LTPP Data Analysis

Task Order #03

"Effect of Multiple Freeze Cycles and Deep Frost Penetration on Pavement Performance and Cost"

Quarterly Progress Report

January, February, March 2005

Prepared for:

US Department of Transportation Federal Highway Administration 400 Seventh Street, S.W. Washington, D.C. 20590

Detailed Technical Summary of NCE Task Order #03 "Effect of Multiple Freeze Cycles and Deep Frost Penetration on Pavement Performance and Cost"

In this quarter, NCE has continued work on Task 8 and Task 9 of Task Order #03 and presented a briefing at TRB as required by Task 7.

Task 7

Prepare and present briefings to the project panel in conjunction with the TRB Annual Meeting each year for the duration of the project.

Two presentations were made on the status of this Task Order during the Annual TRB meeting in January. A presentation was made to the Pavement Performance Data Analysis Forum sponsored by the TRB Data Analysis Working Group on in-progress work performed under this task order on Saturday before the Annual Meeting. NCE also presented a briefing to Pooled Fund State representatives on the Saturday evening before the Annual TRB meeting, as required by Task 7.

A copy of the slides presented to the Pooled Fund Panel can be found in Appendix B.

Task 8

Conduct detailed analysis of the effects of multiple freeze-thaw cycles verses deep frost penetration on pavement performance

The analysis team continues to work on developing regression models to predict various pavement performance measures this quarter. Significant progress has been made and the regression models are nearing completion. Once finished, a thorough comparison of the deterioration trends in each of the frost regions will be performed.

In the previous quarterly report, a discussion on extreme observations in the dataset was presented along with the two methods that can be employed to account for these data points. One method applies a weighting factor to the contribution of extreme cases which limits their impact on the model. This method (the Robust method) should be employed if the observations are truly outliers and/or questionable data points that would negatively impact the model. On the other hand, these cases could be treated like any other with their full impact incorporated into the model (the GLM method) if they are valid data points that represent extreme conditions.

The analysis team investigated these observations during this quarter. To determine which method is more appropriate and will produce the most representative model, the nature of the dataset must be considered as well as the amount of quality control checks performed on the data. If extreme cases are expected (given the design of the experiment) and a rigorous quality review has been performed on the data, it is highly probable that the remaining influential observations are valid and reducing their impact on the model would bias the models prediction capability.

For this study, data comes from a national database in which some of the variables may be set to extreme limits resulting in extreme performance observations. On a small scale, the SPS-1 projects can be used to illustrate this. Each of the 12 test sections at an SPS-1 project has a different structural capacity but all experience the same traffic loading. By experimental design, certain variables (in the case of SPS-1 projects, the ratio of traffic loading to structural capacity) would be set to the extreme ends of the spectrum. As such, extreme observations are to be expected in the dataset and are necessary to generate a model that reflects observed performance.

Additionally, the analysis team performed considerable amounts of logical quality review on the data to identify and remove data that were believed to be erroneous. The data has also undergone the quality control process utilized by the LTPP team prior to releasing the data for public use. Therefore, it is not likely that the remaining influential observations are erroneous or unrepresentative of the data set.

To further compare the two methodologies, two models were developed for absolute IRI of asphalt pavements. One model was developed using the Robust method while the other utilized the GLM procedure. The predicted IRI values from the Robust and GLM models versus the observed IRI values can be found in Figures 1 and 2, respectively. The GLM method produces a model that has less bias than the Robust model. In Figure 1, the majority of the data points are clustered below the line of equality (circled in red). The cluster of the GLM model is more centered on the equality line compared with the Robust model. This indicates that the Robust method of reducing the impact of extreme observations results in a model that generally predicts values less than the observed values.

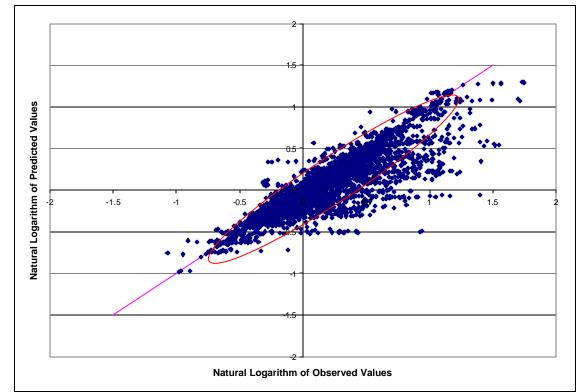


Figure 1. Observed vs. Predicted values of Absolute IRI (normalized) using the Robust method.

