Depend-
ing on which donor is used to identify retiming candi-
dates, different signals may appear as having retiming
options.

To determine retiming candidates, RPDs, which
are visualization tools based on the points discussed
above (11), can be used. RPDs differ depending on
which donor movements are evaluated and are further
explained below.

9.3.1 Conflicting Movement Relative Performance
Diagram

Conflicting Movement RPDs are based on the
analysis of conflicting movements as donor movements.
After identifying the critical movement, the conflicting
movement is evaluated to assess split rebalance (SR)
opportunities.

The conflicting movement is easily identifiable as it is
located next to the critical movement within the same
barrier in the ring diagram. Figure 9.4a shows how this
concept works. In this hypothetical case, the SB-left
movement (Phase 1) is identified as having the highest
level of SF in the intersection; hence, it is the critical
movement. Then, the NB-through movement (Phase 2)
is the potential donor as it is next to the critical
movement and is located within the same barrier and
ring. Therefore, if Phase 2 is undersaturated there might
be opportunities for a split rebalance.

Figure 9.4b shows the Conflicting Movement RPD
for the analyzed locations. Each marker represents an
intersection. The horizontal axis displays the SF ratio
of the critical movement. The vertical axis shows the SF
ratio of the conflicting (donor) movement. Only

intersections where at least 30 trajectories are sampled
for the donor and critical movement are plotted.
Dashed lines located at the global SF ratio (i.e., total
number of split failures divided by the total number of
sampled trajectories on the analyzed movements) are
plotted for reference (callout i). These dashed lines
divide the RPD in four quadrants.

N Top-left (0 intersections): This quadrant should always be
empty as there is no case in which the donor movement
has a higher SF value than the critical movement.

N Bottom-left (32 intersections): This quadrant shows the
intersections where both the critical and donor move-
ments have relatively small SF ratios; hence, no concerns
are raised.

N Top-right (6 intersections): This quadrant shows the
intersections where both movements have significant SF
and split rebalancing is not feasible. Nonetheless, these
intersections could potentially be good candidates to
evaluate for capital investments that would increase
capacity.

N Bottom-right (26 intersections): This quadrant shows the
intersections where the critical movement has significant
SF while the donor movement has values below the
global average. Here is where the locations with retiming
opportunities are found. The closer the donor movement
is to zero, the more likely it can provide split time to the
critical phase with no detrimental impact to itself.

Additionally, each datapoint is color-coded based on
the level of DSB of the critical movement. This is done
because even if an intersection seems like a good candi-
date for retiming, if vehicles are being blocked by a
downstream intersection, then the source of split failures
would not be at the analyzed location and additional
green time would not alleviate congestion (90).

Two intersections are identified as being good candi-
dates for signal retiming by analyzing Figure 9.4b.
Intersection 1, US-421 at W 116th St., has a critical and
donor movement with 0.35 and 0.01 SF, respectively.
This intersection is selected for its significant difference
in SF levels between the critical and donor movements.
Intersection 2, US-41 at E Margaret Ave., has a critical
and donor movement with 0.13 and 0.00 SF, respec-
tively. This intersection is selected for having the
highest level of SF on the critical movement with
non-existent split failures on the donor movement.
Furthermore, both intersections have no DSB on the
critical movement, which indicates that the source of
congestion is not a downstream intersection and signal
retiming may improve operations.

9.3.2 Opposite Barrier Relative Performance Diagram

Opposite Barrier and Conflicting Movement RPDs
are similar, with the only difference being that the
vertical axis on the former is based on the maximum SF
value from the movements on the opposite barrier.

Figure 9.5a shows how this concept works. In this
hypothetical case, the EB-through movement (Phase 4)
is identified as having the highest level of SF in the
intersection; hence, becoming the critical movement.
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Figure 9.4 Conflicting movement RPD.
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Then, all the SF values of the movements on the
opposite barrier (Phases 1, 2, 5, and 6) are evaluated
and the maximum is plotted on the RPD. The maxi-
mum is used because any other combination would
underestimate the level of congestion at a movement
within that block. In the example, the SB-left move-
ment (Phase 1) has the maximum SF value. If the
maximum is low, the block opposite the critical
movement is a viable option for further analysis. In

this case, Phases 2 and 6 are undersaturated and
opportunities for split rebalance are available. Since
this technique requires inter-barrier split distribution,
the same amount of time modified on one ring must be
modified on the other.

Figure 9.5b shows the Opposite Barrier RPD of the
signals analyzed. Two intersections are identified as
being good candidates for retiming. Intersection 1,
which is also identified as a good option from the



Figure 9.5 Opposite barrier RPD.
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Conflicting Movement RPD (Figure 9.4b), has a
critical movement and opposite maximum with 0.35
and 0.01 SF, respectively. Intersection 3, US-136 at
Waterfront Pkwy W Dr., has a critical movement and
opposite maximum with 0.33 and 0.00 SF, respectively.
This intersection is selected for having the highest level
of SF and no DSB on the critical movement with almost
non-existent split failures on the opposite maximum.
Interestingly, Intersection 2 does not appear to be a
good candidate when analyzing the Opposite Barrier

RPD, which is why it is important to assess both
versions of the RPD, so no retiming opportunities are
missed.

It is important to note that the movements at
Intersections 1 through 3 are not the worst performing
in the system, as shown in Figure 9.2 and Figure 9.3.
The highest split-failing intersections may not be good
retiming candidates due to lack of underutilized green
available for reallocation, and therefore are not high-
lighted by the RPDs as such.



9.3.3 Relative Performance Diagram Limitations

Current limitations of RPD-based identification of
retiming opportunities are that the method assumes a
sequence at each intersection and that signals use fixed
force-offs (i.e., every movement can receive unused time
from previous phases). For the first point, it is important
to distinguish leading phases that have been identified as
donors but may already be running efficiently due to gap
out. Additionally, timing plans that run floating force-
offs do not allow non-coordinated movements to inherit
unused green time and may be preventing the controller
from efficiently allocating additional green to those
movements that may be split-failing. Confirmation of
timing plans remotely or via field visits are necessary
before any adjustments are made.

Another limitation is that RPDs do not take into
consideration pedestrian phase timing requirements.
Under-utilized green splits may run concurrent with
pedestrian movements and split time cannot be reduced.
Future research would incorporate pedestrian volumes
(93) at pertinent intersections.

9.4 Signal Timing Modifications

In this section, the intersections selected from the
RPDs in Figure 9.4b and Figure 9.5b are further
evaluated. For each location, a deeper analysis of the
operational state of the different movements is per-
formed. Then, from the estimated performance and
insights gained from site-visits, signal timing modifica-
tions are implemented. Finally, a before-after analysis is
provided.

9.4.1 Intersection 1: US-421 at W 116th St.

Figure 9.6a shows an aerial view of the intersection
with its respective movements and phases. The coordi-
nated phases are 2 (SB-through) and 6 (NB-through).
Figure 9.6b shows a heatmap with the SF estimations
for all movements by TOD.

The critical movement is WB-through (Phase 4).
However, the EB-through movement (Phase 8) also
experiences significant levels of SF. Both phases have
lagging left-turns and do not inherit time from previous

Figure 9.6 Intersection 1: US-421 at W 116th St.
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phases in the sequence due to floating force-offs. There-
fore, it is desired to provide both phases (4 and 8)
additional split time and adjust the force-off option to
allow them to receive unused green.

Since this intersection appears as a good candidate
on both RPDs (Figure 9.4b and Figure 9.5b), time
could potentially be rebalanced from either conflicting

movements (Phases 3 and 7) or the opposite barrier
(Phases 1, 2, 5, and 6). However, since Phases 1, 3, 5,
and 7 already have delays close to the cycle length of
120 seconds (Figure 9.7a, callout i), it is decided to use
Phase 2 and 6 as donor movements as those vehicles
have significantly shorter delays (Figure 9.7a, callout
ii). Thus, the changes implemented for the PM peak

Figure 9.7 PPDs ring diagrams at Intersection 1 from 16:00–18:00 hrs.
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period based on the performance estimations, field
visits, and engineering judgment are the following.

N Donor phases (2 and 6): 4.8 seconds reduction of split
time and 1.8 seconds reduction of minimum gap time.
Further, set actuated-coordinated (split extension) to 7%

and 10%, respectively, to allow the phases to gap out.

N Critical phases (4 and 8): Additional 4.8 seconds of split
time and receive any additional unused time from Phases
2 and 6 by changing operations to simulate fixed force-
offs.

N Left-turn phases (1, 3, 5, and 7): Changed maximum
selection to be limited to the split time to allow Phases 4
and 8 to inherit all unused time by 2 and 6.

Figure 9.7 shows the ring diagrams representing the
sequence and barriers of this intersection with the PPDs
of each movement before and after the timing changes.
Figure 9.7b shows blue arrows indicating from which
phases time is taken and which phases time is given.
The benefits of the implemented changes can be
qualitatively observed.

Figure 9.8 shows an in-depth before-after SF assess-
ment of Intersection 1. Figure 9.8a shows the before
period, Figure 9.8b shows the timing changes imple-
mented, Figure 9.8c shows the after period, and Figure
9.8d shows the difference in split failures. Positive
results are shown on Figure 9.8d for the modified
phases with significant reduction of SF on the critical
phases (4 and 8) and no changes on the donors (Phases
2 and 6). Additionally, from field observations, it is
found that queues at the critical movement went from
having up to 20 vehicles during the before period to
only up to 8 vehicles during the after period.

9.4.2 Intersection 2: US-41 at E Margaret Ave.

Figure 9.9a shows an aerial view of the intersection
with its respective movements and phases. The coordi-
nated phases are 2 (NB-through) and 6 (SB-through).
Figure 9.9b shows a heatmap with the SF estimations
for all movements by TOD.

The critical movement is SB-left (Phase 1). This
location is identified as having retiming opportunities
from the Conflicting Movement RPD (Figure 9.4b)
with the donor movement NB-through (Phase 2). The
identification is corroborated by the heatmap show-
ing that this movement is not split-failing. Thus, the
changes implemented for the PM peak period based on
the performance estimations, field visits, and engineer-
ing judgment are the following.

N Donor phase (2): Reduced split time up to 5 seconds
between 16:00 and 16:15 hrs. and up to 3 seconds between
16:15 and 18:00 hrs. if there is demand on Phase 1.

N Critical phase (1): Additional split time up to 5 seconds
between 16:00 and 16:15 hrs. and up to 3 seconds
between 16:15 and 18:00 hrs. if there is demand.

Figure 9.10 shows the ring diagrams used at this
intersection with the PPDs of each movement before
(Figure 9.10a) and after (Figure 9.10b) the timing
changes. Figure 9.10b shows a blue arrow indicating the

effectuated split rebalance. The benefits of the imple-
mented changes can be qualitatively observed.

Figure 9.11 shows an in-depth before-after SF assess-
ment of Intersection 2. Figure 9.11a shows the before
period, Figure 9.11b the timing changes implemented,
Figure 9.11c the after period, and Figure 9.11d the
difference in SF. Positive results are shown on Figure
9.11d for the modified phases with significant reduction
of SF at the critical phase with no changes on the donor
(Phase 2).

9.4.3 Intersection 3: US-136 at Waterfront Pkwy W Dr.

Figure 9.12a shows an aerial view of the intersection
with its respective movements and phases. The coordi-
nated phases are 2 (EB-through) and 6 (WB-through).
Figure 9.12b shows a heatmap with the SF estimations
for all movements by TOD.

The critical movement is SB-left (Phase 7).
Interestingly, this movement presents high SF values
throughout the day, regardless of time. This indicates
that split failures occur during all levels of demand
experienced at this intersection, which points at the
issue not being lack of capacity. After a field-visit, it
was discovered that the split failures were caused by the
phase gapping-out prematurely. This occurred due to
the farthest back loop at the stop bar being broken
(Figure 9.12a). It was found that detection had already
been adjusted to work with the rest of the loop
detectors but the gap out time was not increased to
accommodate a reduced detection area causing vehicles
to experience split failures. Thus, the change imple-
mented based on the performance estimations, field
visits, and engineering judgment, is an increase of the
extension time at Phase 7 from 2.0 to 3.5 seconds to
accommodate for the shorter detection area.

Figure 9.13 shows the ring diagrams used at this
intersection with the PPDs of each movement before
(Figure 9.13a) and after (Figure 9.13b) the timing
changes. The benefits of the implemented changes can
be qualitatively observed.

Figure 9.14 shows an in-depth before-after SF
assessment of Intersection 3. Figure 9.14a shows the
before period, Figure 9.14b the timing change imple-
mented, Figure 9.14c the after period, and Figure 9.14d
the difference in SF. Positive results are shown for
Phase 7 with reductions on split failures.

9.5 Results

In this section, the aggregated change in performance
from 2 weeks before and after timing modifications are
implemented is presented for Intersections 1 to 3 on
Table 9.1 to Table 9.3, respectively. Levels of SF, AOG,
and average control delay are assessed for each
movement. Results for each 2-week period are calcu-
lated by dividing the count of vehicles that experienced
a SF, arrived on green, and the total delay of all
sampled vehicles combined by the number of sampled
vehicles.
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Figure 9.8 SF before-after assessment at Intersection 1 from 16:00–18:00 hrs.

68

Intersection 1 showed 30% and 9% reductions in SF,
15% and 8% increase in AOG, and 53 and 19 s/veh
reduction in delay for the benefited critical phases 4 and
8, respectively. Simultaneously, the donor phases 2 and
6 experienced no change in SF, 7% and 3% decrease on
AOG, and 7 and 3 s/veh growth in delay, respectively.
Intersection 2 showed a 12% reduction on SF, a 9%

increase on AOG, and a 17 s/veh reduction on delay for
the critical phase 1. Concurrently, the donor phase 2
had no changes in SF, a 7% decrease in AOG, and a
5 sec increase in delay. Intersection 3 showed a 9%

decrease in SF, a 21% increase in AOG, and a 3 s/veh
increase in delay for the critical movement, and
negligible changes for the donor movements.



