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CHAPTER 1. Introduction 

1.1. Purpose and Scope 

The purpose of this document is to summarize recent progress in the analysis and interpretation of 
Traffic Speed Deflectometer (TSD) data collected on jointed concrete pavements. Historically, 
most TSD-related research focused on the analysis and interpretation of deflection slope or 
deflection basin estimates collected from measurements on flexible pavements. Use of the TSD 
for the structural assessment of jointed pavements (either plain concrete pavements or composites) 
has been very limited. The TSD is regarded as capable of detecting spots with localized structural 
deficiencies (Phares et al., 2008; Flintsch et al., 2013; Katicha et al., 2014 and 2017), such as the 
weakest joints in a jointed pavement segment, yet no major progress concerning the interpretation 
of the TSD data after detecting those weak spots has been published. Furthermore, the only 
published standard on TSD operation (Austroads, 2016) advises against TSD surveying on rigid 
pavements (concrete and composites). 

The release of the fourth generation TSD in 2020, with enhanced sensing capabilities compared to 
the previous TSD versions and able to report deflection data with a spatial resolution as low as 2 
inches [5 cm], re-ignited the interest in concrete pavement deflection surveying. After a trial run 
with the TSD on jointed concrete segments in Europe (Nielsen et al., 2023) and another in the 
United States (Scavone et al., 2022; 2023) data interpretation methods were proposed to estimate 
the concrete pavement’s strength parameters and the joints’ Load Transfer Efficiency index (LTE) 
from the TSD data (Nielsen et al., 2023; Scavone et al., 2023; Hernandez, 2023 – in press). This 
report provides a review of one of these techniques developed as part of the TPF-5(385) research 
activities, whose software implementation has been publicly released open source1). 

1.2. Audience 

This report’s target audience is any practitioner or researcher on TSD technology. 

  

 

1The computer source code to the LTE back-calculation procedure is publicly available (under the CC BY-SA 4.0 International 
License terms) in https://github.com/MartinScavone/concreteTSD  

https://github.com/MartinScavone/concreteTSD
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CHAPTER 2. TSD Deflection Velocity Data 

2.1. Introduction 

The TSD’s pavement surface deflection sensing system consists of an array of Doppler Laser 
Vibrometers (Hildebrand and Rasmussen 2002, Katicha et al., 2021) that measure the velocity at 
a point on the pavement surface at a given distance from the TSD rear axle wheel. The Doppler 
Effect is the physical principle behind the TSD’s relative velocity measurements (Jendzurski and 
Paulter, 2008). 

The earliest TSD devices featured 3 Doppler vibrometers pointed at locations within the rear axle 
deflection basin, plus a reference sensor far away from the axle that measures the pavement 
velocity at an undeflected location. The second-generation TSDs (Austroads 2016) carry seven 
sensors, and the third- and fourth-generation TSDs carry 10 or 11 sensors, apart from the reference 
sensor. 

The Doppler Effect is the shift in wave frequency that is observed after an emitted wave returns to 
the source after being reflected by an object that is moving relative to the wave source. The relative 
velocity between the wave source and the object that produces the reflection is directly related to 
the amount of shift in the wave frequencyas follows: 

source and receiver approaching: 

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑐𝑐

𝑐𝑐 − 𝑣𝑣 × 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) 𝑓𝑓0

source and receiver departing: 

𝑓𝑓𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
𝑐𝑐

𝑐𝑐 + 𝑣𝑣 × 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) 𝑓𝑓0

 (1) 

In equation 1, f0 is the frequency of the emitted wave, fperceived is the frequency of the reflected 
wave, c denotes the waves’ propagation speed for the medium the wave was emitted in, v is the 
relative velocity between the wave source and the object where the reflected wave is produced, 
and θ represents the angle between the vector v and the direction at which the wave is propagating 
(Jendzurski and Paulter, 2008). In the familiar case of a driving speed radar (Jendzurski and 
Paulter, 2008), waves are emitted from a static source (the radar), and the speed of incoming 
vehicles is estimated from the shifted frequency of these waves’ reflections. The radar would 
estimate the component of the vehicle’s speed v that is collinear with the radar’s beam. The 
measured velocity component, M, would be: 

𝑀𝑀 = 𝑣𝑣 × 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) (2) 

Where theta is the angle between the vehicle’s velocity vector and the vehicle-radar line – Figure 
1. 
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Figure 1: Example of speed-check radar measurement. 

 

The Doppler laser sensors mounted on the TSD measure the relative velocity between the device 
and the pavement surface – both the wave source, which is the Doppler laser in the TSD, and the 
pavement surface where the reflection is generated are in motion. In this case, the Doppler lasers’ 
relative velocity measurement (that is, a velocity measurement relative to the Doppler sensor) has 
both a horizontal component (TSD travel speed vx) and a vertical component (the pavement 
surface’s deflection velocity – vy). This concept is illustrated in Figure 2 (see Appendix 1 for more 
details).  

  
Figure 2: Concept illustration of pavement vy measurement with a TSD. Left: pavement’s vy and TSD’s vx 

from an outside point of view. Right: Pavement’s relative velocity with respect to a TSD-based point of view. 
The TSD sensor’s measurement M, a projection of V relative over the sensor’s beam direction is also shown. 

 

2.2. Vy and deflection slope 

Traditionally, the pavement’s vy measurements from the multiple Doppler sensors are converted 
to deflection basin slope measurements following the expression given in equation 3 (Krarup et 
al., 2006; Katicha et al. 2021).  

𝑆𝑆(𝑟𝑟) =
𝑣𝑣𝑦𝑦(𝑟𝑟)
𝑣𝑣𝑥𝑥

 (3) 

Where S(r) is the slope of the deflection basin at a distance r from the TSD’s rear axle, vy(r) is the 
deflection velocity measurement for the Doppler sensor located in position r, and vx is the TSD’s 
travel speed. These deflection slope estimates are integrated over the TSD’s longitudinal direction 
to obtain the deflection basin up to a constant of integration (Krarup et al., 2006; Müller and 
Roberts, 2012; Flintsch et al., 2013; Katicha et al., 2021). Alternatively, deflection indices (Horak., 
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2008) can be computed directly from these deflection slope estimates (Rada et al., 2016; Katicha 
et al., 2021). 

However, Scavone et al. (2022) showed that equation 3 only holds under the assumption that the 
deflection basin in response to the moving TSD load is stationary – it does not change shape as 
the TSD moves along the pavement. This can be proved using the chain rule of derivatives and 
the concept of total and partial derivatives. Using the chain rule, the relationship between vy (the 
total derivative of the deflection function for a fixed point on the pavement surface, measured by 
the TSD at a given instant) and the deflection basin slope (a local derivative of a traveling 
deflection basin) is given in equation 4: 

𝑣𝑣𝑦𝑦(𝑟𝑟) = 𝑆𝑆(𝑟𝑟) × 𝑣𝑣𝑥𝑥 +
𝜕𝜕𝑤𝑤*

𝜕𝜕𝜕𝜕
(𝑟𝑟) (4) 

In which vy, vx, and S(r) are the same as for equation 3, and the partial derivative term ∂w*/∂t 
represents how much the deflection basin, at a distance r from the load center, changes shape – 
any discontinuity in the pavement structure, such as open joints or cracks, or changes in layer 
thicknesses or material properties would make the partial derivative term non-zero.  

More details into the vy – slope relationship, and the mathematical derivation of equation 4 is given 
in Appendix 2. 

2.3. Vy from a jointed pavement 

Jointed pavements are one important case where equation 3 does not hold and the extra term in the 
chain rule (Equation 4) cannot neglected: The transverse joint, a discontinuity in the pavement 
structure, makes the traveling deflection basin changes shape (Figure 3), and therefore, the partial 
derivative term in a TSD’s vy signal equation 4 is non-zero (Figure 4) (Scavone et al., 2022)2. The 
difference between vy and S can be illustrated qualitatively in Figure 4: As the TSD load 
approaches the joint, S changes sign because of the change of shape in the deflection basin 
However, the points on the pavement surface, ahead of the TSD whee,l (like the locations usually 
sensed by the TSD) are moving downward at all times, which means that vy does not change sign. 
This shows that the slope, S, and vy do not have the same sign and therefore, the slope, is not equal 
to vy/vx. This shows that the deflection velocity, not the deflection slope, should be used when 
analyzing TSD measurements on jointed pavements. 

