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Non-Traditional Methods to Obtain Annual 
Average Daily Traffic (AADT) 

Abstract 
The use of passive data from location-based smartphone applications (LBS) and Global 
Positioning Services (GPS) to collect Annual Average Daily Traffic (AADT) has the potential to greatly 
reduce costs to State Department of Transportations (DOTs) and Metropolitan Planning 
Organizations (MPOs) and expand the coverage of up-to-date counts. This report evaluates the 
technical and statistical validity of traffic data derived from these sources using machine learning 
methods. Validity was determined by comparison to 4255 permanent counters, and a survey of recent 
publications about accuracy expectations.  

The document covers the input data and the development of the machine learning models and model 
validation. The results include the error by road volume, roadway and regional characteristics 
compared to typical estimation. The effects of reduced trip sample, ping rate, spatial accuracy and 
reference counters were also tested. The applicability of Probe Data was tested for other factors 
including, day of week, month of year, directional and ramp AADT, work zones ADT, K and D factors, 
peak hour truck data, special events or unusual weather and AADT by vehicle type. 
Key words: AADT, probe data, volume, Big Data, LBS, GPS, Machine Learning, MADT, 
Volume, AADTT, K-Factor, D-Factor, AAHT 

Executive Summary 
Traffic volume information, especially Annual Average Daily Traffic (AADT), serves as the basis of 
many transportation applications, highway planning, roadway geometry and pavement design, safety 
analysis, congestion management, and policy decision-making. This report is the first of its kind to 
broadly examine the validity of using Big Data from location-based smartphone applications (LBS) 
and Global Positioning Services (GPS) data to estimate AADT. 

This research is part of FHWA’s two-part initiative to evaluate the technical and statistical validity of 
traffic data derived from passively collected data from various sources. The research covered in this 
report is a response to the pooled fund solicitation, “Non-Traditional Methods to Obtain Annual 
Average Daily Traffic (AADT).” The second part, “Validation of Non-Traditional Methods to Obtain 
Annual Average Daily Traffic (AADT), conducted by another team, will further validate the findings 
from this research. 



   Non-Traditional Methods to Obtain Annual Average Daily Traffic │ Page 2 

The items for evaluation include the following: 

1. Evaluate the estimation of AADT and compare the precision and accuracy against the AADT
data derived from (a) the traditional permanent counter approach and (b) factoring up
methods based on 48-hr counts;

2. Evaluate the effect of impoverished Probe Data on the traffic volume estimation accuracy;
3. Evaluate the applicability of future AADT estimation using Probe Data;
4. Evaluate the applicability of Probe Data for estimating other traffic volume information,

including:
a. Factors such as day of week (DOW) and month of year (MOY) - Chapter 8;
b. Directional AADT – volume only - Chapter 3;
c. Ramp AADT - Chapter 3;
d. Work Zone ADTs - Chapter 6;
e. K Factors (Design Hour Volumes) and or D Factors (Percentage of traffic moving in

the peak travel direction) - Chapter 8;
f. Peak hour truck data - Chapter 8
g. Special events or unusual weather conditions ADT - Chapter 6;
h. Methods to deploy the new AADT data - Chapter 4;
i. AADT by vehicle type – 3 classification groups (FHWA classes:1-3, 4-7, and 8-13) -

Chapter 8;

The results for AADT estimations across road classifications and locations consistently out-performed 
same-year short term counters for roads over 2,000 AADT. For roads between 500 and 2000 AADT, 
results were mixed. Breakdown of MAPE by state for 500-2,000 AADT roads reveled that Probe Data 
outperformed same-year two-day expansion for all but five states. Using Big Data to estimate Monthly 
Average Daily Traffic (MADT) and Special event estimates successfully captured atypical events. For 
directional, ramp, and AADT by vehicle type (personal car and truck), the errors were better than or 
similar to same-year two-day expansion benchmark metrics. K- and D-factor estimations had 
relatively high error for extreme values. More work and research are needed for strategies to model 
these values with higher accuracy using Probe Data, specifically researching finding new reference 
roads with extreme values that could be used to better calibrate a model. 

Chapter 1: Introduction 
Traffic volume information, especially the Annual Average Daily Traffic (AADT), serves as the basis of 
many transportation applications, highway planning, roadway geometry and pavement design, safety 
analysis, congestion management, and policy decision-making. To collect the traffic volumes, the 
most accurate and reliable way is through the pavement-embedded sensors, such as loop detectors, 
along with roadside-based radars and other permanent, fixed-point installed detection systems. 
However, such traditional detection systems are expensive to install, operate, and maintain. 
Therefore, implementing continuous collection of traffic volume information on every single road 
segment of a vast spatio-temporal transportation network is impractical. 
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To illustrate how difficult, it is for public agencies to obtain traffic volumes from permanent counters, 
the count type and methodology for reporting AADT was analyzed for the Minnesota Department of 
Transportation in 2019. States report AADT data with temporary counters as well as permanent 
counters. The AADT values can be reported using temporary counters that are typically short duration 
48-hour portable counts that are then expanded to compute annual counts. Due to budget or staffing
constraints, states may use temporary counters collected 2-3 years ago, counters collected 4-6 years
ago, or may have no count but instead extrapolate from similar locations. Minnesota’s statistics are
given as an example – though states vary significantly in their split between count methods. As
shown in Table 1 below, only 1% of the total mileage of roadways in Minnesota where some counts
were collected was conducted by a permanent counter. Overall, no counts were the most common
(57%), though all of these were concentrated on roads believed to be fewer than 1,000 AADT, and
often are off the federal aid roadway system. Temporary counts that were collected 2-4 years ago
were the next most common with 23% of the mileage covered by these types of counts.

Table 1: Percentage of roadway mileage by count type for the Minnesota Department of 
Transportation in 2019. 

Road Size Bin 
Permanent 
counter 

Same-year 
temporary 

Temporary 2-
4 years prior 

Temporary 4-
12 years prior No counts 

A: 0-500 0% 5% 17% 12% 67% 

B: 500-1,999 1% 15% 30% 2% 52% 

C: 2,000 - 4,999 2% 36% 60% 2% 0% 

D: 5,000 - 9,999 4% 39% 55% 2% 0% 

E: 10,000 - 19,999 4% 33% 59% 3% 0% 

F: 20,000 - 34,999 11% 31% 53% 4% 0% 

G: 35,000 - 54,999 17% 42% 37% 4% 0% 

H: 55,000 - 84,999 24% 66% 9% 1% 0% 

I: 85,000 - 12,499 16% 78% 6% 0% 0% 

J: 125,000+ 27% 67% 6% 0% 0% 

Total 1% 10% 23% 9% 57% 

While 10+ years ago, data from mobile sources such as cell phone towers was found to be 
insufficient for volume estimation, in recent years, mobile location and communication technologies, 
including some passive data options for such sources, have shown more promise in this area. These 
will be referred to as probe data in this report. Note that data from probes alone is not sufficient to 
estimate volume – thus, when the term “Probe Data” is used in this report to refer to the overall 
approach, it implies the use of probe sources in conjunction with other contextual sources of data, 
such as permanent counters for calibration, weather data, etc. Probe sources have been explored in 
many transportation fields, including travel pattern characterization, traffic volume and vehicle miles 
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travelled (VMT) estimation, multi-mode classification, and origin-destination travel activities 
recognition. Probe Data sources include location-based service (LBS) activities where the location 
and timestamp are collected from travelers’ smartphone applications, Global Positioning Services 
(GPS), Automatic Vehicle Locators (AVL) electronic logs, and cellular communication devices. As 
Probe Data originates from smartphone or vehicle devices without relying on any stationary sensors, 
it can be collected on any road segments where vehicles travel and thus has potential to provide 
traffic volume information in a vast spatial-temporal road network with significantly reduced cost and 
labor intensity. 

Recent research has shown some successful applications of using Probe Data on traffic volume 
estimation on unmeasured road segments. Among the limited studies, Chang and Cheon (2019) 
proposed a methodology of AADT estimation using GPS probe vehicle data with two components: 
first, a k-surveyed site selection method was performed to group the permanent counters and 
surrounding unmeasured sites with provided GPS data by assuming that the occupancy rate of the 
vehicle GPS device had a local pattern; then the relationship between the true AADT and GPS counts 
was determined through an expansion process based on a locally weighted power curve method. In 
(Sekuła et al, 2017), applications of leveraging GPS probe vehicle data, permanent counter data, and 
Neural Network models on the estimation of historical hourly traffic volumes were investigated in the 
Maryland highway network. In this method, the Neural Network model was trained to learn the 
relation between the ground-truth traffic volume and probe vehicle sample count, along with 
contextual features, including probe vehicle speeds, weather, infrastructure, temporal information, 
and volume profiles. Through testing, the proposed method yielded 24% more accurate estimation 
than the commonly-used volume profiling method (Schrank et al., 2015), which converts AADT 
estimates from the Highway Performance Monitoring System into hourly volume estimates based on 
historical speed profiles or other factors. Later in (Hou et al, 2018), some tree-based ensemble 
learning models, including Random Forest, Gradient Boosting, and Extreme Gradient Boosting, were 
applied to learn the relationship between the ground-truth traffic volume and GPS sample data and 
resulted in a promising estimation accuracy with the median absolute percent error of 16%.  

However, there are many challenges waiting to be resolved such as (1) evaluating the effect of 
different quantity and quality of Probe Data on the estimation accuracy, (2) characterizing model error 
across the dimension of road volume, with emphasis on performance on smaller volume roads and 
(3) exploring the applicability of leveraging Probe Data on the estimation of various types of traffic
volume information beyond AADT in a national spatial-temporal network.