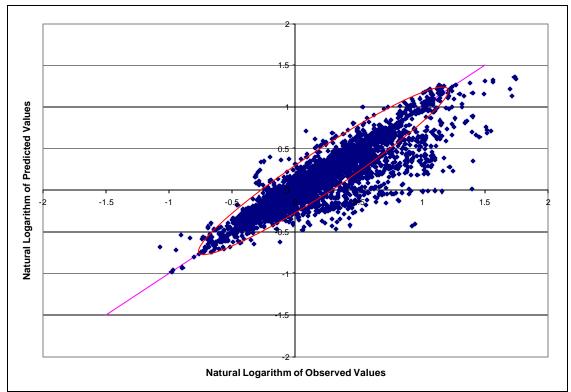


Figure 2. Observed vs. Predicted values of Absolute IRI (normalized) using the GLM method.

Considering the nature of the data set, the level of quality reviews performed on the data, and the results from the previous comparison, the GLM method was chosen to develop regression models for this study.

The analysis team also continued work on the development of the distress regression models. A two step approach has been implemented in predicting the accumulation of distress over time. The first step is the development of a logistic model which will be used to predict the age at which distress initiates. After the distress initiation age is predicted, linear regression models will be developed to predict the accumulation of distress with age (after initiation). To do this, the pavement age had to be adjusted to reflect age after distress initiation.

Some of the test sections were monitored both before and after crack initiation. For these cases, crack initiation was determined as the maximum pavement age where a zero distress value was observed. This crack initiation age was then used to adjust the remaining pavement ages to ages after distress initiation. An example of one such test section is presented in Figure 3. The crack initiation age was determined to be 2.4 years. The remaining ages were then adjusted by subtracting 2.4 years from the pavement age to obtain age after initiation.

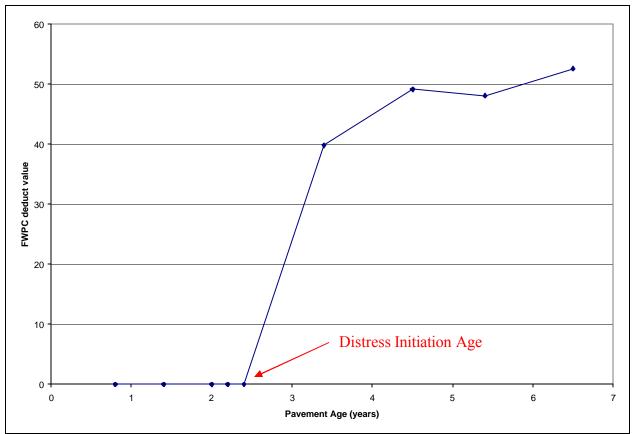


Figure 3. Observed FWPC deduct values for test section 100102.

For test sections that were not monitored before the distress initiation, linear regression was performed on each test section and used to determine the age at which the distress initiated. An example of this is shown graphically in Figure 4. The initiation age estimated from the regression equation was subtracted from subsequent pavement ages to get age after initiation. The regression models are currently being developed using only non-zero distress values (i.e. values recorded after initiation) and replacing age with the adjusted ages.

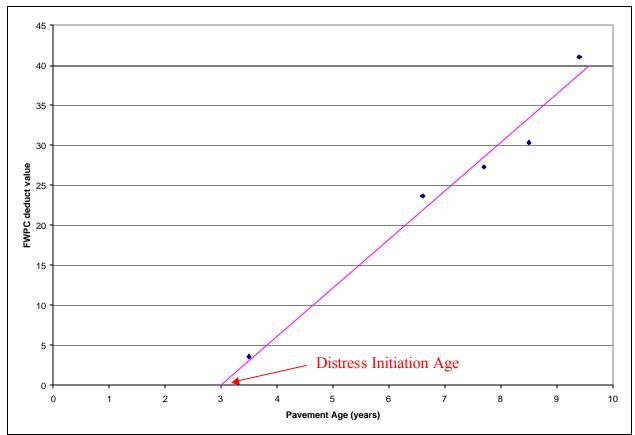


Figure 4. Observed FWPC deduct values for test section 050121 (with regression line).