 

 

2Note: The deflection basins and vy signal shown in figures 2 and 3, reproduced from Scavone et al., (2022), were 
simulated using linear-elastic slab theory (Van Cauwelaert, 2004). This mathematical framework was found to 
represent satisfactorily the response of a jointed pavement to a rolling axle load like that of a TSD and match the 
outcome of a finite element model without the incurred computational cost (Deep et al., 2020). Scavone et al. (2022) 
provided the additional step to simulate the TSD’s vy measurements and deflection slope signals for a jointed pavement 
by appealing to this framework. 
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Figure 3: Simulated deflection bowls for a TSD/ load approaching a transverse joint (at x = 0). The arrows 
indicate the direction of vy for points ahead of the load, whereas the dotted straight lines follow their 

deflection slope (Scavone et al., 2022). 
 

Figure 4: Simulated TSD vy [red] and deflection slope [blue dotted] signals for a pavement with a transverse 
joint (located at x = 0). The partial derivative term (equation 4) is non-zero nearby the joint. (Scavone et al., 

2022) 
 

Scavone et al. (2022) also showed that the TSD vy measurements for a jointed concrete pavement 
can be replicated with a linear-elastic slab-on-ground model (Van Cauwelaert, 2004). Following 
is an example from the MnROAD Load Volume Road (Figure 5). TSD vy measurements were 
collected at a 5-cm spatial resolution (spacing between consecutive measurements) in September 
2021. This measurement campaign included three jointed concrete sections built in 2017, whose 
thickness and material properties are reported (Van Deusen et al., 2018; Barman et al., 2021; 
Khazanovich et al., 2021). Figure 5 shows a sample of the TSD’s vy data for one of the three 
concrete sections, for which the joint spacing is 6 feet. The pulses in the vy signal represent the 
passage of the TSD wheel over the transverse joints. A simulated vy signal resembling the TSD 
data for a single transverse joint was overlaid to the data with a reasonable match, demonstrating 
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that by fine-tuning Van Cauwelaert’s (2004) slab-on-ground model parameters (explained in detail 
in Appendix 3), the TSD measurements can be replicated and, consequently, the pavement 
properties and the joint’s LTE index can be backcalculated from TSD measurements. 

Figure 5: Measured TSD vy signal (+310mm sensor) for a jointed pavement and a matched simulated vy pulse 
for a single joint. 
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CHAPTER 3. Back-calculation of concrete pavement properties from TSD 
vy data 

3.1. Introduction 

This chapter discusses two possible approaches to back-calculate the structural properties of a 
jointed concrete pavement from TSD measurements. One approach consists of implementing the 
concept of vy profile matching introduced in Figure 5 (matching modeled vy signals to 
measurements from a single sensor of the TSD collected as the TSD rolled over the joint) while 
the other approach (Scavone et al., 2023) performs back-calculation of the vy basins, like the back-
calculation procedure based on deflection basin depth data proposed for the Falling Weight 
Deflectometer (FWD) (Rohde et al., 1991; Ullidtz, 1987; and Schmalzer et al., 2007). 

The collection of vy measurements collected by the many sensors of the TSD along a pavement 
segment can be regarded as a two-dimensional vy array (Figure 6). Throughout this chapter, a 
collection of vy measurements from a single joint will be referred to as vy profile, whereas the 
set of measurements from all sensors gathered at a single location will be called vy basin. 

Figure 6: Example of vy basin (multiple sensor measurements for a single station – blue) and vy profile for a 
single sensor (red) 

Two analysis methodologies were developed to interpret the TSD’s vy data and back-calculate the 
pavement properties and the joint’s LTE index  

For the two methodologies, the concrete parameter estimation problem is reduced to an 
optimization problem whose objective is to minimize a metric of the error between the modeled 
response w and the measured TSD data by manipulating the pavement model’s parameters 
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(summarized as vector θ in equation 5). Both procedures rely on Van Cauwelaert’s (2004) linear 
elastic slab-on-ground model (Appendix 3) to simulate the pavement response that is to be 
matched to the selected set of TSD measurements and in both cases it is assumed that the concrete 
slab thickness and Poisson’s coefficient is known, thus vector θ, the variable to solve for contains 
the concrete slab’s elastic modulus E, the subgrade’s modulus of reaction k and modulus of shear 
strength per unit length G, and the joint’s Load Transfer Efficiency index [LTE]. 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

 𝑓𝑓(‖𝑇𝑇𝑇𝑇𝑇𝑇𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 − 𝑤𝑤(𝜃𝜃)‖)

where:        𝜃𝜃 = [𝐿𝐿𝐿𝐿𝐿𝐿,𝐸𝐸, 𝑘𝑘,𝐺𝐺]
assuming:ℎ, 𝜈𝜈 known

 (5) 

However, as discussed in Chapter 2, the implementation of equation 5 within a TSD analysis 
framework must be based on vy data therefore, the function w(θ) actually is deflection velocities. 

3.2. Back-calculation of concrete pavement properties based on vy basins. 

This procedure is an adaptation of the well-known back-calculation problem from deflection data 
as formulated by Rohde and Smith (1991): Deflection data from multiple sensors collected at a 
given location within the pavement (a deflection basin for the FWD, and a vy basin for the TSD) 
are compared to the modeled response for the sensors’ locations and a given set of values for the 
model parameters (vector θ), the sum of squared errors (SSE) between measurements and modeled 
responses is computed. The back-calculation problem consists of determining the value of θ that 
minimizes SSE. 

For the case of the TSD, the measurements used are the deflection velocities and therefore, the 
SSE must be stated in terms of deflection velocities [vy] (Scavone et al., 2023 – in press). The TSD 
back-calculation problem is stated in equation 6. 

𝑚𝑚𝑚𝑚𝑚𝑚
𝜃𝜃

 ‖𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑤̇𝑤(𝜃𝜃)‖2 = � �𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 − 𝑤̇𝑤𝑖𝑖(𝜃𝜃)�2
𝑇𝑇𝑇𝑇𝑇𝑇−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1
where:        𝜃𝜃 = [𝐿𝐿𝐿𝐿𝐿𝐿,𝐸𝐸, 𝑘𝑘,𝐺𝐺]

and:           𝑤𝑤𝚤𝚤˙ (𝜃𝜃) = 𝑣𝑣𝑦𝑦(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝜃𝜃)
subject to:  𝐸𝐸 > 0, 𝑘𝑘 > 0,𝐺𝐺 > 0, 𝐿𝐿𝐿𝐿𝐿𝐿 ∈ [0,1]

assuming:  ℎ, 𝜈𝜈 known

 (6) 

In equation 6, xTSDi represents the distance between the TSD’s rear axle wheel and the i-th sensor, 
the coordinate x is moving with the TSD wheel. 

Scavone et al. (2023) implemented a numerical solution to the problem in equation 6 that divides 
the back-calculation problem into two subproblems. The first determines the pavement properties 
from the data collected mid-slab and the second determines the joint strength properties from data 
collected near the joints. This is similar to the two-stage back-calculation of concrete pavements 
from FWD data proposed by Ullidtz (1987): 

• Optimization Problem 1 [OP1]: Use mid-slab vy measurements to fit an infinite slab model 
(ignore the presence of the joint). Solve for the pavement and subgrade’s strength 
parameters. 
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• Optimization Problem 2 [OP2]: Assuming the results from OP1 [E, k, G] as valid, fit the 
jointed slab-on-ground model to solve for the joint’s LTE index. Scavone et al. (2023) also 
proposed OP2 as a refinement to the distance between the TSD wheel and the joint c. 