In this report, a comprehensive study will be conducted to evaluate the technical and statistical 
validity of Probe Data on the traffic volume estimation. More specifically, the evaluation of Probe Data 
includes the following aspects: 
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1) Evaluate the estimation of AADT and compare the precision and accuracy against the AADT data
derived from (a) the traditional permanent counter approach and (b) factoring up methods based
on 48-hr counts;

2) Evaluate the effect of impoverished Probe Data on the traffic volume estimation accuracy;
3) Evaluate the applicability of future AADT estimation using Probe Data;
4) Evaluate the applicability of Probe Data for estimating other traffic volume information, including:

a) Factors such as day of week (DOW) and month of year (MOY) - Chapter 8;
b) Directional AADT – volume only - Chapter 3;
c) Ramp AADT - Chapter 3;
d) Work Zone ADTs - Chapter 6;
e) K Factors (Design Hour Volumes) and or D Factors (Percentage of traffic moving in the peak

travel direction) - Chapter 8;
f) Peak hour truck data - Chapter 8
g) Special events or unusual weather conditions ADT - Chapter 6;
h) Methods to deploy the new AADT data - Chapter 4;
i) AADT by vehicle type – 3 classification groups (FHWA classes:1-3, 4-7, and 8-13) - Chapter

8;

Chapter 2: Data 
In this chapter, data sources that were used for traffic volume estimation throughout this report are 
introduced. The data sources include hourly volume counts collected from permanent traffic 
monitoring stations, a type of Probe data – Location Based Services (LBS) and global positioning 
system (GPS) (combined cars and trucks) trips, and contextual data; such as weather, road 
infrastructure, and socio-economic factors. In addition, the method for Probe Data outlier detection 
and diagnostics is presented. Finally, the predicted features derived from the data sources for traffic 
volume estimation are introduced. 

Permanent Traffic Counter Data 
In this report, permanent traffic monitoring stations in the US were selected as the study sites to 
provide ground-truth traffic volume information. The stations were located across 48 states excluding 
Alaska and Hawaii. The data was sourced from three providers: the FHWA Traffic Monitoring 
Analysis System (TMAS), MS2 cloud-based traffic data management system, and state DOTs, where 
the data type is the hourly traffic volume on each travel direction. Collaboration with the FHWA TMAS 
substantially increased the available pool of unique locations and road types across the United States 
available for training and evaluating a Probe Data model, compared to prior AADT models by 
StreetLight. FHWA TMAS additionally provided the functional class and area type information. A 
subset of the FHWA TAMS stations also contained hourly counts by vehicle class. A summary of the 
data sources is shown in Table A1. 
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Table A1. Summary of the utilized permanent traffic counter data sources 

Data provider Station type Year States 

FHWA TMAS Permanent 2011 - 
2019 

Alabama, Arizona, Arkansas, California, Colorado, 
Connecticut, Delaware, Florida, Georgia, Idaho, Illinois, 
Indiana, Iowa, Kansas, Kentucky, Louisiana, Maine, Maryland, 
Massachusetts, Michigan, Minnesota, Mississippi, Missouri, 
Montana, Nebraska, Nevada, New Jersey, New Mexico, New 
York, North Dakota, Ohio, Oklahoma, Oregon, Pennsylvania, 
Rhode Island, South Carolina, South Dakota, Tennessee, 
Utah, Vermont, Virginia, Washington, West Virginia, 
Wisconsin, Wyoming 

FHWA TMAS Permanent 
with Vehicle 
Class 

2018 - 
2019 

Alabama, Arizona, Arkansas, Colorado, Connecticut, Florida, 
Georgia, Idaho, Illinois, Indiana, Iowa, Massachusetts, 
Michigan, Minnesota, Mississippi, Missouri, Montana, Nevada, 
New Mexico, New York, Ohio, Oklahoma, Pennsylvania, 
Rhode Island, South Carolina, South Dakota, Vermont, 
Virginia, Washington, West Virginia, Wisconsin, Wyoming 

MS2 Permanent 2018 - 
2019 

New Hampshire, North Carolina, Texas 

State DOT Permanent 2018 - 
2019 

Virginia 

The quality of a fit model is tightly tied to the quality of the input training data. A subset of permanent 
counters were selected for generation and testing of 2019 AADT values according to the following 
strict criteria below: 

1. At least 80% of hourly volume records through the entire year were observed;
2. In a single day, if over one-third of the hourly volume records have zero counts or over 80% of

the hourly volume records have counts below 5, all the records for that day should be
discarded;

3. At least 10 of 12 Monthly Average Daily Traffic (MADT) values were captured, and the missing
MADTs can be filled in by the corresponding MADTs in 2018;

4. If the percentage change of MADTs between two consecutive months is over 50% or the
percentage difference of MADTs between two travel directions is over 100%, the questionable
stations were marked and manually diagnosed to ensure that the data is qualified for the
AADT calculation.

As a note, the selection criteria described above are not standard methods, and don’t follow the 
guidelines set out in the Traffic Monitoring Guide (FHWA, 2016). For the permanent counters 
satisfying the above criteria, the AADT values were calculated by the FHWA AADT method in Traffic 
Monitoring Guide: 
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MADTm = 

AADT =

where
VOLihjm = total traffic volume for ith occurrence of the hth hour of day with jth day of week 
during the mth month;
i = occurrence of a particular hour of day within a particular day of the week in a particular month (i 
= 1, ...,nhjm) for which traffic volume is available;
h = hour of the day (h = 1,...,24);
j = day of the week (j =  1,...,7);
m = month (m = 1,...,12);
n  = the number of times the hth hour of day within the jth t

hjm  day of week during the m h month 
has available traffic volume (nhjm ranges from 1 to 5 depending on hour of day, day of week, 
month, and data availability);
wjm = the weighting for the number of times the jth day of week occurs during the mth month 
(either 4 of 5); the sum of the weights in the denominator is the number of calendar days in the 
month (i.e., 28, 29, 30, or 31);
dm = the weighting for the number of days (i.e., 28, 29, 30, or 31) for the mth month in the particular 
year. 

From the counter selection criteria, 1,922 of 6,813 permanent counter stations were removed. In 
other words, 28% of permanent counters used for AADT didn’t capture a significant portion of 
hours in the year (15+%), which we deemed insufficient for machine learning calibration purposes
AADT calculations used in the TMG are robust to giving meaningful AADT values despite 
occasional data gaps in counters. However, few counters report all hours of the day for all hours 
the year, and for this reason this data is not referred to as “ground truth.” The quality issues 
inherent even in permanent counters are important to keep in mind when evaluating the practical 
benefits and shortcomings of adopting Probe Data techniques, and in future validation work. 

.  

of 

A portion of the valid stations were withheld from this report team by the FHWA evaluation team to
validate the accuracy and precision of traffic volume estimation methods, and the data from the 
withheld stations was not used in any model development and self-validation. Specifically, the 
procedures for withholding stations are: 
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1. The evaluation team (TTI) has withheld 50% of stations from Maine, Maryland, New Jersey,
North Dakota, and Oregon;

2. North Carolina and Texas directly sent lists of stations to be withheld and those were
eliminated from the counter database;

3. Among the remaining states, the withholding procedures are:
a. Ranked by the AADT values, the highest and lowest t 1% of the entire stations are

retained, respectively, as non-removable stations;
b. For the other 98% of stations, 15% of them are withheld from each state by the

stratified random sampling method, where the strata are the functional class. For those
sites without functional class provided, 15% of stations are withheld by the simple
random sampling method.

Among the remaining 4,891 permanent counter stations, 636 of them were withheld for the evaluation 
team (NREL), leaving 4,255 permanent count stations left as the final study stations for traffic volume 
estimation throughout this report. The distribution of the stations is shown in Figure A1. By combining 
the site locations with the road infrastructure and census features, which will be introduced later in 
this section, the characteristics of the stations are described as follows: 

● 3,395 stations have two travel directions; 860 have one travel direction;
● 2,246 stations are in urban or metropolitan transportation commission (MPO) areas and 2,009

are in rural or non-MPO areas;
● 2,077 are on freeway segments and 2,178 are on arterial or local roads;
● 129 stations are on ramps;
● 628 are on road segments shared with bus, rail or subway routes;
● The summary of sites by FHWA functional class is shown in Table A2;
● The summary of permanent and class stations by states is shown in Table A3.

Figure A1. Map of locations of the 4,255 selected permanent counter stations obtained from the 
FHWA TMAS. 
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Table A2. Summary of stations by FHWA functional class 

Functional Class Number of stations Number of unidirectional counters 

1 1,510 2,408 

2 324 599 

3 1,419 2,718 

4 636 1,235 

5 310 591 

6 26 47 

7 14 25 

Table A3. Summary of permanent (and class) traffic stations by state 

State Number of unidirectional 
counters 

State Number of unidirectional 
counters 

Alabama 279 (16) Nebraska 72 

Arizona 203 (182) Nevada 130 (26) 

Arkansas 54 (48) New Hampshire 86 

California 192 New Jersey 29 

Colorado 173 (68) New Mexico 82 (24) 

Connecticut 30 (6) New York 225 (106) 

Delaware 14 North Carolina 136 

Florida 417 (398) North Dakota 53 

Georgia 343 (291) Ohio 259 (152) 

Idaho 304 (52) Oklahoma 148 (148) 

Illinois 122 (86) Oregon 145 

Indiana 77 (68) Pennsylvania 159 (94) 

Iowa 198 (90) Rhode Island 52 (17) 

Kansas 158 South Carolina 200 (187) 
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State Number of unidirectional 
counters 

State Number of unidirectional 
counters 

Kentucky 90 South Dakota 66 (29) 

Louisiana 1 Tennessee 54 

Maine 49 Texas 487 

Maryland 58 Utah 155 

Massachusetts 81 (41) Vermont 78 (6) 

Michigan 180 (72) Virginia 699 (309) 

Minnesota 55 (53) Washington 238 (217) 

Mississippi 132 (128) West Virginia 52 (20) 

Missouri 126 (46) Wisconsin 315 (90) 

Montana 148 (109) Wyoming 208 (157) 

Probe Data - LBS and GPS Trips 
First, this section will describe why access to two different Probe Data sources is uniquely beneficial 
for AADT estimation. Then, it will describe how StreetLight Data used two data sources to derive 
sample trips, which are used as the input to drive models of traffic volume, and other traffic factors.  

An important note - the work for this report was performed in 2019 and 2020. Probe Data is a fast-
evolving field and data options may evolve in subsequent years. Thus, it is more important to 
understand the useful characteristics of the data sources, and not simply the name/classification of 
the sources used at the time of this writing. 

LBS Data 

LBS data can be processed into personal travel patterns at a comprehensive scale. Its high spatial 
precision and regular ping rate allow for capturing trips as well as activity patterns (i.e., home and 
work locations), trip purpose, and demographics. This makes it an ideal alternative to data derived 
from cellular towers, which also has a large sample size but unfortunately lacks spatial precision and 
pings infrequently (challenges with infrequent pings are discussed in Chapter 4). 