Figure 9.9 Intersection 2: US-41 at E Margaret Ave.
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In general, SF is significantly reduced at the critical
movements without increasing the ratio of SF occurring
at the donor movements. At adjacent intersections from
the modified locations, the largest changes in perfor-
mance at the movement-level are only a 1% decrease in
SF, a 4% increase in AOG, and a 1.9 s/veh reduction in
delay. Thus, adjacent intersections are not negatively
impacted by the timing changes.

Additionally, changes in performance at the inter-
section-level considering all sampled vehicles regardless
of movement choice at each location are presented in

Table 9.4. All intersections have reductions in SF and
average control delay.

The presented techniques scale well for agencies to
apply to hundreds of intersections to prioritize loca-
tions and TOD where traffic signal timings can be
improved. Since these techniques and associated RPD
summary graphics are based exclusively on CV data,
they can be applied to any traffic signal system where
CV data is available without the need for vehicle
detection or communication infrastructure.



Figure 9.10 PPDs ring diagrams at Intersection 2 from 16:00–18:00 hrs.
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Figure 9.11 SF before-after assessment at Intersection 2 from 16:00–18:00 hrs.
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Figure 9.12 Intersection 3: US-136 at Waterfront Pkwy W Dr.

72



Figure 9.13 PPDs ring diagrams at Intersection 3 from 16:00–18:00 hrs.
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Figure 9.14 SF before-after assessment at Intersection 3 from 16:00–18:00 hrs.

74



TABLE 9.1
Performance measure (PM) change at Intersection 1

PM Period

Phase

1 Q21 3 q4 5 Q61 7 q8

SF Before 1% 0% 0% 35% 0% 0% 2% 9%
After 0% 0% 0% 4% 4% 0% 0% 0%
Difference -1% 0% 0% -30% 4% 0% -2% -9%

AOG Before 7% 49% 21% 3% 11% 57% 13% 12%
After 12% 42% 23% 18% 29% 54% 12% 20%
Difference 5% -7% 2% 15% 17% -3% -1% 8%

Avg. Delay Before 67 37 52 113 63 34 64 73
(s/veh) After 62 44 57 60 54 36 56 55

Difference -5 7 5 -53 -9 3 -8 -19

1Coordinated phases.

Note: q 5 additional green time, Q 5 reduced green time.

TABLE 9.2
Performance measure (PM) change at Intersection 2

PM Period

Phase

q1 Q21 3 4 5 61 7 8

SF Before
After
Difference

18%
7%

-12%

0%
0%
0%

7%
7%
0%

2%
2%
0%

0%
7%
7%

4%
1%

-2%

0%
0%
0%

0%
0%
0%

AOG Before
After
Difference

8%
18%
9%

85%
77%
-7%

11%
7%

-4%

8%
22%
14%

18%
20%
2%

31%
41%
10%

50%
0%

-50%

33%
22%

-11%

Average Delay
(s/veh)

Before
After
Difference

88
70

-17

20
25
5

85
85
0

67
61
-6

48
61
13

53
44
-9

-36
31
67

56
55
-1

1Coordinated phases.

Note: q 5 additional green time, Q 5 reduced green time.

TABLE 9.3
Performance measure (PM) change at Intersection 3

PM Period

Phase

1 21 3 4 5 61 q7 8

SF Before
After
Difference

–
–
–

0%
0%
0%

–
–
–

–
–
–

–
–
–

0%
0%
0%

9%
0%

-9%

–
–
–

AOG Before
After
Difference

–
–
–

77%
84%
6%

–
–
–

–
–
–

–
–
–

92%
85%
-7%

9%
30%
21%

–
–
–

Average Delay
(s/veh)

Before
After
Difference

–
–
–

24
17
-7

–
–
–

–
–
–

–
–
–

20
22
2

49
52
3

–
–
–

1Coordinated phases.

Note: q 5 additional extension time.

TABLE 9.4
Overall change in performance from 16:00–18:00 hrs.

Intersection Sampled Vehicles SF (%) AOG (%) Average Delay (s/veh)

1 +6 -3.7 +1.3 -5.5
2 +77 -1.6 +5.5 -5.5
3 -101 -0.2 -0.7 -0.9
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10. CLOSELY-COUPLED INTERSECTIONS

Traditional closely-spaced intersections are often
challenged by ever-increasing traffic demand due to
their tight coupling, structured phase timings, and
storage limitations. Alternative intersection designs
have been proposed over the years with the objective
of improving mobility and have been selectively
implemented at locations where an assessment of traffic
flow patterns may lead to increased efficiencies (94–96).

The proposed alternative designs often aim at
improving operations while incurring lower costs and
with greater flow than traditional configurations (94–
96). It is therefore important to systematically assess the
efficiency of such designs to compare operations with
traditional approaches and document the benefits of
the implementation. Previous performance analyses
have been done by means of simulation (94, 97–100)
and from ATSPMs (101, 102).

Estimating performance measures from simulation
requires traffic signal timing plans, peak factors,
volumes, and model configuration. Usually, this infor-
mation requires time-consuming data collection efforts
to develop an accurate model. With regards to data
from point sensors to derive ATSPMs, capital and
maintenance costs remain a barrier for widespread
implementation. Depending on the type and placement
of sensors deployed, origin-destination flows, and
overcapacity periods have been challenging to assess.

Additionally, closely-coupled signalized intersections
have their own operational challenges where the timing
at one location significantly affects others (94–96).
Therefore, it is important to assess interactions between
each intersection as a system. However, even if compre-
hensive sensing infrastructure is implemented, at a
minimum, floating car data is needed to measure the
performance of a single vehicle travelling through a set
of adjacent signals holistically. This limitation hinders
the analysis of closely-coupled intersection systems such
as conventional diamond interchanges (CDIs).

The advantages of CV trajectory data are its wide
coverage and short reporting intervals. With said chara-
cteristics, it is possible to determine vehicle experience
by traveled path in an intersection system. Thus, it is of
interest to count with CV-based techniques to evaluate
the performance of closely-coupled intersections. This
chapter discusses the use of CV trajectory data, parti-
cularly a PPD variation called Extended Purdue Probe
Diagram (EPPD), to evaluate signal performance at the
following conventional and alternative closely-coupled
intersection systems:

N three- and four-phase CDIs (12),

N diverging diamond interchanges (DDIs) (13), and

N continuous flow intersections (CFIs) (14).

10.1 Conventional Diamond Interchanges

CDIs transfer traffic between freeways or service
roads and two-way surface streets (103). Full CDIs

consist of a pair of closely-coupled ramp intersections
with relatively close interlocked left-turns, four entry
points, and four exit points (104–106). CDIs are crucial
for urban transportation networks experiencing high
volumes; hence, their efficient operation is critical.

Due to the close proximity of the intersections at a
CDI, coordinating the ramp signals to manage the
internal queues is critical to ensure they do not spill
back and block upstream movements. To effectively
manage a CDI, practitioners must evaluate the pro-
gression of vehicles traversing the interchange system
and their effect on each approach (104). Although there
are design procedures for developing this signal
phasing, variations in demand and driver behavior
can significantly impact operations.

With the available high-resolution CV data, it is pos-
sible to measure a sample of vehicles’ experience
traversing a CDI on a movement-by-movement basis.
This section discusses CV-based methodologies to
measure AOG, SF, DSB, and movement-based control
delay at CDIs (12). The application of these techniques
is presented by analyzing operations at two diamond
interchanges with three- and four-phase control.

10.1.1 Study Locations

Two CDIs with different control schemes are evalu-
ated. Figure 10.1 shows the studied diamond inter-
change at I-465 and Michigan Rd. located in Indiana-
polis, Indiana. Figure 10.2 shows the analyzed CDI at
George Bush Turnpike and Preston Rd. located north
of Dallas, Texas. Each intersection at the CDIs has
been marked as X, Y, W, and Z to facilitate their
reference. The most relevant difference between these
two locations for the purposes of this analysis is the
proximity of their intersections since it significantly
affects operations. For the location in Indiana, the
internal distance between stop bars is 500 ft. (152 m.).
In contrast, the CDI in Texas has only 240 ft. (73 m.) of
separation between the internal stop bars.

10.1.2 Signal Phasing

There are two main signal control techniques
implemented at CDIs: three-phase and four-phase
(105–107). Depending on the chosen scheme, opera-
tions can significantly vary. Each control’s implementa-
tion is briefly described below.

10.1.2.1 Three-phase control. Three-phase control is
commonly used at diamonds where the intersections are
located more than 400 ft. (121 m.) apart (106). Such is
the case of the study location in Indiana (Figure 10.1),
where the intersections are 500 ft. away from each
other. Figure 10.3 illustrates the three-phase control
implemented at this location. Figure 10.3a shows a
common representation of the phases on a simplified
geometry diagram of the CDI. Figure 10.3b shows
the ring structure for the left intersection (X) and
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Figure 10.1 I-465 at Michigan Rd. in Indianapolis, Indiana (map data: Google).

Figure 10.2 George Bush Tpke. at Preston Rd. in Dallas, Texas (map data: Google).
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Figure 10.3c shows the ring structure for the right
intersection (Y).

The three phases are the entering arterial, the internal
left-turn, and the ramp movement at each signal. The
distance between X and Y provides storage for ramp
traffic. If no queue spillback occurs, three-phase opera-
tion usually generates less delay than four-phase con-
trol and facilitates two-way progression on the arterial
when the offsets between the two signals are close to
zero (106, 107).

10.1.2.2 Four-phase control. Four-phase control is
typically used where interior left-turn volumes are high
and the spacing between intersections is less than 400 ft.
(122 m.) (106, 107). Such is the case of the study

location in Texas (Figure 10.2), where the intersections
are 240 ft. apart. Figure 10.4 illustrates the four-phase
control implemented at this location. Figure 10.4a
shows a typical phase numbering scheme. Figure 10.4b
shows the ring structure for the left (W, top ring) and
right (Z, bottom ring) intersections.

Both intersections of the interchange are tightly
coordinated and are operated as if they were one large
intersection. The four phases are the two arterial
movements and the two ramp movements. If proper
cycle length, splits, and offsets are set and volumes are
manageable, this type of control provides progression
through the interchange to major movements while
efficiently managing the queues within the limited
internal storage (106, 107).



Figure 10.3 Three-phase diamond interchange signal control in Indiana.
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10.1.3 Extended Purdue Probe Diagram

As the critical objective for CDI operation is to keep
the internal storage free of long queues to avoid
spillback that blocks adjacent arterial and ramp move-
ments, the progression of vehicles needs to be
evaluated. Even though a PPD (Figure 5.8b) provides
insight into the quality of progression at an intersec-
tion, it does so for each internal movement in isolation
and does not discern the origin of vehicles from
adjacent signals. To overcome this limitation, EPPDs
can be utilized.

An EPPD is a visualization tool that shows the queue
and progression quality for a travel path through
multiple signals in a system to help assess performance
based on the origin of vehicles. EPPDs characterize the
complete movement of vehicles through a system of
signals. This is accomplished by linear-referencing the
distinct trips and pivoting at the last intersection’s FS
of a complete origin-destination path. Each approach
is independently color-coded based on the number of
stops. A trajectory’s transition segment from one
intersection to the next is colored black. Additionally,
the location of every signal’s FS is indicated by
horizontal lines for spatial referencing. Finally, an
FFT is included to allow for delay estimations.

In the case of CDIs, only two intersections need to be
included in an EPPD. The sampled volume distribu-
tions for the eight main origin-destination paths of the
three- and four-phase controlled interchanges are
provided in Table 10.1 and Table 10.2, respectively.
This information helps identify which paths have the
highest demands and are more likely to congest the
storage area.

Figure 10.5 shows EPPDs for four paths of August
2020 weekdays vehicle trajectories that traversed the
three-phase CDI in Indiana from 16:00–18:00 hrs. The
image in the lower left corner of all the subfigures has a
movement arrow that graphically illustrates the path of
vehicles analyzed in each EPPD. All EPPDs reveal
significant number of vehicles stopping before entering
the interchange (callout i) and most of them show
internal stops (callout ii), except for Figure 10.5d. From
this subfigure, it is apparent that the CDI is timed with
the objective of serving and progressing vehicles coming
off the WB ramp to SB as efficiently as possible, with
essentially none of those vehicles having to stop
internally. By connecting the trajectories across the
two signals, the EPPD is able to shed light on efficiency
trade-offs made in the signal timing plan.

Figure 10.6 shows EPPDs for four paths of August
2020 weekdays vehicle trajectories that traversed the



Figure 10.4 Four-phase diamond interchange signal control in Texas (B1 5 barrier 1, B2 5 barrier 2, OL 5 overlap).

TABLE 10.1
Sampled volume distribution at the three-phase interchange in Indiana for August 2020 weekdays from 16:00–18:00 hrs.

Origin

(external movements)

Destination (internal movements)

Y SB-through Y SB-left X NB-through X NB-left

X SB-through 14% 22% – –

X WB-left 8% 0% – –

Y NB-through – – 23% 11%

Y EB-left – – 22% 0%

TABLE 10.2
Sampled volume distribution at the four-phase interchange in Texas for August 2020 weekdays from 16:00–18:00 hrs.

Origin

(external movements)

Destination (internal movements)

Z SB-through Z SB-left W NB-through W NB-left

W SB-through

W WB-left

Z NB-through

Z EB-left

21%

4%

–

–

18%

0%

–

–

–

–

29%

13%

–

–

15%

1%
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four-phase CDI in Texas from 16:00–18:00 hrs. Similar
to the interchange in Indiana, the CDI in Texas shows
significant number of vehicles stopping before entering

the system. However, once vehicles enter the inter-
change, they continue their progression unimpeded
(callout i), which is the main benefit of properly



Figure 10.5 EPPDs for three-phase diamond in Indiana (map data: Google).
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implemented four-phase control. This is an important
characteristic as closely spaced intersections have a
higher risk of getting blocked by internal queues.
However, the four-phase CDI operates similarly as a
split-phased signal, which contributes to increased
congestion on the movements entering the CDI (callout
ii) shown by vehicles stopping more than once.