Mathematically, problems OP1 and OP2 are stated as follows (equation 7): 

𝑂𝑂𝑂𝑂1:𝑚𝑚𝑚𝑚𝑚𝑚 𝜃𝜃 ∑ �𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − 𝑤̇𝑤𝑖𝑖(𝜃𝜃)�
2

𝑇𝑇𝑇𝑇𝑇𝑇−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1

where: 𝑤̇𝑤𝑖𝑖 = 𝑣𝑣𝑦𝑦(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝜃𝜃)
𝑤𝑤(𝑥𝑥,𝜃𝜃) from infinite slab defl. model,

 and:   𝜃𝜃 = [𝑘𝑘,𝐸𝐸,𝐺𝐺]
Subject to:  𝑘𝑘 ≥ 0,𝐸𝐸 ≥ 0,𝐺𝐺 ≥ 0,

 assuming: ℎ, 𝜈𝜈 known

    

𝑂𝑂𝑂𝑂2:𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃 ∑ �𝑇𝑇𝑇𝑇𝑇𝑇𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑖𝑖 − 𝑤̇𝑤𝑖𝑖(𝜃𝜃)�
2

𝑇𝑇𝑇𝑇𝑇𝑇−𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1

where: 𝑤̇𝑤𝑖𝑖 = 𝑣𝑣𝑦𝑦(𝑥𝑥𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 ,𝜃𝜃)
and:  𝑤𝑤(𝑥𝑥,𝜃𝜃) from jointed slab defl. model

and: 𝜃𝜃 = [𝑐𝑐, 𝐿𝐿𝐿𝐿𝐿𝐿]
Subject to: 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑐𝑐 ≤ 𝑐𝑐𝑚𝑚𝑚𝑚𝑚𝑚 ,  0 ≤ 𝐿𝐿𝐿𝐿𝐿𝐿 ≤ 1,

assuming: ℎ, 𝜈𝜈, 𝑘𝑘,𝐸𝐸,𝐺𝐺 known

 (7) 

Scavone et al. (2023) implemented the two-stage concrete back-calculation problem (equation 7 
and) onto computer code to process 5-cm-resolution TSD measurements from concrete pavements 
with regular-size (15-20 feet long) slabs:  

• Firstly, the TSD data is denoised and the pulses recorded as the TSD travels over the joints 
are located. 

• Then, for every joint detected: 

◦ Problem OP1 is solved for the mid-slab measurements recorded between 68 and 88 
inches [2.25 and 1.75 meters] ahead of the pulse location. The mean of the multiple k, 
E, and G are recorded as the local pavement properties. 

◦ Problem OP2 is solved for all the measurements recorded between 59 and 8 inches 
[1.50 to 0.20 meters] ahead of the joint. The mean LTE from each instance is reported 
as the joint’s final LTE estimate. 

3.3. Back-calculation of concrete pavement properties by matching of vy profiles. 

An alternative concrete pavement back-calculation procedure for TSD data consists of analyzing 
the vy profiles collected by a single sensor at multiple locations near a transverse joint; the 
amplitude and shape of the measured vy profile contains information about the pavement’s 
structural capacity and the joint’s LTE index (Scavone et al., 2022). Therefore, matching the 
measured vy-profile to the modeled vy-profile  allows the determination of pavement structural 
parameters and the joint’s LTE 

Mathematically, the vy profile matching problem can be stated as an optimization problem. For 
example, in the case of a TSD survey on a pavement with known slab thickness h and concrete’s 
Poisson’s coefficient ν, and unknown concrete modulus E, soil properties k, G, and joint LTE, the 
correlation between measured vy data and modeled vy profiles can be set as the objective function 
(the function to optimize). More specifically, the correlation between the normalized 
measurements and modeled responses is set as the optimization objective function, so that vy-
matcher would be insensitive to systematic measurement errors (bias) that would otherwise distort 
the results. Conceptually, this formulation is focused on matching the shape of the vy data rather 
than its mere numerical values. Vy-matcher’s mathematical formulation is stated below (equation 
8).  
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𝑚𝑚𝑚𝑚𝑚𝑚𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋(𝜃𝜃),𝑌𝑌)
where 𝜃𝜃 = [𝐸𝐸, 𝑘𝑘, 𝐿𝐿𝐿𝐿𝐿𝐿|𝜈𝜈, 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿, ℎ, 𝑣𝑣𝑥𝑥 ,𝐺𝐺 =  0]

𝑎𝑎𝑎𝑎𝑎𝑎: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋 × 𝜎𝜎𝑌𝑌

=
𝐸𝐸[(𝑋𝑋 − 𝜇𝜇𝑋𝑋)(𝑌𝑌 − 𝜇𝜇𝑌𝑌)]

𝜎𝜎𝑋𝑋 × 𝜎𝜎𝑌𝑌

𝑖𝑖𝑖𝑖 𝑤𝑤ℎ𝑖𝑖𝑖𝑖ℎ:  𝑋𝑋 = =
𝑣𝑣𝑦𝑦 − 𝜇𝜇𝑣𝑣𝑦𝑦

�𝑣𝑣𝑦𝑦 − 𝜇𝜇𝑣𝑣𝑦𝑦�
;    𝑌𝑌 =

𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇
‖𝑇𝑇𝑇𝑇𝑇𝑇 − 𝜇𝜇𝑇𝑇𝑇𝑇𝑇𝑇‖

 

 

(8) 

In equation 8, the vector θ, and variables h, v, k, E, G, and LTE are as previously defined, the index 
j denotes the j-th TSD sensor, which is at a distance xj from the TSD wheel, the variable ci denotes 
the distance between the TSD wheel and the joint at the station where the i-th measurement was 
collected, and n denotes the length of the vy profile (for measurements started 1.5m ahead of the 
joint to +1.0m after the joint, at 5cm resolution, n = 51). Also, μ and σ are the average and standard 
deviations of the TSD data and modeled vy signals respectively. In the current implementation of 
equation 8, it was decided to not optimize G   and assume G = 0 (Winkler foundations). 

Figure 7 and Figure 8 show examples of matched vy signals to simulated, noiseless, TSD data for 
the sensors at x = 210mm and x = 600mm, generated during vy-matcher’s beta-testing stage for 
two sets of pavement parameters. 

• Simulated Example #1 [Figure 7]: E = 33.1 GPa, K = 3.3x107 N/m3, LTE = 0.80 

• Simulated Example #2 [Figure 8]: E = 39.3 GPa, K = 3.3x107 N/m3, LTE = 0.80 

• Remaining parameters (equal for both examples): h = 0.15m, G = 0, Load = 40 kN, p 
= 793 kPA, 2b = 0.50m, v = 0.20, vx = 17.78 m/sec. 

It was found that vy-matcher may match the input data to the vy profile of any pavement case whose 
E/k ratio is close to that of the measured pavement  and the pavement properties can be determined 
by scaling those of the matched vy signal using the ratio of the vy signal and TSD data.  
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Figure 7: Vy-matcher’s outcome for vy-210 and vy-600 on simulated example #1: vy-matcher’s reported 

nearest neighbor matched the target and the measurements. Top: Raw signals. Bottom: normalized signals. 
 

 

 
Figure 8: Vy-matcher’s outcome for vy-210 and vy-600 on simulated example #2: Top: Raw signals (nearest 

neighbor mismatched the measurements). Bottom: Raw signals and matched neighbor after scaling, a match 
was attained. 
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As expected, the noise level in the TSD data  affects the accuracy of determining the E/k and thus 
the E and k estimates may become  less accurate. However, the noise has a smaller effect on the 
accuracy of determining the LTE, and in general, it can still be estimated within +/-5% of the target 
value. Figure 9, which is the correlation-vs-E/k plot for a simulated noisy case study with a known 
target (same parameters as Simulated Example #1), graphically shows how vy signals from cases 
other than the target – even for LTE different than the target LTE – might correlate to the recovered 
measurements better than the target signal. 

Consequently, the correlation-based vy-matcher may correctly return the joint’s LTE index and the 
E/k ratio for the surveyed section, provided that the input data is not extremely distorted by 
measurement noise. This becomes an issue when processing measurements from strong joints 
and/or very stiff pavements, for which the vy signals are faint and more likely to be garbled by 
measurement noise; yet these joints hardly pose a concern to the pavement manager, because they 
boast good structural health. On the other hand, TSD data from weak concrete pavement sections 
can be reasonably processed with vy-matcher and the pavement’s structural parameters can be 
estimated somewhat reliably. Meanwhile, in any case, from the tested simulated studies, vy-
matcher should approximate the joint’s LTE from noisy data within +/-5% of the target value. 

