

Impact of Accelerated Pavement Testing (APT) on Pavement Engineering

Jean-Maurice Balay Jean-Michel Piau Pierre Hornych Chantal de La Roche LCPC - France

TRB 2008 - Worshop 110 - Validation of advanced flexible pavement modeling with accelerated Pavement testing data - Sunday 13 January 2008.

Contents

- Introduction
 - LCPC activities on pavement design and modeling
 - Presentation of LCPC APT facilities
- Use of APT for pavement engineering
 - Advantages, Limits and important rules
 - Examples of APT experiments and their impacts
 - Fatigue experiments
 - Airbus Pavement Experimental Program
 - Use of APT for pavement structure innovation
- Conclusion

Introduction

LCPC activities on pavement design and modeling

- Contribution to the development and evaluation of French pavement design methodology
- Development of models for :
 - Low trafic pavements : Non linear behaviour of soils and unbound granular materials, prediction of rutting
 - Bituminous pavements : visco-elastic behaviour, fatigue, visco-plastic behaviour (rutting)
 - Rigid pavements : study and modelling of reflective cracking
 - Airfield pavements ; impact of multi peak loading
- Design of innovative pavement structures

Presentation of LCPC APT facilities

Fatigue test track – large circular test track (pavement length 120 m)

"FABAC" Machines : mobile machines – simulation of full wheel loading on small length (2m)

LCPC Fatigue test track

- Circular outdoor facility, built in 1984
- Track width up to 6 m length 122 m (radius 19.5m)
- Radius of rotation : adjustable from 15 m to 20 m
- Maximum speed 13.5 rpm (100 km/h at radius 19.5 m)
- Simulation Transverse wandering of real traffic can be reproduced
- Various types of loads from 8-ton single-axle to 30-ton multiple-axle (only a half-axle per arm)
- 3 test sites one including a water table control system (pumping station)

Experiments performed in partnership with Road authorities, public or private companies, European research program

Use of APT for pavement engineering

Performance models – Two main different approaches, almost disconnected today ?

- Extensive survey campaigns of road networks (ex: at national scale) & global statistical approach
 - Tool: statistical analysis of broad data base, including equivalent pavement structures at different ages and supporting different traffic
 - Efficient way to derive "evolution laws" for PMS (maintenance & reinforcement planification) on standard pavement techniques
- Local mechanistic approach on test sections, looking more deeply to the nature of pavement materials and structures and to their behaviors
 - Tools: Real loading test, APT, laboratory testing, constitutive laws, structural models
 - More "introspective" approach ; specially recommended for innovation testing (materials, structures)

Advantages and limits of APT

Advantages

- Well controlled pavement construction and experimentation conditions (load, traffic, temperature,...)
- Internal instrumentation and detailed monitoring of pavements
- Response in relatively short time owing to the acceleration of traffic
- Possibility to make comparative tests
- Good quantitative knowledge of the resilient behavior of the structures and damaging mechanisms

Limits

- Not representative of real traffic & climatic variations
- No long term ageing of materials
- Obtained results more comparative than intrinsic

Important rule for APT success

- Build a pavement dedicated to the distress to be studied and try not to mix pavement distresses
- Examples :

. . . .

- permanent deformation of bituminous layers
 - → use hydraulically bound base and sub base
- fatigue of bituminous materials
 - → avoid using surface layer that could hide bottom to top cracks

Examples of APT experiments and their impacts

Experiment on fatigue behaviour

Objectives of the experiments

- Comparison of fatigue behaviour of different bituminous materials, with different binders
 - in the laboratory, using different fatigue tests
 - in pavements
- Evaluation of the French fatigue design approach for bituminous pavements
- Determination of shift factor to be applied to High Modulus Mixtures (French EME)
- 3 full scale experiments on the LCPC test track (between 1990 and 1994)

4 structures : 8 or 10 cm thick bituminous layer 40 cm thick granular base clayey subgrade : E = 30 to 40 MPa