In most circumstances, LBS data suppliers provide pieces of software (called SDKs) to developers of 
mobile smartphone apps to facilitate LBS. These smartphone apps include couponing, dating, 
weather, tourism, productivity, locating nearby services (i.e., finding the closest restaurants, banks, or 
gas stations), and many more apps, all of which utilize their users’ location in the physical world as 
part of their value. The apps used in this work required user opt-in, and collect de-identified user 
locations when they are operating in the foreground. In addition, these apps may collect anonymous 
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user locations when operating in the background. This “background” data collection occurs when the 
device is moving. LBS data may be collected using WiFi proximity, a-GPS and several other 
technologies, which don’t require cell coverage. Additionally, most data that StreetLight uses have 
better than 25-meter spatial precision. StreetLight only licenses data from suppliers where device 
owners have “opted-in” to location tracking.  

GPS Data from Commercial Trucks 

Navigation-GPS data has a smaller sample size than LBS data, but it allows users the ability to 
differentiate commercial truck trips from personal vehicle trips. This makes navigation-GPS data ideal 
for commercial travel pattern analyses.  

Navigation-GPS data suppliers provide data that comes from commercial fleet navigation systems, 
navigation-GPS devices in personal vehicles, and turn-by-turn navigation smartphone apps. 
Segmented analytics for medium-duty and heavy-duty commercial trucks are available. For 
commercial trucks, if the vehicle’s on-board fleet management system is within the data supplier’s 
partner system, the supplier will collect a ping every one to three minutes whenever the vehicle is on, 
even if the driver is not actively using navigation. 

For personal vehicles, if the vehicle is the data supplier’s partner system and has a navigation 
console, the supplier will collect a “ping” whenever the vehicle is on, even if the driver is not actively 
using the navigation system. This provides a very complete picture of vehicles’ travel patterns and 
certainty that the trips are in vehicles. 

Creation of Sample Trips 
The following section contains an overview of the fundamental methodology that StreetLight Data 
uses to create trips from Probe Data. 

Step 1 – ETL (Extract Transform and Load) 

First, data is pulled in bulk batches from suppliers' secure cloud environments. This can occur daily, 
weekly, or monthly, depending on the supplier. StreetLight does not access, use, or acquire personal 
information from suppliers. StreetLight requires all suppliers to provide data that has been sufficiently 
de-identified prior to ingestion by StreetLight. StreetLight continues to protect supplier data 
throughout the product creation and distribution lifecycle in accordance with the FTC 3-Part Test for 
De-Identification. The ETL process not only pulls the data from one environment securely to another, 
but also eliminates corrupted or spurious points, reorganizes data, and indexes it for faster retrieval 
and more efficient storage. 

Step 2 – Data Cleaning and Quality Assurance 

After the ETL process, several automated, rigorous quality assurance tests are run to establish key 
parameters of the data. To give a few examples, tests were conducted to: 
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● Verify that the volume of data has not changed unexpectedly,
● Ensure the data is properly geolocated,
● Confirm the data shares similar patterns to the previous batch of data from that particular

supplier.

In addition, a visual and manual review of key statistics is performed for each data set. If anomalies or 
flaws are found, the data are reviewed by StreetLight in detail. Any concerns are escalated to 
suppliers for further discussion. If the anomaly is deemed explainable, the data is incorporated. If not, 
the error is corrected in conjunction with suppliers. 

Step 3 – Create Trips and Activities 

For any type of data supply, the next step is to group the data into key patterns. For example, for 
navigation-GPS data, a series of data points whose first time-stamp is early in the morning, travels at 
reasonable speeds for a number of minutes, and then stands still for several minutes, could be 
grouped into a probable “trip.” For LBS data, a similar approach is followed. However, since LBS data 
continues to ping while the device is at the destination, there are often clusters of pings in close 
proximity at the beginnings and ends of trips that are eliminated. 

Step 4 – Contextualize 

Next, other “contextual” data sets are integrated in order to add richness and improve accuracy of the 
mobile data. These include road networks and information like speed limits and directionality, land 
use data, parcel data, and census data, and more. 

For example, a “trip” from a navigation-GPS or LBS device is a series of connected dots. If the 
traveler turns a corner but the device is only pinging every ten seconds, then that intersection might 
be “missed” when all the device’s pings are connected to form a complete trip. StreetLight utilizes 
road network information including speed limits and directionality, and performs map matching, to 
“lock” the trip to the road network. This “locking” process ensures that the complete route of the 
vehicle is represented, even though discrepancies in ping frequency may occur. 

Step 5 – More Quality Assurance 

After patterns and context are established, additional automatic quality assurance tests are 
conducted to flag patterns that appear suspicious or unusual. For example, if a trip appears to start at 
50 miles per hour in the middle of a four-lane highway, that start is flagged as “bad.” Flagged trips 
and activities are not deleted from databases altogether, but they are filtered out from queries and 
metrics. 

Step 6 – Normalize 

Next, the data is normalized along several different parameters to account for monthly variation on 
the underlying sample size.  
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For LBS devices, population-level normalization is performed for each month of data. For each 
census block, StreetLight measures the number of devices in that sample that appear to live there, 
and makes a ratio to the total population that are reported to live there according to U.S. Census Data 
(and related sources, such as the American Community Survey). A device from a census block that 
has 1,000 residents and 200 StreetLight devices will be scaled differently everywhere in comparison 
to a device from a census block that has 1,000 residents and 500 StreetLight devices. Thus, the LBS 
data is normalized to adjust for any population sampling bias. It is not yet “expanded” to estimate the 
actual flow of travel. 

Step 7 – Store Clean Data in Secure Data Repository 

After being made into patterns, checked for quality assurance, normalized, and contextualized, the 
data is stored in a proprietary format. This enables extremely efficient responses to queries. By the 
time the data reaches this step, it takes up less than 5% of the initial space of the data before ETL. 
However, no information has been lost, and contextual richness has been added. 

Step 8 – Aggregate in Response to Queries 

Zones are created, corresponding to desired analysis locations. In this case, zones will represent 
each individual permanent counter site across the U.S. Queries then pull trips that intersect each 
counter zone in the specified direction of travel across a defined time period. Results always describe 
aggregate behavior, never the behavior of individuals. 

Outlier Detection and Diagnostics for Probe Data 

Some problematic stations were identified due to unusual or missing road network information in 
OSM (Open Streetmap 2020), leading to incorrect “locking” of trips. Such stations could become 
outliers when modelling traffic volume estimation, impact the estimation accuracy, and thus were 
removed in advance. To detect the potential outliers extreme values or changes in trip penetration, 
which typically signal an issue with creation of Probe Data trips, are evaluated. The following criteria 
were applied at each permanent station: 

1. The monthly average daily trip sample count should be greater than or equal to 2;
2. The monthly penetration rates (sample count divided by permanent counter traffic volume)

should fall between 0.1% and 15%;
3. The percentage change of penetration rates between two consecutive months should be

lower than 80%;
4. The percentage difference of penetration rates between two opposite travel directions should

be lower than 60%.

For those potential outliers detected through the above criteria, a second-round of manual diagnosis 
was performed by inspecting the raw LBS and GPS trip trajectories on the road map network and 
removing the confirmed outliers from the dataset.  
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Predictive Features for Estimating Traffic Volume 

Sample counts derived from Probe Data serve as key features for traffic volume estimation. 
Additional annual contextual features, such as road infrastructure, local weather, and socio-economic 
information, also play important roles to enhance the predictive relationship between Probe Data 
sample counts and traffic volume. In the following, the breadth of predictive features considered 
primarily for the AADT model are listed, as well as other types of traffic volume estimation. 

Sample counts derived from LBS trip repository: 

● Annual total LBS trip counts;
● Standard deviation, minimum, maximum, and percentage change of monthly LBS trip counts;
● LBS trip counts on weekdays and weekends;
● LBS trip counts in peak and off-peak periods;
● Scaled LBS trip counts (LBS trip counts weighted by local census population factors).

Sample counts derived from GPS trip repository: 

● Annual total GPS trip counts;
● GPS trip counts of personal vehicles;
● GPS trip counts of commercial (light, medium, and heavy-duty) vehicles;
● Standard deviation, minimum, maximum, and percentage change of monthly GPS trip counts;
● GPS trip counts on weekdays and weekends;
● GPS trip counts in peak and off-peak periods.

Road infrastructure characteristics: 

● Speed limit, number of lanes, highway types, and tags of ramps and freeway-to-freeway
connectors, derived from the OpenStreetMap (OSM) road network;

● Multi-mode features such as whether a road segment is shared with bus, railway, or subway
routes, derived from OSM;

● Walkability features such as the density index of the road network, gathered from the
Environmental Protection Agency’s Smart Location Database.

Census and land-use factors: 

● Socio-economic factors, including the block group population, housing units, employment,
household and per capita incomes, derived from the United States Census Bureau’s
database;

● Urban/rural and Metropolitan Planning Organization (MPO)/non-MPO indicators;
● US region indicators (South-Gulf, North-Central, West, South-Atlantic, North-East).

Weather features: 

● Temperature, precipitation, snow depth, wind speed, visibility, rain and snow rates. These
features are extracted in forms of annual average, standard deviation, minimum, maximum,
and seasonal average, and were derived from the NOAA National Climatic Data Center.
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Among the large pool of candidate predictive features, a final set of features was chosen to fit a 
predictive traffic volume estimation model based on a variety of feature selection methods. First, the 
candidate features with low variance (lower than 0.05 or 0.10) were removed from the pool. Three 
feature selection methods to comprehensively rank feature importance and select final features for 
each model: 

● Univariate feature selection: the method measures the predictiveness of each feature to the
traffic volume based on the strength of correlation and quantification of mutual information;

● Feature importance: for ensemble tree-based models, there are inherent mechanisms to
compute and rank impurity-based feature importance when the algorithm builds a decision
tree.

● Recursive feature elimination: this method selects features by recursively considering smaller
and smaller sets of features. First, the estimator is trained on the initial set of features and the
importance of each feature is obtained through either of the above two methods.

The least important features were pruned from the current set of features. That procedure is 
recursively repeated on the pruned set until the desired number of features to select was eventually 
reached. Ultimately, the type of feature selection method to be used is both dependent on the model 
being created, and also the modeler’s own judgement of what they find produces the best results for 
their dataset.  