  
Figure 9: Correlation plot between a normalized denoised vy profile [simulated] and multiple modeled vy 

profiles vs E/k ratio, color-coded by LTE index. Left: Plots for multiple E/k and LTE cases. Right, sub-set of 
the LTE=0.75, 0.80, and 0.85 plot showing that multiple vy profiles with E/k close to the ground truth 

correlate better to the input data than the target neighbor [Target: E/k = 1000, LTE = 0.80] 
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Appendix 1: How the TSD generates pavement surface vy measurements  
Note: This appendix is a review of a procedure published by Scavone et al. (2022) 

The TSD collects pavement surface deflection velocity [vy] data from Doppler Laser Vibrometers 
mounted along its longitudinal direction, at different distances from its rear axle. Most of these 
sensors measure the pavement surface velocity relative to the TSD for points on the pavement 
within the TSD axle’s deflection basin, whereas one additional sensor located far away from the 
rear axle (the reference sensor) measures the relative velocity of the pavement surface at a location 
deemed as undeflected (Hildebrand and Rasmussen, 2022; Krarup et al., 2006). This appendix 
presents the mathematical procedure to determine vy for a location within the deflection basin from 
the measurement from a Doppler Laser Vibrometer targeted at it plus the measurement from the 
reference sensor. The formulae presented herein were originally published by Scavone et al. 
(2022). 

Figure 10 represents the featured two-sensor arrangement. Sensor 1 refers to the Doppler Sensor 
aimed at a point within the deflection basin [point 1], and Sensor 0 is the reference sensor, aimed 
at point 0. Sensors 0 and 1 are skewed at angles α0  and α1 from the vertical direction [angles θ0 
and θ1 are complementary to α0  and α1]; the TSD (and thus sensors 0 and 1) are traveling 
horizontally with speed vx. Sensor 0’s and Sensor 1’s measurements are denoted M0 and M1 
respectively and represent the velocity of points 0 and 1 on the pavement surface relative to the 
TSD. As such, point 0’s relative velocity to Sensor 0 is vx horizontally and no vertical component, 
and point 1’s velocity (vector v1 in Figure 10) has both a horizontal component equal to vx plus a 
vertical component equal to vy, β is the angle formed by v1 and the horizontal direction.  

Figure 10: Measurement of pavement’s vy at a point within the deflection basin from two TSD measurements. 
Definition of variables. From Scavone et al. (2022) 
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Measurement M0 is a projection of vx on the direction of sensor 0’s beam, thus: 

𝑀𝑀0 = 𝑣𝑣𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(90𝑑𝑑𝑑𝑑𝑑𝑑 − 𝛼𝛼0) = 𝑣𝑣𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼0)

𝑣𝑣𝑥𝑥 =
𝑀𝑀0

𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼0)
 (9) 

Similarly, measurement M1 would collect a projection of v1 over the direction of its laser beam, 
thus: 

𝑀𝑀1 = 𝑣𝑣1𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃′) (10) 

Since angle θ’ is equal to θ1 minus β it holds that: 

𝑀𝑀1 = 𝑣𝑣1𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1 − 𝛽𝛽) (11) 

By replacing the cosine of a difference in equation 11 by the cosine identity: cos(a – b) = 
cos(a)cos(b) + sin(a)sin(b) leads to: 

𝑀𝑀1 = 𝑣𝑣1[𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1)𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1)𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽)] (12) 

Meanwhile, the horizontal component of v1 is vx, and so: 

𝑣𝑣𝑥𝑥 = 𝑣𝑣1𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) (13) 

Merging the result from equation 13 into equation 12 gives: 

𝑀𝑀1 =
𝑣𝑣𝑥𝑥

𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽)
[𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1)𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽) + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1)𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽)]

then:  
𝑀𝑀1 = 𝑣𝑣𝑥𝑥[𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃1) + 𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃1)𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽)]

 (14) 

Moreover, by applying to the relationship between θ1 and α1 (complementary angles) and 
rearranging terms in equation 14 leads to: 

𝑀𝑀1 = 𝑣𝑣𝑥𝑥[𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1) + 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼1)𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽)] (15) 

𝑀𝑀1 − 𝑣𝑣𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1) = 𝑣𝑣𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼1)𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽)
then:  

𝑀𝑀1 − 𝑣𝑣𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1)
𝑣𝑣𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼1) = 𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽)

 (16) 

At this point, vx can be substituted in equation 16 by its estimate from measurement M0 (equation 
9). This leads to an expression to estimate angle β from M1 and M0: 

𝑀𝑀1 −𝑀𝑀0
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1)
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼0)

𝑣𝑣𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼1) = 𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽) (17) 

 

Since vy = v1 sin(β) = vx tan(β), then vy can be solved as a function of M1 and M0 by rearranging 
equation 17. 
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𝑀𝑀1 −𝑀𝑀0
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1)
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼0)

𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼1) = 𝑣𝑣𝑦𝑦 (18) 

Finally, the TSD’s Doppler laser sensors are customarily skewed from the vertical direction only 
very slightly, thus angles α1 and α0 are small (about 2 degrees), and so cos(α1) ~ cos(α0) ~ 1. This 
simplifies equations 17 and 18 as follows [the sine terms cannot be simplified, however]: 

𝑀𝑀1 −𝑀𝑀0
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1)
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼0)

𝑣𝑣𝑥𝑥
= 𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽) (19) 

𝑀𝑀1 −𝑀𝑀0
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼1)
𝑠𝑠𝑠𝑠𝑠𝑠(𝛼𝛼0) = 𝑣𝑣𝑦𝑦 (20) 

Equation 18 also shows how crucial it is to know the angles α0 and α1 to ensure accurate vy 
measurements, inexact angle measurements would lead to erroneous vy data. Moreover, 
inexact approximations of α1 and α0 may even make the vy measurement null. 
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Appendix 2: Discussion on the relationship between Vy and deflection slope 
Note: This appendix is a review of findings by Scavone et al. (2022) 

Introduction: 

A generally accepted premise of TSD data processing is that the slope of the deflection basin [Sl] 
at a given point on the pavement surface can be determined from the TSD’s vy data measurement 
and travel speed vx as per the following relationship (Hildebrand and Rasmussen, 2002; Krarup et 
al., 2006): 

𝑆𝑆𝑆𝑆 =
𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

 (21) 

Throughout the multiple research efforts concerning TSD operation and data handling carried out 
to date, the relationship in equation 21 has been assumed as an immutable hypothesis, researchers 
then proposed different processing techniques to integrate the Sl estimates into measurements of 
the depth of the deflection basin – for a review of those procedures, refer to Katicha et al., 2021; 
Scavone 2022. 

However, when inspecting the TSD data from a jointed pavement with known properties and 
comparing it against simulated responses from linear-elastic slab theory (Van Cauwelaert, 2004), 
a discrepancy was found: at locations nearby the joint, the simulated deflection slope for points 
ahead of the TSD wheel, which are at all times descending into the deflection bowl, changes sign. 
Such a behavior cannot be explained by the relationship in equation 21, thus forcing a revision. 
Figure 11 illustrates this discrepancy for a sample of real 5cm resolution TSD deflection slope 
estimates from the MnROAD test track. Such slope estimates were computed with equation 21, 
meaning these are actually scaled vy measurements. The figure shows that the slope estimates do 
not match the simulated slope data, but they do resemble the simulated pavement surface vy. 

Figure 11: Simulated slope and vertical surface velocity signals against a TSD measurement – Sensor at 
130mm ahead from the TSD wheel. 
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Statement: Relationship between vy and deflection basin slope and validity of the 
slope-vy direct relationship 

The pavement surface point’s deflection velocity [vy] is constituted by two components: 

• One component relates to the rate of change in shape of the deflection basin produced by 
the TSD load applied on the pavement. 

• The second component is due to the horizontal movement of the deflection basin, this term 
relates vy to the slope of the basin S and the TSD travel speed vx 

When the deflection basin produced by the TSD load is stationary (that is, it keeps constant 
shape throughout the many locations where the TSD measurements take place), only then 
equation 21 is valid. 

Proof (Scavone et al., 2022) 

The pavement deflection function w depends on its location (x) and the pavement structure 
properties (summarized as M, which are a function of the location x as well). Since the TSD travels 
horizontally along the pavement, x is, in turn, a function of the time t. 

