

TPF-5(291) FINAL REPORT:

UPDATING PREVIOUS LTPP ANALYSES & THE SPS-2 EXPERIMENTAL MATRIX

Prepared On Behalf Of	
State Pooled Fund Study TPF-5(291)	

Date

Project Number October 2021 56A0418-008 (TPF-5(291)) 219.03.10 (NCE)

1.0	Background1
2.0	Overview2
3.0	Updating Previous LTPP Analyses3
4.0	Updating SPS-2 Experimental Matrix17

LIST OF TABLES

able 1. Summary of Reviewed Reports and Updated Findings	3
able 2. As-Nominated Experimental Matrix for Half-Factorial Experiment Design for SPS- xperiment	
able 3. As-Constructed Experimental Matrix for Half-Factorial Experiment Design for SPS- xperiment	
able 4. Measured Climate and Traffic for SPS-2 Experiment	1
able 5. Measured Design Factors for SPS-2 Experiment2	2

1.0 BACKGROUND

The NCE team was awarded the Transportation Pooled Fund (TPF) Study 5(291) to investigate data from the Long-Term Pavement Performance (LTPP) Specific Pavement Study (SPS)-2 experiment for concrete pavement design factors, with the Washington State Department of Transportation as the Lead State. This pooled fund study included the investigation and proposal of a pavement preservation experiment utilizing existing test site conditions. Upon completion of the initial phase of the study, several SPS-2 Tech Days were conducted to broaden the pavement community's knowledge of the SPS-2 experiment and to garner input on analyses the community would find useful. The Pooled Fund Technical Advisory Committee (TAC) also provided recommendations for additional analyses.

As a result, five additional tasks were focused on SPS-2 test sections:

- Conducting a deterioration rate analysis
- Analyzing performance data
- Investigating sources of non-LTPP data
- Analyzing joint score and area of localized roughness (ALR) impacts on performance
- Updating previous SPS-2 analyses

Upon completion of these tasks, an additional 11 tasks were proposed. The purpose of this supplementary extension of TPF-5(291) was to conduct further analyses of existing data from the LTPP SPS-2 concrete pavement experiment. The focus of this set of tasks was to investigate the impact of non-experimental factors on pavement performance. The following tasks were completed:

- Identifying agency-specific trends
- Analyzing the impact of construction and materials issues
- Reviewing early SPS-2 failures
- Identifying lessons learned from state supplemental sections
- Analyzing the impacts of climate, traffic, and overall condition on deterioration rate
- Comparing SPS-8 and SPS-2 performance
- Assessing diurnal changes in roughness
- Evaluating service life
- Comparing mix-design performance
- Conducting Mechanistic Empirical Pavement Design Guide (MEPDG) sensitivity analysis of portland cement concrete/lean concrete base (PCC/LCB) bond
- Evaluating transverse joint opening width

This report reviews and, if practical, updates 12 previous analyses of SPS-2 projects.

2.0 OVERVIEW

For over 20 years, various analysts have investigated the performance of SPS-2 projects. Some of these analyses have been comprehensive, while others focused more narrowly on particular aspects of the experiment. Based on their relevance to this pooled fund study, 12 previous analyses of SPS-2 projects were selected, assessed, and updated. Some updates were purely a result of additional data collection since the time of original analysis, while others were sufficiently related to current work to confidently update and/or assess the original findings. Other studies, typically involving detailed analyses to a degree beyond that supported by this current project, did not have their results updated.

Analyses performed thus far by the research team for the TPF-5(291) SPS-2 Pavement Preservation Experiment have resulted in many findings related to the performance of SPS-2 test sections. These analyses include:

- Comparison of measured performance of SPS-2 test sections to performance predicted by MEPGD software. These performance measures included: roughness, faulting, and transverse cracking.
- Impact of SPS-2 core design features on measured performance and MEPGD predicted performance. Core design features include PCC thickness, PCC strength, base type, drainage, and lane width. The analyses did not focus of the impact of climate, traffic, materials (e.g., cement, aggregates, subgrade soil), or construction practices.
- Impact of SPS-2 core design features on deterioration rates of measured performance and MEPGD predicted performance. The analyses did not focus of the impact of climate, traffic, materials (e.g., cement, aggregates, subgrade soil), or construction methods, but did look at outside shoulder type. In addition to IRI, faulting, and transverse cracking, the analyses also evaluated the impact of design features on the deterioration rate of load transfer efficiency (LTE), mid-slab deflection, AREA value, lane shoulder drop-off and separation, corner breaks, longitudinal cracking, and transverse joint seal damage.

In addition, the initial SPS-2 experimental matrix was updated based on measured data (e.g., materials tests of subgrade, climatic information) and a matrix of all in-study test sections by project was created. The original SPS-2 matrix was based on assumptions with regards to existing conditions, and not every assumption (e.g., climate, subgrade type) was proven to be valid.

3.0 UPDATING PREVIOUS LTPP ANALYSES

The following reports were reviewed in chronological order, and key findings were identified. Based on the research conducted under the current study – TPF-5(291) – the findings from these reports were updated, confirmed, or not evaluated (i.e., no key findings were updated), as indicated in Table 1. Those not evaluated typically would involve substantial effort going beyond the scope of this investigation. In some cases, updated values have been provided using data collected since the time of the original analyses.

Rep	oort No.	Summary of Updates
1	Ardani et al. 2000	Most key findings were not updated.
2	Perera and Kohn 2001	Most key findings were not updated.
3	Harrigan 2002	A key finding was updated.
4	Stubstad 2002	Most key findings were not updated.
5	Stubstad et al. 2002	No key findings were updated.
6	Hall and Correa 2003	Some key findings were updated.
7	Jiang and Darter 2005	Some key findings were updated.
8	Chatti et al. 2005	Some key findings were updated.
9	Hall and Crovetti 2007	Some key findings were updated.
10	Schmalzer et al. 2015	Some key findings were updated.
11	Xu and Cebon 2017	Most key findings were not updated.
12	Baladi et al. 2017	No key findings were updated.

Table 1. Summary of Reviewed Reports and Updated Findings

 Author(s): Ardani, Ahmad, Nadarajah Suthahar, and Dennis A. Morlan Title: Early Evaluation of Long-Term Pavement Performance Specific Pavement Studies-2 Year: 2000

Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
(Colorado sections) Little difference in	Confirmed finding that there was little
distress cracking between sections.	difference in distress cracking between
	Colorado test sections.
Falling weight deflectometer (FWD) provided	Analyses did not evaluate load-carrying
difference in load-carrying capacity of	capacity of different sections.
different sections.	
Construction variability severe and could	Analyses did not evaluate construction
affect performance life of sections.	variability.
Widened slab design and tied-concrete	Analyses did not evaluate the additional
shoulder design provided additional support	support provided by tied concrete shoulders.
compared to untied, standard-width lanes.	However, change in mid-slab deflection over
	time was not affected by lane width or
	shoulder type.
Slab warping on higher-strength mixes on	Analyses did not evaluate the warping of
LCB.	slabs.
Thinner sections showed higher deflections	Analyses did not evaluate the impact of
after same traffic history – early fatigue	traffic loading on deflections. However,
failure likely to occur.	thinner sections had higher changes in mid-
	slab deflection over time.
State-designed standard section placed	Analyses did not evaluate this section
directly on subgrade with tied shoulder	specifically.
showed good structural response (low	
deflections).	
No difference in performance of drainable	Analyses did not evaluate the performance
bases compared to other bases in this	of different base types relative to climatic
relatively dry climate.	region. However, drained sections typically
	had better performance in most other SPS-2
	projects.
Dense graded aggregate base (DGAB)	Analyses did not evaluate the total deflection
sections showed the highest deflections,	of sections by base type.
which agrees with relative stiffness of the	
base materials.	
Greater wear observed in 550 psi sections	Confirmed finding that more wear was
vs. 900 psi sections – future evaluation will	observed on 550 psi sections. PCC strength
determine if this results in shorter	was typically found to have mixed results in
performance life or improved friction quality.	terms of transverse and longitudinal
	cracking over time.