NCE has no results on comparisons to report at this time. Current work includes evaluating the regression model predictions in different climates to compare performance in the deep freeze, multiple freeze-thaw cycle, and no freeze climates.

Task 9

Conduct detailed analysis of the extent to which local adaptations of materials standards and empirical pavement design practices have been effective at reducing the rate of pavement deterioration

Toward the end of this quarter, NCE received the last of the states' responses to the questionnaire sent out in March, 2004. A summary of the data from the states was presented at the Pooled Fund Panel meeting at the Annual TRB Meeting. The summary indicates a large variation in the typical pavement sections provided by the different states to the design criteria stated in the questionnaire. The variation is not necessarily consistent with trends in frost depth or freeze-thaw cycles. This information will be returned to the Pooled Fund Panel members for review and comments. A copy of the design summaries is attached as Appendix C

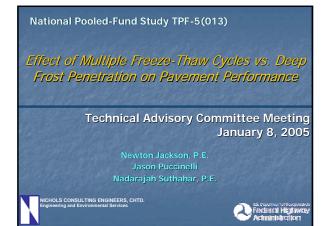
NCE will also be requesting contact information for agencies adjacent to the Pooled Fund states where special design practice, might be of use in this study. A separate questionnaire will be sent to those states as well.

NCE is in the process of compiling the information that was submitted by those states that responded to the questionnaire. NCE has neither analyzed the data nor made any conclusions at this time.

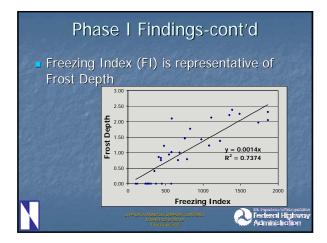
Resources Used

Figure D.1 in Appendix D shows the current work schedule for Task Order #03 through March 2005.

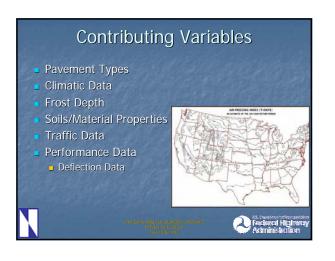
This task order remains several months behind schedule compared to the planned timeline. This is a carryover from the delay in starting on Phase 2 from the previously planned schedule and the added work of developing the additional databases that were used in the trend analysis for Task 3, as well as the delay in the return of the state questionnaires. While NCE will continue to concentrate on getting back on schedule, a no-cost time extension will be submitted this next quarter. The current schedule and several options were discussed at the Pooled Fund Panel meeting in January. There was a consensus among the panel members that an extension should be requested and that the timing should be scheduled such that the final panel meeting could take place during the 2006 Annual TRB Meeting in Washington, DC. A six month time extension request will be submitted next quarter to provide for the panel meeting in January 2006 and final edit time after comments at the panel meeting.

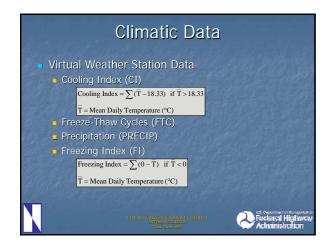

The expenditures have continued to be about 30 percent below planned expenditures as a carryover from the earlier delay. Figure D.2 in Appendix D shows the planned costs versus actual costs for Task Order #03 through March 2005. However with a six month extension the current expenditure rate is about where it should be to be fully funded through the time extension.