𝑤𝑤 = 𝑤𝑤 �𝑥𝑥(𝑡𝑡),𝑀𝑀�𝑥𝑥(𝑡𝑡)�� (22) 

The pavement surface deflection velocity vy for a given point is the total derivative of w over time. 
Thus, differentiating w and applying the chain rule: 

𝑣𝑣𝑦𝑦 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (23) 

The second term of the chain rule could be simplified by defining function w* as the component 
of w that only depends on the pavement properties. Rewriting equation 23 gives: 

𝑣𝑣𝑦𝑦 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑤𝑤*

𝜕𝜕𝜕𝜕
 (24) 

Noticing that vx = ∂x/∂t (because coordinate x moves with the TSD) and the slope of the deflection 
bowl S = ∂w/∂x (by definition), we have that: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑆𝑆𝑣𝑣𝑥𝑥 (25) 

Then, combining the results from equations 24 and 25: 

𝑣𝑣𝑦𝑦 = 𝑆𝑆𝑣𝑣𝑥𝑥 +
𝜕𝜕𝑤𝑤*

𝜕𝜕𝜕𝜕
 (26) 

Equation 26 thus states that vy is made of two main elements: a term (the partial derivative term) 
that relates to how the deflection basin changes shape because of changes in pavement properties 
(layer thickness, material properties, discontinuities in the pavement structure), plus the slope term, 
that is due to the fact that the TSD’s deflection bowl is moving.  
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It can also be observed that the relationship in equation 21 is a particular case of equation 26 that 
is valid only if the partial derivative term is zero (or is quantitatively negligible compared to the 
slope term). This implies that equation 21 only holds for homogeneous stretches of pavement, that 
is, segments that have constant material properties are free of events that may alter the shape of 
the moving TSD deflection basin. 

Proof concluded. 

Geometric interpretation: 

Equation 21 also has a geometric interpretation concerning the relative velocity vector v1 for a 
point on the pavement surface that is within the deflection basin (refer to Appendix 1). Recalling 
that β is the angle of v1 with respect to the horizontal line (Figure 10), then: 

𝑆𝑆𝑆𝑆 = 𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽) =
𝑉𝑉𝑦𝑦
𝑉𝑉𝑥𝑥

 (27) 

This result means that when the TSD deflection basin is stationary, vector v1 is parallel to the 
deflection bowl slope, meaning that, relative to the TSD, points on the pavement surface fall down 
the slope the bowl. 

Alternative concept proof 

Note: The following is an alternative derivation of the non-direct relationship between deflection 
slope and vy (equation 26) that, while lacking the rigor of the calculus-based proof, contributes to 
understanding the two terms that compose vy.  

A vy measurement is a measurement of the velocity a given point on the pavement structure 
descends (difference between two surface elevation values for a point at a given station at different 
moments in time). Meanwhile, a deflection slope measurement is a measurement that represents 
the difference in elevation of two points at different stations but at the same moment in time. 

Consider the deflection bowls from the TSD wheel at times t0 and t1 = t0 + Δt (for an increment 
Δt small enough that vy for a given point in the pavement surface may remain constant). The 
TSD wheel is located at station x = c0 at time t0 and at station x = c1 at time t1. The TSD moves 
with horizontal speed vx. Thus, it is immediate that x1 = x0 + vx × Δt, and in particular, c1 = c0 + 
vx × Δt. 

The deflection basins for each timestamp are w(z,t0) and w(z, t1) respectively, where z is a 
coordinate that is moving with the TSD and centered at the TSD wheel centerline: at t = t0, z = 0 
corresponds with x =c0, and at t = t1, z = 0 corresponds to x = c1). These variables are shown in 
Figure 6. 

Consider now the deflection at a point located at a distance z from the TSD wheel (a distance from 
the TSD wheel where a Doppler sensor is located). At time t0, its station is x0 = c0 + z, and at time 
t1, its station is x1 = c1 + z. Thus, the TSD sensor would gather data [vy] for the point at station 
x0 at time t0 and for the point at station x1 at time t1. 
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Figure 12: Definition of variables used in proof of concept. Deflection bowls for time t0 and t1, TSD wheel 
located at stations c0 and c1 respectively. 

Approximate the deflection slope of the basin w(z,t0) for the points at station x0 and x1 (Slt0)) as a 
finite difference using the deflections at x0 and x1 and time t0 

𝑆𝑆𝑆𝑆(𝑡𝑡0) =
𝛥𝛥𝛥𝛥(𝑧𝑧, 𝑡𝑡)|𝑥𝑥0

𝛥𝛥𝛥𝛥
=
𝑤𝑤(𝑥𝑥1, 𝑡𝑡0) − 𝑤𝑤(𝑥𝑥0, 𝑡𝑡0)

𝑥𝑥1 − 𝑥𝑥0
 (28) 

Knowing that x1 = x0 + vx × Δt, it holds: 

𝑆𝑆𝑆𝑆(𝑥𝑥0) =
𝛥𝛥𝛥𝛥(𝑥𝑥, 𝑡𝑡)
𝛥𝛥𝛥𝛥

=
𝑤𝑤(𝑥𝑥1, 𝑡𝑡0) − 𝑤𝑤(𝑥𝑥0, 𝑡𝑡0)

𝑣𝑣𝑥𝑥𝛥𝛥𝛥𝛥
 (29) 

As stated before, the TSD would collect data about point x0 at time t0, but none about point x1 at 
t0 (the Doppler vibrometer will only sense point x1 at time t1). However, w(x1,t0) could be 
approximated from w(x1,t1) and vy(x1): 

𝑣𝑣𝑦𝑦(𝑥𝑥1, 𝑡𝑡1) = 𝑣𝑣𝑦𝑦(𝑥𝑥1, 𝑡𝑡0) = 𝑣𝑣𝑦𝑦(𝑥𝑥1) =
𝑤𝑤(𝑥𝑥1, 𝑡𝑡1) − 𝑤𝑤(𝑥𝑥1, 𝑡𝑡0)

𝛥𝛥𝛥𝛥
then:  

𝑤𝑤(𝑥𝑥1, 𝑡𝑡0) = 𝑤𝑤(𝑥𝑥1, 𝑡𝑡1) − 𝑣𝑣𝑦𝑦 × 𝛥𝛥𝛥𝛥

 (30) 

Equation 30 assumes that the vy is constant between times t0 and t1, hence the original assumption 
of a small interval Δt. 

Merging equations 28 and 30 and rearranging: 

𝑆𝑆𝑆𝑆(𝑡𝑡0) =
𝑤𝑤(𝑥𝑥1, 𝑡𝑡1) − 𝑣𝑣𝑦𝑦 × 𝛥𝛥𝛥𝛥 − 𝑤𝑤(𝑥𝑥0, 𝑡𝑡0)

𝑣𝑣𝑥𝑥𝛥𝛥𝛥𝛥
 (31) 

𝑆𝑆𝑆𝑆(𝑡𝑡0) =
1
𝑣𝑣𝑥𝑥

×
𝑤𝑤(𝑥𝑥1, 𝑡𝑡1) − 𝑤𝑤(𝑥𝑥0, 𝑡𝑡0)

𝛥𝛥𝛥𝛥
−
𝑣𝑣𝑦𝑦
𝑣𝑣𝑥𝑥

 (32) 
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Now, if we recall that the x0, x1 within function w are actually functions of c0, c1, and the moving 
coordinate z, equation 32 becomes: 

𝑆𝑆𝑆𝑆(𝑡𝑡0) =
1
𝑣𝑣𝑥𝑥

×
𝑤𝑤(𝑐𝑐1, 𝑧𝑧) − 𝑤𝑤(𝑐𝑐0, 𝑧𝑧)

𝛥𝛥𝛥𝛥
−
𝑣𝑣𝑦𝑦
𝑣𝑣𝑥𝑥

 (33) 

Rearranging terms and relating c1 and c0: 

𝑣𝑣𝑦𝑦 = 𝑆𝑆𝑆𝑆(𝑡𝑡0) × 𝑣𝑣𝑥𝑥 +
𝑤𝑤(𝑐𝑐0 + 𝛥𝛥𝛥𝛥, 𝑧𝑧) − 𝑤𝑤(𝑐𝑐0, 𝑧𝑧)

𝛥𝛥𝛥𝛥
 (34) 

Equation 34 (an approximation to equation 26) shows that vy and the deflection basin slope are 
not directly related: In fact, vy is made of the slope term plus a term that encodes the rate at which 
the deflection basin (w(z)) changes shape, regardless of the fact that the TSD’s deflection bowl 
may also be moving – even a stopped TSD that applies a variable load on the pavement would 
force the pavement surface move up and down, and that movement would be encoded in the second 
right-hand term in equation 8. 

