Click here to enter Program or Project Title Progress Report – Click here to enter a date.

Title: Assessment and Repair of Prestressed Bridge Girders Subjected to Overheight Truck Impacts Pooled Fund Project

Project Number: TR202011

Principal Investigator (PI): Mohamed ElGawady PhD (PI)

Co-Pl(s): William Schonberg PhD, PE (Co-PI)

Award date:	1/1/2021		
Scheduled completion date:	12/31/2023	% of project completed to date:	96%
Total budget:	\$805,000	% of budget expended to date:	97%
Draft report due:	1/31/2025	Final report due:	1/4/2025

Provide a short description of the **work currently underway**.

Use <u>additional notes section</u> if you need to provide more information.

Task 5: Repair Evaluation

Repair of the girders continued and will be concluded in the first week of January.

Task 6: Develop design recommendations for assessment and repair of bridge girders subjected to over-height vehicle impacts

Based on the experimental work results and numerical models that were developed during Tasks 2 through 5, design recommendations were developed.

Identify any circumstances or **issues that may need to be addressed**. *Provide a summary of issues that are important for the TAC to know. For example, staffing difficulties or supply chain delays.*

Provide a short description of the **noteworthy activities/accomplishments** during this reporting period.

Use <u>additional notes section</u> if you need to provide more information.

Repair of a girder having 33% loss of the prestressing strands has been concluded.

MoDOT Construction & Materials Division Quarterly Progress Report

Fig. 1: Steps to repair and test a girder having 33% loss of strands with CFRP.

Fig. 2: Innovative approach to determine the residual stress in a strand.