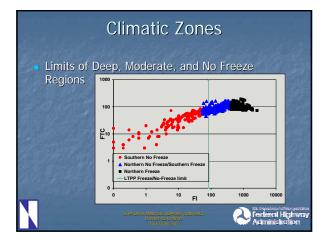
Appendix B

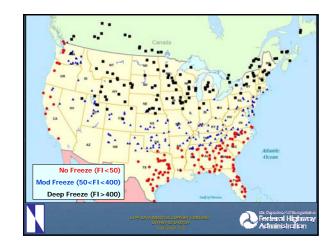

Task Order #03

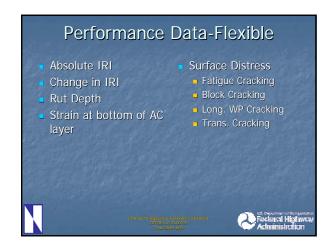
Pooled Fund Panel

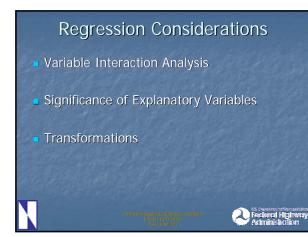

Meeting Slides

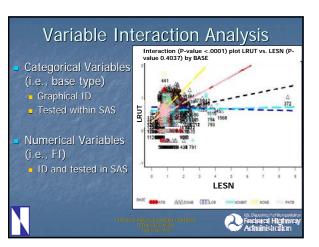




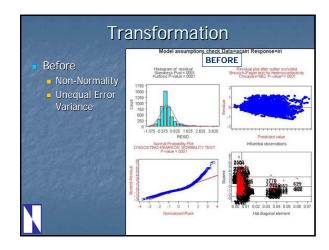


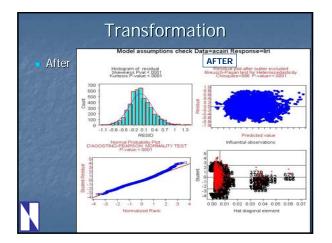


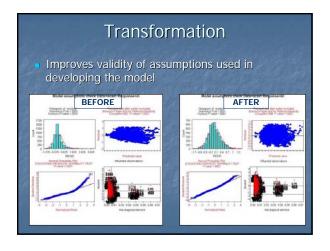


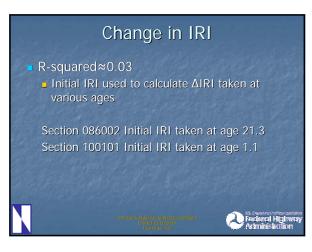


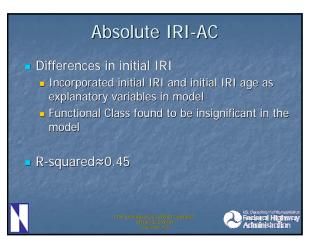
Log	jical Che	ecks/Quality Review	
Pavement	Performance	Reduction Criteria that Warrants	
Sype	Measure	Investigation	

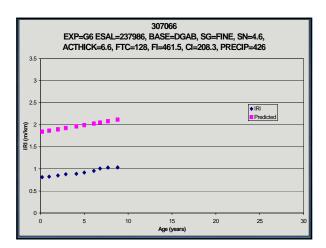

Туре	Measure	Investigation
A-CC	IRI	>0.4 m/km reduction
A-CC	DISTRESS	>30% reduction in sum of key distress types
A-CC	RUTDEPTH	>10 mm reduction
P-CC	IRI	>0.4 m/km reduction
P-CC	DISTRESS	>30% reduction in sum of key distress types
P-CC	FAULTING	>2 mm reduction
		a service and the service of the ser
		US: Department of filoreganisation
		DATA AUALYSIS SUPPORT CONTRACT
		Task Order #03