Chapter 3: Estimating AADT Using Probe Data Inputs 
and Machine Learning  
Estimation of annual average daily traffic (AADT) is an essential benchmark of road volume, and 
serves many purposes for transportation applications. Probe Data presents a novel mechanism by 
which to create estimation of AADT for every road segment across a country.  This section explores 
the model error of a National AADT model fit with Probe Data inputs, using reference permanency 
counter 2019 AADTs from across the United States. Model performance is evaluated across road 
characteristics, with a special emphasis on performance for small roads, where traffic volume via 
traditional methods (permanent and temporary counts) are sometimes absent.  

Methods for Estimating AADT with Probe Data 

Candidate Machine Learning Models 

Throughout this project, the performance of a variety of machine learning methods were evaluated for 
predicting 2019 AADT, as well as the other related items in this report. 2019 was chosen as the most 
recent complete year during the time of the study. The quality of Probe Data samples is constantly 
changing. As Probe Data sample quality and quantity improve over time, the most recent year will be 
more indicative of future results than past years. A high-level flow diagram of using Probe Data and 
machine learning models to estimate AADT is shown in Figure 1. First, the machine learning model is 
trained to learn the relationship between the AADT derived from permanent counts and Probe Data, 
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along with contextual features influencing the AADT. Next the hyperparameters of the model are 
tuned through cross-validation to enhance the model performance and avoid overfitting.  Finally, the 
model is applied to new stations with the input Probe Data and contextual features and produces the 
estimated AADT. 

Figure A1. Flow diagram of AADT estimation using Probe Data and machine learning. 

Among the candidate machine learning models, Linear Regression was considered first. There is a 
strong signal between LBS trips and AADT (see later discussion). This suggests that with a basic 
Excel model, one could create a model with a sample of trips and calibration counters. However, a 
goal of the current project is to optimize the National AADT model to obtain the best performance 
possible. To do this, additional features beyond the total count of LBS sample trips are needed to 
improve model performance.  Thus, multivariate regression and regularized linear regression were 
also explored as candidate models.   

In contrast to multivariate linear regression, tree based models are often used when there is no 
obvious linear relationship between the features and the label.  Although there is a linear relationship 
between StreetLight trips and AADT, model fit can be improved if predictors that have a non-linear 
relationship with the data are included. All tree based models are based on decision trees. A decision 
tree comprises a set of nodes and leaves. Each node represents a feature split and each leaf 
represents a predicted value (for regression) or a class label (for classification). A decision tree is built 
by recursively splitting each feature in a way that minimizes the cost function. The cost function is the 
sum of squared residuals for a regression problem, and the Gini index for a classification problem.  

Decision trees are widely used in machine learning because they are simple to understand, interpret 
and visualize. However, they are unstable and prone to overfitting. Hence, other machine learning 
methods that are based on decision trees are often used as alternatives. Two of those methods used 
in this report are Random Forest and Gradient Boosting.  
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Random Forest works by creating hundreds of bootstrapped samples from the training data, building 
a decision tree from each of these bootstrapped samples, then averaging their outputs (for 
regression) or tallying the votes (for classification) for the final decision.  

These hundreds of trees are what make Random Forests much more effective and less prone to 
overfitting than individual decision trees. Just like Random Forest, Gradient Boosting works by 
constructing multiple decision trees from bootstrapped samples. However, unlike Random Forest 
which builds decision trees simultaneously, Gradient Boosting builds one decision tree at a time and 
improves on the performance from the previous tree. In some applications, Gradient Boosting can 
out-perform Random Forest but with some caveats: gradient boosting takes more time to run, and it 
may overfit the training data if the predictive features are not well generalized. 

Model Validation Metrics 

In order to report on error, the stratified k(10) fold cross validation was used to generate test sets for 
metrics. The individual counter stations were randomly divided into ten groups, stratified by AADT 
grouping. For each fold, a given model was trained on a 9 of the folds, and the tenth fold was used to 
generate error metrics for the model. Cross validation was used because it allows for every counter to 
be tested, so that the model performance can be evaluated across as many unique types of roads 
and regions throughout the United States as possible. The method of assigning subsets of the data to 
training and test folds, as well as the ratio between the training and validation data impact how 
representative the metrics from cross validation are. The current method stratified by AADT grouping 
to ensure that each fold was trained and tested on locations representing all AADT volume groupings, 
as model error is tightly tied to road volume. Folds were randomly assigned by counter in order to 
maximize the spatial distribution observed by the training folds, as penetration rates are influenced by 
local geography. Overfitting of metrics may occur if training and validation sites are in close proximity 
(such as across a divided highway). As detailed in Chapter 2, a separate hold out validation set of 
permanent counters across the United States was reserved for testing the final trained National Probe 
Data AADT Model independent of this study, and results will be discussed in a future report. 

A range of metrics to describe error in the model estimations are used in this study. To describing the 
general relationship between the Probe Data AADT estimate and the permanent counter value, the 
Pearson correlation is used. When the measure approaches 1, it means a stronger relationship with 
lower variance. The fitted line of the bivariate relation between permanent counter and estimated 
AADT through cross validation is also checked to measure the bias of the model. When the fitted line 
is close to the 45-degree line, it means no bias.  

For all reports, permanent counter stations are grouped by AADT, and the results are given within 
those groupings (labeled road size bin). Error increases with smaller roads, and groupings by road 
volume allow for more visibility into where the errors of the model lie. For summary metrics to 
describe the general error across an AADT grouping, the mean absolute percent error (MAPE, see 
equation below), and normalized root mean squared error (NRMSE, see equation below) are given. 
These metrics are helpful to give an idea of what an expected error is for most stations. Both metrics 
are included because they are both commonly used in literature, and highlight different aspects of 
model performance. MAPE describes errors well on small roads, and in contrast, NRMSE penalizes 
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large errors, making it more sensitive to the accuracy of AADT estimation on high-volume roads. For 
bar charts to visualize MAPE, the bootstrapped confidence intervals of the standard error of the mean 
were visualized with the python library seaborn in order to allow statistical comparison between 
groups.   

Although the summary of errors is useful for getting a sense of model performance, describing the 
percentile spread of error across the test set is also be illustrative of where error lies. The 68th 
percentile absolute error is given, as it represents one standard deviation of the mean within a 
standard bell curve, and thus is a useful descriptor of the typical error across the road segments. As 
MAPE and NRMSE may be sensitive to outliers, the 68th percentile absolute error can provide more 
visibility into expected ‘typical’ error.  The 95th percentile absolute error is provided to measure the 
spread of errors across a broader array of sites. Finally, the median percentage error is given to give 
an indication of bias in the model. Values close to 0 suggest that the model has low bias, while 
positive values would indicate overestimation, and negative values indicate systematic 
underestimation. For AADT model metrics with sufficient sample size, the 95th percentile error was 
also calculated, which is labeled ‘95% TCE Error Range (%)’. For this metric, percent error and the 
log of AADT was fit to a quantile regression. From this fit, the larger absolute value between the 2.5th 
and 9.75th error range is reported.  

When evaluating model accuracy, it is useful to consider how well Probe Data AADT estimation 
compares to current estimation approaches. One widely used approach is to collect a two-day 
temporary count from a link, and expand that count to estimate AADT using calibration of nearby 
permanent counters (“short term count expansion”). Research performed by Battelle for FHWA1 (Krile 
et al, 2016) included exhaustive study of expected error from short term count expansion. Table A4 
shows the computed errors form short term expansion in their study. These errors to serve as a point 
of comparison for Probe Data AADT model error in this paper (Table A4). It should be noted that 
Table A4 represents a conservative case of current AADT factorization methods, which assumes 
short term counts are available on a link for the year AADT is being estimated, and that reference 
counts from permanent counters from the same roadway classification type and year are available for 
the region. This is not the case for some links across the United States. For example, as shown in 
Chapter 1, Table 1, less than 5% of locations <500 AADT and less than 15% of locations 500-2000 
AADT have such same year temporary counts available in Minnesota.  
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Table A4: Bias and absolute percentage error from short term counter expansion in estimating AADT 
across ten volume-based categories of road size for a same-year 48-hour count. This assumes short 
term counts are available on a link for the year AADT is being estimated, and that reference counts 
from permanent counters from the same roadway classification type and year are available for the 
region. This is not the case for some links across the United States, especially for small roads (see 
introduction). Data from Krile et al (2015).  

Road Size Bin 
Median 
Error 
(Bias) % 

95% TCE 
Error 
Range (%) 

68th Percentile 
Absolute Error 
(%) 

95th Percentile 
Absolute Error 
(%) 

NRMSE MAPE 

B 500 - 1,999 -0.01 34.2 11.7 26.9 12.9 10.0 

C: 2000 - 4,999 2.2 30.8 10.8 33.6 17.2 10.4 

D: 5,000 - 9,999 3.3 28.5 9.68 28.1 14.0 9.2 

E: 10,000 - 19,999 1.4 26.7 9.2 27.9 12.9 8.9 

F: 20,000 - 34,999 0.9 25.7 8.31 24.3 13.3 8.1 

G: 35,000 - 54,999 0.4 24.8 8.35 19.3 9.8 7.2 

H: 55,000 - 84,999 -0.3 24.1 6.07 14.5 7.2 5.3 

I: 85,000 - 124,999 0 23.5 4.83 14.7 6.8 4.6 

J: > 125,000+ 3.0 23.3 7.06 17.7 10.0 6.2 

Note – the median error bias floats up and down in a way that reflects sample distribution. When 
expressing targets compared to two-day counts we have simplified the median bias targets. For 
discussion of this see Task 3 Report. 