 Author(s): Perera, R.W. and S.D. Kohn Title: LTPP Data Analysis - Factors Affecting Pavement Smoothness Year: 2001 Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
SPS-2 average early age IRI of the thin	Initial IRI ranged from 50 to 140 inch/mile.
surfaces was 80 inch/mile with standard	Median initial IRI was close to 80 inch/mile.
deviation of 18 inch/mile.	
Average early age IRI of the thick surfaces	Analyses did not evaluate the average early
was 82 inch/mile with standard deviation of	age IRI of sections with different base types.
19 inch/mile.	
Changes in roughness in thin sections due to	Analyses did not evaluate the effect of slab
changes in curvature of slabs – in some case	curvature on roughness.
due to temperature changes – in many	
cases were not a result of temperature	
change (instead curling and warping just	
occurred over time).	
Average early-age IRI values for PCC	Analyses did not evaluate the effect of slab
pavements placed on DGAB, LCB, and	curvature on roughness.
permeable asphalt treated base (PATB) were	
80 inch/mile, 89 inch/mile, and 79 inch/mile	
(highest on LCB).	
Section that showed an increase in	Analyses did not evaluate the commonality
roughness (greater than 10%) across all	of sections with roughness increases greater
projects was the section with a thin PCC	than 10%. However, change is roughness
surface that had a slab width of 12 feet, a	was impacted by pavement thickness, base
14-day flexural strength of 550 psi, and was	type, and drainage. The effect of PCC
resting on a DGAB surface.	strength was not found to have a consistent
	effect on the change in roughness.

Author(s): Harrigan, E.T.
 Title: Performance of Pavement Subsurface Drainage
 Year: 2002
 Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
Early performance data from SPS-2 supports	Sections with PATB bases typically had
that when PATB is used with jointed plain	better performance in changes in roughness,
concrete pavement (JPCP), amount of	faulting, transverse cracking, longitudinal
cracking was very low in comparison with	cracking, and joint condition over time.
other base types	

 Author(s): Stubstad, Richard N.
 Title: LTPP Data Analysis: Feasibility of Using FWD Deflection Data to Characterize Pavement Construction Quality
 Year: 2002
 Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
Correlations of unbound material parameters	Analyses did not evaluate pavement
derived from FWD vs. traditional methods	material properties, traffic loading, and
were fair to good. Bound material parameter	construction quality.
correlations were good (coefficient of	
variation between 0.1 and 5.2).	
Simple methods are available for	Analyses did not evaluate pavement
determining pavement layer stiffness and	material properties, traffic loading, and
provide reasonable results. Methods were	construction quality.
unique in that they used forward calculation.	
Analyses showed that FWD can be used	Analyses did not evaluate pavement
effectively to delineate certain important	material properties, traffic loading, and
aspects of new pavement construction	construction quality.
quality (e.g., well vs. poorly compacted	
base).	
FWD results obtained on unbound materials	Analyses did not evaluate pavement
during LTPP pavement construction were	material properties, traffic loading, and
very reasonable – in terms of drop-to-drop	construction quality.
variations and deflection magnitude.	
Potential of overloading these materials was	
compared to the effect of traffic loadings.	
FWD results "tracked" (load-normalized	Analyses did not evaluate pavement
deflections in parallel from one layer to the	material properties, traffic loading, and
next) reasonably well from layer to layer	construction quality.
with each succeeding layer showing less	
variation. Sensors 3 or 4 tracked best on	
unbound, sensors 6 or 7 tracked best on	
bound.	
FWD results on bound materials showed	Analyses did not evaluate pavement
very small drop-to-drop variations and	material properties, traffic loading, and
several different loading levels to choose	construction quality.
from.	
PCC surface FWD results did not track well	Analyses did not evaluate pavement
with results on unbound layers below;	material properties, traffic loading, and
deflections in PCC surface were not in	construction quality.
parallel to deflections in unbound layers.	

 Author(s): Stubstad, Richard, Shiraz D. Tayabji, and Erland O. Lukanen, Title: LTPP Data Analysis - Variations in Pavement Design Inputs. National Cooperative Highway Research Program. Year: 2002

Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
Higher-strength concrete (900 psi) found to be less variable than lower-strength concrete (550 psi).	Analyses did not evaluate the variability of concrete strength.
Good control was achieved with concrete production (low variability in cylinder strength data) and in placement process (low variability in core test data).	Analyses did not evaluate the variability of concrete strength.
While 550 psi concrete test sections typically achieved 550 psi at 14 days, many of the 900 psi concrete test sections did not achieve their target value of 900 psi at 14 days.	Analyses did not evaluate the variability of concrete strength.
At 1 year, both 550 and 900 psi concretes exhibited similar flexural strength values and some 900 psi concretes did not show significant increase in strength between 14 days and 1 year.	Analyses did not evaluate the variability of concrete strength.
Modulus of Elasticity: Average cement volume (CV) for modulus of elasticity found to range between 13% (at 28 days and 1 year) for 550 psi concrete, and 12% (at 28 days) and 11% (at 1 year) for 900 psi concrete. No significant increase in modulus value between 28 days and 1 year.	Analyses did not evaluate the variability of concrete strength.
As average LTE increased, CV decreased.	Analyses did not evaluate the average LTE and the coefficient of variation.
Parameters that affected variability in LTE: pavements with subsurface drainage showed more variability than those without, pavements with granular soil subgrade(SG) showed more variability than with silty-clay SG, variability of average LTE decreased as annual freezing index increased, variability of average LTE indirectly related to pavement age through changes of average LTE.	Analyses did not evaluate variability of LTE. However, drainage did not have a clear effect on change in LTE over time.

Key Findings:	Findings based on TPF-5(291):
Parameters that did NOT affect variability in LTE: average joint spacing, base type, and outside shoulder type, the amount of annual precipitation, number of annual freeze-thaw cycles, and average mean annual temperature; no direct relationships between pavement age and variability of LTE.	Analyses did not evaluate variability of LTE. However, base type and shoulder type did not have a clear effect on change in LTE over time.

Author(s): Hall, Kathleen Theresa, and Carlos E. Correa Title: Effects of Subsurface Drainage on Performance of Asphalt and Concrete Pavements Year: 2003 Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
IRI Change – larger mean differences for	Differences in the change in IRI for PATB
PATB sections with poor drainage vs. good	sections with poor drainage vs. good
drainage – true in comparison to both	drainage were unconfirmed. However, the
undrained base types (DGAB and LCB).	change in roughness over time was typically
	higher for undrained sections.
Undrained sections with either DGAB or LCB	Confirmed that drained sections typically
may develop roughness, transverse	had lower deterioration rates for IRI,
cracking, and longitudinal cracking more	transverse and longitudinal cracking, and
rapidly than drained sections (typically	transverse joint seal condition in comparison
having PATB base).	to drained sections.
There were larger mean differences of	Analyses did not evaluate the mean
transverse and longitudinal cracking for	differences in transverse and longitudinal
PATB sections with good drainage than	cracking. However, the change in transverse
sections with poor drainage.	and longitudinal cracking over time was
	typically higher for undrained sections.

 Author(s): Jiang, Y. Jane, and Michael I. Darter Title: Structural Factors of Jointed Plain Concrete Pavements: SPS-2 – Initial Evaluation and Analysis Year: 2005 Free Full Text Online: Yes

Findings based on TPF-5(291):
Initial IRI ranged from 50 to 140 inch/mile
(0.7-2.2 m/km). Median initial IRI was close to 80 inch/mile (1.3 m/km).