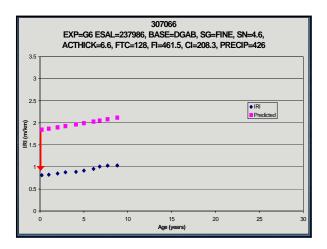


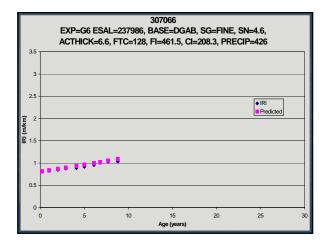


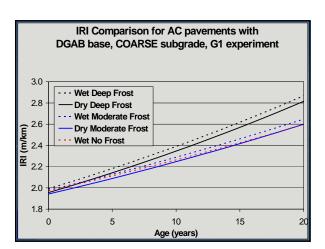

P

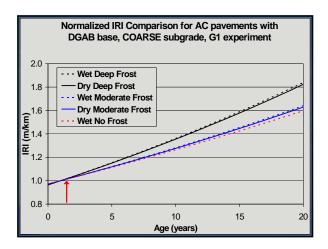

Significance Testing									
	1		1 41	Standard	95	%		/`	
Parameter		DF	Estimate	Error	Confi	dence	Chi-Square	Pr > ChiSo	
Intercept		1	-0.4137	0.2354	-0.875	0.0476	3.09	0.0788	
LESN		1	0.4492	0.166	0.1239	0.7745	7.33	0.0068	
ACTHICK		1	-0.022	0.0078	-0.037	-0.007	8.01	0.0046	
FTC		1	0.003	0.0012	0.0007	0.0052	6.41	0.0114	
FI		1	-0.0001	0.0002	-4E-04	0.0003	0.19	0.6593	
CI		1	0.0004	0.0001	0.0003	0.0006	47.6 <mark>1</mark>	<.0001	
PRECIP		1	-0.0004	0.0001	-5E-04	-2E-04	26.4 <mark>2</mark>	<.0001	
LRUT_AGE		1	0.3914	0.0145	0.3629	0.4198	72 <mark>6</mark>	<.0001	
LESN*FTC		1	0.0013	0.0008	-2E-04	0.0028	2.76	0.0965	
FI*PRECIP		1	0	0	0	0	39.5	<.0001	
BASE	ATB	1	0.6562	0.1796	0.3041	1.0083	13.34	0.0003	
BASE	DGAB	1	0.9938	0.1576	0.685	1.3026	39.78	<.0001	
BASE	LCB	1	1.2078	1.0724	-0.894	3.3096	1.27	0.26	
BASE	NONBIT	1	1.2084	0.2006	0.8152	1.6017	36.27	<.0001	
BASE	NONE	1	0.0913	0.3975	-0.688	0.8703	0.05	0.8184	
BASE	PATB	0	0						