Results 

Correlation of Probe Data Trip Sample Count With AADT 

It’s important to also evaluate the effectiveness of the raw signal (LBS or GPS) compared to a 
machine learning model. Trips derived from LBS and GPS (personal and commercial) data alone may 
be strong indicators of traffic volume. However different data providers and paths for data 
procurement lead to significant variation in data characteristics, either spatial variation or temporal 
variation that could impact the quality of a raw data signal. Thus, simply naming a data source “LBS” 
or “GPS” is less meaningful than understanding it’s characteristics. The LBS and GPS data used in 
this study has a typical ping rate of every 1-3 minutes, and the spatial accuracy of the LBS data 
typically ranged between 5-20 meters. There is a strong linear relationship between LBS (Figure A2a) 
or GPS counts (Figure A2b) in the sources described in this report, and 2019 AADT values at 
permanent counters. Total counts of LBS trips achieve a Pearson correlation score of 0.96, while 
GPS trips have a score of 0.89 (p-value < 0.001).  
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Figure A2a: Correlation between LBS trips and 2019 AADTs from permanent counters 

Figure A2b. Correlation between GPS trips (commercial and personal) and 2019 AADTs from 
permanent counters 

However, it’s clear from the correlation plots that the GPS (commercial and personal) data has much 
more variation than LBS data, which is clustered more consistently across the 45-degree line. A 
histogram of sample penetration comparing the total Probe Data sample trips at each counter (Figure 
A3). The GPS penetration is more skewed toward lower penetration and has a greater spread of 
penetration from counters. This emphasizes that a simple 1:1 relationship between GPS trip count 
and counter AADT would not work for all locations. The following table (Table A5) expands upon this, 
further detailing error and performance when the LBS and GPS data alone are compared to the 
output of a National Probe Data AADT Model fit to a Gradient Boosting model, which will be 
described in more detail later. It becomes clear that LBS data alone performs similarly to a fit machine 
learning model, but GPS data alone shows more significant variation and error. 
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Figure A3.  Histogram depicting the variance in sample trip penetration observed between two 
different Probe Data sources for sample trips: LBS (blue) vs GPS (commercial and personal, striped). 
This emphasizes that a simple expansion relationship between to estimate AADT from GPS trip count 
and counter AADT would not work for all locations. 

Table A5: Errors compared across Probe Data AADT models trained with either LBS source data 
only, GPS (commercial and personal) source data only, or both LBS and GPS data sources (National 
Probe Data AADT Model). 

Group Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

LBS Only 1.06 49.54 11.84 37.81 11.94 15.68 

GPS Only 1.39 84.08 18.10 59.86 18.24 19.75 

National Probe 
Data Model  
(GPS + LBS) 

0.5 25.45 8.2 24.96 8.11 13.36 

When these results are further broken out by road size, the differences between the raw data sources 
and the National Probe Data AADT become more evident (Figure A4). LBS data alone is closely 
aligned with the error in the National Probe Data AADT Model until road sizes decrease, specifically 
when they fall below 500 AADT. GPS data alone performs pretty well on very high-volume roads but 
quickly deteriorates in quality relative to the other methods once road volume decrease. To improve 
predictability on small roads, the GPS data source could be mixed with other factors. The GPS data 
source has a much smaller sample size relative to the LBS data utilized in this analysis (Figure A3), 
which may contribute to higher error on small roads. Additionally, because GPS data is tied to newer 
automobiles, it is possible that the traces may be more biased toward specific demographics, and 
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thus the total GPS trips need to be fit to other contextual factors to improve predictability. In summary, 
for smaller roads, model performance benefits from blending both GPS and LBS data source. The 
trade-off between gains in accuracy with financial cost of acquiring both GPS and LBS data are 
among the various factors to consider in adapting a model framework.  

Figure A4: MAPE across roads of different sizes for LBS only, GPS (personal and commercial) only 
and the National Probe Data AADT Model. Error bars represent the standard error of the mean of 
absolute percentage errors.  

Model Comparison for Estimating AADT with Probe Data 
Although the sample trips derived from LBS and GPS (personal and commercial) data alone have a 
strong predictive relationship with AADT, the relationship can be greatly improved by incorporating 
other predictive features in a model for 2019 AADT. There are lots of choices for models that can take 
a collection of predictors to estimate a continuous predictor, like AADT. See methods for detail on 
additional predictive features considered. The model algorithms that were tested included Multivariate 
Linear Regression (LR), Elastic Net Regression (EN), Support Vector Regression (SVR), Random 
Forest (RF), Gradient Boosting (GB) and Extreme Gradient Boosting (XGB).  Over aggregate 
methods, the tree-based models (RF, GB and XGB) outperformed other regression techniques (LR, 
EN, SVR) (Table A6).  
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Table A6: Comparison of Model Errors of 2019 AADT Across Six Different Algorithms. LR 
(multivariate linear regression), EN (elastic net regression), SVR (support vector regression), RF 
(random forest), GB (gradient boosting), XGB (extreme gradient boosting), and the Final Probe Data 
model, which was created from two separate XGB models.  

Group Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs. 
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

LR 0.23 131.07 27.80 129.18 36.32 24.05 

EN  3.20 104.76 20.40 66.02 23.44 25.06 

SVR -0.02 51.69 12.08 42.09 12.75 18.59 

RF 1.31 43.18 11.35 34.16 11.04 19.50 

GB 0.67 42.45 10.76 34.99 10.87 15.34 

XGB 0.94 30.26 10.91 33.87 10.98 15.68 

Final Probe 
Data Model 0.5 25.45 8.28 24.96 8.11 13.36 

Model error was broken down across road sizes (Figure A5). Large roads (above 20,000 AADT) have 
similar MAPE. However, as seen in Table A6, the distribution of absolute error is substantially greater 
with Linear Regression (compare the 95th percentile absolute error with Gradient Boosting: 129% 
compared to 35%). The higher error for linear regression becomes even more substantial as average 
road volume decreases. 
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Figure A5: Comparison of Mean Absolute Percent Error for 2019 AADT estimation between different 
machine learning algorithms, across varying Road Volumes . The real difference in performance 
comes with the lower volume roads, where the Linear Regression and Elastic Net algorithms have 
substantially higher error than other techniques. Error bars represent the standard error of the mean.

Table A7: Comparison of LBS Probe Data penetration (sample Probe Data trips / permanent counter 
trip count) across AADT range.  

AADT Range Mean LBS 
Penetration 

Standard 
Deviation 

A: <= 499 0.02 0.01 

B: 500 - 1,999 0.03 0.01 

C: 2000 - 4,999 0.03 0.02 

D-J: 5,000 + 0.04 0.01 

Penetration rate of Probe Data tends to increase across road size (Table A7), but the spread of 
penetration rate can also fluctuate.  Linear regression-derived models (including Elastic Net) may not 
be well suited to handle the variability of sample penetration across road volume size. Support Vector 
Regression (SVR) performs well in general, but does not do as well on lower or higher volume roads. 
As one goal was to model small roads as well as possible with Probe Data, results suggest that tree-
based methods are the best option to meet that goal. All three tree-based models are quite similar in 
their performance, as seen in the plots of MAPE (Figure A5). If you compare the distribution of errors 
(Table A6), Gradient Boosting and Extreme Gradient boosting have less spread of errors, and lower 
NRMSE as compared to the Random Forest algorithm. The Gradient Boosting algorithm adds 
additional complexity to the Random Forest algorithm by fitting errors as the model is built, which can 
further boost model performance.  Extreme Gradient Boosting has faster running time than traditional 
Gradient Boosting algorithms, but model error was similar, so Extreme Gradient Boosting model was 
selected as the final model for 2019 AADT estimation in this report. 
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In order to further optimize model performance for small roads, results from two different Extreme 
Gradient Boosting models was selected as the final model (‘Final Probe Data Model’ in Table A6). For 
this approach, the full data set of calibration sites, and contextual features, were fit to an Extreme 
Gradient Boosting algorithm.  A second Extreme Gradient Boosting model was trained only sites with 
lower volume (AADT under 10,000). For testing, sites were assigned to the second ‘low volume’ 
model based on their total LBS count. This forced the model to minimize errors for small roads, and 
allowing for tuning of features specifically for lower volume roads. This two-part model will be 
discussed in more detail, and referred to as the ‘National Probe Data AADT Model’. For later chapters 
(Chapters 4 and beyond), a single Extreme Gradient Boosting model fit to all sites was used for 
subsequent analysis and comparisons because it adds less complexity to analysis.  

National Probe Data AADT Model for Estimating AADT From Probe Data 

The national AADT model achieves a Pearson correlation of 0.99 (p-value <0.001), suggesting a very 
strong relationship between the Probe Data model and permanent counter measured 2019 AADT. As 
you can see from a correlation plot (Figure A6), most counter values lie close to the line of best fit, 
with few outliers. Simple visual comparison with Figure A2a demonstrates how both blending GPS 
(personal and commercial) and LBS trip input, and adding in contextual features drastically improved 
model error. It should not be assumed that features that are of top importance in the National Probe 
Data AADT Model for 2019 will always be the most important features. For example, in years with 
more snow storms or hurricanes, weather features may be more important for local accuracy than 
other years. 

Figure A6: Correlation plot between the actual AADTs and the National Probe Data AADT Model’s 
estimated AADTs 
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National Probe Data AADT Model Error by Road Volume 

AADT estimation was evaluated for both directional AADT (Table A9a, Figure A7), and total AADT for 
both directions on roads (Table A9b) across three road groupings, classified by average traffic 
volume. Bi-directional AADT were created by adding up directional estimates, resulting in a bi-
directional AADTs for each road. In general, error increases as AADT decreases. Krile et al. (2015) 
also noted a trend of higher error on smaller roads for short term count expansion, and noted this 
may be due to higher variability in daily traffic for smaller roads. For all methods, small roads present 
an additional complication, as the lower traffic means fewer trips in a sample, which naturally leads to 
higher estimation error.  

When modeling 2019 AADT, we found the model performed best when we modeled at the individual 
permanent counter level for each unique direction of traffic, especially for lower and mid-volume 
roads. One benefit of this approach may be that using unidirectional counters for modeling nearly 
doubles the training sample size and adds more smaller AADT values. This may allow the model to 
learn the relationship between the true AADT and probe data better on low-volume roads due to more 
examples. To generate a total road AADT for bidirectional roads, we summed the estimated AADT for 
each direction. This approach had lower error than creating a separate model for bidirectional AADT.  
When comparing error by AADT volume, directional AADTs for small roads (500 - 4,999) have slightly 
less error than bidirectional AADTs (Table 9b) of the same average traffic volume.  Compare, for 
example, an MAPE for 10.42 for directional AADTs vs an MAPE of 12.38 for total AADT for “low” 
volume roads. In contrast, the MAPEs for medium and high roads are very similar between directional 
and total AADT estimates.  

Table A9a:  National Probe Data AADT Model Error for Directional AADTs Across 3 Groupings by 
Road Volume.  