SPS-2 Pavement Preservation Experiment Updating Previous LTPP Analyses UPDATING PREVIOUS LTPP Analyses & the SPS-2 Experimental Matrix

Key Findings:	Findings based on TPF-5(291):
Lower initial IRI for JPCP constructed on	Analyses did not compare initial IRI for
coarse-grained soil vs. fine-grained soil.	different soil types.
Lower initial IRI for JPCP constructed on	Analyses did not compare initial IRI for
PATB vs. LCB or untreated DGAB base.	different base types.
IRI trend over time depended heavily on	Confirmed change in IRI was heavily
initial IRI, traffic loading, and extent of joint	dependent on initial IRI with added influence
faulting.	from other potential factors.
Lowest longitudinal cracking levels on	Change in longitudinal cracking was highest
sections on PATB, highest on sections on	in sections with LCB and lowest in sections
LCB.	with PATB or DGAB – except in Arizona,
	where sections with DGAB had higher
	average changes in longitudinal cracking.
Thinner (203 mm) slabs showed more	Confirmed that thinner slabs showed more
longitudinal cracks, sections with thinner	longitudinal cracks and widened slabs
slabs and widened slabs showed the highest	showed significantly more longitudinal
level of longitudinal cracking.	cracking.
Sections with PATB showed lowest	Confirmed that sections with PATB showed
percentage of transverse cracks, highest on	lowest percentage of transverse cracks,
sections with LCB.	while sections with LCB showed the highest.
Thinner (203 mm) slabs showed more	Confirmed that change in transverse
transverse cracks than thicker ones, sections	cracking was typically higher for sections
with thinner slabs and widened slabs showed	with thinner slabs and/or 12' lane width.
highest level of transverse cracking.	
Sections with DGAB base showed highest	Analyses did not evaluate total faulting of
joint faulting level, sections with LCB and	sections with different base types. However, change in faulting was higher in sections
PATB had lowest joint faulting.	with LCB than sections with PATB. Sections
	with DGAB did not consistently show higher
	rates of faulting from project to project.
Widened slab sections showed less faulting	Analyses did not evaluate total faulting of
than conventional-width slabs.	sections with different slab widths. However,
	change in faulting was higher in sections
	with conventional-width slabs than sections
	with widened slabs.

8. Author(s): Chatti, K, N. Buch, S.W. Haider, A.S. Pulipaka, R.W. Lyles, D. Gilliland, and P. Desaraju

Title: LTPP Data Analysis: Influence of Design and Construction Features on the Response and Performance of New Flexible and Rigid Pavements **Year:** 2005

Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
Transverse cracking: PCC slab thickness and base type were the most important factors, drainage had marginal effect.	PCC strength also had a marginal effect.
Transverse cracking and longitudinal cracking were at higher level in thin (203 mm) slabs vs. 279 mm slabs.	Confirmed that thin slabs had a negative performance impact in terms of transverse and longitudinal cracking.
Transverse cracking and longitudinal cracking were at higher level in sections with LCB vs. those with PATB or with DGAB. PATB and DGAB showed least occurrence of cracking.	Confirmed that LCB base type had a negative performance impact in terms of transverse and longitudinal cracking.
Sections without drainage had slightly higher likelihood of cracking than sections with drainage.	Confirmed that sections without drainage had a negative performance impact in terms of transverse and longitudinal cracking.
Among sections built on LCB, thin slabs had higher occurrence of transverse cracking and longitudinal cracking than thick slabs.	Confirmed that thin PCC sections with LCB bases had higher rates of transverse cracking.
Sections built on fine-grained soils had slightly higher chances of transverse cracking vs. sections built on coarse-grained soils.	Analyses did not focus on the impact of subgrade soil type on pavement performance.
Faulting: majority of SPS-2 sections exhibited "good" performance. One-third of sections had 0 to 20% of joints that faulted more than 1 mm, and 5% of sections had more than 20% of joints that faulted more than 1 mm.	Most SPS-2 sections have exhibited "good" performance, but the percent of joints faulted over 1 mm varied from project to project. Six projects had 0% sections with faulting over 1 mm of 0-20% of joints. Five projects had 5-10% sections with faulting over 1 mm of 0-20% of joints. Three projects had 15-58% sections with faulting over 1 mm of 0-20% of joints (Arkansas, Michigan, and North Dakota). Most undoweled sections also had faulting over 1 mm of 0-20% of joints.

SPS-2 PAVEMENT PRESERVATION EXPERIMENT UPDATING PREVIOUS LTPP ANALYSES

UPDATING PREVIOUS LTPP ANALYSES

Key Findings:	Findings based on TPF-5(291):
Lane width seemed to be most important factor for faulting of PCC joints. Standard lane width (3.7 m) showed higher faulting than a wider lane (4.3 m). Effect of lane width was more prominent among sections built on fine-grained soils vs. coarse-grained soils. Effect greater in WF zone.	Pavement thickness also had an important effect on faulting. Also, PCC strength and base type had a marginal effect.
Roughness: Drainage and base type seemed to be most important factors, whereas slab thickness had marginal effect. Sections with PATB showed lower change in IRI vs. sections DGAB or LCB. DGAB had highest change in roughness.	Confirmed that base type and drainage had a significant impact of roughness, while slab thickness had a marginal effect in comparison. Sections with LCB had the highest change in roughness. The change in roughness for sections with DGAB (relative to sections with other base types) was not consistent from
Among sections with standard lane width, sections with DGAB had higher change in IRI than those with LCB or PATB.	project to project. Analyses did not evaluate if test sections with standard lane width had higher IRI deterioration rates for sections with DGAB bases than sections with LCB or PATB bases.
Among sections built on fine-grained soils, those with thinner slabs had higher change in IRI than those with thicker slabs. Effect greater in wet-freeze (WF) zone. Among sections in WF zone and built on fine-grained soils, those with drainage had lower change in IRI vs. those without drainage.	Analyses did not evaluate if test sections with fine-grained soils had higher IRI deterioration rates for sections with thinner bases than sections with thicker bases.
Sections on DGAB had higher peak deflection under FWD load (d_0) than ones on PATB. Sections on LCB had least d_0 values. Thin slabs had higher d_0 than thick slabs. In WF zone, sections on fine SG soils had higher d_0 than those on coarse SG soils.	Analyses did not evaluate do relative to different base types. However, the change in do over time is not impacted by base type but rather pavement thickness.
Far sensor deflection (d_6) : Sections on DGAB had higher d_6 than those on PTAB. Pavements on LCB had least d_6 values. Thinner slabs had higher d_6 values than thick slabs. In WF zones, sections built on fine SG soils had higher d_6 values than those on coarse SG soils.	Analyses did not evaluate the performance of d ₆ sensor deflections.

SPS-2 PAVEMENT PRESERVATION EXPERIMENT UPDATING PREVIOUS LTPP ANALYSES

UPDATING PREVIOUS LTPP ANALYSES

Key Findings:	Findings based on TPF-5(291):
Thicker slabs had higher AREA value (AV) than thinner slabs. Among sections on LCB, those on coarse-grained SG had higher AV than those on fine-grained SG. These effects were not significant for final survey AV values. Sections with 900 psi concrete had higher AF than 550 psi concrete. Sections in wet climate had higher AV than those in dry climate.	Analyses did not evaluate the impact of design factors on AV relative to subgrade soil type. However, the change in AV over time was not consistently impacted by any particular design factor.
Effect of slab thickness on effective stiffness (ES) was more prominent among sections on DGAB than those on LCB. The effect of PCC flexural strength on ES was more apparent for pavements on DGAB or PATB than for those on LCB. Sections on coarse- grained SG soil stiffer than those on fine- grained SG soil. Effects of slab thickness and base type on ES from final survey similar as in case of initial ES. Pavements built with drainage have higher ES than those without drainage. Also, pavements with high strength concrete have higher ES than those with low strength concrete.	Analyses did not evaluate the impact of design factors on ES.

Author(s): Hall, Kathleen Theresa, and James A. Crovetti
 Title: Effects of Subsurface Drainage on Pavement Performance: Analysis of the SPS-1 and SPS-2 Field Sections
 Year: 2007
 Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
Sections expected to be weakest (with	Analyses did not evaluate back-calculated
DGAB) did not have back-calculated	thickness.
effective pavement thickness much different	
from sections with PATB.	
Effective thickness of sections with LCB was	Analyses did not evaluate back-calculated
notably greater than effective thickness of	thickness.
otherwise similar sections with the other two	
base types.	
Leave-side load transfer values greater than	Analyses did not confirm the sensitivity of
approach-side, but insensitive to slab	slab temperature. However, the change in
temperature.	LTE over time was similar for the leave-side
	and approach-side of the transverse joint.