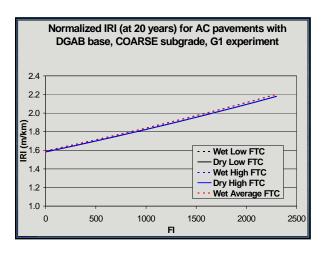


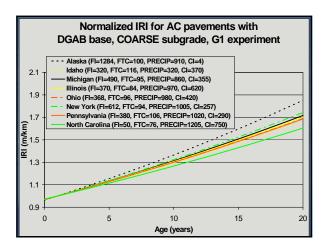


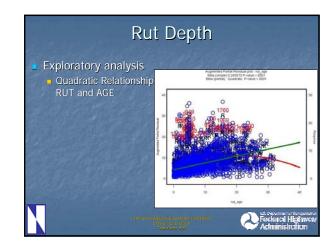


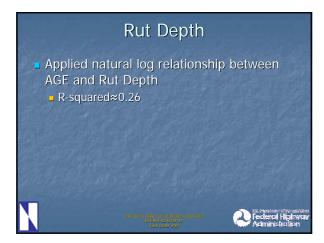


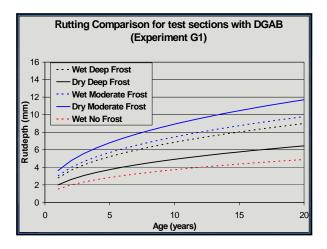


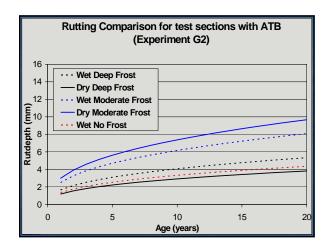


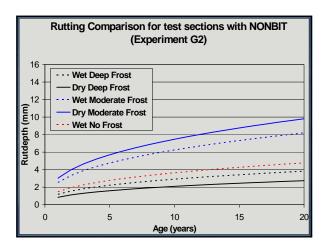


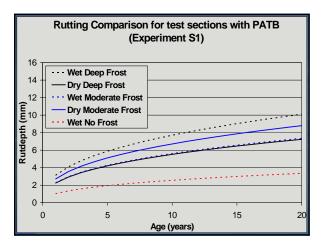




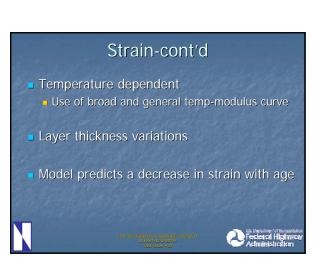




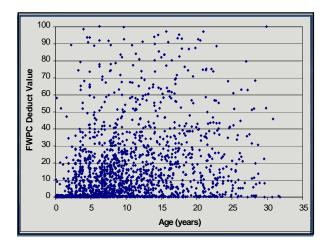


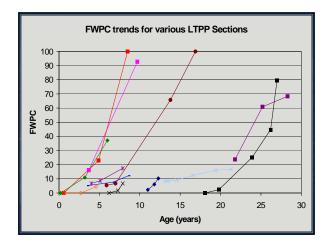


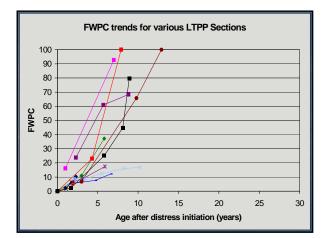
NTERCEPT	-0.413742995	BASEATBLESN	-0.55092
ESN	0.449234546	BASEDGABLESN	-0.80496
ACTHICK	-0.022044857	BASELCBLESN	-0.99154
FTC	0.002951616	BASENONBITLESN	-0.98669
Real Francisco	-7.99004E-05	BASENONELESN	0.072385
CI	0.000432592	BASEPATBLESN	0
PRECIP	-0.000383704	BASEATBFI	-0.00092
_RUT_AGE	0.391377526	BASEDGABFI	-0.0005
ESNFTC	0.001307693	BASELCBFI	-0.00446
FIPRECIP	7.99968E-07	BASENONBITFI	-0.00135
BASEATB	0.656204194	BASENONEFI	-0.00043
BASEDGAB	0.993815007	BASEPATBFI	0
BASELCB	1.207797664	EXPG1	0.617596
BASENONBIT	1.208424614	EXPG2	0.58349
BASENONE	0.091273515	EXPG6	0.631349
BASEPATB	0	EXPS1	0.391322
		EXPS8	0

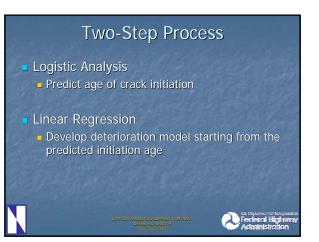


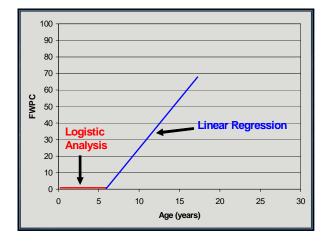
Strain $log(\varepsilon_T) = 0.9977 * log(BDI) + 1.7142$ $BDI = D_{12} - D_{24}$ $\varepsilon_{RT} = \frac{\varepsilon_T}{\alpha_1}$ $\alpha_1 = 10^{-0.8189[log(E_T) - log(E_{RT})]}$ ε_T = strain at bottom of AC for measurement temperature ε_{RT} = strain at bottom of AC for reference temperature D_{12}, D_{24} = Deflections at 12" and 24" offsets (normalized to standard load) E_T = resilient modulus of AC at measurement temperature E_{RT} = resilient modulus of AC at reference temperature

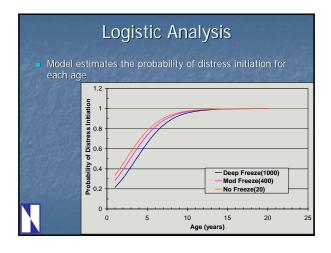


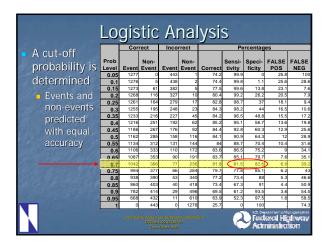

Distress-Flexible

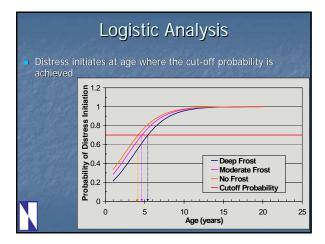

- Severity levels converted to deduct values
- Deduct values combined for each distress type
- Fatigue and Longitudinal Wheelpath (LWP) cracking combined
 - Multiplied length of LWP by 0.3 m
 - Grouped all severities of LWP as low severity to compute deduct values