Road Size Bin Median 
Bias 
(%) 

95% TCE 
Error Range 

(%) 

68th Abs. 
Percentile 

(%) 

95th Abs. 
Percentile 

(%) 

MAPE NRMSE 

500-4,999 (low) 1.72 39.52 11.56 29.31 10.42 13.63 

5,000-54,999 
(medium) 0.1 24.14 7.88 20.15 7.11 11.44 

55,000+ (high) -1.18 16.67 6.49 19.36 6.13 9.76 
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Table A9b:  National Probe Data AADT Model Error for Road Bidirectional AADTs Across 3 
Groupings by Road Volume 

Road Size 
Bin 

Median 
Bias (%) 

95% TCE 
Error Range 
(%) 

68th Abs. 
Percentile 
(%) 

95th Abs. 
Percentile 
(%) 

MAPE NRMSE 

500-4,999
(low) 3.48 40.4 13.53 33.36 12.38 15.92 

5,000-54,999 
(medium) 0.2 24.06 7.33 19.47 6.75 10.24 

55,000+ 
(high) -0.31 16.42 5.04 16.28 5.22 8.78 

Krile et al. (2015) simulated model errors from same-year 48-hour temporary count (SY-TC) 
expansion. We calculated the errors from their study and have presented them in table A9c, to allow 
comparison within the presented 3 groupings by road volume AADT. There are a few differences 
between the two studies. The current report examined 2019 AADT alone, while the Krile et al (2015) 
study looked at estimated AADTs from 2000 to 2012. The current study involved one 2019 AADT 
estimate for each of 4,255 stations, while the Krile et al (2015) study utilized 206 total stations, with 
multiple comparisons within each station (hundreds of pairs of 48 hour count to yearly AADTs for 
each station).  

The TMG recommends a different temporary count cycle (such as a 3-year cycle) for various roads. 
Not all states are able to meet these thresholds, and even when they are, it means that many counts 
are out of date or derived from “similar” roads (as opposed to actual counts). The tables below only 
compare results to temporary counts taken in the same year. Comparison to counts from temporary 
counts from old years, or counts derived from models or extrapolation by road type should 
necessarily be less accurate than same year temporary counts. 
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Table A9c - Comparison of National Probe Data AADT Model for 2019 AADT compared to 48-hour 
same year temporary count expansion (SY-TC) as represented by Krile et al (2015). Places where 
Probe Data exceeds same year two-day count performance are in green with heavy outlines. Places 
where Probe Data performs within 2 percent of SY-TC are highlighted green and bold. Places where 
Probe Data performs within 5 percent of SY-TC are in italicized yellow. Sample size (n) refers to the 
number of sites evaluated.  

Method 
(n) 

Median 
Bias 
(%) 

95% TCE 
Error 
Range 
(%) 

68th Abs. 
Percentile 
(%) 

95th Abs. 
Percentile 
(%) 

MAPE NRMSE 

500-4,999
(low)

SY-TC 
(77) -0.2 34.0 11.2 30.0 10.3 18.0 

500-4,999
(low)

Probe 
Data, Bidi 
(1,003) 

3.4 40.4 13.5 33.4 12.4 15.9 

500-4,999
(low)

Probe 
Data, 
Directional 
(2,746) 

1.7 39.52 11.6 29.3 10.4 13.6 

5,000-
54,999 
(medium) 

SY-TC 
(103) 1.1 28 9.11 26.36 8.7 14.3 

5,000-
54,999 
(medium) 

Probe 
Data, Bidi 
(2,524) 

0.2 24.0 7.3 19.4 6.8 10.2 

5,000-
54,999 
(medium) 

Probe 
Data, 
Directional 
(4,074) 

0.1 24.1 7.9 20.1 7.1 11.4 

55,000+ 
(high) 

SY-TC 
(25) 1.5 24.0 5.9 15.6 5.3 9.5 

55,000+ 
(high) 

Probe 
Data, Bidi 
(655) -0.3 16.4 5.0 16.3 5.2 8.8 

55,000+ 
(high) 

Probe 
Data, 
Directional 
(517) 

-1.2 16.7 6.5 19.36 6.1 9.8 
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For medium and large roads, the National Probe Data AADT Model performs competitively with 48-
hour same-year short term counts across most accuracy metrics. Error is compared between short 
term counters and the National Probe Data AADT Model with finer resolution across road sides in the 
following section, which provided more visibility and better comparison between errors across road 
volume (Table A11). 

Figure A7: Quantile regression plot of the National AADT model error for directional AADTs across 
three groupings of road volume by 2019 AADT. 

Within the ‘small’ road category (AADTs under 5000), there is a more dramatic trend of increasing 
error with smaller roads. To better describe model error for small roads, roads were further 
segmented by AADT across 10 road size categories for both directional (Table A10a) and 
bidirectional AADTs (Table A10b). In both versions of the metrics, errors are fairly steady across 
different categories of road size, until roads become smaller than AADTs of 5,000. At that point, there 
is increasing error with each increment of smaller roads (bins A, B, C). 
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Table A10a: National AADT model errors for directional AADTs across 10 groupings of road volume 

Road Size Bin Total 
Counters 

Median 
Bias (%) 

95% TCE 
Error 
Range 
(%) 

68th Abs. 
Percentil
e (%) 

95th Abs. 
Percentil
e (%) 

MAPE NRMSE 

A: 0-499 275 14.21 51.47 27.37 66.93 25.98 32.01 

B: 500-1,999 1240 3.66 41.93 15.33 34.4 13.03 16.96 

C: 2,000-4,999 1504 0.48 34.73 9.76 26.92 8.72 12.35 

D: 5,000-9,999 1258 0.42 28.74 9.13 22 8.06 11.05 

E: 10,000-19,999 1363 0.26 24 7.85 21.36 7.25 10.32 

F: 20,000-34,999 937 -0.13 19.7 6.62 16.79 5.94 9.27 

G: 35,000-54,999 516 0.46 16.62 6.95 20.35 6.69 9.92 

H: 55,000-84,999 381 -1.22 15.77 6.21 19.06 5.95 8.98 

I: 85,000-124,999 105 -0.57 14.89 6.05 15.04 5.19 7 

J: 125,000+ 33 -1.18 14.28 6.67 19.85 6.52 10.51 

Table A10b: National AADT model errors for bi-directional stations across 10 groupings of road volume 

Road Size Bin Stations Median 
Bias (%) 

95% TCE 
Error 
Range 
(%) 

68th Abs. 
Percentile 
(%) 

95th Abs. 
Percentile 
(%) 

MAPE NRMSE 

A: 0-499 51 21.3 54.06 32.97 84.22 30.82 42.58 

B: 500-1,999 387 5.87 43.81 18.97 41.61 15.76 19.97 

C: 2,000-4,999 616 2.56 36.78 12.2 29.19 10.59 14.64 

D: 5,000-9,999 608 0.33 30.81 8.19 24.12 7.68 11.56 

E: 10,000-19,999 763 0.22 25.55 7.83 19.23 7.09 9.53 

F: 20,000-34,999 716 0.05 21.14 6.66 18.2 6.19 9.31 

G: 35,000-54,999 437 0.36 17.19 6.26 15.97 5.64 8.24 

H: 55,000-84,999 330 -0.05 16.05 5.69 18.76 5.8 9.35 

I: 85,000-124,999 182 -0.08 15.25 4.97 12.05 4.59 6.88 

J: 125,000+ 143 -0.88 14.38 4.15 13.77 4.1 6.44 
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The strengths and weaknesses of Probe Data to model AADT may be highlighted by comparing 
model errors with those from a 48-hour same year short-term count expansion (Table 11a below). 
These errors were generated from a study by Krile et al., (2015). It is noted that these model errors 
do not address additional expected error from performance of data collection equipment. For road 
size bin A (sites with AADTs under 500), there was only one site for comparison with short term count 
methods, which is not statistically sufficient for error comparisons.  

The TMG recommends a different temporary count cycle (such as a 3-year cycle) for various roads. 
Not all states are able to meet these thresholds, and even when they are, it means that many counts 
are out of date or derived from “similar” roads (as opposed to actual counts). The tables below only 
compare results to temporary counts taken in the same year. Comparison to counts from temporary 
counts from old years, or counts derived from models or extrapolation by road type should 
necessarily be less accurate than same year temporary counts. 

Table A11a - Comparison of National Probe Data AADT Model for 2019 AADT errors for bidirectional 
and directional roads compared to temporary same year count expansion (SY-TC, as represented by 
Krile et al., 2015). Places where Probe Data performs within 2 percent of SY-TC are highlighted 
green and bold. Places where Probe Data performs within 5 percent of SY-TC are in italics and 
yellow. Places where Probe Data exceeds SY-TC performance are in green with heavy outlines. 
Values have been reduced to one place after the decimal for legibility. Sample size refers to the 
number of sites evaluated. 

Road Size 
Bin Source 

Sample 
Size 
(n) 

Median 
Bias (%) 

95% TCE 
Error 

Range 
(%) 

68th 
Abs. 

Pcntile 
(%) 

95th 
Abs. 

Pcntile 
(%) 

MAPE NRMSE 

A: 0-499 SY-TC* 1 - - - - - - 

A: 0-499 Probe Data,bidi 51 21.3 54.1 33.0 84.2 30.8 42.5 

A: 0-499 Probe Data, 
directional 

275 14.2 51.5 27.3 66.9 26.0 32.0 

B: 500-
1,999 

SY-TC 33 -0.1 34.2 11.7 26.9 10.1 13.0 

B: 500-
1,999 

Probe Data, 
bidi 

387 5.9 43.8 18.9 41.6 15.8 19.9 

B: 500-
1,999 

Probe Data, 
directional 

1240 3.7 42.0 15.3 34.4 13.0 16.9 

C: 2,000-
4,999 

SY-TC 44 2.3 30.8 10.8 33.6 10.5 17.3 

C: 2,000-
4,999 

Probe Data, 
bidi 

616 2.6 36.8 12.2 29.2 10.6 14.6 

C: 2,000-
4,999 

Probe 
Data,directional 

1504 0.5 34.7 9.8 26.9 8.7 12.4 

D: 5,000-
9,999 

SY-TC 47 3.2 28.5 9.7 28.1 9.3 14 
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Road Size 
Bin Source 

Sample 
Size 
(n) 

Median 
Bias (%) 

95% TCE 
Error 

Range 
(%) 

68th 
Abs. 

Pcntile 
(%) 

95th 
Abs. 