SPS-2 PAVEMENT PRESERVATION EXPERIMENT UPDATING PREVIOUS LTPP ANALYSES

UPDATING PREVIOUS LTPP ANALYSES

Key Findings:	Findings based on TPF-5(291):
Load transfer in sections with DGAB and LCB no worse than PATB sections.	Analyses did not evaluate the impact of base type on average LTE. However, the change in LTE over time was not found to be impacted by base type.
Long-term IRI for sections with DGAB and LCB similar and higher than for PATB sections.	Analyses did not evaluate the impact of base type on long-term IRI. However, the change in roughness was higher for sections with LCB base and lower for that with PATB base. The impact of DGAB base on change in IRI varied from project to project.
Changes in IRI over time greater in DGAB and LCB, followed by PATB.	Sections with LCB had the highest change in roughness and sections with PATB base had the lowest change in roughness. The change in roughness for sections with DGAB (relative to sections with other base types) was not consistent from project to project.
Undrained hot-mix asphalt concrete base had highest median initial IRI, but showed smaller changes in IRI than PATB, so had similar long-term IRI to PATB.	Analyses did not evaluate the impact of base type on initial IRI. However, undrained sections had a higher change in roughness than drained sections. It was not clear how well the drains were functioning.
Undrained LCB base had smallest changes in IRI and lowest long-term IRI than any of the drainage/base combinations.	Analyses did not evaluate the impact of base type on long-term IRI. However, undrained sections had a higher change in roughness than drained sections. It was not clear how well the drains were functioning.
Latest observed IRI and rates of change in IRI concluded to be due mainly to base stiffness. Effect of drainage not ruled out but shown to have little effect.	Pavement thickness was also an important factor in the change in IRI.
Sections with LCB and PATB had similar levels of faulting; sections with DGAB developed more faulting.	Base type and PCC strength had a marginal effect on the change in faulting. Pavement thickness and lane width had a more significant effect.
60% of sections with LCB developed cracking compared to 30% of sections with DGAB or PATB. Sections with DGAB had more cracking than sections with PATB.	Sections with LCB typically had a higher rate of transverse cracking and sections with PATB had a lower rate of transverse cracking. Sections with DGAB had transverse cracking rates similar to sections with PATB except in the case of sites in California and Ohio.

Key Findings:	Findings based on TPF-5(291):
Cracking issues attributed more to base	Analyses did not evaluate the effect base
stiffness than to drainage.	stiffness on cracking issues. However, the
	change in transverse cracking over time was
	typically higher for undrained sections.

 Author(s): Schmalzer, Peter Steven Karamihas, Hans Meyer, Kevin Senn, and Jason Puccinelli
 Title: Performance Evaluation of Arizona's LTPP SPS-2 Project

Year: 2015 Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
State 406 bituminous-treated base (BTB) performed better than PATB section in all measured deflection parameters. Roughness and distress performance were similar from a comparison of only one pair of sections.	Analyses did not specifically evaluate State 406 BTB.
Role of drained sections (PATB) to get better pavement performance unclear in this study.	Drained pavements typically had better performance in roughness, transverse cracking, longitudinal cracking, and joint condition. However, this trend was unclear in the Arizona SPS-2.
Slabs on LCB had greatest decline in stiffness, developed more transverse and longitudinal cracking. Change in IRI was less than for other sections, and in some cases IRI improved.	Change in IRI was typically higher for sections with LCB, but in Arizona, sections with DGAB had higher changes in IRI.
LCB sections did not show changes in IRI proportional to amount of cracking – roughness and roughness progression alone cannot be used to assess health of section.	Analyses did not evaluate the changes in IRI in proportion to the amount of cracking. However, sections with LCB had higher change in transverse cracking over time (both in Arizona and in general). DGAB sections in Arizona showed more change in roughness than other base types – this trend was not seen in most other SPS-2 projects.
Curl and warp contributed to, and in some cases dominated, roughness.	Analyses did not evaluate the effect of curl and warp on roughness.

SPS-2 Pavement Preservation Experiment Updating Previous LTPP AnalysesUPDATING PREVIOUS LTPP ANALYSES& THE SPS-2 Experimental Matrix

Key Findings:	Findings based on TPF-5(291):
Map cracking found in multiple sections; dynamic loading before section 040214 may be cause of map cracking but it was unclear. High-strength sections with greatest declines in stiffness affected by map cracking. ASR was not contributor.	Analyses did not evaluate map cracking, dynamic loading, and ASR.
Thicker sections showed greater slab stiffness, subgrade support, cracking resistance, and performed as expected under deflection and distress analysis.	Analyses did not evaluate slab stiffness, subgrade support, and cracking resistance. However, thicker sections performed better in a number of performance measures related to cracking and deflection (both in Arizona and in general).
Wider (14-foot) sections had better LTE between joints and the least lane-to- shoulder drop compared to thinner (12-foot) sections.	Less lane-to-shoulder drop-off was not confirmed for wider slabs. However, wider slabs did have less change in LTE over time (both in Arizona and in general).
Undoweled DGAB sections (040262 and 040265) had most faulting. DGAB sections had better LTE than PATB sections – as measured at slab leave. LTE measured at slab approach tested similar for DGAB and PATB – perhaps formation of voids under leave edge due to erosion of DGAB material.	Analyses did not evaluate faulting for doweled vs. undoweled sections. However, change in LTE was higher for DGAB and PATB at the slab leave. Typically, base type did not significantly affect change in LTE over time in most other SPS-2 projects.

11. Author(s): Changwei Xu and David Cebon

Title: Analysis of Cracking in Jointed Plain Concrete Pavements Year: 2017 Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
Severity of longitudinal and transverse	Slab thickness (along with base type and
cracking sensitive to slab thickness. Slab	drainage) did have an impact on cracking.
width and strength had a less clear effect.	High-strength PCC and wider lanes showed
	mixed results – better performance in
	transverse cracking and poorer performance
	in longitudinal cracking.
Cracks occurred earlier and were more	Analyses did not compare the severity of
severe in dry zones.	cracks in different climate zones.
Two longitudinal cracking patterns: single,	Analyses did not evaluate the location of
long crack 1 meter from edge of slab	longitudinal cracks.
adjacent to shoulder and short crack near	
center line of slab (neither of any specific	
length).	

Key Findings:	Findings based on TPF-5(291):
Most longitudinal cracks initiated from slab	Analyses did not evaluate the initiation point
transverse edges. Most transverse cracks	of longitudinal cracks.
initiated from the slab longitudinal edge	
close to shoulder.	
In Arkansas (wet zone), edge pumping	Analyses did not evaluate edge pumping.
occurred as result of crack as opposed to	
vice versa.	
Plausible explanation for premature cracking	Analyses did not evaluate premature
was occurrence of voiding in foundation soil	cracking.
due to localized plastic deformation.	

12. **Author(s):** Gilbert Y. Baladi, Tyler Dawson, Gopikrishna Musunuru, Michael Prohaska, and Kyle Thomas

Title: Pavement Performance Measures and Forecasting and the Effects of Maintenance and Rehabilitation Strategy on Treatment Effectiveness **Year:** 2017

Free Full Text Online: Yes

Key Findings:	Findings based on TPF-5(291):
Majority of SPS-2 section in wet-no-freeze	Analyses did not evaluate cracking as impact
(WNF) region performed worse in terms of	of climatic region.
longitudinal cracking than those in the dry-	
no-freeze (DNF) region – impact of	
excessive moisture on pavement	
performance.	
On average, IRI was not affected by the	Analyses did not evaluate cracking as impact
climatic region, but the data indicated that	of climatic region.
SPS-2 sections in the WF region performed	
slightly worse than compatible sections in	
the other three climatic regions.	
The WF region had a more damaging impact	Analyses did not evaluate cracking as impact
in terms of transverse cracking than those in	of climatic region.
WNF, dry-freeze (DF), or DNF regions.	