Consequently, equation 34 shows that vy and Sl are directly related (equation 21) only if the second 
right-hand-side term is zero, which occurs only if the deflection basin does not change shape. 
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Appendix 3: A slab-theory-based mathematical model for the deflection of a 
jointed concrete pavement 

Note: This appendix is an abridged review, based on Scavone (2022), of the closed-form solutions 
to the deflection function for a jointed concrete slab on a Pasternak foundation, as solved by Van 
Cauwelaert (2004). 

Slab theory approach 

Van Cauwelaert (2004) solved the mathematical expression for a linear elastic slab-on-ground 
problem as shown in Figure 13. The pavement structure is supposed a pair of semi-infinite linear 
elastic concrete slabs with Young’s modulus E, and Poisson’s coefficient ν, and the slab thickness 
is h. Both slabs rest on a Pasternak foundation, which is a Winkler foundation capable of also 
withstanding shear stress – the foundation is characterized by its modulus of subgrade reaction k 
and a shear strength per unit length modulus G3. One of the slabs receives a uniformly distributed 
load, pressure p, spread over a rectangular area of dimensions 2a by 2b; the transverse joint is 
located at a distance c from the center of the load and is characterized by its deflection-ratio-based 
LTE index (Alavi et al., 2008; Pierce et al., 2017). 

 

Figure 13: Definition of the jointed-slabs-on-ground problem.  

 

The solution to the deflection basin that occurs in response to this load has a closed-form solution: 
It is a combination of the solution for an infinitely large continuous slab on ground, plus additional 
terms that account for the presence of the transverse joint. Van Cauwelaert (2004) states separate 
expressions for the loaded and unloaded slabs (equation 35).  

𝑤𝑤𝐿𝐿(𝑥𝑥, 𝑦𝑦) = 𝑤𝑤(𝑥𝑥, 𝑦𝑦) + 𝐴𝐴 × 𝑤𝑤𝐴𝐴(𝑥𝑥, 𝑦𝑦) + 𝐵𝐵 × 𝑤𝑤𝐵𝐵(𝑥𝑥, 𝑦𝑦)
𝑤𝑤𝑈𝑈𝑈𝑈(𝑥𝑥, 𝑦𝑦) = 𝐶𝐶 × 𝑤𝑤𝐶𝐶(𝑥𝑥, 𝑦𝑦) + 𝐷𝐷 × 𝑤𝑤𝐷𝐷(𝑥𝑥, 𝑦𝑦)  (35) 

Note: Coordinate x is along the direction perpendicular to the transverse joint, and coordinate y 
is parallel to the transverse joint. The origin of coordinates is at the center of the applied load. 

 

 

3A Winkler (dense liquid) foundation corresponds to the G = 0 case. 
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Each of the terms in equation 35 is an infinite series over a dummy variable, the constants A, B, 
C, and D are solved from the boundary conditions imposed by the transverse joint for each value 
of the dummy variable as well – see equations 54 to 57. 

Van Cauwelaert (2004) expresses the solutions to wL and wUL in terms of the following parameters: 
Westergaard’s radius of relative Stiffness [l], the slab’s flexural rigidity, and parameter g, which 
is somewhat similar to the E/k ratio but relating the slab’s stiffness and the subgrade’s shear 
strength.  

𝑙𝑙 = �
𝐸𝐸ℎ3

12(1 − 𝜈𝜈)2𝑘𝑘
�
1 4⁄

 (36) 

𝐷𝐷 = �
𝐸𝐸ℎ3

12(1 − 𝜈𝜈)2� = 𝑘𝑘 × 𝑙𝑙4 (37) 

𝑔𝑔 =
𝐺𝐺𝑙𝑙2

2𝐷𝐷
=

𝐺𝐺
2√𝑘𝑘𝑘𝑘

 (38) 

Infinite slab component 

The infinite slab component has different expressions for points located within and outside of the 
load’s footprint area (Van Cauwelaert, 2004). Plus, these formulae also vary with the value of 
parameter g.  

• Case g < 1 (includes Winkler foundation case g = 0) 

for x ≥ 𝑎𝑎

𝑤𝑤(𝑥𝑥,𝑦𝑦) =
𝑝𝑝
𝜋𝜋𝜋𝜋

1

�1 − 𝑔𝑔2
� 𝑤𝑤3(𝑦𝑦, 𝑠𝑠) × [𝑤𝑤4(𝑥𝑥, 𝑠𝑠) − 𝑤𝑤5(𝑥𝑥, 𝑠𝑠)]
∞

0
𝑑𝑑𝑑𝑑

where:

𝑤𝑤3(𝑦𝑦, 𝑠𝑠) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠(𝑠𝑠4 + 2𝑔𝑔𝑔𝑔2 + 1)

𝑤𝑤4(𝑥𝑥, 𝑠𝑠) =
𝑒𝑒−(𝑥𝑥−1)𝛼𝛼 𝑙𝑙⁄

�1 − 𝑔𝑔2
��1 − 𝑔𝑔2𝑐𝑐𝑐𝑐𝑐𝑐[(𝑥𝑥 − 𝑎𝑎)𝛽𝛽 𝑙𝑙⁄ ] + (𝑠𝑠2 + 𝑔𝑔)𝑠𝑠𝑠𝑠𝑠𝑠[(𝑥𝑥 − 𝑎𝑎)𝛽𝛽 𝑙𝑙⁄ ]�

𝑤𝑤5(𝑥𝑥, 𝑠𝑠) =
𝑒𝑒(𝑥𝑥+𝑎𝑎)𝛼𝛼 𝑙𝑙⁄

�1 − 𝑔𝑔2
��1 − 𝑔𝑔2𝑐𝑐𝑐𝑐𝑐𝑐[(𝑥𝑥 + 𝑎𝑎)𝛽𝛽 𝑙𝑙⁄ ] + (𝑠𝑠2 + 𝑔𝑔)𝑠𝑠𝑠𝑠𝑠𝑠[(𝑥𝑥 + 𝑎𝑎)𝛽𝛽 𝑙𝑙⁄ ]�

 (39) 

 

for x < 𝑎𝑎

𝑤𝑤(𝑥𝑥,𝑦𝑦) =
𝑝𝑝
𝜋𝜋𝜋𝜋

1

�1 − 𝑔𝑔2
� 𝑤𝑤3(𝑦𝑦, 𝑠𝑠) × [2 − 𝑤𝑤1(𝑥𝑥, 𝑠𝑠) − 𝑤𝑤2(𝑥𝑥, 𝑠𝑠)]
∞

0
𝑑𝑑𝑑𝑑

where:

𝑤𝑤3(𝑦𝑦, 𝑠𝑠) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠(𝑠𝑠4 + 2𝑔𝑔𝑔𝑔2 + 1)

𝑤𝑤1(𝑥𝑥, 𝑠𝑠) =
𝑒𝑒−(𝑎𝑎−𝑥𝑥)𝛼𝛼 𝑙𝑙⁄

�1 − 𝑔𝑔2
��1 − 𝑔𝑔2𝑐𝑐𝑐𝑐𝑐𝑐[(𝑎𝑎 − 𝑥𝑥)𝛽𝛽 𝑙𝑙⁄ ] + (𝑠𝑠2 + 𝑔𝑔)𝑠𝑠𝑠𝑠𝑠𝑠[(𝑎𝑎 − 𝑥𝑥)𝛽𝛽 𝑙𝑙⁄ ]�

𝑤𝑤2(𝑥𝑥, 𝑠𝑠) =
𝑒𝑒−(𝑎𝑎+𝑥𝑥)𝛼𝛼 𝑙𝑙⁄

�1 − 𝑔𝑔2
��1 − 𝑔𝑔2𝑐𝑐𝑐𝑐𝑐𝑐[(𝑎𝑎 + 𝑥𝑥)𝛽𝛽 𝑙𝑙⁄ ] + (𝑠𝑠2 + 𝑔𝑔)𝑠𝑠𝑠𝑠𝑠𝑠[(𝑎𝑎 + 𝑥𝑥)𝛽𝛽 𝑙𝑙⁄ ]�

 (40) 
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Where the coefficients α and β are: 