10.1.4 Summary Performance by TOD

The EPPDs provide a graphical characterization of
progression, stops, split failures, downstream blockage,
and delay for a specific time period. However, it is
important to have an overview of how all the move-
ments perform by TOD to effectively evaluate all

timing plans. To address this need, graphical heat maps
summarizing performance by movement and by TOD
are generated.

Figure 10.7 and Figure 10.8 show heatmaps with 15-
minute resolution indicating the percentage of vehicles
arriving on green at the eight external and internal
movements. For the three-phase controlled interchange
(Figure 10.7), it is shown how some internal movements
have AOG around 50% (callout i), with NB-left having
poor progression (callout ii, ,0% AOG) and SB-
through having good progression (callout iii, ,100%

AOG). For the four-phase controlled interchange (Figure
10.8), all internal movements have efficient progression as
vehicles do not have to stop before exiting the CDI
(callout iv).



Figure 10.6 EPPDs for four-phase diamond in Texas (map data: Google).
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Figure 10.9 and Figure 10.10 show the percentage of
sampled vehicles that experienced split failures at the
three- and four-phase CDI intersections, by TOD. The
three-phase controlled CDI (Figure 10.9) has few split
failures throughout the day. The four-phase controlled
CDI (Figure 10.10) has significant split failures at most of
the external movements during different TOD (callout i)
but no split failures on the internal movements.

Figure 10.11 and Figure 10.12 show heatmaps indica-
ting the level of DSB at different movements. For the
CDI in Indiana (Figure 10.11), the NB-through move-
ments are being significantly obstructed soon after they
pass each intersection during the PM peak period bet-
ween the 15:00 and the 18:00 hrs. (callout i). This is of parti-
cular interest as DSB is a consequence of long downstream

queues. In the case of the external NB-through movement
(Figure 10.11b), this means that the internal CDI queue is
long enough to affect progression. In contrast, four-phase
control (Figure 10.12) has minimal number of vehicles
experiencing downstream blockage.

Finally, Figure 10.13 and Figure 10.14 show the LOS
based on control delay (Table 5.1) for the relevant
movements at the three- and four-phase CDI intersec-
tions, respectively. The effects that poor progression
and congestion have on delay are illustrated.

10.1.5 Results and Discussion

Table 10.3 shows a summary of the evaluated
performance measures for the PM peak period (16:00–



Figure 10.7 August 2020 weekdays AOG by approach and movement for the three-phase diamond interchange in Indiana
(ext 5 external, int 5 internal).

Figure 10.8 August 2020 weekdays AOG by approach and movement for the four-phase diamond interchange in Texas
(ext 5 external, int 5 internal).
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18:00 hrs.). Although these intersections have different
demand volumes and configuration, it is interesting to
compare their operation as they illustrate tradeoffs
between three- and four-phase control. Trajectory data
for the four-phase CDI demonstrated high internal
progression (99% AOG), as is intended by its signal
control. In contrast, the three-phase control showed only
moderate internal progression (64% AOG). Regarding
downstream blockage, the operation of the four-phase

signal resulted in 1% of internal DSB despite having
saturated external movements that have approximately
11% SF. The three-phase control has substantially higher
internal DSB (7%), despite having a much smaller
percentage of SF on the exterior movements (2%).

The ability to have performance measures such as
those shown in Table 10.3 provides quantitative infor-
mation for an agency to tune their TOD schedule.
Further, EPPDs (Figure 10.5 and Figure 10.6) provide



Figure 10.9 August 2020 weekdays SF by approach and movement for the three-phase diamond interchange in Indiana

Figure 10.10 August 2020 weekdays SF by approach and movement for the four-phase diamond interchange in Texas
(ext 5 external, int 5 internal).
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a holistic view of origin-destination dynamics to sup-
port or reinforce signal timing objectives.

10.2 Diverging Diamond Interchanges

Over the past decade, several DDIs have been built in
the United States with the objective of reducing

construction costs, improving safety, and enhancing
traffic operations (95). A DDI is an alternative
interchange in that it implements directional crossovers
on each end of the crossing street. By switching through
movements to the left side of the road within the
interchange, conflicts between left-turning vehicles and
opposing through traffic from the crossing street are
eliminated (95, 108).



Figure 10.11 August 2020 weekday DSB by approach and movement for the three-phase diamond interchange in Indiana
(ext 5 external, int 5 internal).

Figure 10.12 August 2020 weekday DSB by approach and movement for the four-phase diamond interchange in Texas
(ext 5 external, int 5 internal).
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This section uses CV trajectory data to generate
performance measures for a DDI in Indiana (13). EPPDs
are generated and a variation to evaluate critical queue
dynamics within the crossover (i.e., internal) storage by
vehicle origin is discussed. Further, AOG, SF, DSB, and

traditional LOS are calculated for different segments of
the DDI. By utilizing the presented techniques, agencies
can evaluate the performance of any DDI in their
jurisdiction to identify movements and TOD periods that
require timing adjustments.



Figure 10.13 August 2020 weekday LOS by approach and movement for the three-phase diamond interchange in Indiana
(ext 5 external, int 5 internal).

Figure 10.14 August 2020 weekday LOS by approach and movement for the four-phase diamond interchange in Texas
(ext 5 external, int 5 internal).
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10.2.1 Study Location

Over 7,000 trajectories and 130,000 waypoints are
analyzed to evaluate the performance at the DDI
located at I-69 and E Dupont Rd. in Fort Wayne,
Indiana, from the 7th to the 11th of June 2021 (Figure
10.15). This DDI was opened to traffic in 2014 and has
an AADT of 56,000 VPD on the interstate and 21,000
VPD on the crossing road.

Figure 10.15c shows the analyzed DDI. The most
critical segment of a DDI is the crossover storage. If
vehicles in this area fail to be discharged efficiently,
delays and saturation at the approaches of the entry
crossover could significantly increase (102). The cross-
over storage can receive vehicles from the external street
and from the interstate exit ramps. Therefore, the
performance of both approaches and the crossover
storage needs to be monitored.



TABLE 10.3
Timing implementation PM peak performance comparison

Performance Measure Three-Phase Control (%) Four-Phase Control (%)

Internal Movements AOG

Internal Movements SF

Internal Movements DSB

External Movements AOG

External Movements SF

External Movements DSB

64

0

7

38

2

8

99

0

1

16

11

0
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When presenting DDIs’ performance results, it is
important to differentiate two attributes: the source of
vehicles, and which crossover signal is being evaluated.
To differentiate these attributes throughout the analy-
sis, the following naming format is employed: source-
direction-turn_type-intersections_crossed. Usage is as
follows.

N Source: The source of traffic before entering the DDI. If
coming from the external crossing street, E; if coming
from the interstate’s ramp, R.

N Direction: Direction of approach entering the DDI: SB,
WB, NB, and EB.

N Turn type: if through, T; if left, L.

N Intersections crossed: Which crossover area signals are
crossed for the presented results. If only signals in area 1
are crossed, then 1; if signals in area 1 and then 2 are
crossed, then 12; if only signals in area 2 are crossed, then
2; if signals in area 2 then 1 are crossed, then 21.

For example, results for traffic traveling NB at the
exit ramp, turning left into the DDI, and passing
traffic signals on crossover areas 2 and 1 will be labeled
R-NB-L-21.

10.2.2 Phasing Schemes

The utilized phasing schemes at DDIs are based on
the number of critical movements at each location.
Critical movements are those prioritized by an agency
(normally based on demand). The following are three
common phasing scenarios (95).

N Two-critical-movement: Focuses on progression for
either the external cross-street movements or the off-
ramp movements. It is most useful for DDIs with one
dominant movement.

N Three-critical-movement: Focuses on progression for the
external cross-street movements and the off-ramp left-
turn movements. It is most useful for DDIs with one or
multiple dominant movements.

N Four-critical-movement: Focuses on progression for
both the cross-street movements and the off-ramp
movements. It is most useful for DDIs with low to
moderate volumes, either dominant through or left-turn
movements, and short to medium crossover storage.

Depending on each agency’s objectives, CV-based
performance measures provide insights on whether the
phasing scheme being employed manages operations as
desired.

10.2.3 Extended Purdue Probe Diagram

Since the signals’ dynamics between crossover areas 1
and 2 (Figure 10.15c) are crucial for the efficient
operation of DDIs, it is important to provide analytical
performance measures (and graphics) that provide
insight on the operational status at both locations
simultaneously. This can be accomplished with EPPDs.

Figure 10.16 shows EPPDs for the four different traffic
sources shown on Figure 10.15c from the 16:00 to the
18:00 hrs. between the 7th and 11th of June 2021. The
location of the traffic signals’ far side are indicated with
blue lines and labelled 1 and 2. In an EPPD, as with a
conventional PPD (Figure 5.8b), vehicle delay can be
assessed by analyzing how far away from the FFT a
trajectory approaches the first signalized intersection. The
farther away from the FFT a trajectory starts, the longer
the experienced delay at the DDI. AOG can be evaluated
by comparing the amount of green-colored (no-stops,
arrived on green) and non-green-colored (one or more
stops) trajectories. The larger the proportion of green
trajectories is, the better the progression. Saturation can
be assessed by calculating SF and downstream blockage
can be identified by looking at the vehicle’s progression
immediately after crossing the FS of each intersection
(blue lines).

Some interesting insights provided by the EPPDs in
Figure 10.16 are that vehicles following most move-
ments have to stop before entering the DDI (callout i),
with the exception of Figure 10.16c (callout ii). Simi-
larly, a significant number of vehicles following most
movements have to stop before exiting the DDI (callout
iii), with the exception of Figure 10.16d (callout iv).
Further, the following qualitative statements can be
derived from Figure 10.16.

N Vehicle trajectories going EB from the external street
(Figure 10.16a) and SB from the ramp (Figure 10.16b)
experience the most delay since they approach the
intersections the farthest away from the FFT.

N Vehicle trajectories traveling EB from the external street
(Figure 10.16a) are experiencing split failures when
approaching both intersections.

N Vehicles trajectories traveling NB from the ramp (Figure
10.16b) are experiencing split failures when approaching
Intersection 2.

10.2.3.1 EPPD by source. The most critical segment
of a DDI is its crossover storage. To facilitate the



Figure 10.15 Diverging diamond interchange location.
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qualitative assessment of progression patterns, and to
evaluate queue-length for spillback in the critical
interior crossover storage, an EPPD variation that
provides information on progression by traffic source is
presented.

In this variation of the EPPD, vehicle trajectories
coming from the external street and the ramp that share
lanes on the crossover storage are superimposed. When
doing this, the progression dynamics between signals
at the crossover areas 1 and 2 become apparent.

Figure 10.17 shows EPPDs by source for the different
movements at the study location from the 16:00 to the
18:00 hrs. between the 7th and 11th of June 2021.

For the EB-through (red) and SB-left (blue) move-
ments (Figure 10.17a), it can be seen that there is a
significant number of vehicle trajectories coming from
both sources stopping when approaching signal 1 and
signal 2 (callout i). Most of the traffic in this figure is
from the EB-through approach, from which approxi-
mately 50% must stop at signal 2. For the analyzed



Figure 10.16 DDI EPPDs (map data: Google, IndianaMap Framework Data, Maxar Technologies, U.S. Geological Survey, and
USDA Farm Service Agency).
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period, 89% of the trajectories traveled EB-through,
and only 11% traveled SB-left.

For the WB-through (red) and NB-left (blue) move-
ments (Figure 10.17b), it can be observed that there are
some vehicle trajectories from both sources stopping
when approaching crossover 1 (callout ii). However, it is
shown how most vehicle trajectories coming NB from the
ramp can progress without stopping through the signal at
2 (callout iii). This is an indication that the NB-left

movement at signal 2 has a well-timed offset with signal 1
and vehicles clear the crossover storage area without
stopping. For the analyzed period, 66% of the trajectories
traveled WB-through and 34% traveled NB-left.

10.2.4 Summary Performance by TOD

Heatmaps summarizing performance measures by
TOD, in 15-minute periods, between the 7th and 11th



Figure 10.17 Source DDI EPPDs (map data: Google, IndianaMap Framework Data, Maxar Technologies, U.S. Geological
Survey, and USDA Farm Service Agency).
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of June 2021 are provided in Figures 10.18, 10.19,
10.20, and 10.21. In these graphics, the trajectories’
source is specified; further, if individual (1 or 2) or a
combination (1 and 2) of traffic signals are analyzed is
also indicated. Additional details on how to interpret
these graphics are provided as follows.

N Figure 10.18: Percentage of sampled vehicles arriving on

green. This graphic is useful when assessing the level of

progression. From this figure, it is shown how some

vehicles traveling SB from the ramp arrive on green at

the signal at 1 (callout i), but virtually none do so at 2

(callout ii). On the other hand, some vehicles traveling

NB from the ramp have to stop when approaching 2

(callout iii), but most of them progress without stopping
at 1 (callout iv).

N Figure 10.19: Average delay LOS (Table 5.1). Even if

this graphic is not specifically useful for operational

decisions, it provides practitioners with a standard



Figure 10.18 AOG summary results.
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measurement of delay by approach. This graphic can
also be adapted to provide alternative numerical scales

for delay.

N Figure 10.20: Percentage of sampled vehicles experiencing

split failures. This graphic provides an indication of when
and where approaches are operating at overcapacity.
Those cases may be opportunities to rebalance split time.