4.0 UPDATING SPS-2 EXPERIMENTAL MATRIX

Table 2 shows the as-nominated experimental matrix for half-factorial experiment design of the SPS-2 experiment. Table 3 shows the as-constructed experimental matrix for SPS-2 test sections using measured data to update the climatic regions and provide ranges for pavement thickness and modulus of rupture (indicative of the flexural strength of PCC).

Cells with light-gray shading indicate test sections that are currently out-of-study. Bold font indicates test sections that were constructed with different design features than as-nominated. Most of the projects were constructed as nominated; however, there were some exceptions:

- In Iowa, test sections 0216 and 0219 were interchanged so that the sections have different lane widths than as-nominated.
- In Kansas, test section 0212 has no drainage according to the LTPP database.
- In Arkansas, test sections 0222 and 0223 have a fine subgrade soil type.
- In Colorado, test sections 0214, 0216, 0219, 0223, and 0224 have a coarse subgrade soil type.
- In Nevada, all test sections have a fine subgrade soil type, except for 0201. Test section 0210 could be considered on the borderline of a thick, low-strength PCC section, with a PCC layer thickness of 10.1 inches and modulus of rupture of 740 psi. Lastly, the Nevada SPS-2 site does not have a section 0212.
- Ohio test section 0212 and Arkansas test section 0224 had low 14-day moduli of rupture but gained high moduli of rupture at 28 days and 1 year.

Tables 4 and 5 provide measurement data more specific to the project or individual test section. Table 4 includes average annual precipitation, average freezing index, climatic region, and KESALs per year. Table 5 provides drainage type, outside shoulder type, base type, lane width, layer thickness, modulus of rupture (14-day, 28-day, and 1-year), subgrade soil type, and status.

	Pavement Structure					re Te	st S	ectio	ns b	y Cli	mati	c Condi	tion	s, Su	bgra	ade S	Soil Typ	e, an	d St	ate		
		PCC	Flexural	Lane					Wet								Dry					
Drainage	Base	Thickness,	Strength,	Width,			Fre	eze			No-	Freeze			Free	eze		No	-Free	ze		
Dramage	Туре	in.	psi	ft		Fine			Coars			Coarse			ne		Coarse	Fine		arse		
			(14-d)		OH	IA	MI	DE	AR	WI	NC		KS	WA	ND	CO	NV		CA	AZ		
			550	12	1			1			1		1	1			1		1			
		8		14		13	13		13	13					13	13				13		
		Ū.	900	12		14	14		14	14					14	14				14		
	DGAB			14	2			2			2		2	2			2		2			
	_		550	12		15	15		15	15					15	15				15		
		11		14	3			3			3		3	3			3		3			
			900	12	4	1.6	1.6	4	1.6	1.5	4		4	4	1.6	1.6	4		4	1.6		
No	No			14	_	16	16	_	16	16	F		F	E	16	16	_		E	16		
		8	8	8	550	12	5	4 7	47	5	4 7	47	5		5	5	4 7	47	5		5	47
					8		14		17	17		17	17					17	17			
				900	12	C	18	18	6	18	18	C		C	C	18	18	C C		C	18	
	LCB			14 12	6	19	19	0	19	19	6		6	6	19	19	6		6	19		
			550	12	7	19	19	7	19	19	7		7	7	19	19	7		7	19		
		11		14	8			8			8		8	8			8		8			
			900	14	0	20	20	0	20	20	0		0	0	20	20	0		0	20		
				12	9	20	20	9	20	20	9		9	9	20	20	9		9	20		
			550	14	5	21	21	5	21	21			5	5	21	21	5		5	21		
		8		12		22	22		22	22					22	22				22		
			900	14	10			10			10		10	10			10		10			
Yes	Yes PATB			12		23	23		23	23					23	23				23		
			550	14	11	_	_	11	_	-	11		11	11	_	_	11		11	_		
		11		12	12			12			12		12	12			12		12			
		11	900	14		24	24		24	24					24	24				24		

Table 2. As-Nominated Experimental Matrix for Half-Factorial Experiment Design for SPS-2 Experiment.

	Pav	ement Str	ucture		Co	ore Te	est Se	ectio	ns by	/ Climat	ic Co	nditio	ns, S	tate, a	and S	Shoul	der Ty	ре
							We	et						Dry				
	Base	PCC	of	Lane		Freez				o-Freeze			Freez	1			-freeze	
Drainage	Туре	Thickness,	Rupture,	Width,	ND	WI	IA	MI	OH	KS	DE	NC	AR	CO	WA	NV	ΑZ	CA
	71	in.	psi (14- d)	ft	AC	AC	AC	AC	AC	PCC	AC	PCC	AC	PCC	AC	PCC	PCC	PCC
		7.7-9.2	520-736	12					1 ^F	1 ^F	1 ^C	1 ^F			1 ^F	1 ^C		1 ^C
		7.4-8.7	500-645	14	13 ^F	13 ^C	13 ^F	13 ^F					13 ^c	13 ^F			13 ^c	
		8-8.8	700-975	12	14 ^F	14 ^C	14 ^F	14^{F}					14 ^C	14 ^c			14 ^C	
	DGAB	7.5-8.9	713-920	13/14					2 ^F	2 ^F	2 ^C	2 ^F			2 ^F	2 F		2 ^c
	DGAD	11-11.7	510-625	12	15⊦	15 ^c	15 [⊧]	15 ^F					15 ^c	15⊦			15 ^c	
		11.1-11.9	413-645	13/14					3 ^F	3 ^F	3 ^c	3 [⊧]			3 ^F	3₹		3 ^c
		11-11.8	784-885	12			16 [⊦]		4 ^F	4 ^F	4 ^C	4 ^F			4 ^F	4 F		4 ^C
No		11-11.9	790-900	14	16 [⊦]	16 ^C		16 ^F					16 ^C	16 ^c			16 ^C	
No		7.3-9.2	487-750	12					5 ^F	5 ^F	5 ^C	5⁵			5 ^F	5 ^c		5 ^c
		7.8-8.6	508-564	14	17 ^F	17 ^C	17 ^F	17 ^F					17 ^C	17 [⊦]			17 ^C	
		7.3-8.5	810-960	12	18 ^F	18 ^C	18 ^F	18 ^F					18 ^C	18 ^F			18 ^C	
		7.7-8.9	730-829	13/14					6 ^F	6 ^F	6 ^C	6 [⊦]			6 ^F	6 F		6 ^C
	LCB	9.9-11.6	506-620	12	19 [⊧]	19 ^C		19 ^F					19 ^c	19 ^c			19 ^C	
		10.9-11.7	440-650	13/14			19 [⊦]		7 ^F	7 ^F	7 ^C	7 [₽]			7 ^F	7 F		7 ^C
		10.7-12.1	620-855	12					8 ^F	8 ^F	8 ^C	8 ^F			8 ^F	8 F		8 ^C
		10.7-11.4	770-970	14	20 ^F	20 ^C	20 ^F	20 ^F					20 ^C	20 ^F			20 ^C	
		8.2-9	624-624	12					9 ^F	9 ^{LD,F}	9 ^c	9 [⊧]			9 ^F	9 F		9 ^C
		8-9	475-521	14	21 ^F	21 ^C	21 ^F	21 ^F					21 ^C	21 ^F			21 ^C	
		8.1-8.8	945-950	12	22 ^F	22 ^C	22 ^F	22 ^F					22 F	22 ^F			22 ^c	
	DATE	8-9.1	924-924	13/14					10 ^F	$10^{\text{LD,F}}$	10 ^C	10 ^F			10 ^F			10 ^C
DB/LD	PATB	10.9-12	460-665	12	23 ^F	23 ^C	23 ^F	23 ^F					23 ^F	23 ^c			23 ^c	
		11.2-12.1	494-749	13/14					11 ^F	$11^{\text{LD,F}}$	11 ^C	11 ^F			11^{F}	11 ^F		11 ^C
		10.8-12.4	438-865	12					12 ^F	12 ^{ND,F}	12 ^C	12 ^F			12 ^F			12 ^C
		10.1-11.7	506-870	14	24 ^F	24 ^c	24 [⊧]	24 ^F					24 ^c	24 ^c		10 [⊧]	24 ^c	

Table 3. As-Constructed Experimental Matrix for Half-Factorial Experiment Design for SPS-2 Experiment.