𝛼𝛼2 =
1
2
��(𝑠𝑠2 + 𝑔𝑔)2 + 1 − 𝑔𝑔2 + (𝑠𝑠2 + 𝑔𝑔)�

𝛽𝛽2 =
1
2
��(𝑠𝑠2 + 𝑔𝑔)2 + 1 − 𝑔𝑔2 − (𝑠𝑠2 + 𝑔𝑔)�

 (41) 

• Case g > 1  

for x ≥ 𝑎𝑎

𝑤𝑤(𝑥𝑥,𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� 𝑤𝑤3(𝑦𝑦, 𝑠𝑠) × [𝑤𝑤4(𝑥𝑥, 𝑠𝑠) − 𝑤𝑤5(𝑥𝑥, 𝑠𝑠)]
∞

0
𝑑𝑑𝑑𝑑

where:

𝑤𝑤3(𝑦𝑦, 𝑠𝑠) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )

𝑠𝑠

𝑤𝑤4(𝑥𝑥, 𝑠𝑠) =
𝑒𝑒−(𝑥𝑥−𝑎𝑎)𝑧𝑧2 𝑙𝑙⁄ − 𝑒𝑒−(𝑥𝑥+𝑎𝑎)𝑧𝑧2 𝑙𝑙⁄

𝑧𝑧22

𝑤𝑤5(𝑥𝑥, 𝑠𝑠) =
𝑒𝑒−(𝑥𝑥−𝑎𝑎)𝑧𝑧1 𝑙𝑙⁄ − 𝑒𝑒−(𝑥𝑥+𝑎𝑎)𝑧𝑧1 𝑙𝑙⁄

𝑧𝑧12

 (42) 

for x < 𝑎𝑎

𝑤𝑤(𝑥𝑥,𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� 𝑤𝑤3(𝑦𝑦, 𝑠𝑠) × [𝑤𝑤1(𝑥𝑥, 𝑠𝑠) − 𝑤𝑤2(𝑥𝑥, 𝑠𝑠)]
∞

0
𝑑𝑑𝑑𝑑

where:

𝑤𝑤3(𝑦𝑦, 𝑠𝑠) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )

𝑠𝑠

𝑤𝑤1(𝑥𝑥, 𝑠𝑠) =
2 − 𝑒𝑒−(𝑎𝑎−𝑥𝑥)𝑧𝑧2 𝑙𝑙⁄ − 𝑒𝑒−(𝑎𝑎+𝑥𝑥)𝑧𝑧2 𝑙𝑙⁄

𝑧𝑧22

𝑤𝑤2(𝑥𝑥, 𝑠𝑠) =
2 − 𝑒𝑒−(𝑎𝑎−𝑥𝑥)𝑧𝑧1 𝑙𝑙⁄ − 𝑒𝑒−(𝑎𝑎+𝑥𝑥)𝑧𝑧1 𝑙𝑙⁄

𝑧𝑧12

 (43) 

Where the coefficients z1 and z2 are: 

𝑧𝑧12 = (𝑠𝑠2 + 𝑔𝑔) + �𝑔𝑔2 − 1
𝑧𝑧22 = (𝑠𝑠2 + 𝑔𝑔) −�𝑔𝑔2 − 1

 (44) 

• Case g = 1 
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for x ≥ 𝑎𝑎

𝑤𝑤(𝑥𝑥,𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� 𝑤𝑤3(𝑦𝑦, 𝑠𝑠) × [𝑤𝑤4(𝑥𝑥, 𝑠𝑠) − 𝑤𝑤5(𝑥𝑥, 𝑠𝑠)]
∞

0
𝑑𝑑𝑑𝑑

where:

𝑤𝑤3(𝑦𝑦, 𝑠𝑠) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )

𝑠𝑠(𝑠𝑠2 + 1)2

𝑤𝑤4(𝑥𝑥, 𝑠𝑠) = 𝑒𝑒−(𝑥𝑥−𝑎𝑎)𝑧𝑧 𝑙𝑙⁄ �2 + �1 + 𝑠𝑠2 (𝑥𝑥 − 𝑎𝑎) 𝑙𝑙⁄ �

𝑤𝑤5(𝑥𝑥, 𝑠𝑠) = 𝑒𝑒−(𝑥𝑥+𝑎𝑎)𝑧𝑧 𝑙𝑙⁄ �2 + �1 + 𝑠𝑠2 (𝑥𝑥 + 𝑎𝑎) 𝑙𝑙⁄ �

 (45) 

for x < 𝑎𝑎

𝑤𝑤(𝑥𝑥,𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� 𝑤𝑤3(𝑦𝑦, 𝑠𝑠) × [4 − 𝑤𝑤1(𝑥𝑥, 𝑠𝑠) −𝑤𝑤2(𝑥𝑥, 𝑠𝑠)]
∞

0
𝑑𝑑𝑑𝑑

where:

𝑤𝑤3(𝑦𝑦, 𝑠𝑠) =
𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )

𝑠𝑠(𝑠𝑠2 + 1)2

𝑤𝑤1(𝑥𝑥, 𝑠𝑠) = (𝑥𝑥, 𝑠𝑠) = 𝑒𝑒−(𝑎𝑎−𝑥𝑥)𝑧𝑧 𝑙𝑙⁄ �2 + �1 + 𝑠𝑠2 (𝑎𝑎 − 𝑥𝑥) 𝑙𝑙⁄ �

𝑤𝑤2(𝑥𝑥, 𝑠𝑠) = (𝑥𝑥, 𝑠𝑠) = 𝑒𝑒−(𝑎𝑎+𝑥𝑥)𝑧𝑧 𝑙𝑙⁄ �2 + �1 + 𝑠𝑠2 (𝑎𝑎 + 𝑥𝑥) 𝑙𝑙⁄ �

 (46) 

Where the coefficient z is: 

𝑧𝑧2 = (𝑠𝑠2 + 1) (47) 

Additional components for the jointed slab case 
Following are the expressions for terms wA, wB, wC, and wD. As with the case of the infinite slab 
component, these also depend on the value of g. Van Cauwelaert (2004) warns that these equations 
are valid only for the case of a transverse joint located to the right of the load. The sign convention 
used in the following equations may change when modeling the response of the pavement once 
the load is on the right-hand-side slab. 

 

• Case g < 1 (includes Winkler foundation case g = 0) 

𝑤𝑤𝐴𝐴(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝
𝜋𝜋𝜋𝜋

1

�1 − 𝑔𝑔2
� �[𝐴𝐴(𝑠𝑠)𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 𝑥𝑥 𝑙𝑙⁄ )]𝑒𝑒𝛼𝛼𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

𝑤𝑤𝐵𝐵(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝
𝜋𝜋𝜋𝜋

1

�1 − 𝑔𝑔2
� �[𝐵𝐵(𝑠𝑠)𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽 𝑥𝑥 𝑙𝑙⁄ )]𝑒𝑒𝛼𝛼𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

 (48) 

 

𝑤𝑤𝐶𝐶(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝
𝜋𝜋𝜋𝜋

1

�1 − 𝑔𝑔2
� �[𝐶𝐶(𝑠𝑠)𝑐𝑐𝑐𝑐𝑐𝑐(𝛽𝛽 𝑥𝑥 𝑙𝑙⁄ )]𝑒𝑒−𝛼𝛼𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

𝑤𝑤𝐷𝐷(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝
𝜋𝜋𝜋𝜋

1

�1 − 𝑔𝑔2
� �[𝐷𝐷(𝑠𝑠)𝑠𝑠𝑠𝑠𝑠𝑠(𝛽𝛽 𝑥𝑥 𝑙𝑙⁄ )]𝑒𝑒−𝛼𝛼𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

 (49) 

In equations 48 and 49, α and β are as per equation 41. 