For this performance measure, traffic signals need to be

analyzed individually as SF intrinsically describes opera-

tions at a single traffic signal. Of special concern are the

TOD where vehicles traveling EB from the external street

and SB from the ramp experience split failures within the

crossover storage (callout i), which means that long queues

may be forming inside this critical area.



Figure 10.19 LOS summary results.
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N Figure 10.21: Percentage of sampled vehicles experien-

cing downstream blockage. This graphic is useful to

identify locations that are being affected by a down-

stream queue. For this performance measure, as for SF,

traffic signals need to be analyzed individually. For the

studied location, it is shown how the downstream traffic

signals are affecting the progression of vehicles entering

the DDI traveling SB (callout i) and NB (callout ii).

10.2.5 Discussion

Figure 10.16 to Figure 10.21 provides valuable
information on the operational performance at the
analyzed DDI. Based on the presented results, vehicles
traveling WB-through on the external street and
coming NB-left from the interstate ramp traverse the



Figure 10.20 SF summary results.
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DDI with less delay, have better progression, and is less
saturated than the other analyzed movements. The
performance can be compared to the agency’s objec-
tives. If operation is not as expected, timing modifica-
tions can be implemented.

The framework discussed in this section can be used
to assess the performance of any DDI where CV

trajectory data is available. As more DDIs are
constructed, efficiency evaluations can support their
adoption and adjust if necessary.

10.3 Continuous Flow Intersections

Heavy left-turn movements can cause significant
operational challenges at conventional signalized inter-



Figure 10.21 DSB summary results.
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sections. Some typical solutions are the improvement of
alternative routes, widening the right-of-way, lane
channelization, and the implementation of special
signal phasing. If these techniques cannot be employed
or are insufficient, grade separation solutions might be
considered. Nevertheless, the cost and construction

time required for grade separated intersections repre-
sent major constraints (109).

CFIs, also known as displaced left-turns (DLTs),
provide an alternative at-grade intersection design that
can improve operations at locations with significant
left-turning movements (94, 109). At a CFI, one or



more left-turn movements are displaced to the left of
oncoming traffic upstream from the main intersection.
Once left-turning vehicles reach the main intersection
they can proceed at the same time as opposing through
traffic. This approach allows for the reduction of traffic
signal phases and conflict points at the main intersec-
tion which can improve operations (94, 96).

This section uses CV trajectory data to generate
performance measures for a CFI in Utah (14). EPPDs
are generated and progression, delay, and split failures
at the CFI are evaluated. Additionally, the distribution
of stops along relevant approaches is analyzed to
characterize the length and location of queues to
identify areas of opportunity.

10.3.1 Study Location

Over 4,500 trajectories and 105,000 waypoints are
analyzed from August 2021 weekday data to evaluate
the performance at the CFI located at Bangerter
Highway and 3500 S in West Valley City, Utah
(Figure 10.22). This CFI is located in a suburban
area and usually serves over 30,000 vehicles approach-
ing the intersection from the north and south, and
14,000 vehicles approaching from the east and west,
daily (68).

Figure 10.22c shows an aerial view of the studied
intersection. This partial CFI (94) has displaced left-
turns only at the major street (Bangerter Hwy, N-S).
The system is comprised of the following three sig-
nalized intersections.

N North Crossover (NC): This signal controls the flow of

vehicles traveling NB-through (light blue) and vehicles

traveling SB crossing over (dark blue) that will then turn

left at the main intersection. Vehicles traveling SB that

continue through at the main intersection are not

affected by this signal.

N Main Intersection (MI): This signal controls all the

movements that pass through this intersection. Since the

major street left-turning vehicles have been crossed to the

left of opposing traffic upstream from the MI, all

through and left movements on the major street can

occur simultaneously unless the adjacent pedestrian walk

phases are called.

N South Crossover (SC): This signal controls the flow of

vehicles traveling SB-through (light blue) and vehicles

traveling NB crossing over (dark blue) that will then turn

left at the MI. Vehicles traveling NB that continue

through at the MI are not affected by this signal.

By crossing over left-turning vehicles upstream
of the MI, the phases required for left-turn move-
ments are not needed; hence, signal efficiency is
improved (109). For movements that must traverse
two signals, it is imperative to provide efficient pro-
gression on the exit (last) signal. This is because storage
at the exit signal is limited, and congestion could lead
to queue spillback that would significantly affect
operations.

10.3.2 Signal Phasing

Figure 10.23 shows conventional signal phasing for
partial CFIs (94, 96). All the movements are served in
four intervals. For every instance where vehicles flow
from the MI towards a crossover (Intervals 1 to 3), both
the NC and SC intersections allow for vehicles to travel
outbound from the CFI. Only when the minor street
through movements traverse the intersection (Interval
4), vehicles cross over upstream of the MI to eventually
turn left.

10.3.3 Extended Purdue Probe Diagram

Since the dynamics between the crossover and the
main intersection are crucial for the correct operation
of CFIs, it is important to provide analytical perfor-
mance measures and graphics that show operational
status for a series of two movements simultaneously.
This can be accomplished with EPPDs.

Figure 10.24 shows EPPDs from August 2021
weekdays for the CFI’s major street through and
displaced-left movements during the PM peak period
between the 16:00 and 18:00 hrs. In all four movements
some vehicles stop before entering the CFI (above the
upmost horizontal blue line), but once in the system
(between horizonal blue lines) they effectively progress
through the second intersection (callout i) as indicated
by high AOG values ranging from 83% to 100%. Well
synchronized offsets are important to avoid queue
spillback from the limited storage areas inside the CFI.
Further, it can be stated that these movements operate
in undersaturated conditions as no significant levels of
split failures occur.

Figure 10.25 shows PPDs and EPPDs from August
2021 weekdays for the CFI’s minor street through
and left movements during the PM peak period. The
through WB and EB movements (Figure 10.25a and
Figure 10.25c, respectively) only have to pass one
signalized intersection while the left-turning WB and
EB movements (Figure 10.25b and Figure 10.25d,
respectively) must traverse two. Similar to the major
street movements, the minor street left movements have
very efficient progression when exiting the CFI (callout
i), with AOG values of 100%. However, all minor street
movements show a significant number of vehicles
experiencing split failures before entering the intersec-
tion, indicating oversaturated conditions.

10.3.4 Summary Performance by TOD

PPDs and EPPDs provide traffic signal performance
measures at the movement-level for a defined time
period. To assess all movements simultaneously by
TOD, a series of heatmaps summarizing performance
at 15-minute intervals are provided. This approach
permits the prompt identification of operational
challenges that can lead to potential improvement
opportunities.

94



Figure 10.22 Continuous flow intersection location.
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Figure 10.26 shows heatmaps indicating the percen-
tage of vehicles experiencing split failures at the three
signalized intersections that comprise the analyzed CFI.
No significant challenges are observed at the crossovers
(Figure 10.26b and Figure 10.26d). However, at the
MI (Figure 10.26c), side street movements show high
SF during the 14:15–18:30 hrs. period. Since the

movements on the major street do not present any
congestion challenges, split rebalance could potentially
benefit the minor street left-turn movements (Interval 3
on Figure 10.23). Significant operational improve-
ments of the WB-through (WBT) and EB-through
(EBT) movements are difficult as the maximum green
time is capped by the travel time from the crossovers



Figure 10.23 Conventional signal phasing for partial CFIs (96).
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to the MI of the SB-left (SBL) and NB-left (NBL)
movements.

Figure 10.27 shows the percentage of sampled vehi-
cles that arrive on green at each intersection. Some
vehicles entering the CFI system (callout i) have to stop
and hence present moderate to poor AOG levels.
However, once the entry intersection is passed, pro-
gression at the exit intersection (callout ii) is efficient
and AOG is high. This helps maintain minimal queues
on the inner storage areas.

Figure 10.28 shows heatmaps indicating the LOS
experienced at each movement. To facilitate the
evaluation of the graphic, vehicle movements that enter
the system on the major street are indicated with
callout i, and vehicle movements that exit with callout
ii. From the three metrics, it is evident that the
intersection was timed with the objective of minimizing
congestion for the north and south approaches during
the PM peak period and its shoulder periods, due to
their improved AOG and LOS numbers, while the
minor street experiences more split failures during the
same period.

10.3.5 Stops Distribution

Figure 10.29 shows linear referenced histograms of
the location relative to the exit intersections’ FS where
vehicles first stop while approaching each intersection
for movements that pass two signals at the studied CFI
during August 2021 weekdays between 16:00 and 18:00
hrs. The distributions are calculated by identifying the

location where vehicles come to a full stop for the first
time upstream of each signalized intersection in the
system. Then, the recorded values are normalized as a
percentage of the total number of sampled vehicles for
the evaluated movement.

This analysis can help identify approaches where
stops or inefficiencies occur. For example, Figure 10.29
shows how few vehicles stop at the through movements
that traverse the crossover intersections (NBT and
SBT). In contrast, a significant number of left-turning
vehicles stop before entering the CFI. More impor-
tantly, for the internal approaches with limited storage,
15% of vehicles traveling NBL stop between MI and SC
(callout i), and 17% of vehicles traveling SBL stop
between MI and NC (callout ii). Given the distance of
the first stops between the MI and the crossovers, it is
unlikely that there are any capacity issues as the queues
do not extend to the crossovers. However, it might be
of interest to investigate further the cause of the stops
and whether offset or sequence adjustments can be
made to prevent NBL and SBL vehicles from stopping
at the MI.

10.3.6 Discussion

As CFIs are deployed, it is important to holistically
measure performance across the multiple signals that
compose the system. Figure 10.24 to Figure 10.29 have
provided valuable information on the operational
performance of the analyzed CFI. Based on the
presented results, a significant number of vehicles have



Figure 10.24 EPPDs for major street movements (map data: Google).
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to stop before entering the CFI, but once the first signal
is passed, progression is mostly unimpeded for the
sampled vehicles until they exit the system. This
confirms the correct operation of the CFI as it is
critical to keep internal storage areas free of long

queues. To further assess queue characteristics at a
closely-coupled intersection, visualization such as the
one presented in Figure 10.29 can be used to evaluate
queue-lengths and the ratio of vehicles that have to
stop.



Figure 10.25 PPDs and EPPDs for minor street movements (map data: Google).
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Figure 10.26 SF summary results at all signals at the CFI for August 2021 weekdays (map data: Google).
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Figure 10.27 AOG summary results at all signals at the CFI for August 2021 weekdays (map data: Google).
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Figure 10.28 LOS summary results at all signals at the CFI for August 2021 weekdays (map data: Google).
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Figure 10.29 Initial stops distribution as a percentage of the total sampled trajectories (map data: Google).
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11. ROUNDABOUTS

A roundabout is a type of circular intersection where
vehicles travel around an island. Yield control is
utilized for entering traffic, there are channelized
approaches, and specific geometries are implemented
to modulate speeds on the circulatory roadway (110).
With over 8,000 roundabouts in the United States
(111), this type of intersection has become a popular
alternative to traffic signals (112). It is therefore
important to develop techniques that allow for a
systematic evaluation of roundabouts’ efficiency.

Roundabout performance measures focus on the
estimation of capacity and operational characteristics,
such as delay, LOS, and queue-length. Capacity esti-
mations are generally associated with entrance capacity
which estimates the number of vehicles that can be
safely accommodated at a roundabout (113–116). The
estimations of operational characteristics of round-
abouts have been derived from various data sources
and methods such as video detection (117), wireless
magnetometers (118, 119), Bluetooth probe data (120),
modelling (121), and microsimulation (122–124).
Further, the HCM defines techniques for estimating
control delay, LOS, and queue-length based upon
demand volumes (64).

However, applying these techniques agency-wide to
assess performance is labor-intensive and costly due to
the extensive roundabout count data collection effort
required for conducting the engineering analysis or
simulation (112). Furthermore, local driver behavior
needs to be calibrated for each analysis as it can
significantly vary due to the novelty of the design for
some users (122–124). These requirements pose sig-
nificant challenges when trying to scale the analysis.

This chapter presents CV-based techniques to
estimate roundabout delay, LOS, queue-lengths, and
origin-destination characteristics (15). Eliminating the
need to collect turning movement counts dramatically
improves the scalability of the analysis. Over 264,000
trajectories and 3.6 million waypoints are analyzed to
describe these methodologies and their application is
demonstrated by assessing over 100 roundabouts in
Carmel, Indiana.

11.1 Control Delay

The HCM proposes LOS as the main performance
indicator for both interrupted and uninterrupted flow
(64). In the particular case of roundabouts, LOS is
based on control delay, and its criteria definition is
shown in Table 11.1.

At a roundabout, traffic control is performed by the
roundabout itself, its markings, and its signage. There-
fore, control delay can be estimated by calculating the
difference in travel time through the studied location
between a sampled vehicle trajectory and an FFT (Equa-
tion 5.2) (4, 63, 112). Thus, the same technique used to
estimate control delay for signalized intersections from a
PPD, as described in Chapter 5 (Figure 5.2), can be

TABLE 11.1
HCM level of service criteria for roundabouts (64)

LOS

Average Control Delay

(s/veh)

A

B

C

D

E

F

#10

.10–15

.15–25

.25–35

.35–50

.50
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applied to calculate control delay at roundabouts. From
Table 11.1 and the estimated control delay, individual
vehicle trajectories can be assigned a LOS.

Figure 11.1a shows a PPD for a roundabout, which
is referenced to the distance and time when the vehicle
exits the intersection. Callouts i–vi are vehicle trajec-
tories approaching the roundabout from the west,
traveling EB, at Ditch Rd. and W 96th St. color-coded
by their assigned LOS. Delay can be estimated by
comparing how far away a particular trajectory is from
the FFT. The farther to the left a trajectory is, the
greater its delay. Callout vii is a segregation line that
helps to visually separate trajectories by their LOS
(in this case separating E and F trajectories).