3 bituminous materials:

BB_B : Bituminous concrete with 50/70 grade bitumen (reference)

- BB_s : Bituminous concrete with 50/70 polymer modified bitumen
- EME : high modulus bituminous mix, with 10/20 grade bitumen
 - 2 structures 8 and 10 cm thick

Loading conditions :

65 kN dual wheel load, 72 km/h3.2 million loads applied

In situ performance of the 4 structures

Cracking extent

Laboratory fatigue tests

5 different test procedures

Procedure	θ (°C)	f (Hz)	Type of loading					
Controlled displacement test								
1	10	25	$\int_{-\infty}^{\infty} \frac{1}{3 \text{ levels of 8 samples}}$					
3	20	40						
5	20	40	$\int_{-\infty}^{\infty} \int_{1:10}^{-1:10}$ 3 levels of 8 samples or 6 samples					
Controlled force test								
6	20	40	σ 3 levels of 8 samples or 12 samples					
10	20	40	$\int_{-\infty}^{\infty} \int_{1:10}^{-1:10}$ 3 levels of 8 samples or 6 samples					

LCPC - January 13, 2008

Criterion on maximum tensile strain :

$$\varepsilon_{tad} = \varepsilon_6(\theta, f) \cdot \left(NE/10^6 \right)^b \cdot k$$

 $\varepsilon_6(\theta, f)$: Strain leading to failure for 10⁶ cycles,

depending on temperature $\boldsymbol{\theta}$ and frequency \boldsymbol{f}

- NE : number of standard axle loads
- b : slope of the fatigue line

k : shift factor, taking into account the risk of failure, the bearing capacity of the soil, the difference between the model and observed pavement behaviour

Predicted pavement life:

$$NE = 10^{6} \cdot \left(\frac{\epsilon_{t}}{k \cdot \epsilon_{6}(\theta, f)}\right)^{1/b}$$

Comparison of design predictions and field performance

Calculation of shift factor k

(k = 1 _____ exact prediction of pavement life)

$$\mathsf{NE} = 10^{6} \cdot \left(\frac{\epsilon_{t}}{\boldsymbol{k} \cdot \epsilon_{6}(\theta, f)}\right)^{1/b}$$

Fatigue test procedure	S1 BB _B	S2 BB _s	S3 EME 8 cm	S4 EME 10cm
3 – strain control Continuous	1,58	1,28	1,14	1,20
5 – strain control, with rest periods	1,04	1,03	0,8	0,8
6 – stress control, continuous	3,21	2,57		
10 – stress control, with rest periods	1,73	1,49	1,10	1,08

Conclusions – "fatigue experiments"

- Large differences in fatigue life predictions from different fatigue test procedures,
- Fatigue tests with rest periods seem more representative of in situ behaviour
- For the high modulus material (EME), the stress controlled fatigue test seems more representative of in situ behaviour.

→ more research needed on intrinsic characterisation of fatigue in laboratory

- Correction between in situ and lab behaviour dependent on the type of material (BB/EME)
 - \rightarrow Shift factor for EME = 1,0

[De la Roche et al, TRB 94, ISAP 98] [Rivière et al, ISAP 98]

Airbus Pavement Experimental Program

Airbus experimental program on flexible pavements – 1998-2003

Objectives of the Airbus experimental program

Tests on 4 instrumented pavement structures with soils of different

bearing capacity (CBR 3 to 15)

Simulation of loads of different aircrafts, using a load simulator

Objectives :

Study of the behaviour of flexible airfield pavements under heavy aircraft loading conditions

Evaluation of the possibility of applying the French road pavement design method to flexible airfield pavements

Observed pavement performance

Main mode of distress of the flexible pavements = **rutting** No fatigue cracking - densification of the bituminous layers under heavy loading

Evolution of rutting Section C – CBR 6

Number of loads

Linear elastic calculations (ALIZE Software)

Prediction of vertical strains at top of subgrade (structure C)