Pcntile 
(%) 

MAPE NRMSE 

D: 5,000-
9,999 

Probe Data,bidi 608 0.3 30.8 8.2 24.1 7.6 11.6 

D: 5,000-
9,999 

Probe 
Data,directional 

1258 0.4 28.7 9.1 22.0 8.0 11.1 

E: 10,000-
19,999 

SY-TC 23 1.3 26.7 9.2 27.9 9.0 12.9 

E: 10,000-
19,999 

Probe Data, 
bidi 

763 0.2 25.5 7.8 19.2 7.0 9.5 

E: 10,000-
19,999 

Probe 
Data,directional 

1363 0.3 24 7.8 21.3 7.2 10.3 

F: 20,000-
34,999 

SY-TC 20 0.9 25.7 8.3 24.3 8.2 13.3 

F: 20,000-
34,999 

Probe Data,bidi 716 0.1 21.1 6.6 18.2 6.1 9.3 

F: 20,000-
34,999 

Probe 
Data,directional 

937 -0.1 19.7 6.6 16.7 5.9 9.2 

G: 35,000-
54,999 

SY-TC 13 0.5 24.8 8.4 19.3 7.3 9.8 

G: 35,000-
54,999 

Probe Data,bidi 437 0.3 17.1 6.2 15.9 5.6 8.2 

G: 35,000-
54,999 

Probe 
Data,directional 

516 0.4 16.6 6.9 20.3 6.6 9.9 

H: 55,000-
84,999 

SY-TC 10 2.2 24.1 6.1 14.4 5.3 7.3 

H: 55,000-
84,999 

Probe Data, 
bidi 

330 -0.3 16.1 5.7 18.8 5.8 9.4 

H: 55,000-
84,999 

Probe 
Data,directional 

381 -1.2 15.8 6.2 19.1 5.9 8.9 

I: 85,000-
124,999 

SY-TC 8 0 23.5 4.8 14.7 4.7 6.8 

I: 85,000-
124,999 

Probe Data, 
bidi 

182 -0.1 15.3 4.9 12.0 4.6 6.9 

I: 85,000-
124,999 

Probe 
Data,directional 

105 -0.6 14.9 6.0 15.0 5.2 7 

J: 
125,000+ 

SY-TC 7 3.1 23.3 7.1 17.7 6.2 10 

J: 
125,000+ 

Probe Data, 
bidi 

143 -0.9 14.4 4.1 13.8 4.1 6.4 

J: 
125,000+ 

Probe 
Data,directional 

33 -1.2 14.2 6.6 19.8 6.5 10.5 
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*Krile et al only had one station in this bin, which is not sufficient for statistical purposes. Thus, no
“TC” or temporary count comparison is known or available.

The Probe Data National AADT Model is in line with same-year 48-hour expansion methods for roads 
above 2,000 AADT. Although error is higher for smaller roads, for AADTs between 500 and 2,000, the 
MAPE remains at or under 15% for this category. As an example, if the true AADT of a road was 
1000 cars, the model prediction would on average predict between 850 and 1150. 

In addition, there is variability in how well the National Probe Data AADT model performs state by 
state, notably for smaller volume roads. Table S4 showcases the variation in how error for small 
roads (AADT < 5000) from the Probe Data model compares to expected error from a typical same 
year count. State to state variability in error is likely due to a wide range of variables, including 
availability of reference permanent counts within each state and nearby states of similar road type 
and size, the available data for the Probe Data model, the weather effects in travel to name just a 
few.  

Table S4. Variability in National Probe Data Model MAPE for small roads (AADT < 5000) by state. 
Performance is grouped by how MAPE for small road sites within the state compare to a typical same 
year count (Typ-SC), with expected MAPE of ~ 18% (see Chapter 3 Table A9c for reference). n = 
total unique permanent sites within the state with AADT < 5000. MAPE was used due to the small 
number of small road sites within most states. 

Category 
(MAPE) 

State (n) 

Exceeds MAPE 
for Typ-SC 
(<18%) 

Alabama(18), Arizona(27),  Arkansas(27), California(13),  Colorado(23), 
Connecticut(1),  Florida (33), Georgia(22), Illinois(10), Indiana (11), Iowa(47), 
Kansas(40), Kentucky(16),   Louisiana(1), Maine(26), Maryland(3), Massachusetts(3), 
Michigan(16), Minnesota(6), Mississippi (16), Missouri(37), Nebraska(16), New 
Hampshire (5), New Jersey(1), New Mexico(18), Nevada(15),  New York(27), North 
Carolina(12), North Dakota(16), Ohio(16), Oklahoma (20), Oregon(23), 
Pennsylvania(18), South Dakota(16), South Carolina(24), Texas(64), Utah(16), 
Vermont(17), Virginia(70), Washington(26), Wisconsin(26), West Virginia (7), 
Wyoming(66) 

Meets Typ-SC Delaware(1), Idaho(44), Montana(45) 
Worse than 
Typ-SC  
(MAPE > 18%) 

Tennessee(11), Rhode Island(1) 

Probe Data model bias is very comparable to 48-hour same year short term expansion, except for 
bidirectional estimates on small roads (AADT < 2000), where the National AADT Model tends to 
overestimate. We believe this overestimation is due to the distribution of road volumes across 
permanent counters in the training sample and can be further improved by local calibration efforts to 
bring in more data from smaller roads. This is bolstered by the fact that in some states, the small road 
estimation accuracy exceeds that of same-year, appropriately factored temporary-count expansion. 
AADT values cannot go below zero, and agencies place permanent counters at locations where they 
expect measurable traffic. These two factors create a skew toward higher AADTs within lower volume 
bins (bins A & B above), which creates slight overestimation in the fit models. 
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In addition to evaluating the aggregate error (MAPE, NRMSE), one can evaluate the spread of error 
in the sample with the 68th and 95th absolute percentile errors. As compared to 48-hour same-year 
factoring methods, the probe data model has comparable (within 2 percentage points) or less error for 
road groups with bidirectional AADTs over 5000 (groups D-J) for the 68th percentile error. When the 
model error is expanded to the 95th percentile error, the National AADT maintains lower error as 
compared to short term expansion for roads above 2,000 AADT.  The one exception is for category 
H, where the error shows a small increase (18.76% error, vs 14.44%). There may be a few ‘abnormal’ 
locations with bias the model was not able to tackle in this category. Additional predictive features to 
attack these unique locations, or a model with specific regional tuning may further improve fit for 
these locations. Regardless, the distributed errors, even toward the tail, on large roads maintain 
within the error ranges of 48-hour same year short term expansion. This suggests a strong 
application for Probe Data to model AADT. This model generated accurate estimates for locations 
without use of any short-term counter information for calibration or training, and suggests a great 
approach for creating useful volume estimates for roads where permanent or short-term counts are 
more expensive, or otherwise not feasible or likely.  

As discussed in Chapter 1, we asked Minnesota DOT to give an idea of how often the short-term 
same year expansion method in Table A9c is used. For roads under 2,000 AADT, over half of 
roadways lacked any direct counts at all, and for roads under 55,000 AADT, less than half had a 
short-term count from the same year (as per TMG current recommended practice, rotating every few 
years between locations). Thus, to give an idea of how the National Probe Data AADT Model error 
compares to a more typical estimation (Typ-SC) arising from an older count, we compare errors in 
Tables A9c and A11a. No comprehensive or complete data source was found to describe the 
accuracy of typical techniques such as ‘similar’ segments, akin to the Krile paper for same year two-
day expansions. Therefore, indicative reports were combined with expert input to create the estimate 
errors.  

It's ultimately up to departments what an acceptable level of error for small roads are, and will depend 
on the goals for the road. The National AADT Model errors are small enough that the model is 
unlikely to classify a small road, say 500 AADT as a substantially larger road, such as 2000 AADT. 
There will likely always be more error for the smallest of road classes, where statistical sampling has 
an impact on the results. However, there is a lot of potential for improving model performance on 
these smaller roads. This may include incorporating more local calibration points such as from nearby 
short-term counts (which was outside the scope of this study), blending additional Probe Data and 
other Big Data sources (such as signal cameras), additional feature engineering from LBS and GPS 
trips to derive more predictive signal, or use of ensembling models, which may provide more accurate 
estimations by averaging the results of multiple models.  

Model Error Across Roadway and Regional Characteristics 

Of all the states in the analysis, some states have fairly low error across all metrics, especially as 
compared to errors from traditional short-term expansion methods. Example states include Arizona, 
Colorado, Connecticut, Delaware, Idaho, Iowa, Kentucky, Maryland, Massachusetts, Michigan, 
Minnesota, Missouri, New Hampshire, North Dakota, Ohio, Oregon, South Dakota, Texas and 
Wisconsin. The following three tables show the model performance for three example states: 
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Maryland (n=58), Ohio (n=259), and Texas (n=487). These states were selected because they 
contained a large number of permanent counters across a variety of road sizes. More research is 
needed into what factors create the best setup for a region to have good volume estimation by Probe 
Data. Evaluation at the predictive features in the National AADT Model (Figure A7b demonstrates that 
essential characteristics are Probe Data sample trips that are both well spatially distributed across a 
region and well represented across demographics. The better statistically representative sample of 
trips you can have from a Probe Data source, the better the sample will generalize to the population. 
But, in order to compensate for some inevitable bias from the statistical sample, adequate local 
calibration data, be it accurate adjustments for bias by census data, or calibration with local counter 
volume data are also essential. 