Figure 11.1a is a subset of Figure 11.1b, which shows
38 trajectories sampled between 17:00 and 17:15 hrs.
during July 12th to 16th, 2021 at the same roundabout
approach. Figure 11.1b also has a pie chart that shows
the percentage of trajectories categorized with the
estimated LOS. Over 30% of trajectories have a LOS
F, and only 8% have a LOS A.

Roundabout PPDs, such as Figure 11.1b, can be
systematically generated for all the approaches at a
roundabout to quantify approach delay. Approach
delay is the delay experienced by vehicles entering from
the same approach regardless of exit choice. Figure 11.2
shows PPDs for all four approaches at Ditch Rd. and
W 96th St. during the same peak 15-minute period as
Figure 11.1 over five days. The SB direction of travel,
callout i, is the most efficient approach with most of the
vehicles experiencing a LOS B. On the other hand,
vehicles traveling WB, callout ii, present the highest
proportion of vehicles having a LOS F.

By averaging the control delay experienced by each
sampled vehicle over the studied approach and time
period, each approach can be assigned a LOS. For the
analysis shown in Figure 11.2, the average control delay
(and LOS) for the SB, WB, NB, and EB approaches is
16 s/veh (C), 67 s/veh (F), 41 s/veh (E), and 44 s/veh (E),
respectively. In contrast, Figure 11.3 shows PPDs for all
approaches at the same location during an off-peak 15-
minute period. In this case, the average control delay (and
LOS) for the SB, WB, NB, and EB approaches is 10 s/veh
(A), 18 s/veh (C), 16 s/veh (C), and 14 s/veh (B), respectively.

A noteworthy benefit of using CV data is the ability
to cover most hours of the day to characterize temporal
variations in performance. Figure 11.4 shows the LOS



Figure 11.1 Vehicle trajectories traveling EB at Ditch Rd. and W 96th St. during a peak 15-minute period.
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change by 15-minute periods for the four approaches at
Ditch Rd. and W 96th St. Callout i represents the time-
period and approach analyzed in Figure 11.1 and
Figure 11.2d. This visualization provides an efficient
performance summary for a single location that helps
identify direction of travel and TOD where the round-
abouts are congested.

11.2 Data Aggregation and Visualization Graphics

Figure 11.2 to Figure 11.4 describe the performance
at a single roundabout. However, agencies are typically
interested in systemwide assessment of all their app-
roaches, as well as the average of all approaches of each
roundabout.



Figure 11.2 Ditch Rd. and W 96th St. trajectories by approach and estimated LOS during a peak 15-minute period between
July 12th–16th, 2021.
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Figure 11.5 shows pareto-sorted bar-graphs of the
average control delay by hour experienced by each
approach on over 100 roundabouts in Carmel, Indiana.
LOS thresholds are shown with blue dashed lines for
reference. Only approaches with at least 10 sampled
vehicles during the analysis period are considered.

As demand fluctuates throughout the day, the number
of approaches with 10 sampled vehicles or more also
changes.

These visualizations are particularly useful when
assessing the quantity of approaches experiencing
congestion (LOS F or E) and identifying peak periods



Figure 11.3 Ditch Rd. and W 96th St. trajectories by approach and estimated LOS during an off-peak 15-minute period between
July 12th–16th, 2021.
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(time with most C or worse LOS approaches). Addi-
tionally, locations in which vehicles travel faster than
the posted speed limit (negative delay) can also be
identified.

Figure 11.6a shows a pareto-sorted bar-graph of the
average control delay experienced on every approach in

the system during the 15-minute period with the most
approaches with a LOS C or worse (17:00–17:15 hrs.).
From this graph, the locations with the highest delays
can easily be identified for further analysis. Figure
11.6b shows the 10 approaches with the highest esti-
mated control delay. Callout i, corresponding to the



Figure 11.4 LOS by TOD at Ditch Rd. and W 96th St. between July 12th–16th, 2021.
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NB movement of Roundabout 1 (Keystone Pkwy at
116th St. E), has a control delay of 276 seconds (the y-
axis is truncated at 120 s/veh).

Additionally, a geographical representation of the
results can provide practitioners with insights on the
effects that certain roundabouts may have on adjacent
locations. Figure 11.7a shows all the analyzed round-
abouts color-coded by their highest-delay approach’s
LOS. Callouts reference the roundabouts’ ID and
direction of travel (SB, EB, NB, or WB) presented in
Figure 11.6b.

Roundabout 3 has two approaches that are within
the 10 highest approach delays in the system during the
study period. Vehicles traveling EB have the highest
delay at Roundabouts 6 and 7. Given Roundabouts’ 6
and 7 proximity to each other (Figure 11.7a), it is
possible that the poor performance at Roundabout 7 is
propagating to Roundabout 6.

Additionally, studied locations can be color-coded
by the LOS based on the average control delay from all
the approaches (Figure 11.7b), instead of only focusing
on the highest-delay approach. If a location has poor
LOS based on the highest-delay approach, but a good
LOS based on all the approaches, it is an indication
that few approaches in that roundabout are under-
performing. In contrast, if a location shows poor LOS
in both visualizations (Figure 11.7a and Figure 11.7b),
it indicates that most of the entering vehicles have high
control delay.

Table 11.2 shows the 10 highest estimated control delays
by approach (Figure 11.6b and Figure 11.7a). Further,
the average for the entire roundabout is also provided.

11.3 Queue-Length

The HCM provides a technique to compute 95th
percentile queue-lengths at roundabouts based on

volume-to-capacity ratios, lane capacities, and study
time periods (64). From CV trajectory data, queue-
length can be estimated as the distance to the center of
the roundabout when a vehicle first stops during its
approach. Then, queue-lengths from several days can
be aggregated over various TOD periods to estimate the
95th percentile.

Figure 11.8 shows the estimated 95th percentile
queue-length, as used by the HCM (64), at Ditch Rd.
and W 96th St. from data sampled during all the
weekdays in July 2021. As expected, the delay presented
in Figure 11.4 relates to the queue-lengths in Figure
11.8, since the highest delays occur during the time with
the longest queues (from the 16:00 to the 18:00 hrs. for
approaches WB, NB, and EB).

11.4 Origin-Destination Characteristics

The technique presented in Chapter 4 to automati-
cally identify vehicle turning movements from trajec-
tory data can provide valuable information on the
origin-destination characteristics at roundabouts and
the variation over time (3). Table 11.3 shows July 2021
weekdays vehicle turning counts at Ditch Rd. and
W 96th St. (ID 2). From this table, the movements
with higher demands can be identified for each 15-
minute segment during the AM and PM peak periods.
Even though the counts shown are a sample of all the
vehicles that proceed through the roundabout, valuable
insight can be obtained from the demand distri-
bution that can help practitioners understand traffic
trends. These values can then be used to scale approach
volumes to estimate absolute movement volume by
time period.



Figure 11.5 LOS system visualization by approach for all the weekdays in July 2021.
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Figure 11.6 LOS system visualization by approach for all the weekdays in July 2021 during the most congested 15-minute period.
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Figure 11.7 LOS system visualization from the 17:00 to the 17:15 hrs. for all the weekdays in July 2021 (map data:
OpenStreetMap).
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TABLE 11.2
Highest control delays by approach between 17:00 and 17:15 hrs.

ID Name

NB Delay

(s/veh)

EB Delay

(s/veh)

SB Delay

(s/veh)

WB Delay

(s/veh)

Average

(s/veh)

1 Keystone Pkwy at

116th St. E

276 N/A N/A 9 75

2 96th St. at

Ditch Rd.

34 30 20 69 42

3 116th St. at

Illinois St.

44 24 49 21 25

4 Rangeline Rd. at

4th St. SW

47 8 14 N/A 17

5 116th St. at

Shelborne Rd.

26 15 45 18 23

6 96th at

Gray Rd.

35 43 20 12 32

7 96th at

Hazel Dell Pkwy

N/A 38 20 9 27

8 106th St. at

Ditch Rd.

17 18 15 38 26

9 116th St. at

Pennsylvania St.

28 12 36 23 21

Figure 11.8 Estimated queue-length by TOD at Ditch Rd. and W 96th St. (ID 2) for weekdays in July 2021.
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TABLE 11.3
July 2021 weekday sampled vehicle turning counts at Ditch Rd. and W 96th St. (ID 2)

Southbound Westbound Northbound Eastbound

Start Time L T R L T R L T R L T R

6:00

6:15

6:30

6:45

7:00

7:15

7:30

7:45

8:00

8:15

8:30

8:45

15:00

15:15

15:30

15:45

16:00

16:15

16:30

16:45

17:00

17:15

17:30

17:45

0

0

2

3

0

0

3

3

8

2

9

2

3

4

1

2

7

2

5

2

3

3

4

2

5

19

34

8

12

36

45

56

40

45

24

29

32

25

43

28

37

28

53

50

33

46

30

22

0

0

2

0

0

1

1

4

7

2

4

7

6

3

10

13

5

7

6

6

16

16

13

8

24

30

67

87

46

87

72

61

65

35

34

45

28

32

45

37

56

42

49

34

39

43

42

28

6

18

48

47

38

61

44

58

44

31

33

50

55

70

76

97

75

106

87

91

87

93

96

73

0

0

0

3

0

0

3

1

1

3

2

7

8

4

7

1

4

2

4

5

3

8

7

0

1

2

14

8

4

7

12

10

22

16

7

12

16

6

12

17

17

25

33

26

35

24

15

11

13

0

4

3

6

9

32

44

19

26

21

23

28

32

37

41

45

34

56

57

39

39

35

38

7

21

31

54

38

49

66

75

28

40

32

43

49

33

55

45

41

58

51

38

51

46

29

32

0

0

1

1

1

0

3

5

6

8

8

7

5

5

3

6

7

12

11

13

9

9

7

5

22

16

16

33

47

36

87

52

47

62

61

48

90

65

65

81

73

85

88

77

82

96

80

67

2

2

3

1

1

6

8

16

20

16

7

5

14

13

15

18

18

28

27

22

35

35

22

15

Note: L 5 left, T 5 through, and R 5 right.
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12. SAFETY EVALUATION

Previous chapters have presented different uses of
CV trajectory data to assess intersection performance.
However, agencies not only have the objective of
maintaining efficient systems, but also to provide safe
mobility to users. This chapter discusses the usage of
CV event data at signalized intersections to do the
following.

N Correlate HB events and crashes to provide a proactive
approach for evaluating safety (16).

N Assess driver behavior change by analyzing HA event
occurrences after implementing a new type of mainline
left-turn phasing (17).

12.1 Hard-braking Events as Surrogate for Crashes

Agencies usually screen signalized intersections and
approaches for safety improvements by utilizing crash
data from the previous 3–5 years (125, 126). Due to the
relative infrequency of crashes at many locations, this
multi-year analysis of data is needed to ensure the
validity and accuracy of statistical models. However,
this method is considered reactive as agencies must wait
for a substantial crash history to develop as evidence
for proceeding with safety improvement projects. There
is a growing interest in the industry to replace this
historical method with surrogate events to reduce the
time between data collection and the implementation of
safety improvements.

Since the 1960s, there have been efforts to supple-
ment or replace crash counts with traffic conflicts (127).
Conflicts occur more frequently than crashes and are
caused by the same failures that result in crashes (128).
The higher number of conflicts combined with their
similar causations to crashes make them attractive to
agencies trying to statistically determine opportunities
for safety improvements. However, conflicts can be
difficult to observe and document, require trained
personnel, and can be dependent on the subjective
ratings of the observer.

In July 2019, there were over 6 million sampled HB
events in Indiana. In contrast, during the same month,
there were only 17,652 crashes in the state, which
represent 0.3% of the total number of sampled HB
events. This section evaluates the validity of using CV
HB events at a signalized corridor for the safety
screening of intersections and approaches by providing
a comparison with rear-end crashes. This could allow
for the implementation of mitigation measures addres-
sing emerging problems much quicker than typical
practices that rely on 3–5 years of crash data.

12.1.1 Study Corridor

HB data collected between July 1st and July 31st,
2019, at eight signalized intersections along SR-37,
located south of Indianapolis, Indiana, is used (Figure
12.1). The corridor is a 4- to 6-lane principal arterial

with a speed limit of 55 mph. The volume along the
corridor varies between 64,000 VPD at the northern-
most intersection, 49,000 VPD in the middle of the
corridor, and 38,000 VPD at the southernmost inter-
section.

Indianapolis commuters living south of the city use
this corridor to travel NB in the morning and SB in the
evening. The studied intersections (Figure 12.1c), in
north to south order, are Thompson Rd., Harding St.,
Epler Ave., Southport Rd., Wicker Rd., County Line
Rd., Fairview Rd., and Smith Valley Rd. These
intersections run actuated-coordinated operation, most
of them with a cycle length of 120 seconds, across four
different weekday TOD plans.

N AM peak (AM): 05:00–09:15 hrs.

N Midday (MD): 09:15–14:30 hrs.

N PM peak (PM): 14:30–19:00 hrs.

N Evening (EV): 19:00–22:00 hrs.

In addition to showing the location for SR-37 in
Indiana, Figure 12.1 shows the locations of the over 6
million July 2019 HB events in the state (Figure 12.1a).
Of the 6 million HB events, almost 16,000 occurred
along the 6.5-mile corridor (Figure 12.11c).

12.1.2 Hard-braking Events

The CV HB event data is explained in Chapter 2 and
Chapter 3.

12.1.2.1 Methodology. The HB events analyzed are
sorted by intersection, distance from stop bar, and
vehicle speed when the event occurred. To obtain
relevant HB events, geofence regions are drawn
upstream along the through lanes for each approach.
These geofences begin parallel to the opposing
direction’s stop bar and end 1,320 ft. (1/4 mi.)
upstream. HB events that occur within those regions
are retrieved, and the location of each event is
compared to the intersection’s stop bar to calculate
the distance from the stop bar.