States are listed in order of Average Freezing Index.

Values in light gray shading indicate test sections that are out-of-study as of July 2020.

Values in **bold** indicate test sections that have a different design than as-nominated.

AC/PCC – the outside shoulder type for core test section at the SPS-2 site.

13/14 – CA sections have 13-foot-wide lanes while others have 14-foot-wide lanes.

DB/LD – Drainage blanket with longitudinal drains.

LD – Longitudinal drains only.

ND – No drainage.

F – Subgrade material is classified as a fine soil type.

C – Subgrade material is classified as a coarse soil type.

State Code	Average Annual Precipitation (in.)	Average Freezing Index (°C days)	Climatic Region	KESALs per Year
4	7.5	0	Dry, No-freeze	1,610
5	53.3	28	Wet, No-freeze	3,560
6	10.9	0	Dry, No-freeze	1,870
8	14.3	302	Dry, Freeze	390
10	45.8	87	Wet, Freeze	250
19	35.6	548	Wet, Freeze	570
20	33.4	252	Wet, Freeze	720
26	34.5	370	Wet, Freeze	1,870
32	9.7	190	Dry, Freeze	730
37	43.8	32	Wet, No-freeze	760
38	25.2	1283	Wet, Freeze	480
39	41.2	327	Wet, Freeze	630
53	12.2	207	Dry, Freeze	420
55	33.5	913	Wet, Freeze	280

Table 4. Measured Climate and Traffic for SPS-2 Experiment.

State	SHRP	Drainage	Shoulder	Base	Lane	PCC	Modu	lus of Ru (psi)	pture	Subgrade	Active as
Code	D	Туре	Туре	Туре	Width	Thickness	14-	28-	1-	Soil Type	of
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 7	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			day	day	year		July 2020
4	0213	ND	PCC	DGAB	14'	7.9"	560	630	850	Coarse	Yes
4	0214	ND	PCC	DGAB	12'	8.3"	810	840	960	Coarse	Yes
4	0215	ND	PCC	DGAB	12'	11"	580	685	945	Coarse	Yes
4	0216	ND	PCC	DGAB	14'	11.2"	790	825	890	Coarse	Yes
4	0217	ND	PCC	LCB	14'	8.1"	—	—	—	Coarse	Yes
4	0218	ND	PCC	LCB	12'	8.3"	860	925	970	Coarse	Yes
4	0219	ND	PCC	LCB	12'	10.8"	575	680	805	Coarse	Yes
4	0220	ND	PCC	LCB	14'	11.2"	810	840	975	Coarse	Yes
4	0221	DB/LD	PCC	PATB	14'	8.1"	—	_	—	Coarse	Yes
4	0222	DB/LD	PCC	PATB	12'	8.6"	945	950	1085	Coarse	Yes
4	0223	DB/LD	PCC	PATB	12'	11.1"	—	—	—	Coarse	Yes
4	0224	DB/LD	PCC	PATB	14'	10.6"	805	825	915	Coarse	Yes
4	0262	ND	PCC	DGAB	14'	8.1"	580	670	845	Coarse	Yes
4	0263	LD	PCC	PATB	14'	8.2"	—	—	—	Coarse	Yes
4	0264	LD	PCC	PATB	12'	11.5"	—	—	890	Coarse	Yes
4	0265	ND	PCC	DGAB	12'	10.8"	515	545	690	Coarse	Yes
4	0266	ND	PCC	HMAC	14'	12.3"	—	—	—	Coarse	Yes
4	0267	ND	PCC	HMAC	14'	11.3"	570	580	815	Coarse	Yes
4	0268	ND	PCC	HMAC	14'	8.5"	520	625	770	Coarse	Yes
5	0213	ND	AC	DGAB	14'	7.4"	568	414	585	Coarse	No
5	0214	ND	AC	DGAB	12'	8.4"	—	—	—	Coarse	No
5	0215	ND	AC	DGAB	12'	11.5"	_	—	—	Coarse	No
5	0216	ND	AC	DGAB	14'	11"	—	—	—	Coarse	No
5	0217	ND	AC	LCB	14'	8.3"	564	491	630	Coarse	No
5	0218	ND	AC	LCB	12'	8.2"	825	557	1000	Coarse	No

Table 5. Measured Design Factors for SPS-2 Experiment.

STATE POOLED FUND STUDY TPF-5(291)

OCTOBER 2021

State	SHRP	Drainage	Shoulder	Base	Lane	PCC	Modu	lus of Ru (psi)	pture	Subgrade	Active as
Code	D	Туре	Туре	Туре	Width	Thickness	14-	28-	1-	Soil Type	of
		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			day	day	year		July 2020
5	0219	ND	AC	LCB	12'	11.1"	506	439	730	Coarse	No
5	0220	ND	AC	LCB	14'	10.7"	—	—	—	Coarse	No
5	0221	DB/LD	AC	PATB	14'	8.3"	521	555	625	Coarse	No
5	0222	DB/LD	AC	PATB	12'	8.3"	—	-	—	Fine	No
5	0223	DB/LD	AC	PATB	12'	10.9"	568	493	630	Fine	No
5	0224	DB/LD	AC	PATB	14'	10.9"	506	752	814	Coarse	No
6	0201	ND	PCC	DGAB	12'	8.3"	_	-	—	Coarse	No
6	0202	ND	PCC	DGAB	13'	8"	—	—	—	Coarse	Yes
6	0203	ND	PCC	DGAB	13'	11.4"	_	-	—	Coarse	Yes
6	0204	ND	PCC	DGAB	12'	11.1"	—	—	_	Coarse	No
6	0205	ND	PCC	LCB	12'	8.2"	_	-	—	Coarse	Yes
6	0206	ND	PCC	LCB	13'	8"	—	—	_	Coarse	Yes
6	0207	ND	PCC	LCB	13'	11"	_	-	—	Coarse	Yes
6	0208	ND	PCC	LCB	12'	10.7"	—	—	—	Coarse	Yes
6	0209	DB/LD	PCC	PATB	12'	8.4"	—	—	—	Coarse	Yes
6	0210	DB/LD	PCC	PATB	13'	8.6"	—	—	—	Coarse	Yes
6	0211	DB/LD	PCC	PATB	13'	12.1"	—	-	—	Coarse	Yes
6	0212	DB/LD	PCC	PATB	12'	11.1"	—	—	—	Coarse	Yes
8	0213	ND	PCC	DGAB	14'	8.6"	520	630	710	Fine	Yes
8	0214	ND	PCC	DGAB	12'	8.4"	930	950	950	Coarse	Yes
8	0215	ND	PCC	DGAB	12'	11.5"	510	580	650	Fine	No
8	0216	ND	PCC	DGAB	14'	11.9"	900	925	870	Coarse	Yes
8	0217	ND	PCC	LCB	14'	8.6"	508	588	680	Fine	No
8	0218	ND	PCC	LCB	12'	7.6"	810	950	840	Fine	Yes
8	0219	ND	PCC	LCB	12'	9.9"	515	640	655	Coarse	Yes
8	0220	ND	PCC	LCB	14'	11.2"	925	987.5	950	Fine	Yes

