#### Modeling of Hot Mix Asphalt

Eyad Masad Zachry Department of Civil Engineering Texas A&M University

Workshop on Validation of Advanced Flexible Pavement Modeling with Accelerated Pavement Testing Data 87<sup>th</sup> TRB Annual Meeting





#### **Performance Prediction**



#### **Mechanistic Modeling Approaches**

nuum

ame

#### Micromechanics stru

Account for the microstructure.
Computationally intensive.
Numerical implementation for material response.

#### Continuum

Simple
Numerical implementation for performance predictions.
Limited in accounting for the microstructure.

#### **Image Analysis**

- Anisotropy
- Damage
- Strain Localization

# HMA Modeling Considerations

- Model accounts for:
  - Rate.
  - Temperature.
  - Anisotropy.
  - Heterogeneity.
  - Dilation/Contraction.
  - Confining pressure.
  - Damage.
  - Stress state.
- Model predicts:
  - Permanent deformation.
  - Fatigue cracking.
  - Low temperature cracking.



# **HMA Modeling Considerations**

- Model predicts:
  - Permanent deformation.
  - Fatigue cracking.
  - Low temperature cracking.





- Viscoplastic component:
  - Dilation and hydrostatic pressure
  - Work hardening
  - Damage
  - Healing
  - Anisotropy

- Viscoelastic component:
  - Nonlinear or stress dependent
  - Damage
  - Healing
  - Anisotropy

## **Continuum Models**

#### Elastic Models

- No failure mechanisms.
- Predicts distresses using empirical "transfer functions".
- Relates distresses to stiffness.

$$N_f = \beta_3 k_1 \varepsilon_t^{-k_2} E^{-k_3}$$



#### **Continuum Models**

- Classical Viscoelastic Models
  - Temperature and time dependency.
  - Can be formulated to provide plastic deformation.
  - No failure mechanisms.



## Objectives

- Develop a constitutive model for HMA that incorporates features of microstructure.
- Relate the model's parameters to aggregate characteristics.
- Implement the constitutive models in finite element to simulate permanent deformation.
- Study the effect of aggregate characteristics on mix performance.

#### Nonlinear Viscoelastic Model

• Shapery nonlinear Model:

$$\mathcal{E}(t) = g_o D_o \overline{\sigma} + g_1 \int_0^t \Delta D(\psi - \psi') \frac{dg_2 \sigma}{d\tau} d\tau$$
  

$$\psi = \int_0^t dt' / a_{\overline{\sigma}}[\overline{\sigma}(t')] (a_{\overline{\sigma}} > 0)$$
  

$$\psi' = \psi(\tau) = \int_0^\tau dt' / a_{\overline{\sigma}}[\overline{\sigma}(t')]$$

 $\psi$  : is the reduced time (effective time)

• For the case of constant load it reduces to:

$$D_n = \frac{\varepsilon(t)}{\overline{\sigma}} = g_0 D_0 + g_1 g_2 \Delta D \left(\frac{t}{a_{\overline{\sigma}}}\right)$$

 $D_n$  :Nonlinear Creep Compliance

- $g_o$  :Nonlinear instantaneous elastic compliance
- $g_1$  :Transient compliance nonlinearity effect parameter
- $g_2$  : Load rate effect parameter
- $a_{\overline{\sigma}}$  : Time scaling factor



### **Viscoplastic Model**

$$\begin{split} \dot{\varepsilon}_{ij}^{vp} &= \Gamma \cdot \langle \phi(f) \rangle \cdot \frac{\partial g}{\partial \sigma_{ij}} \\ f &= F(I_1, J_2, J_3, \Delta, \xi) - \kappa \\ \langle \phi(f) \rangle &= \begin{bmatrix} 0 & f \leq 0 \\ f^N & f > 0 \end{bmatrix} \end{split}$$

- $I_1$ 1st invariant of the stress tensor $J_2$ 2nd invariant of deviatoric stress tensor $J_3$ 3rd Invariant of deviatoric stress tensorkHardening parameter
- *△* Anisotropy Parameter
- $\xi$  Damage Parameter

# Extended Drucker-Prager Yield

$$f = \tau - \alpha I_1 - \kappa$$

Dilation and confinement

 $I_1 = \frac{1}{3} \operatorname{trace} \left( \sigma \right) = \frac{1}{3} \sigma_{ii}$ 

• Shear, and stress path

$$\tau = \frac{\sqrt{J_2}}{2} \left[ 1 + \frac{1}{d} - \left( 1 - \frac{1}{d} \right) \frac{J_3}{J_2^{3/2}} \right]$$

• Hardening/softening  $\kappa = \kappa_0 + \kappa_1 \left[ 1 - \exp(-\kappa_2 \cdot \varepsilon_{vp}) \right]$ 











# **Experimental Validation**

- 4 inch HMA Specimens.
- 3 aggregate types:
  - Gravel,
  - Limestone, and
  - Granite
- 7% target percent air void.

#### **Microstructure Analysis**



#### Anisotropy



#### Damage

• Defects in the form of cracks and air voids

 $\overline{\sigma}_e = \frac{\sigma}{1 - \xi}$ 

 $0 \le \xi \le 1$ 







#### **Damage Experiment**



**Strain** 



#### **Repeated Creep Tests**









![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

b) Anisotropic layer ( $\Delta$  =30 percent)

![](_page_32_Figure_0.jpeg)

![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

No SAMI Layer: High shear stresses at the surface and small permanent deformation. Low depth SAMI Layer: Lower shear stresses and higher permanent deformation. SAMI at more than 4 inches depth gives small shear stress and small permanent deformation.

# In Summary

- Challenges:
  - Extensive experimental program (rate, temp., confinement, stress path..).
  - Long computational time to account for repeated loading.
  - Material variability.
  - Material heterogeneity.
- Opportunities:
  - Develop database or catalog of material properties and model parameters.
  - Simulate model predictions based on variability of material properties.
  - Incorporate realistic loading conditions.