Figure 12.2a shows the HB events for an area along
the study corridor. Figure 12.2b shows the upstream
geofence regions and the retrieved HB events color-
coded by speed. The 400 ft. boundary, relative to the
stop bar, roughly corresponds to the location of the
advance detectors at this intersection (129, 130).

12.1.2.2 Analysis: hard-braking events by intersection.
The impact of dilemma zone (129, 130) and queuing on
HB needs to be further studied. Type II dilemma zone
has been defined in previous literature as the road
segment where there is a 10%–90% probability of a
vehicle stopping at onset of yellow (129). The
occurrence of HB events less than 400 ft. upstream
from the stop bar (location of advance detector at 55
mph speed limit zones) at lower speeds are possibly due
to vehicles stopping for the red light, whereas such
occurrences at higher speeds could be due to dilemma
zone issues. HB events occurring at distances greater
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Figure 12.1 Studied signalized corridor and July 2019 HB data (map data: OpenStreetMap).
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than 400 ft. from the stop bar are potentially due to
long queues during congested conditions.

Figure 12.3 shows the number of weekday HB events
occurring at each intersection, stacked by distance from
the stop bar, aggregated over the month of July 2019.
For both NB and SB approaches, most of the HB
events occur within 400 ft. of the stop bar. However,
there are a few intersections (4 and 5 in SB, and 8 in
NB) where over 40% of HB events occurred more than
400 ft. from the stop bar. To understand the temporal
nature of the HB events and their distances from the
stop bar, heatmaps of the event counts are generated.

Figure 12.4 illustrates heatmaps of the number of HB
events on the NB approach by 30-minute periods across
two distance categories: less than 400 ft. (Figure 12.4a)
and more than 400 ft. (Figure 12.4b). For the less than
400 ft. category, most HB events occur during the AM,
MD, and PM periods, with no clear patterns or trends.
For the 400–1,320 ft. range, there are fewer HB events,
except for Intersection 8 during the PM plan.

Figure 12.5 shows a heatmap similar to Figure 12.4,
for the SB approach. HB events within 400 ft. of the
intersection (Figure 12.5a) are generally higher for the
PM plan, especially at intersection 8, Smith Valley Rd.



Figure 12.2 HB event processing (map data: Google).
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Figure 12.5b, which is comprised of events occurring
beyond 400 ft., shows a different pattern than the NB
approaches. Intersection 4 (Southport Rd.) and 5
(Wicker Rd.) experience a large number of HB events
during the PM plan. This could be indicative of HB
that occurs at the back of long queues during the PM
peak period.

12.1.2.3 Analysis: hard-braking patterns by approach.
To further investigate the pattern of HB events,
histograms stacked by speeds are plotted for different
TOD plans over their distance from the stop bar.
Figure 12.6 shows the HB events at the SB approach of
Intersection 4, Southport Rd. During the PM time plan
(Figure 12.6b), HB events occur consistently for the
entirety of the evaluated area, with very few of those
HB events occurring at speeds over 45 mph. The aerial
image in Figure 12.6a shows that there are no
driveways or bus stops in the region that could be
contributing to these HB events; therefore, it can be
assumed that these HB events are due to long-queues.

Figure 12.7 shows the HB events at the SB approach
of Intersection 8, Smith Valley Rd. The PM plan
(Figure 12.7b) stands out as having numerous HB
events within the 0–400 ft. region. In some of the bins
around 250 ft. upstream of the intersection, over 60%

of those HB events occur at speeds above 45 mph, likely
due to the occurrence of dilemma zone issues. Dilemma
zone protection is often difficult on coordinated move-
ments with heavy minor movements as more phases

compete for green time and coordinated phases are
forced-off.

12.1.3 Crash Events

12.1.3.1 Crash data. Crash counts are aggregated by
intersection using information gathered from Indiana’s
online crash repository. Using the provided GPS
information, crashes that are located along the
corridor within 1,320 ft. of an intersection are
assigned to that intersection. Crashes that are missing
geolocation information are manually assigned to
intersections on the study corridor, if applicable, by
reading through the crash report’s narrative.

In Indiana, during July 2019, 17,652 crashes were
reported, of which 24 occurred along the roughly 6.5-
mile study corridor. Ten of those 24 crashes occurred in
the vicinity of an intersection. To perform a statistical
correlation test, the crash time frame is increased to a
4.5-year period between January 1st, 2016, and July
9th, 2020. This increases the intersection crash count to
551 crashes, of which 391 were weekday crashes and
261 of those were marked as rear-end collisions.

12.1.3.2 Distribution of crashes among intersections.
Figure 12.8 shows stacked bar graphs of the number of
crashes categorized by manner of collision that
occurred adjacent to the eight intersections along SR-
37 on weekdays during the 4.5-year study period. The
SB approach of Intersection 4 (Southport Rd.) stands



Figure 12.3 Number of weekday HB events by intersection and distance to the stop bar.

116

out as having the most crashes (71 crashes). Of those
71 crashes, 70% are rear-end collisions. Likewise, the
second and third highest crash count approaches, SB
Intersection 5 (Wicker Rd.) and NB Intersection 8
(Smith Valley Rd.), have 75% and 65%, respectively, of
their total crash count as rear-end crashes. Overall, 65%

of the 391 recorded weekday crashes on this corridor
are rear-end collisions.

12.1.3.3 Methodology. Similar to the HB events,
crashes are filtered by their different attributes. Crashes
are characterized by their recorded manner of collision,
distance from stop bar, and TOD. Finally, a statistical
analysis is completed. The Spearman’s rank-order
correlation (131), Pearson’s correlation (132), and
Kendall’s correlation (133) tests are applied to the HB
event and crash data for each intersection. Addi-
tionally, a sensitivity analysis is performed, and a
preliminary model is presented. Rear-end crashes
represented the largest group of crashes among the
eight intersections; therefore, the statistical analysis
focuses on the comparison between HB events and
rear-end crashes.

12.1.3.4 Analysis: crashes by TOD. Figure 12.9
presents a heatmap of weekday crashes aggregated
over the study period. Crashes are binned by 30-minute
periods and assigned to their respective intersections. In
the SB approach (Figure 12.9b), Intersection 4 (South-
port Rd.) and Intersection 5 (Wicker Rd.) stand out in
the PM time frame as having a relatively large number
of crashes. Visually, this is similar to Figure 12.5b,
where Southport Rd. and Wicker Rd. also stood out as
having a larger number of HB events at a distance
larger than 400 ft. from the stop bar.

12.1.4 Correlation Between Hard-braking Events and
Crashes

12.1.4.1 Correlation tests. In addition to the graphical
visualizations highlighting similar patterns between
crashes and HB events, several correlation tests are
performed to determine if linear correlation is present.
The aggregated July 2019 weekday HB events occurring
over a 30-minute period are compared with the aggre-
gated 4.5-year period rear-end crashes occurring over
the same 30-minute period. First, a simple Spearman



Figure 12.4 Heatmap of NB weekday HB events by intersection in July 2019.

Figure 12.5 Heatmap of SB weekday HB events by intersection in July 2019.
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Figure 12.6 SB approach at Southport Rd. (Intersection 4).
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rank-order correlation test (131) is conducted to
evaluate the monotonic relationship between a pair of
data. The correlation coefficient, rs, represents the
strength of that relationship. There are many inter-
pretations in the literature (134, 135) for coefficient
thresholds, but a conservative interpretation suggested
by (136) is utilized and is presented in Table 12.1.

Table 12.2 and Table 12.3 show the results of the
Spearman test conducted at 95% and 99% confidence
levels (CL) and highlights intersections with a strong

correlation, for NB and SB, respectively. Results
indicate a strong correlation between rear-end crashes
and HB events past 400 ft. of the stop bar at NB
Intersection 8 (Smith Valley Rd.), and SB Intersection 4
(Southport Rd.) and 5 (Wicker Rd). A check in the
strong correlation box is used if the rs value exceeds the
0.6 threshold shown in Table 12.1.

Interestingly, while SB Intersection 8 (Smith Valley
Rd.) experienced a high number of high-speed HB
events within 250 ft. of the stop bar (Figure 12.7b), this



Figure 12.7 SB approach at Smith Valley Rd. (Intersection 8).
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location does not exhibit a strong correlation to rear-
end crashes as suggested by prior conflict models (137).

Along with the Spearman’s rank-order correlation
test, Pearson’s (132) and Kendall’s (133) correlation
tests are performed. Table 12.4 presents the coefficient
interpretations used for these tests (138).

The results for the Pearson’s and Kendall’s correla-
tion test in SB direction are shown in Table 12.5 and
Table 12.6, respectively. The two SB intersections that
are shown by the Spearman’s correlation test to have a

strong correlation are also shown to have a moderate
correlation by the Pearson’s and Kendall’s correlation
tests. In addition to those intersections, the Pearson’s
correlation test also identifies SB Intersections 1
(Thompson Rd.) and 4 (Southport Rd.) as having a
moderate correlation between number of HB events
and rear-end crashes in the under 400 ft. region.

12.1.4.2 Sensitivity analysis. To determine if 1 month
of HB event data is sufficient to suggest a reasonable



Figure 12.8 Number of weekday crashes by intersection and type on SR-37, between January 1st, 2016, and July 9th, 2020.
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correlation between HB events and crashes, a sensitivity
analysis using Spearman’s correlation is performed.
While this evaluation primarily uses 1 month of HB
data collected from July 2019, the sensitivity analysis also
includes data from July and August 2019. Figure 12.10
shows the results of this assessment. The two plots in
Figure 12.10 show that the rs values plateau around 4
weeks’ worth of data. This suggests that 1 month of HB
data is sufficient to result in a reliable correlation with
over 4.5 years’ worth of crash data.

12.1.5 Statistical Modelling

To explore the relationship between number of HB
events, volumes, and other intersection attributes and
the number of crashes, a statistical model is developed.
The response variable in this study, the number of

crashes across the eight intersections by 30-minute bins,
is a discrete, nonnegative integer which is typically
modeled by a count data model. Commonly, these
count data models are either a Poisson model or a
negative binomial regression model (139).

The Poisson model, which is often used to model
rare-event count data, like crashes, requires the mean
and variance of the response variable to be equal.
Further, the Poisson model assumes that the response
variable y has a Poisson distribution, and that the
logarithm of expected values can be modeled as linear.
The Poisson probability density function is given by

PrfY~yig~
e({m)m(yi)

yi!
ðEq: 12:1Þ

where m is the Poisson parameter. When m . 0, the
mean and variance are equal to the expected number
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Figure 12.9 Frequency heatmap of weekday crashes between January 1st, 2016, and July 9th, 2020.

TABLE 12.1
Interpretation of correlation coefficient–Spearman

Correlation Coefficient Correlation Significance

0.80–1.0 Very strong

0.60–0.79 Strong

0.40–0.59 Moderate

0.20–0.39 Weak

0.00–0.19 Very weak
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E(Y). Typically, the relationship between the explana-
tory variables and the Poisson parameter is a log-linear
model,

m~ebXi ðEq: 12:2Þ

where Xi is a vector of explanatory variables and b is a
vector of estimable parameters.

The data is considered over-dispersed when the
variance of the response variable is larger than its
mean. This can typically be modeled using a negative
binomial model, which can be derived from Equation
12.2. For each observation i

mi~e(bXizei) ðEq: 12:3Þ

where e i is a Gamma-distributed disturbance term with
a mean of 1 and a variance of a (139). The added

disturbance term allows the variance and the mean to
differ as shown below

VAR yi ~E yi 1zaE yi zaE yi
2

Eq: 12:4

The probability density function for the negative
binomial model is defined as

P(yi)~
C((1=a)zyi)

C(1=a)zyi!

(1=a)

1=að Þzmi

� �1=a

mi

(1=a)zmi

� �yi

ðEq: 12:5Þ

The Poisson model is a special case of the negative
binomial model for when a, also known as the over-
dispersion parameter, is considered to be equal to zero.
The generalized linear model of the mean m on the
predictor vector Xi is formulated as

L(m)~biX
T
i Eq: 12:6

Table 12.7 shows the descriptive statistics for the
model variables. The Poisson and negative binomial
models are considered. The variance of the response
variable is larger than the mean of the response variable
indicating the data may be over-dispersed and favoring
a negative binomial model. However, under the nega-
tive binomial model the over-dispersion parameter
is not significant. Therefore, the Poisson model is
selected.



TABLE 12.2
Spearman’s correlation between intersection rear-end crash counts and number of HB events by distance for NB SR-37

0–400 ft. 400–1,320 ft.

Int. ID rs p value Strong Correlation rs p value Strong Correlation

1 0.23 0.11 0.21 0.15

2 0.10 0.52 0.441 0.002

3 0.25 0.09 0.332 0.02

4 0.16 0.28 0.28 0.06

5 -0.15 0.31 0.332 0.02

6 0.20 0.18 0.2 0.19

7 0.342 0.02 0.15 0.32

8 0.421 ,0.001 0.651 ,0.001 3

1Significant at 99% CL.
2Significant at 95% CL.

TABLE 12.3
Spearman’s correlation between intersection rear-end crash counts and number of HB events by distance for SB SR-37

Int. ID

0–400 ft. 400–1,320 ft.

rs p value Strong Correlation rs p value Strong Correlation

1 0.541 ,0.001 0.15 0.32

2 0.15 0.3 0.08 0.58

3 0.551 ,0.001 0.571 ,0.001

4 0.531 ,0.001 0.721 ,0.001 3

5 0.441 0.002 0.611 ,0.001 3

6 0.461 0.001 0.312 0.03

7 0.12 0.14 0.22 0.13

8 0.332 0.022 0.23 0.11

1Significant at 99% CL.
2Significant at 95% CL.