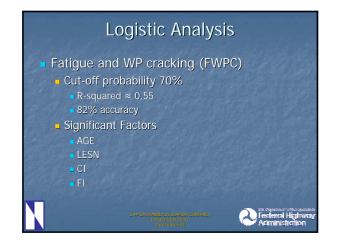

Federal Highway Administration

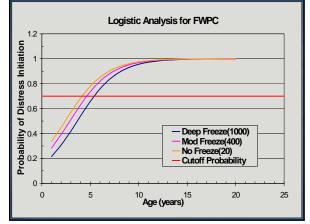


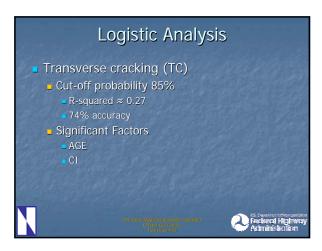


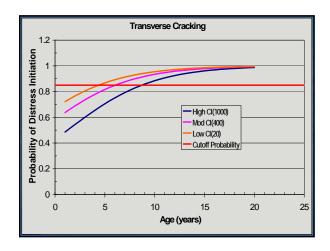


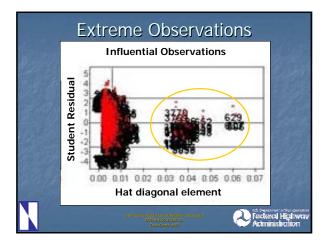


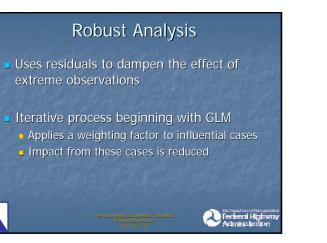


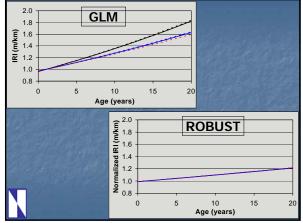


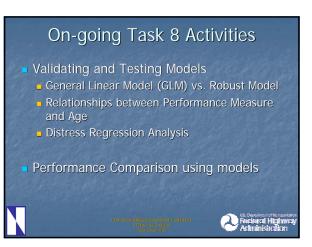


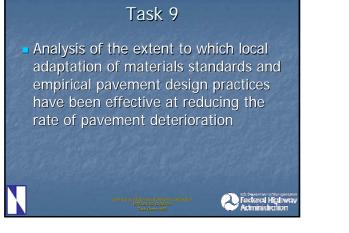


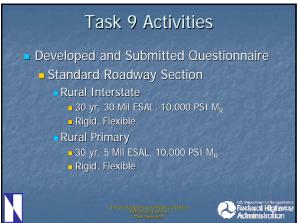


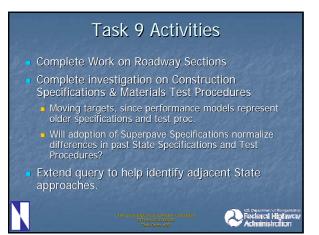








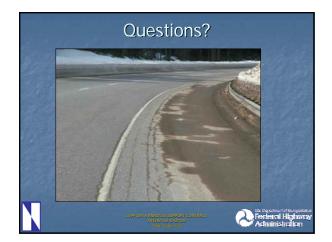



Task 9 Activities	
 Questionnaire (Continued) Standard Roadway Section Standard Specification Standard Specification Test Procedures Average Unit Bid Prices Typical Service Life Treatments Timing Distress at treatment time Adjacent State Treatments 	T Alaska Idaho Illinois New York N. Carolina Michigan Ohio Pennsylvania

and the	Total AC	Drainage	Untreated	Total	Lime Treated
Alaska	NA	111-5-		1371-2	
Idaho	7.8"	19.2 38	24"	31.8"	1200
Illinois	20.25"	2. 141	0"	20.25"	12"
New York	7"	4"ATPB	12"	23"	1.15
N. Carolina	16"	Contra Cont	10"	26"	an she
Michigan	The Design	1000	and the	and the second	
Ohio	11.5"	20,653	6"	17.5"	14.8 20-
Pennsylvania	16.5"	T. Jans	10"	26.5"	100

	Rigid Pavement Interstate							
Renth	PCCP	Drainage	Treated	Untreated	Total	Lime Treated		
Alaska	NA	and the	1.		24			
Idaho	12"		2"	12"	28"	12092		
Illinois	10.5"	and the second	4"		14.5"	12"		
New York	10"	4" ATPB		12"	26"	115		
N. Carolina	11"	1-1-1	4.5"	Cold and a	15.5"	8"		
Michigan	18kg	179		2.5.5		Cape-		
Ohio	11.5"		1 1	6"	17.5"			
Pennsylvania	13"	4"	-	4"	21"	1416		