Measurement

Alizé software

Results of linear elastic calculations

Good prediction of vertical strains in granular layers and subgrade Poor prediction of maximum tensile strains at bottom of bituminous layers :

- Maximum values poorly simulated
- Discordance in directions of maximum tensile strains ε_t:

Measurements : ε_t transversal > ε_t longitudinal

Calculations : ε_t longitudinal > ε_t transversal

\Rightarrow Attempt to take into account viscoelastic behaviour

Visco-elastic model for bituminous materials

Finite element model : module CVCR of CESAR-LCPC

Hypotheses: Constant speed V

Constant properties along x

Calculation in the referential of the moving load (O', X', y ,z) X' = x + VtStatic mechanical problem - no time steps

Modification of the visco-elastic law : becomes a non - local law

Models available in CVCR :

Linear and non linear elasticity (Boyce model, k- θ model) Huet-Sayegh visco-elastic model

Viscoelastic modelling of strains at bottom of bituminous layers

LCPC - January 13, 2008

First conclusions of the Airbus experiment

Main mode of distress of the flexible pavements = rutting No detectable fatigue of bituminous layers, despite high tensile strains

Modelling of resilient behaviour

- Reasonable prediction of vertical strains in subgrade with linear elastic calculations.
- Visco-elastic modelling necessary to predict correctly strains in bituminous layers

Modelling of fatigue

- Need to adapt the fatigue tests to aeronautical loading conditions (high strain levels \approx 400 $\mu strain$, lower number of cycles (10⁴))

Rutting :

Need to develop suitable design criteria and specifications for resistance to rutting of materials (bituminous and unbound)

Use of APT for pavement structure innovation

Grave-Mousse test at LCPC's APT facility

Grave-Mousse ®

- new material for treated road bases developed by EJL Contractor (now EUROV since about 10 years.

- bitumen-foam treated aggregates, used for new pavement as for overlay construction

- In overlay, functioning and endurance of this new material under heavy traffic to be checked.

- New pavement structure and innovative concept using Grave-Mousse in the middle part of a three-layer structure \rightarrow design model to be defined and validated

Experiment with LCPC's APT facility :

- Partners : Private contractor EJL
- Fatigue test performed from July 1995 to March 1996
- 3 overlays and 1 new pavement, 28 m long x 3.5 m width
- 2.87 millions single axle load from 45 kN to 85 kN /twinned wheels, equivalent to 4.3 millions of the French standard load (130 kN/single axle) ie about 15 years of service on average trafic national network
- Load speed:
 - 44 km/h until 70 000 loadings (consolidation stage)
 - 68 km/h for all the other loadings.

The 4 structures tested

Cracking and rutting vs traffic

New structure 4: dammage mechanism

New structure 4: dammage mechanism

Trench in the new structure 4 at the end of the experiment

Numerical modeling: main results

Theoritical modeling:

• multilayer elastic model (Burmister). Young moduli are backcalculated from deflections, curvature radii and strains measured.

Young modulus (15°C, 10Hz)

- reference AC :
- 10 000 Mpa 4 000
- BFTA : 4 00
- ESA : 2 500
- Cracked AC : 2 000
- Fatigue behavior evaluated from fatigue laboratory tests, and calibrated by ajustement with experimental results.
- Scattering of the fatigue parameters are taken into account, leading to a probabilist determination of the pavement dammage due to the traffic.
- The theoretical risk of failure is assimilated to the cracking extent.
- New structure 4 : shear failure plane is modelized by a low modulus thin layer (2 cm thick, at 2 cm above the BFTA/HMAC interface, Young modulus 750 MPa).