TABLE 12.4
Interpretation of correlation coefficient–Pearson and Kendall

Correlation Coefficient Correlation Significance

0.90–1.0 Very high positive correlation

0.70–0.90 High positive correlation

0.50–0.70 Moderate positive correlation

0.30–0.50 Low positive correlation

0.00–0.30 Negligible correlation
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Table 12.8 presents the results of the data. Of the
seven variables, only two, HB and volume, are found to
be significant. The McFadden r2 is an indicator of the
overall fit of the model and is given by

r2~1{
LL(b)

LL(0)
ðEq: 12:7Þ

where LL(b) is the log-likelihood at convergence with
a parameter vector b and LL(0) is the initial log-
likelihood.

Varying between zero and 1, a r2 closer to one
indicates a better model. The r2 statistic for the given
model is estimated to be 0.19, pointing to the preli-
minary nature of this model and the limited nature of
the HB event data set. The parameters show that the

number of rear-end crashes increase significantly with
an increase in HB event counts, which is fairly intuitive.
Additionally, it also follows naturally that an increase
in volumes will lead to an increase in rear-end crash
counts according to the model’s parameters.

12.1.6 Discussion

Crash data over a period of 4.5 years at eight
signalized intersections are compared with 1 month of
HB data to determine if there is a statistical relation-
ship. Graphical illustrations comparing aggregated HB
events and crashes (Figure 12.4, Figure 12.5, and Figure
12.9) demonstrate a visual relationship between the two
data sets. Statistical tests show that three intersections
(8 NB, 4 SB, and 5 SB) have a strong correlation
between rear-end crashes and HB events occurring past
400 ft. from the stop bar (Table 12.2 and Table 12.3).
The same three intersections show high HB counts,
farther away than 400 ft. from the stop bar, in
comparison with the rest of the corridor (Figure 12.4b
and Figure 12.5b). This could indicate that the HB and
rear-end crashes correlation is stronger at locations
where vehicles hard-brake far away from the stop bar
(perhaps due to long queues).



TABLE 12.5
Pearson’s correlation between intersection rear-end crash counts and number of HB events by distance for SB SR-37

0–400 ft. 400–1,320 ft.

Int. ID rs p value Moderate Correlation rs p value Moderate Correlation

1 0.54 ,0.001 3 0.06 0.68

2 0.07 0.63 0.06 0.67

3 0.42 0.00 0.40 0.00

4 0.51 ,0.001 3 0.66 ,0.001 3

5 0.43 0.00 0.62 ,0.001 3

6 0.44 0.00 0.26 0.07

7 0.08 0.57 0.12 0.41

8 0.34 0.02 0.23 0.12

TABLE 12.6
Kendall’s correlation between intersection rear-end crash counts and number of HB events by distance for SB SR-37

Int. ID

0–400 ft. 400–1,320 ft.

rs p value Moderate Correlation rs p value Moderate Correlation

1 0.45 ,0.001 0.14 0.32

2 0.14 0.28 0.08 0.58

3 0.44 ,0.001 0.48 ,0.001

4 0.40 ,0.001 0.61 ,0.001 3

5 0.36 0.00 0.53 ,0.001 3

6 0.39 0.00 0.28 0.03

7 0.11 0.40 0.21 0.13

8 0.28 0.02 0.21 0.11
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Results from the sensitivity analysis showed that a
sample size of at least 4 weeks of HB events is needed to
result in reliable correlation with crash data (Figure
12.10). Finally, results from the statistical modelling
illustrated that the number of crashes can significantly
increase with higher number of HB events and volume
(Table 12.8).

The correlation shown between rear-end crashes and
HB events is particularly beneficial to agencies because
statistically valid data can be collected in a month or
two, instead of waiting the traditional 3–5 years for a
significant number of crashes to occur. Histograms like
the one shown in Figure 12.6 and Figure 12.7, can
provide agencies with a high-fidelity perspective on
exactly where those events may be clustered to assess
potential mitigation measures. Additionally, the tech-
niques described are also scalable to larger numbers of
intersections and corridors. Agencies could implement
this method to assess all traffic signals within an urban
area or an entire state.

Furthermore, HB events could potentially be used
to assess safety at a variety of scenarios and locations
other than signalized intersections; for example, at
interstate work zones (140). These capabilities can
provide agencies with proactive data-driven tools to
evaluate safety concerns that enable the prompt
implementation of solutions.

The contents presented in this section are based on (16),
which is an Open Access article published under a Creative
Commons Attribution 4.0 International License.

12.2 Driver Behavior Assessment After Changing Left-
Turn Phasing

There are three different types of left-turn traffic
signal phasing used in the United States: protected,
permitted (or permissive), and protected-permitted.
Protected-only left-turns, in which only a static green
arrow is shown at the traffic signal, are usually
considered the safest phasing type since it eliminates
driver gap acceptance decisions. However, this usually
results in vehicles having to wait for longer periods that
increase delay. On the other hand, protected-permitted
left-turns increase efficiency by not only providing a
static green arrow, but also a flashing yellow arrow
(FYA) where drivers must assess if there is a sufficient
gap for them to safely make a left-turn (141–144).

Traditionally, a combination of crash data, traffic
volumes, and engineering judgement are used to select
the type of left-turn operation. This approach often
takes several years to accumulate statistically significant
crash data and engineering judgement can vary
considerably.

This section utilizes CV data sets to evaluate driver
behavior and signal performance by analyzing the change
in HA, delay, progression, and saturation before and
after a left-turn phasing type change (17). This provides a
framework to assess left-turn phase changes without the
need for long data collection periods, provides quicker
feedback than traditional crash studies, and is more
objective than engineering judgement.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


Figure 12.10 Sensitivity analysis for Spearman correlation between HB events and rear-end crashes for 8 weeks in July and
August 2019.
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12.2.1 Protected-Permitted to Protected-Only Transition

The effects on vehicle behavior and signal perfor-
mance after changing the EB-left turn phasing at the
intersection of US-40 and German Church Rd., located
east of Indianapolis, are analyzed. The movement on
Figure 12.11a was changed from a FYA protected-
permitted (Figure 12.11b, callout i) to a three-section
protected-only (Figure 12.11c, callout ii) on June 24th,
2020. The EB approach at this intersection has four
lanes: a dedicated left-turn, two through lanes, and a
dedicated right-turn. The objective of the change was to
improve safety for the left-turn due to crash occur-
rences during the FYA permitted phase.

12.2.2 Evaluation of Driver Acceleration at the Traffic
Signal

Driver behavior can be significantly affected based
on the type of traffic signal phasing implemented.
When a driver is waiting for a gap to make a left-turn
during a FYA, they may decide to aggressively
accelerate through a small gap. The HAs typically
occur after the stop bar (Figure 12.11a, callout iii) while
waiting for a gap in oncoming traffic. These events are
a potential indication of risk since vehicles have to
hard-accelerate to make it through an opening.

Figure 12.12 shows the percentage of sampled
vehicles turning left that hard-accelerated from a 3-



TABLE 12.7
Descriptive statistics for model variables

Variable Name Description Mean Std. Dev

Crash Crash count by 30-minute bins 0.34 0.71

Hard-braking Hard-braking event count totaled for July 2.41 4.87

Volume Volumes by 30-minute bins 1,042.58 631.80

Lanes Number of lanes 4.25 0.43

Barrels Barrel median present (1 5 ‘‘yes’’, 0 5 ‘‘no’’) 0.19 0.39

Cement Cement median present (1 5 ‘‘yes’’, 0 5 ‘‘no’’) 0.19 0.39

Right Exclusive right present (1 5 ‘‘yes’’, 0 5 ‘‘no’’) 0.88 0.33

Left Exclusive left present (1 5 ‘‘yes’’, 0 5 ‘‘no’’) 0.94 0.24

TABLE 12.8
Estimation results

Variable Name Estimate P-value

Hard-braking1 0.50 ,0.0001

Volume1 0.0012 ,0.0001

Number of observations 768 –

Restricted log-likelihood (contestant only) -602.34 –

Log-likelihood at convergence -490.64 –

Chi-squared 223.40 –

McFadden r2 0.19 –

1Significant at 99% CL.
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week period before (Figure 12.12a, ,1,500 samples)
and after (Figure 12.12b, ,1,600 samples) the phasing
change, as well as their difference (Figure 12.12c). The
percentages are organized by the distance to the stop
bar where the events occurred (negative values being
downstream of the stop bar) and color-coded based on
the vehicle’s speed at the time the event was recorded.

During the 3 weeks analyzed before the phasing
change (Figure 12.12a), over 5.5% of the sampled
vehicles turning left hard-accelerated after crossing the
stop bar. Even though most of the HA events lie within
the first 15 meters (49 ft.) after the stop bar, there are
events still occurring even after 25 meters (82 ft.) past
the stop bar (callout i).

In contrast, during the three weeks analyzed after the
phasing change (Figure 12.12b), less than 3.4% of the
sampled vehicles turning left had to hard-accelerate
after crossing the stop bar. The highest percentage
decrease occurred between 10 and 15 meters past the
stop bar (callout ii vs. iii), and HA events 25 meters
after the stop bar completely disappeared (callout i vs.
iv). A small increase between 20 and 25 meters past
the stop bar (callout v) could indicate a possible rise
of yellow/red-light-running. The left-turn phasing
change impact on traffic signal performance is assessed
below.

12.2.3 Evaluation of Traffic Signal Efficiency

12.2.3.1 PPD assessment. Besides the effects on hard-
acceleration, traffic signal performance can also be
notably impacted by a change on a left-turn phasing

type. PPDs are used to calculate HCM LOS (64), AOG,
and SF at the evaluated movement.

Figure 12.13 shows PPDs of vehicle trajectories that
traveled EB-left at US-40 and German Church Rd.
before (June 15th–19th, 2020, Figure 12.13a) and after
(July 13th–17th, 2020, Figure 12.13b) the phasing
change. It can be observed how vehicles tend to inch
forward after the stop bar when having a protected-
permitted phase (Figure 12.13a, callout i) while with a
protected-only control they tend to stay static until
being given a green light (Figure 12.13b, callout ii).

Figure 12.13a shows how most of the trajectories
with the longest delay approach the intersection
approximately 70 seconds behind the FFT (callout
iii). In comparison, Figure 12.13b shows that the
trajectories with most delay have around a 90 second
difference compared to the FFT (callout iv), signifying
an increase on delays and a deterioration of the LOS.

For the time periods analyzed in Figure 12.13, the
percentage of sampled vehicles having a LOS F went
from 6% to 25% after implementing the protected-only
left-turn phasing. This is not surprising since green time
for left-turning vehicles is effectively reduced, but the
combination of these graphics and objective quantita-
tive measurements of change in delay are valuable
information for traffic engineers and illustrate the value
of the CV data sets.

Further, after a left-turn phasing type change from
protected-permitted to protected-only, AOG is
expected to decrease since vehicles usually have a
shorter period in which they are allowed to proceed
through the intersection. A vehicle that arrives during
the permitted phase and stops to wait for a gap is not
considered AOG. For the time periods analyzed in
Figure 12.13, AOG went from 27% to 25% after
implementing the protected-only left-turn phasing.

Split failures are identified from CV trajectories
turning left when a vehicle stops more than once before
exiting the intersection and it has an approach delay
longer than one stop trajectories for the same 30-minute
TOD period. This is necessary to eliminate the effects
of additional stops while waiting for a gap during a
permitted phase. Figure 12.13a shows a trajectory that
stops twice before exiting the intersection (callout v) but
is not categorized as having experienced a split failure
since its delay is not greater than other one stop



Figure 12.11 Left-turn change from protected-permitted to protected-only at US-40 and German Church Rd. (map data:
Google, IndianaMap Framework Data, Maxar Technologies, and USDA Farm Service Agency).
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trajectories that occurred during the same 30-minute
TOD period. Therefore, it is assumed that the second
stop occurred during the permitted phase. For the time
periods analyzed in Figure 12.13, there is no SF change.

12.2.3.2 Temporal comparison of traffic signal
performance measures. To provide a holistic view on
the impact of the implementation of protected-only left-
turn on traffic signal performance, Figure 12.14 shows
changes on SF, AOG, and LOS by TOD before (June
15th–19th, 2020) and after (July 13th–17th, 2020) the
phasing change.

N SF: The percentage of sampled vehicles experiencing split

failures does not have a notable change.

N AOG: There is a significant decrease in arrivals on green,

especially during the morning (07:00–11:00) and evening

(19:00–22:00) hours.

N LOS: There is a substantial increase in LOS E and F

throughout the day.

12.2.4 Results and Discussion

To evaluate the impact of changing the left-turn
phasing at US-40 and German Church Rd. from
protected-permitted to protected-only, HA events are
assessed, and traffic signal performance calculated for
all the weekdays in January, June, and July 2020. In
total, over 7,000 individual trajectories, 172,000 way-
points, and 700 HA events are analyzed.

Table 12.9 shows the HA counts and the percentage
of sampled vehicles turning left that hard-accelerate
within a 30-meter (98 ft.) distance before and after the
stop bar. A 14% decrease (from 101 to 87) on HA
events after the stop bar is calculated between January
and July 2020. This change is likely due to the fact that
drivers did not have to evaluate oncoming traffic for
sufficient gaps and accelerate from a stop to cross
traffic.

Table 12.10 shows the calculated SF, AOG, and
average control delay. There are no significant changes



Figure 12.12 Percentage of sampled vehicles turning left that hard-accelerate.
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in SF; however, AOG decreased from 44% in January
to 17% in July, and the average control delay rose 28
seconds (from LOS C to E) during the same period.
These results are expected as the protected phasing
reduces the effective green time that a left-turning
vehicle has.

The discussed methodology to assess efficiency and
surrogate safety measures can be systematically scaled,

which is particularly valuable for agencies that want to
evaluate the effect that different control techniques
have on performance and driver behavior.

Although the fixed threshold of 8.76 ft/s2 used to
define HB and HA events showed promising results in
this chapter, it is anticipated that alternative thresholds
may provide improved correlation with crash data and
better describe driver behavior.