	Total AC	Drainage	Untreated	Total	Lime Treated
Alaska	5"	112-1-2	19"	24"	36" S
Idaho	6.6"	19-2-31	12"	18.6"	12/20
Illinois	14"	2. Sept	0"	14"	12"
New York	6"	4"ATPB	12"	22"	1. 11
N. Carolina	10.5"	21	10"	20.5"	1. 12
Michigan	Paller and	1500	Carl the	1820	Sec. 1
Ohio	8"	1000	6"	14"	148200
Pennsylvania	17.5"	T. Jens		17.5"	1000


	Rigid Pavement Primary							
Renglat	PCCP	Drainage	Treated	Untreated	Total	Lime Treated		
Alaska	NA	to and the			S Dala			
Idaho	9"	1.12	2"	12"	23"			
Illinois	9.75"	din la	4"		13.75"	12"		
New York	10"	4" ATPB	3	12"	26"	12		
N. Carolina	8"		4.5"	En Black	12.5"	8"		
Michigan	18 h	Carst 1	and the second	2304		Carper-		
Ohio	8"		3 3/	6"	14"			
Pennsylvania	8"	4"	-	4"	16"	410		

Task 10 Activities

- Develop cost modeling procedures to analyze costs associated with different pavement design, specifications, and test procedures as well as performance differences across environmental zones.
- Compute cost differences based on each State's average roadway costs.

Cederal Highway Administration

Appendix C

Task Order #03

Summary Sheets from State Questionnaire Responses

	Flexible Pavement Interstate						
States	Total AC	Drainage	Untreated	Total	Lime T		
Alaska	NA						
Idaho	7.8"		24"	31.8"			
Illinois	20.25"		0	20.25	12"		
New York	7"	4"ATPB	12"	23"			
N. Carolina	16"		10"	26"			
Michigan	7.25"		24"	31.25"			
Ohio	11.5"		6"	17.5"			
Pennsylvania	16.5"		10"	26.5"			

Table C-1 Summary of Interstate Flexible Pavement Design

Table C-2 Summary of Interstate Rigid Pavement Design

	Rigid Pavement Interstate						
States	PCCP	Drainage	Treated	Untreated	Total	Lime T	
Alaska	NA						
Idaho	12"		2"	12"	28"		
Illinois	10.5"		4"		14.5"	12"	
New York	10"	4" ATPB		12"	26"		
N. Carolina	11"		4.5"		15.5"	8"	
Michigan	11.5"	6 " UTB		10"	27.5"		
Ohio	11.5			6"	17.5"		
Pennsylvania	13	4"		4"	21"		

		Flexible Pavement Primary						
Sates	Total AC	Drainage	Untreated	Total	Lime T			
Alaska	5"		19"	24"				
Idaho	6.6"		12"	18.6"				
Illinois	14"		0	14"	12"			
New York	6"	4"ATPB	12"	22"				
N. Carolina	10.5"		10"	20.5"				
Michigan	6.5"		24"	31.25"				
Ohio	8"		6"	14"				
Pennsylvania	17.5"			17.5"				

Table C-3 Summery of Primary Flexible Pavement Design

Table C-4 Summary of Primary Rigid Pavement Design

	Rigid Pavement Primary													
States	PCCP	Drainage	Treated	Untreated	Total	Lime T								
Alaska	NA													
Idaho	9"		2"	12"	23"									
Illinois	9.75"		4"		13.75"	12"								
New York	10"	4" ATPB		12"	26"									
N. Carolina	8"		4.5"		12.5"	8"								
Michigan	8.5"	6 " UTB		10"	24.5"									
Ohio	8"			6"	14"									
Pennsylvania	8"	4"		4"	16"									

Appendix D

Task Order #03

Work Summaries

Through March 2005

Task	Task	Months																													
No.	Status	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	Plan																														
Lit. Rev.	Complete																														
2	Plan																														
DB Dev.	Complete																														
3	Plan																														
Prelim. Anal	Complete																														
4	Plan																														
Cost Data	Complete																														
5	Plan																														
Interim. Report	Complete																														
6	Plan																														
Panel Meeting	Complete																														
7	Plan																														
TRB Briefings	Complete																														
8	Plan												_																		
Full Analysis	Complete																														
9	Plan																														
Local Adapt.	Complete																														
10	Plan																														
Cost Anal.	Complete																														
11	Plan																														
Final Report	Complete																														
12	Plan																														
Panel Meeting	Complete																														

Figure D.1 Work Schedule for Task Order #03 through March, 2005