Numerical modeling: main results

New structure 4 : internal shear en tensile stresses

(tensile stresses are positive)

Numerical modeling: main results

Measured and calculated evolution of cracked area

General Conclusions

APT is a useful tool for :

- Identification of pavement deterioration mechanisms, and suitable models
- Validation of models
- Experimentation of innovative structural design
- Improvement of laboratory test procedures
 But validation on real pavement sections is also necessary

Recent research at LCPC on design /performance models focuses in particular on :

- Prediction of rutting
- Design of airfield pavements or special pavements (ex: industrial platforms) subject to heavy, complex loads
- Viscoelastic behavior of bituminous pavements and development softwares based on analytical models such as Viscoroute-LCPC.

References – Research on pavement modelling

Bitumen Cracking modeling (Nguyen, 2006) (Chailleux, ICAP2006)

Damage modeling (Bodin, 2002) (Bodin et al., ASCE2004),

Visco-elastic structural model (Duhamel et al., BLCPC2005) (Chabot et al, ICAP2006), ...

Cracking structural model (Tran, 2004) (Chabot et al., BLPC2005),

Visco-plastic modeling (Nguyen, 2006) (Nguyen et al., ICAP2006), ...

Non linearity modeling for GNT and soil material (El Abd, 2006) (Hornych et al., RMPD2006 or 2007) ...

Additionnal not presented Model for the prediction of rutting in unbound pavement layers

Developed in European project SAMARIS (2002-2006)

SAMARIS

- SAMARIS : European project of the 5th PCRD
 - 2002-March 2006
 - Pavement and Structure Streams

- Selection of permanent deformation models for unbound granular materials
- Development of a structural method of calculation of rutting of unbound pavement layers
- Comparison with results of ALT full scale pavement experiment

Laboratory study of permanent deformations

Test method : cyclic triaxial test

Advantages : realistic simulation of « stress paths » due to traffic loading

Test equipment

Test procedures

Number of cycles

LCPC - January 13, 2008

Selected permanent deformation models

2 modelling approaches :

Routine level : utilizable for design
 Empirical permanent deformation model

 $\varepsilon^{p}_{1}(N) = f(N).g(p_{max},q_{max})$ Gidel (2001)

• Advanced level : for research or analysis Elasto-plastic model with isotropic and kinematic hardening Chazallon (2000)

Example of calibration of empirical permanent deformation model

Structural modeling approach

Main hypothesis : For one cycle

→ Separate modelling of resilient behaviour and permanent deformations

 $\delta \epsilon^{\mathsf{p}} \ll \epsilon^{\mathsf{e}}$

Three steps :

- 1. 3D Finite Element calculation of the stress fields in the pavement structure using the resilient behaviour (non linear elastic, visco-elastic models)
- 2. Use of the stress fields and stress path to calculate permanent strains at the different points of the pavement in the vertical transversal plane
- 3. Calculation of the displacement field (rutting)

- FEM method (program ORNI) : 3D structural calculation.
- Simplified method: integration of ε_1^p in the vertical direction

Modelling of a full scale experiment

Experiment performed in 2003 on the LCPC fatigue test track

5 low traffic pavement structures (each 25 m long) Full scale loading conditions : 65 kN dual wheel load, 72 km/h 1.5 million loads applied Low water table level (-2.6 m)

Modelling of structure 4

Modelling hypotheses

Modelling of rutting of UGM layer and subgrade (empirical model) Simulation of load wandering and variations of temperature with traffic

Temperature distribution used for calculations

Examples of rut depth calculations

Loading : 65 kN load (single or dual wheel) 1.5 million loads - Constant temperature

- Bituminous concrete : linear elastic
- UGM : non linear elastic
 - + empirical permanent deformation model
 - Soil : linear leastic E = 100 MPa, n = 0,35

220cm

Calculation : influence of lateral load wandering

Evolution of maximum rut depth

Influence of wearing course temperature

LCPC - January 13, 2008

Comparison of model with experiment

Conclusions – Modelling of rutting

- First results encouraging but difficulty to simulate real in situ conditions (temperature and moisture variations...)
- Models predict a too fast stabilisation of permanent deformations

Perspectives :

- more detailed evaluation of ORNI
- Improvement of the models for unbound materials
- Modelling of permanent deformations of bituminous materials