State	SHRP	Drainago	Shoulder	Base	Lana	PCC	Modu	lus of Ru	pture	Subarada	Active as
Code	Б	Drainage Type	Туре	Туре	Lane Width	Thickness	14-	(psi) 28-	1-	Subgrade Soil Type	of
couc		Type	Type	Type	Width	THICKIESS	day	day	year	Son Type	July 2020
8	0221	DB/LD	PCC	PATB	14'	8.3"	475	470	620	Fine	No
8	0222	DB/LD	PCC	PATB	12'	8.5"	950	952	1008	Fine	Yes
8	0223	DB/LD	PCC	PATB	12'	11.7"	595	560	—	Coarse	Yes
8	0224	DB/LD	PCC	PATB	14'	11.6"	815	700	1050	Coarse	Yes
8	0259	ND	PCC		12'	11.9"	680	793	768	Coarse	Yes
10	0201	ND	AC	DGAB	12'	8.3"	—	—	—	Coarse	No
10	0202	ND	AC	DGAB	14'	8.8"	920	1190	1120	Coarse	No
10	0203	ND	AC	DGAB	14'	11.7"	—	—	—	Coarse	No
10	0204	ND	AC	DGAB	12'	11"	—	—	—	Coarse	No
10	0205	ND	AC	LCB	12'	9.2"	750	930	970	Coarse	No
10	0206	ND	AC	LCB	14'	8.9"	—	—	—	Coarse	No
10	0207	ND	AC	LCB	14'	11.3"	550	650	680	Coarse	No
10	0208	ND	AC	LCB	12'	12.1"	620	730	680	Coarse	No
10	0209	DB/LD	AC	PATB	12'	8.2"	—	—	—	Coarse	No
10	0210	DB/LD	AC	PATB	14'	8.3"	—	—	—	Coarse	No
10	0211	DB/LD	AC	PATB	14'	11.8"	670	720	740	Coarse	No
10	0212	DB/LD	AC	PATB	12'	12.4"	730	730	710	Coarse	No
10	0259	LD	AC	DGAB	12'	10.2"	750	840	770	Coarse	No
10	0260	LD	AC	DGAB	12'	10.2"	710	730	—	Coarse	No
19	0213	ND	AC	DGAB	14'	8.7"	500	590	610	Fine	Yes
19	0214	ND	AC	DGAB	12'	8.4"	700	770	890	Fine	Yes
19	0215	ND	AC	DGAB	12'	11.7"	—	—	—	Fine	Yes
19	0216	ND	AC	DGAB	12'	11.6"	—	—	—	Fine	Yes
19	0217	ND	AC	LCB	14'	7.8"	—	—	—	Fine	Yes
19	0218	ND	AC	LCB	12'	8.3"	—	—	—	Fine	Yes
19	0219	ND	AC	LCB	14'	11.3"	440	530	590	Fine	Yes

State	SHRP	Drainage	Shoulder	Base	Lane	PCC	Modu	lus of Ru (psi)	pture	Subgrade	Active as
Code	D	Туре	Туре	Туре	Width	Thickness	14-	(psi) 28-	1-	Soil Type	of
couc		Type	Type	Type		Thekness	day	day	year	Son Type	July 2020
19	0220	ND	AC	LCB	14'	11.4"	770	720	770	Fine	Yes
19	0221	DB/LD	AC	PATB	14'	9"	—	—	—	Fine	Yes
19	0222	DB/LD	AC	PATB	12'	8.3"	—	—	—	Fine	Yes
19	0223	DB/LD	AC	PATB	12'	12"	460	520	680	Fine	Yes
19	0224	DB/LD	AC	PATB	14'	11"	790	750	930	Fine	Yes
19	0259	DB/LD	AC	DGAB	14'	8.5"	—	—	—	Fine	Yes
20	0201	ND	PCC	DGAB	12'	7.7"	605.5	638	692	Fine	Yes
20	0202	ND	PCC	DGAB	14'	7.5"	803	911	915	Fine	Yes
20	0203	ND	PCC	DGAB	14'	11.2"	595	656	744	Fine	Yes
20	0204	ND	PCC	DGAB	12'	11.3"	784	849	816	Fine	Yes
20	0205	ND	PCC	LCB	12'	7.3"	702	706	722	Fine	Yes
20	0206	ND	PCC	LCB	14'	7.7"	829	928	904	Fine	Yes
20	0207	ND	PCC	LCB	14'	10.9"	559.5	645	715	Fine	Yes
20	0208	ND	PCC	LCB	12'	10.9"	855	1035	883	Fine	Yes
20	0209	LD	PCC	PATB	12'	8.4"	624	576	746	Fine	Yes
20	0210	LD	PCC	PATB	14'	8.5"	924	839	1002	Fine	Yes
20	0211	LD	PCC	PATB	14'	11.2"	576	674	693	Fine	Yes
20	0212	ND	PCC	PATB	12'	11.1"	865	990	992	Fine	Yes
20	0259	ND	PCC	CTB	12'	11.9"	617.5	677	738	Fine	Yes
26	0213	ND	AC	DGAB	14'	8.3"	645	760	915	Fine	No
26	0214	ND	AC	DGAB	12'	8.8"	975	980	1000	Fine	No
26	0215	ND	AC	DGAB	12'	11.1"	585	900	915	Fine	No
26	0216	ND	AC	DGAB	14'	11.3"	—	—	—	Fine	No
26	0217	ND	AC	LCB	14'	8.4"	—	—	—	Fine	No
26	0218	ND	AC	LCB	12'	7.3"	—	—	—	Fine	No
26	0219	ND	AC	LCB	12'	11.3"	620	1040	835	Fine	No

State	SHRP	Drainago	Shoulder	Base	Lana	PCC	Modu	lus of Ru	pture	Subarada	Active as
Code	Б	Drainage Type	Туре	Туре	Lane Width	Thickness	14-	(psi) 28-	1-	Subgrade Soil Type	of
coue		Type	Type	Type	width	THICKNESS	day	day	year	Son Type	July 2020
26	0220	ND	AC	LCB	14'	11.2"	970	1015	965	Fine	No
26	0221	DB/LD	PCC	PATB	14'	8.1"	—	—	—	Fine	No
26	0222	DB/LD	AC	PATB	12'	8.3"	—	-	—	Fine	No
26	0223	DB/LD	AC	PATB	12'	11"	—	—	—	Fine	No
26	0224	DB/LD	AC	PATB	14'	11.1"	840	940	875	Fine	No
26	0259	ND	PCC	PATB	12'	11.3"	690	790	970	Fine	No
32	0201	ND	PCC	DGAB	12'	9.2"	520	575	605	Coarse	No
32	0202	ND	PCC	DGAB	14'	8.2"	—	—	—	Fine	No
32	0203	ND	PCC	DGAB	14'	11.9"	_	-	—	Fine	No
32	0204	ND	PCC	DGAB	12'	11.8"	885	890	920	Fine	No
32	0205	ND	PCC	LCB	12'	8.5"	_	-	—	Coarse	No
32	0206	ND	PCC	LCB	14'	7.8"	730	840	845	Fine	No
32	0207	ND	PCC	LCB	14'	10.9"	490	525	575	Fine	No
32	0208	ND	PCC	LCB	12'	11"	—	—	—	Fine	No
32	0209	DB/LD	PCC	PATB	12'	8.9"	_	-	—	Fine	No
32	0210	DB/LD	PCC	PATB	14'	10.1"	740	785	850	Fine	No
32	0211	DB/LD	PCC	PATB	14'	11.3"	555	585	715	Fine	No
32	0259	ND	PCC	HMAC	12'	10.8"	—	—	—	Coarse	No
37	0201	ND	PCC	DGAB	12'	9.2"	736	564	824	Fine	No
37	0202	ND	PCC	DGAB	14'	8.9"	—	1020	1065	Fine	No
37	0203	ND	PCC	DGAB	14'	11.9"	_	-	—	Fine	Yes
37	0204	ND	PCC	DGAB	12'	11.6"	_	—	—	Fine	Yes
37	0205	ND	PCC	LCB	12'	8"	—	-	—	Fine	No
37	0206	ND	PCC	LCB	14'	8.4"	—	993.5	1034	Fine	No
37	0207	ND	PCC	LCB	14'	11.7"	650	736	972	Fine	Yes
37	0208	ND	PCC	LCB	12'	11.2"	—	—	—	Fine	Yes