Figure 12.13 PPDs of vehicle trajectories traveling EB-left between 11:00 and 13:00 hrs.

TABLE 12.9
2020 monthly weekday EB left-turn HA

Month HA Count HA Pct. (%) HA Count ASB HA Pct. ASB (%)

January
1June

July

210

280

253

9

12

10

101

131

87

4

6

3

1Protected left-turn implementation on June 24th.

Note: ASB 5 after-stop-bar.
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Figure 12.14 EB left-turn traffic signal performance measures before and after the phasing transition.

TABLE 12.10
2020 monthly weekday EB left-turn traffic signal performance measures

Month SF (%) AOG (%)

Average

Control Delay (s/veh)

January
1June

July

1

2

1

44

31

17

34

45

62

1Protected left-turn implementation on June 24th.
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13. SCALABILITY

One of the main benefits of generating CV-based traffic
signal performance measures is that analyses are easily
scalable due to the ubiquity of the data. For example,
Figure 13.1 shows over 160,000 trajectory waypoints
collected during a 30-minute period in Indiana and around
Indianapolis. Even with samples collected over such a
small period, significant network coverage is provided.
Further, since most CV studies do not require labor-
intensive field data collection or cost-prohibiting detection
and communication equipment, signal evaluation techni-
ques can be implemented anywhere.

During this project, the performance of thousands of
signals was evaluated, and a web dashboard called ‘‘PM
Heatmap’’ was developed to facilitate the reporting of
results.

13.1 PM Heatmap Web Dashboard

In the PM Heatmap, traffic signal performance is
estimated with PPDs (Chapter 5) generated from the
linear referencing and data-driven movement detection
techniques presented in Chapter 3 and Chapter 4.
Therefore, the only manual effort required to evaluate
the performance at a traffic signal is the identification
of the intersection’s center and retrieval radius needed
to assign vehicle movements. This manual task usually

takes less than 5 minutes and hands-off processing of
1 month of CV trajectory data for an intersection is
on average completed in under 1 hour at a cost of $0.09
following the data management suggestions discussed
in Chapter 2.

Figure 13.2 shows the PM Heatmap web dashboard.
Users of the platform can individually select the
intersections (callout i) and time periods of interest
(callout ii). For the signals selected, AOG, SF, DSB,
and LOS results are available (callout iii) for all the left-,
through-, and right-turns (callout iv). Performance
measures are presented in heatmap format (callout v),
as discussed in Chapter 7, to facilitate the identification
of challenges by TOD and the development of before-
after studies (Chapter 8).

Similar results can be accomplished by any agency
that uses CV trajectory data to estimate traffic signal
performance measures following the techniques and
recommendations presented in this report. Figure 13.3
and Figure 13.4 show dashboard-derived performance
heatmaps for signalized corridors in Frisco, TX, and
Cincinnati, OH, respectively.

Thus far, over 4,700 traffic signals, 910 million
trajectories, and 14 billion waypoints in all 50 states and
Washington, D.C., have been analyzed and included in
the PM Heatmap. Figure 13.5 shows the location of the
evaluated intersections and Figure 13.6 illustrates the
data analyzed by state.

Figure 13.1 Trajectory waypoints collected during a 30-minute period in January 2020 (map data: Google).
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Figure 13.2 PM Heatmap web dashboard.
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Figure 13.3 PM Heatmap web dashboard showing AOG results for a 9-intersection corridor in Frisco, TX.



Figure 13.4 PM Heatmap web dashboard showing SF results for a 22-intersection corridor in Cincinnati, OH.
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Figure 13.5 Traffic signals included in the PM Heatmap web dashboard.



Figure 13.6 Data evaluated in the PM Heatmap web dashboard.
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14. SUMMARY

CV data provides opportunities to systematically
evaluate transportation infrastructure in a scalable
manner, without the need for detection or communica-
tion equipment, or the deployment of personnel to the
field. This report presents an overview of CV-based
techniques used to evaluate traffic signal performance
at the movement-, approach-, intersection-, arterial-,
and system-levels.

Chapter 2 introduced the CV data sets and
approaches to efficiently store and manage them.
Chapter 3 provided geographical representations of
event and trajectory data by their attributes as well as
methodologies to linear reference vehicle progression
through intersections. Chapter 4 discussed techniques
to assign intersection movements to passing vehicles.

14.1 Traffic Signal Performance Measures

Chapters 5 through 11 presented techniques and
frameworks on how to use trajectory data to evaluate
signal performance. Chapter 5 introduced performance
concepts in relation to vehicle trajectories at the
movement-level focused on the Purdue Probe Diagram
(PPD). Chapter 6 discussed techniques to evaluate
arterial travel times. Chapter 7 proposed visualizations
to evaluate performance at the arterial- and system-
levels. Chapter 8 presented case-studies that illustrate
frameworks to evaluate diversions and retiming impacts
on signalized corridors. Chapter 9 provided a metho-
dology based on SF and DSB estimations to identify
locations where signal retiming is likely to improve
operations. Chapter 10 discussed methodologies to
evaluate performance at closely-coupled intersections
by analyzing the complete progression of vehicles
through each system. Chapter 11 presented techniques
to systematically evaluate delay and queue-lengths at
roundabout approaches. Even though roundabouts are
not signalized, they are often used adjacent to traffic
signals and the ubiquity of CV data allows these
techniques to be inclusive of this alternative intersection
design.

14.2 Intersection Safety and Driver Behavior Evaluation

Chapter 12 evaluated the use of CV HB event data to
assess safety at signalized intersections. This approach
is particularly beneficial to agencies because statistically
valid data can be collected in just a month or two,
instead of the usual 3- to 5-year period required to
obtain significant crash data. Additionally, the change
in driver behavior is assessed after modifying the type
of control at a traffic signal by analyzing HA events.
Although the fixed threshold of 8.76 ft/s2 used to define
HB and HA events showed promising results, it is
anticipated that alternative thresholds may provide
improved correlation with crash data and better
describe driver behavior.

HA and HB events are recorded as soon as a
vehicle’s on-board accelerometer experiences an accel-
eration (or deceleration) greater in magnitude than 8.76
ft/s2 (0.272 g), as defined by the data supplier. The
range of heading values is (0u, 360u), where 0u is the true
north and it increases clockwise.

14.3 Scalability

Chapter 13 discussed the scalability and replicability
possibilities of using ubiquitous CV trajectory data to
evaluate signal performance. It described how just
under 5 minutes of manual labor is usually required to
evaluate an intersection with data processing costs
under $0.10 for a month-long analysis. Furthermore, a
developed web dashboard that interactively provides
users performance estimations on over 4,700 signals
was presented.

14.4 Future Opportunities

Even though significant progress has been accom-
plished in the use of CV data sets to evaluate signal
performance, there are still important areas of oppor-
tunities that will need to be explored. Some of these
opportunities are the following.

N As CV data sets start to include additional attributes

than those discussed in Chapter 2, such as traction

control or lane keep assist, opportunities will arise to

evaluate different infrastructure characteristics and

identify locations where maintenance is needed (145,

146).

N Performance measure analysis techniques could be

updated to not only include passenger cars, but also

commercial vehicles. This would improve the current

understanding of how heavy vehicles affect signal

operations.

N Enhance performance measures by including multi-

modal analysis by combining CV passenger and com-

mercial vehicle data sets with transit (147), bicycle, and

pedestrian data.

N Design performance measures derived from entire vehicle

trajectories that also integrate signal event high-resolu-

tion information. As CV data sets do not count with

signal state information, and since various agencies

already count with signal controller high-resolution event

data, these two data sets could be incorporated to

provide more detailed performance measures. For

example, this will aid in identifying root cause as either

vehicle demand or detector failures when split failures are

identified by CV data.

N The manual labor required to generate CV-based traffic

signal performance measures could be further reduced by

automating the intersection center detection and way-

point retrieval radiuses. In general, the techniques

presented in this document can be used with

OpenStreetMap signal locations, but this should be

approached with caution to ensure that atypical inter-

sections are properly interpreted. There is no substitute

for an engineer individually reviewing each intersection’s

configuration to ensure confidence in CV analyses.
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APPENDIX A. REPORTING FRAMEWORK FOR
ARTERIAL-LEVEL TRAFFIC SIGNAL
PERFORMANCE MEASURES

This appendix provides a system level corridor
visualization framework (8) to assess performance by
TOD and location to quickly identify periods of a day
where individual movements experience operational
challenges (46, 69, 148).

The framework is shown in Figure 7.4 and sum-
marizes HCM LOS (Figure 5.2), AOG (Figure 5.3), SF
(Figure 5.7), and DSB (Figure 5.8) for all relevant
movements over 24 hours on an arterial. Table 7.2

explains the information included in Figure 7.4. This
approach provides an at-a-glance summary of up to
3,072 measures per intersection since it gives informa-
tion for eight different movements and four perfor-
mance measures for 96 fifteen-minute periods.

To further demonstrate implementation, 14 reports
with the discussed framework, displaying performance
estimations for 12 corridors, located in 11 different
states, are provided. Table A.1 provides details on these
reports.

Additionally, (18) expands on (8) by providing 58
arterial-level performance reports of corridors located
in 14 different states.

TABLE A.1
Corridor-wide performance report provided

Figure No. State Corridor No. Signals Description

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

A.11

A.12

A.13

A.14

CA

CT

GA

IN

IN

MN

NC

OH

OH

PA

TX

TX

UT

WI

RTE-83

CT-10

SR-247

West St.

West St.

Hennepin Ave.

US-70

US-27

US-27

US-30

Texas Ave.

Eldorado

SR-175

WI-96

13

10

23

11

11

5

12

22

22

11

13

9

20

8

Segment in Chino between SR-60 and Pine Ave.

Segment in Southington between Town Line Rd. and Loper St.

Segment in Warner Robins between I-75 and Oak Ave.

Segment in downtown Indianapolis before North Split closure (9)

Segment in downtown Indianapolis during North Split closure (9)

Effects of SR-53 bridge closure on Hennepin Ave. between 2nd St. and

University Ave.

Segment in Powhatan between Town Center Blvd. and Gordon Rd.

Segment north of Cincinnati before implementing adaptive control (10)

Segment north of Cincinnati running on adaptive control (10)

Segment in Lancaster between Oakview Rd. and SR-896

Segment in College Station between University Dr. and Deacon Dr.

Segment in Frisco between Legacy Dr. and Preston Rd.

Segment south of Salt Lake City between 4000 W and 1700 E

Segment in Appleton between Casaloma Dr. and N Perkins St.
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Figure A.1 RTE-83 in CA between SR-60 and Pine Ave.

Figure A.2 CT-10 in CT between Town Line Rd. and Loper St.
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Figure A.3 SR-247 in GA between I-75 and Oak Ave.

Figure A.4 West St. in IN before the North Split closure (9).
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Figure A.5 West St. in IN after the North Split closure (9).

Figure A.6 SR-53 bridge closure effects on Hennepin Ave. in MN between 2nd St. and University Ave.
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Figure A.7 US-70 in NC between Town Center Blvd. and Gordon Rd.

Figure A.8 US-27 in OH before implementing adaptive control (10).
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Figure A.9 US-27 in OH running on adaptive control (10).

Figure A.10 US-30 in PA between Oakview Rd. and SR-896.
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Figure A.11 Texas Ave. in College Station, TX, between University Dr. and Deacon Dr.

Figure A.12 Eldorado Pkwy. in TX between Legacy Dr. and Preston Dr.
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Figure A.13 SR-175 in UT between 4000 W and 1700 E.

Figure A.14 WI-96 in WI between Casaloma Dr. and N Perkins St.

148



APPENDIX B. RELEVANT MEDIA

Throughout the development of the project, the team
has created diverse visualization materials to explain
research concepts, evaluate signal operations, and

better understand traffic conditions. Table B.1 provides
a list of some of the most relevant videos produced for
the different studies.

TABLE B.1
Relevant media description and access

Description Video Link Video QR Code

Travel times of vehicles passing through a

roundabout affected by crossing

pedestrians.

https://tinyurl.com/roundaboutTravelTimes

Vehicle experiencing an arrival on green. https://tinyurl.com/arrivalOnGreen

Vehicle experiencing an arrival on red. https://tinyurl.com/arrivalOnRed

Vehicle experience a split failure. https://tinyurl.com/splitFailure

Occurrence of downstream blockage for

vehicles proceeding through an

upstream intersection.

https://tinyurl.com/downstreamBlockage

Lack of downstream blockage for vehicles

proceeding through an upstream

intersection.

https://tinyurl.com/noDownstreamBlockage
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TABLE B.1
(Continued)

Description Video Link Video QR Code

LOS based on average control delay at

intersections in downtown Indianapolis,

Indiana.

https://tinyurl.com/controlDelayIndyDowntown

LOS based on average control delay at

intersections in Indianapolis, Indiana.

https://tinyurl.com/controlDelayIndy

LOS based on average control delay at

intersections in Indiana.

https://tinyurl.com/controlDelayIndiana

LOS based on average control delay at

intersections south of Salt Lake City,

Utah.

https://tinyurl.com/controlDelaySaltLakeCity

LOS based on average control delay at

intersections in Charlotte, North

Carolina.

https://tinyurl.com/controlDelayCharlotte

Corridor-wide CV trajectories by time-of-

day at SR-37 south of Indianapolis,

Indiana.

https://tinyurl.com/corridorWideTrajectories

Operational conditions at US-421 at

W 116th St. before the signal retiming

suggested in Chapter 9.

https://tinyurl.com/conditionsBeforeRetiming
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TABLE B.1
(Continued)

Description Video Link Video QR Code

Operational conditions at US-421 at https://tinyurl.com/conditionsAfterRetiming

W 116th St. after the signal retiming

suggested in Chapter 9.

LOS based on average control delay at https://tinyurl.com/roundaboutControlDelayCarmel

roundabouts in Carmel, Indiana.
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