• Case g > 1 
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𝑤𝑤𝐴𝐴(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� �𝐴𝐴(𝑠𝑠)𝑒𝑒𝑧𝑧1𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

𝑤𝑤𝐵𝐵(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� �𝐵𝐵(𝑠𝑠)𝑒𝑒𝑧𝑧2𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

 (50) 

 

𝑤𝑤𝐶𝐶(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� �𝐶𝐶(𝑠𝑠)𝑒𝑒−𝑧𝑧1𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

𝑤𝑤𝐷𝐷(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
1

�𝑔𝑔2 − 1
� �𝐷𝐷(𝑠𝑠)𝑒𝑒−𝑧𝑧2𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

 (51) 

In equations 50 and 51, z1 and z2 are as per equation 44. 

• Case g = 1 

𝑤𝑤𝐴𝐴(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
� �𝐴𝐴(𝑠𝑠)𝑒𝑒𝑥𝑥𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

𝑤𝑤𝐵𝐵(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
� �

𝑥𝑥
𝑙𝑙
𝐵𝐵(𝑠𝑠)𝑒𝑒𝑥𝑥𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

 (52) 

𝑤𝑤𝐶𝐶(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
� �𝐶𝐶(𝑠𝑠)𝑒𝑒−𝑥𝑥𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

𝑤𝑤𝐶𝐶(𝑥𝑥, 𝑦𝑦) =
𝑝𝑝

2𝜋𝜋𝜋𝜋
� �

𝑥𝑥
𝑙𝑙
𝐷𝐷(𝑠𝑠)𝑒𝑒−𝑥𝑥𝑥𝑥 𝑙𝑙⁄ ×

𝑐𝑐𝑐𝑐𝑐𝑐(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠 𝑙𝑙⁄ )
𝑠𝑠

�
∞

0
𝑑𝑑𝑑𝑑

 (53) 

In equations 52 and 53, z is as per equation 47. 

Boundary conditions imposed by the joint. 

Equations 48 to 53 were stated in terms of four parameters A, B, C, D (s) that allow for the final 
deflection basin solution (equation 35) to be composed. The transverse joint imposes four 
boundary conditions, which provide the equations needed to compute these unknowns: 

• Load transfer efficiency LTE = δ at x = c and any value of y 

𝛿𝛿 × �𝑤𝑤(𝑠𝑠) + 𝐴𝐴(𝑠𝑠)𝑤𝑤𝐴𝐴(𝑠𝑠) + 𝐵𝐵(𝑠𝑠)𝑤𝑤𝐵𝐵(𝑠𝑠)��
𝑥𝑥=𝑐𝑐

= 𝐶𝐶(𝑠𝑠)𝑤𝑤𝐶𝐶(𝑠𝑠) + 𝐷𝐷(𝑠𝑠)𝑤𝑤𝐷𝐷(𝑠𝑠)|𝑥𝑥=𝑐𝑐 (54) 

• Cancellation of bending moments at the edge of the loaded slab (x = c) 

�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜈𝜈

𝜕𝜕2

𝜕𝜕𝑦𝑦2
� �𝑤𝑤(𝑠𝑠) + 𝐴𝐴(𝑠𝑠)𝑤𝑤𝐴𝐴(𝑠𝑠) + 𝐵𝐵(𝑠𝑠)𝑤𝑤𝐵𝐵(𝑠𝑠)��

𝑥𝑥=𝑐𝑐
= 0 (55) 

• Cancellation of bending moments at the edge of the unloaded slab (x = c) 

�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜈𝜈

𝜕𝜕2

𝜕𝜕𝑦𝑦2
� �𝐶𝐶(𝑠𝑠)𝑤𝑤𝐶𝐶(𝑠𝑠) + 𝐷𝐷(𝑠𝑠)𝑤𝑤𝐷𝐷(𝑠𝑠)��

𝑥𝑥=𝑐𝑐
= 0 (56) 

• Equality of shear forces in the subgrade material (x = c) 
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�
𝜕𝜕3

𝜕𝜕𝑥𝑥3
+ (2 − 𝜈𝜈)

𝜕𝜕3

𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦2
−

2𝑔𝑔
𝑙𝑙2
� �𝑤𝑤(𝑠𝑠) + 𝐴𝐴(𝑠𝑠)𝑤𝑤𝐴𝐴(𝑠𝑠) + 𝐵𝐵(𝑠𝑠)𝑤𝑤𝐵𝐵(𝑠𝑠)��

𝑥𝑥=𝑐𝑐
=. . .

. . . = �
𝜕𝜕3

𝜕𝜕𝑥𝑥3
+ (2 − 𝜈𝜈)

𝜕𝜕3

𝜕𝜕𝜕𝜕𝜕𝜕𝑦𝑦2
−

2𝑔𝑔
𝑙𝑙2
� �𝐶𝐶(𝑠𝑠)𝑤𝑤𝐶𝐶(𝑠𝑠) + 𝐷𝐷(𝑠𝑠)𝑤𝑤𝐷𝐷(𝑠𝑠)��

𝑥𝑥=𝑐𝑐

 (57) 

Equations 54 through 57 make a 4-by-4 linear system that can be solved for A, B, C, D for each 
value of the dummy variable s. The terms w(s), wA(s), wB(s), wC(s), wD(s) are the expressions 
within the integral for each of the variables w, wA, wB, wC, and wD (as per equations 39 to 53). 

In practice, stating the system of equations 54 through 57 involves performing several partial 
derivatives of the functions w, wA, wB, wC, and wD. These derivatives can be computed numerically 
by finite differences (Scavone, 2022). 

Solving the case of a load stepping over the joint by superposition. 

Van Cauwelaert’s (2004) solution to the slab-on-ground problem does not include the case of a 
load simultaneously distributed over both slabs. However, the underlying assumption of linearity 
of the concrete slab and the subgrade allows solving this case by superposition of two problems, 
one component corresponding to the portion of the load on the left-hand-side slab and the other 
component representing the portion of the load on the right-hand-side slab (figure 14). For each 
sub-problem, the dimensions of the applied load and the variable c – the distance between the load 
center and the joint – must be corrected accordingly. 

4.1.1. Computing deflection slope and velocity from the linear elastic model 

The deflection slope and deflection velocity [vy] signals of the TSD can be simulated from the 
slab-on-ground model. Computing the deflection slope from the deflection basin is easy, for it only 
involves deriving wL or wUL (equation 58): 

for x <  c:    𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥,𝑦𝑦) =
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑤𝑤𝐿𝐿(𝑥𝑥, 𝑦𝑦)

for x ≥  c:   𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥, 𝑦𝑦) =
𝜕𝜕
𝜕𝜕𝜕𝜕

𝑤𝑤𝑈𝑈𝑈𝑈(𝑥𝑥, 𝑦𝑦)
 (58) 

These derivatives can be solved numerically by finite differences (Scavone, 2022).  

However, computing vy for a given point on the pavement surface from two displaced deflection 
basins is a more delicate procedure since the amount of horizontal movement of the deflection 
basins must be considered and because the slab-on-ground problem must be cast appropriately for 
each location of the deflection bowl. 

Scavone (2022) suggests the following formula to estimate vy from two bowls that are separated 
by a distance vx Δt: 

for x <  c:    𝑣𝑣𝑦𝑦(𝑥𝑥, 𝑦𝑦) =
𝑤𝑤𝐿𝐿(𝑥𝑥 − 𝑣𝑣𝑥𝑥𝛥𝛥𝛥𝛥, 𝑦𝑦, 𝑐𝑐 − 𝑣𝑣𝑥𝑥𝛥𝛥𝛥𝛥) − 𝑤𝑤𝐿𝐿(𝑥𝑥, 𝑦𝑦, 𝑐𝑐)

𝛥𝛥𝛥𝛥

for x ≥  c:  𝑣𝑣𝑦𝑦(𝑥𝑥,𝑦𝑦) =
𝑤𝑤𝑈𝑈𝑈𝑈(𝑥𝑥 − 𝑣𝑣𝑥𝑥𝛥𝛥𝛥𝛥, 𝑦𝑦, 𝑐𝑐 − 𝑣𝑣𝑥𝑥𝛥𝛥𝛥𝛥) −𝑤𝑤𝑈𝑈𝑈𝑈(𝑥𝑥, 𝑦𝑦, 𝑐𝑐)

𝛥𝛥𝛥𝛥

 (59) 
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Figure 14: Treating the case of the load invading the joint as two separate problems and applying 
superposition to attain the final solution. 
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