State	SHRP	Drainage	Shoulder	Base	Lane	PCC	Modu	lus of Ru (psi)	pture	Subgrade	Active as
Code	D	Туре	Туре	Туре	Width	Thickness	14-	28-	1-	Soil Type	of
							day	day	year	1	July 2020
37	0209	DB/LD	PCC	PATB	12'	8.6"	_	—	—	Fine	No
37	0210	DB/LD	PCC	PATB	14'	9.1"	—	—	—	Fine	No
37	0211	DB/LD	PCC	PATB	14'	11.5"	_	—	—	Fine	Yes
37	0212	DB/LD	PCC	PATB	12'	11.2"	850	—	1010	Fine	Yes
37	0259	DB/LD	PCC	ATB	12'	10.8"	578	616	789	Fine	Yes
37	0260	LD	PCC	ATB	14'	11.6"	663	642	955	Fine	Yes
38	0213	ND	AC	DGAB	14'	8.1"		710	785	Fine	Yes
38	0214	ND	AC	DGAB	12'	8"		—	895	Fine	Yes
38	0215	ND	AC	DGAB	12'	11"		—	710	Fine	Yes
38	0216	ND	AC	DGAB	14'	11.1"		980	920	Fine	Yes
38	0217	ND	AC	LCB	14'	7.9"		665	705	Fine	Yes
38	0218	ND	AC	LCB	12'	7.9"		—	930	Fine	Yes
38	0219	ND	AC	LCB	12'	10.9"		—	750	Fine	Yes
38	0220	ND	AC	LCB	14'	11"	—	910	890	Fine	Yes
38	0221	DB/LD	AC	PATB	14'	8"	_	630	—	Fine	Yes
38	0222	DB/LD	AC	PATB	12'	8.1"	—	—	690	Fine	Yes
38	0223	DB/LD	AC	PATB	12'	11.1"	_	—	700	Fine	Yes
38	0224	DB/LD	AC	PATB	14'	10.9"	—	—	950	Fine	Yes
38	0259	DB/LD	PCC	PATB	12'	9.7"	_	—	830	Fine	Yes
38	0260	ND	PCC	DGAB	12'	11"	—	—	893	Fine	Yes
38	0261	ND	AC	DGAB	12'	11"	_	—	695	Fine	Yes
38	0262	ND	AC	LCB	14'	11.1"		640	680	Fine	Yes
38	0263	DB/LD	AC	PATB	12'	11"		—	835	Fine	Yes
38	0264	DB/LD	PCC	PATB	12'	11"		820	860	Fine	Yes
39	0201	ND	AC	DGAB	12'	7.9"	659	831	850	Fine	No
39	0202	ND	AC	DGAB	14'	8.3"	713	890	946	Fine	No

State	SHRP	Drainage	Shoulder	Base	Lane	PCC	Modu	lus of Ru (psi)	pture	Subgrade	Active as
Code	D	Туре	Туре	Туре	Width	Thickness	14-	28-	1-	Soil Type	of
couc		Type	Type	Type		Thekness	day	day	year	Son Type	July 2020
39	0203	ND	AC	DGAB	14'	11.2"	645	702	918	Fine	Yes
39	0204	ND	AC	DGAB	12'	11.1"	—	—	—	Fine	No
39	0205	ND	AC	LCB	12'	8"	_	—	—	Fine	No
39	0206	ND	AC	LCB	14'	7.9"	—	—	—	Fine	No
39	0207	ND	AC	LCB	14'	11.2"	_	—	—	Fine	Yes
39	0208	ND	AC	LCB	12'	11.1"	690	784	955	Fine	No
39	0209	DB/LD	AC	PATB	12'	8.3"	_	—	—	Fine	No
39	0210	DB/LD	AC	PATB	14'	8"	—	—	—	Fine	No
39	0211	DB/LD	AC	PATB	14'	11.3"	749	880	945	Fine	Yes
39	0212	DB/LD	AC	PATB	12'	10.8"	438	828	930	Fine	No
39	0259	LD	AC	DGAB	12'	10.9"	568	489	1075	Fine	No
39	0260	DB/LD	AC	PATB	12'	11.6"	730	790	1040	Fine	Yes
39	0261	DB/LD	AC	CTB	14'	11.1"	—	—	—	Fine	Yes
39	0262	DB/LD	AC	CTB	12'	11.5"	565	705	850	Fine	Yes
39	0263	LD	AC	DGAB	14'	11.1"	—	—	—	Fine	Yes
39	0264	LD	AC	CTB	12'	11.5"	—	—	—	Fine	No
39	0265	DB/LD	AC	PATB	12'	11.2"	—	—	—	Fine	Yes
53	0201	ND	AC	DGAB	12'	8.7"	—	—	—	Fine	Yes
53	0202	ND	AC	DGAB	14'	8.3"	823	1041	807	Fine	Yes
53	0203	ND	AC	DGAB	14'	11.1"	413	622	667	Fine	Yes
53	0204	ND	AC	DGAB	12'	11.2"	870	915	880	Fine	Yes
53	0205	ND	AC	LCB	12'	8.5"	487	524	597	Fine	Yes
53	0206	ND	AC	LCB	14'	8.6"	801	880	738	Fine	Yes
53	0207	ND	AC	LCB	14'	11.1"	546	611	772	Fine	Yes
53	0208	ND	AC	LCB	12'	11.2"	—	—	—	Fine	Yes
53	0209	DB/LD	AC	PATB	12'	9"	—	—	—	Fine	Yes

UPDATING SPS-2 EXPERIMENTAL MATRIX

Chata	SHRP	Ducinogo	Chauldan	Daga	Lana	PCC	Modu	lus of Ru	pture	Cubarada	Active as
State Code	Б	Drainage Type	Shoulder Type	Base Type	Lane Width	Thickness	14-	(psi) 28-	1-	Subgrade Soil Type	of
Coue	D	Type	Type	туре	width	THICKNESS	day	day	year	Son Type	July 2020
53	0210	DB/LD	AC	PATB	14'	8.3"	_	—	-	Fine	Yes
53	0211	DB/LD	AC	PATB	14'	11.8"	494	709	667	Fine	Yes
53	0212	DB/LD	AC	PATB	12'	11.3"	_	_	—	Fine	Yes
53	0259	ND	AC	HMAC	14'	10.3"	612	663	796	Fine	Yes
55	0213	ND	AC	DGAB	14'	8.5"	610	665	—	Coarse	Yes
55	0214	ND	AC	DGAB	12'	8.8"	865	945	—	Coarse	Yes
55	0215	ND	AC	DGAB	12'	11.5"	625	645	—	Coarse	Yes
55	0216	ND	AC	DGAB	14'	11.1"	—	—	—	Coarse	Yes
55	0217	ND	AC	LCB	14'	8.5"	_	—	—	Coarse	Yes
55	0218	ND	AC	LCB	12'	8.5"	960	1115	—	Coarse	Yes
55	0219	ND	AC	LCB	12'	11.6"	—	—	—	Coarse	Yes
55	0220	ND	AC	LCB	14'	11.4"	840	970	—	Coarse	Yes
55	0221	DB/LD	AC	PATB	14'	8.4"	—	—	—	Coarse	Yes
55	0222	DB/LD	AC	PATB	12'	8.8"	—	—	—	Coarse	Yes
55	0223	DB/LD	AC	PATB	12'	11.6"	665	700	—	Coarse	Yes
55	0224	DB/LD	AC	PATB	14'	11.7"	870	920	—	Coarse	Yes
55	0259	DB/LD	AC	DGAB	12'	11.5"	—	—	—	Coarse	Yes
55	0260	ND	AC	DGAB	12'	11.3"	595	640		Coarse	Yes
55	0261	ND	AC	СТВ	12'	9.4"		_		Coarse	Yes
55	0262	ND	PCC	DGAB	12'	8.7"		—	—	Coarse	Yes
55	0263	DB/LD	AC	DGAB	12'	10.4"	665	695	—	Coarse	Yes
55	0264	ND	AC	DGAB	12'	11"	605	635	—	Coarse	Yes
55	0265	ND	AC	DGAB	12'	11.1"				Coarse	Yes
55	0266	ND	AC	DGAB	12'	11"	—	—		Coarse	Yes

indicates that data are not available.

ND: no subsurface drainage

DB/LD: drainage blanket with longitudinal drains LD: longitudinal drains

STATE POOLED FUND STUDY TPF-5(291)