Table A9: Directional AADT model error for the state of Maryland by road size (n=58) 

Road Size Bin Counters 
(n) 

Median 
Bias (%) 

95% TCE 
Error 
Range (%) 

68th Abs 
Prcentile 
(%) 

95th Abs. 
Prcentile 
(%) 

MAPE NRMSE 

500-4,999 (low) 10 1.4 21.75 6.04 10.58 5.28 4.18 

5,000-54,999 (medium) 33 1 14.62 7.04 13.45 5.46 8.7 

55,000+ (high) 14 -1.21 16.68 3.54 5.05 2.58 3.61 

Table A10: Directional AADT model error for the state of Ohio by road size (n=259) 

Road Size Bin Counters 
(n) 

Median 
Bias (%) 

95% TCE 
Error 
Range (%) 

68th Abs 
Percentile 
(%) 

95th Abs. 
Percentile 
(%) 

MAPE NRMSE 

500-4,999 (low) 70 3.91 29.27 11.8 19.84 8.89 11.08 

5,000-54,999 (medium) 174 2.33 23.62 6.6 17.49 6.31 8.85 

55,000+ (high) 15 2.68 19.13 5.01 14.17 4.74 6.75 

Table A11: Directional AADT model for the state of Texas by road size (n=487) 

Road Size Bin Counters 
(n) 

Median 
Bias (%) 

95% TCE 
Error 
Range (%) 

68th Abs. 
Percentile 
(%) 

95th Abs. 
Percentile 
(%) 

MAPE NRMSE 

500-4,999 (low) 211 0.64 33.46 13.78 33.07 12.59 13.54 

5,000-54,999 (medium) 239 0.30 17.98 7.95 19.90 7.52 10.12 

55,000+ (high) 21 -2.66 11.15 4.91 7.92 4.18 4.58 
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The National Probe Data AADT model error was evaluated across a variety of road and regional 
characteristics. First, errors were evaluated across the seven different functional classes (Table A6). 
Functional class information was available for 3,298 roads through the HPMS. Model error is more 
tightly correlated with AADT than functional class divisions. Classes 3-7 contain the smallest AADTs. 
There is a spread of errors across functional classification size, which we feel is due to the variance in 
AADTs within each class, rather than characteristics of the functional class itself. This is most 
apparent in the errors for the 95th Absolute Percentile, which is mainly driven by the error of small 
AADTs within each functional class. 

Table A6: National AADT model error metrics comparison by FHWA road classification 

Functional 
Class 

AADT range 
(25th-75th 
percentile) Stations 

Median 
(Bias) 

95% TCE 
Error Range 
(%) 

68th 
Absolute 
Percentile 
(%) 

95th 
Absolute 
Percentile 
(%) MAPE NRMSE 

1 [25,039-83,477] 956 -0.07 17.94 5.81 18.26 5.96 10.11 

2 [25,756-77,207] 271 1.09 18.35 7.14 18.95 6.38 12.27 

3 [4,361-19,605] 1229 0.65 30.5 8.83 22.68 7.85 12.73 

4 [2,197-9,025] 538 2.25 36.13 11.56 31.76 11.2 14.42 

5 [1,192-4,262] 269 3.03 42.2 15.36 38.95 14.48 19.21 

6 [537-2,790] 23 5.72 47.5 13.2 50.06 15.37 11.41 

7 [3,162-9,666] 12 2.99 35.95 21.23 50.54 18.78 39.53 

With GPS (personal and commercial) and LBS as data sources, availability of pings may be 
influenced by geography. The ability to collect LBS data is also tied to what apps are running in the 
background. Some apps may be more popular in specific regions of the US. When LBS or GPS 
penetration is plotted across the US, regional variation is apparent, as compared to the Regions or 
Climate Zones  

Second, model performance was compared across five different regions in the United States. It was 
found that the errors across different regions on the whole are comparable with one another (Table 
A7). There is a trend of lower absolute and squared error among stations in the South Gulf, South 
Atlantic, and North Central regions as compared to the national error. However, model error is tightly 
correlated with road volume, and the small changes in model error across regions is likely tightly tied 
with differences in road volume across the training set. Inclusion of the region, latitude and longitude 
in the National AADT Model largely allowed the Extreme Gradient Boosting algorithm to tune the 
input Probe Data sample trips by region as needed.  
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Table A7: National AADT Model Error metrics comparison by region for bidirectional AADTs 

Region 
AADT range 
(25th-75th 
percentile) 

Stations 
Median 
Bias 
(%) 

95% TCE 
Error 
Range (%) 

68th 
Absolute 
Percentil
e (%) 

95th 
Absolute 
Percentil
e (%) 

MAP
E NRMSE 

North 
Central [3971-30866] 926 1.03 27.9 7.92 21.19 7.31 13.26 

North East [5163-39062] 449 0.84 26.63 8.99 25.24 7.92 14.93 

South 
Atlantic [8250-50418] 1202 0.12 22.51 7.48 25.12 7.46 11.48 

South Gulf [502-42970] 629 1.29 26.3 8.36 21.98 8.08 10.31 

West [3378-34494] 1027 0.23 27.99 9.39 29.05 9.68 16.03 

All Regions [5034-36416] 4233 0.5 25.45 8.28 24.96. 8.11 13.36 

Model error across different climate zone regions, as defined by the Köppen-Geiger climate 
classification (Table A8, spatially visualized in Figure A8). Florida was the only state in climate zone A 
(equatorial), so the superior performance of climate zone A may be equally attributed to the model 
performing well for the state of Florida itself. Climate zone B has a shift toward lower AADTs across 
the climate zone, which may also explain the slight trend toward higher error for that climate. The 
National AADT Model uses counter latitude, longitude, and annual weather in the AADT estimation. 
This allows the model to account for potential differences based on climate. Alaska and Hawaii were 
not included in this report to speed up the process but all techniques discussed can be applied to 
those states as well. 

Figure A8. Map of the main climate zones within the contiguous United States, as defined by the 
Köppen-Geiger climate classification. Figure adapted from Kotekk et al., 2006. Zones are defined as 
A (equatorial), B (arid), C (warm temperature), D (snow) and E (polar, rare in US).  
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Table A8: National AADT model error metrics comparison by climate zone 

Climate Zone 
AADT Range 
[25th- 75th 
percentile] 

Median 
Bias (%) 

95% TCE 
Error 
Range (%) 

68th 
Absolute 
Percentil
e (%) 

95th 
Absolute 
Percentile 
(%) 

MAPE NRMSE 

A (equatorial) [25,411- 
112,513] -0.71 17.44 8.66 13.71 5.98 11.21 

B (arid) [2,545-23,086] 1.49 30.74 9.51 26.9 9.44 16.18 

C (warm 
temperature) [7,095- 42,576] 0.47 23.53 7.94 24.92 7.89 12.86 

D (snow) [3,681-28,745] 0.25 28.68 8.41 24.45 8.1 12.96 

The majority of the calibration stations were along roadways, model error was also compared 
between ramps and non-ramp roads (Table A8). The total number of ramps in the sample was low 
(125), and model error metrics are sensitive to the total number of locations observed. To draw 
appropriate comparisons between model performance on ramps and non-ramp roadways, permanent 
counter stations were randomly sub sampled, and used as a test set for describing model error. This 
process was repeated 10 times to get an averaged estimated metric for non-ramp roadways.  Ramp 
roadways perform comparatively to non-roadways across road volumes.  

Table A8: Comparison of National AADT model error between ramp and non-ramp roadways. 

Road Size Bin Ramp Stations Median 
(Bias) 

68th % 
Absolute 
Percentile 

95th % 
Absolute 
Percentile 

MAPE NRMSE 

500 - 4,999 (low) No 57 8.6 27 66.7 24.5 29 

500 - 4,999 
(low) Yes 57 13.66 26.19 60.3 35.21 23.23 

5,000-54,999 
(medium) No 65 0.5 13.2 30.5 11.4 16.1 

5,000-54,999 
(medium) Yes 65 -1.43 11.35 29.47 22.04 10.85 

55000+ (high) No 3 1.8 10.5 15.3 9.4 10.3 

55000+ (high) Yes 3 -11.12 13.47 16.99 15.65 9.67 

Conclusions 
The results of the Probe Data National AADT Model are presented as a representation of expected 
error from Probe Data AADT estimates. The results should be seen as representative of the baseline 
results that could be achieved, but by no means are the upper limit of the potential of Probe Data as 
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an estimation source. As state-level breakdowns suggest, a state may find that their region can be 
modeled by Probe Data with an even stronger relationship than depicted in this report. Probe Data 
matches or outperforms short term expansion counts for small, medium, and large roads. Probe Data 
estimates can out-perform short term expansion methods for extremely small roads in areas with 
more local small AADT calibration sites. Future research is needed to investigate how additional 
tuning of models for unique regions, and how enrichment of the model by short term counters could 
even further boost model performance. 

Chapter 4: Impact of Probe Data Characteristics on the 
Traffic Volume Estimation 
In the previous chapter, the Probe Data National AADT Model has shown successful use of a full-
year of Probe Data to estimate AADT for roads across the lower 48 states. However, such results are 
built upon the provided LBS and GPS data with the best currently available quality and quantity. The 
impact of different characteristics of LBS and GPS trips on the traffic volume estimation still remains 
unknown and needs to be explored. 

In this chapter, the impact of the impoverished LBS and GPS trips on the accuracy, precision, and 
stability of the traffic volume estimation and prediction will be discussed. More specifically, the 
impoverishment procedures include the size of sampling devices, ping rate, spatial accuracy, and the 
number of available months. In addition, the impact of impoverished permanent counters for 
calibration on the AADT estimation accuracy will be studied. 

Effects of Time Periods Sampled on AADT Model Accuracy

The National Probe Data AADT Model utilizes LBS trips from all 12 months in 2019, however it may 
be possible to create a model for AADT from a smaller window of time. Probe Data providers may not 
supply 12 months in a calendar year, or budget constraints might prevent the procurement of a full 
year's worth of data, which makes it important to understand the necessity of observations across 
time for estimating AADT. Additionally, Probe Data quality may be variable across time, producing 
different penetration rates or biases month to month, that may impact the quality of a model Probe 
Data providers frequently sell data in monthly intervals, and so in this section the impact of availability 
of Probe Data across months on model accuracy was explored. Finally, localities may want an “early” 
estimation of roads’ AADT before the year actually ends (discussed in the subsequent section), with 
appropriate caveats for unusual end of year events disrupting estimates. 

Our 12-month National Probe Data AADT model included reference data from 4,232 permanent 
counter stations from 48 states across the U.S. Data was aggregated across all months in 2019 and 
compared to 2019 AADT values reported by the permanent counters. See section ‘AADT Estimation’ 
for details on building, training, and validating the National AADT Model. The same methods and 
dataset were used for this work. For comparisons in this chapter, the Extreme Gradient Boosted 
model fit to all calibration sites was used as reference, as opposed to blending results with a second 
additional model fit to only small roads. This was chosen to minimize complexity of analysis. In order 
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to test the dependency of AADT model accuracy on the number of unique calendar months of Probe 
Data sample trips observed, subsets of months from 2019 were selected for training and testing a 
national 2019 AADT model. Subsets of 9, 6, 3 and 1 month were randomly generated across all 
possible month combinations in 2019. For single month tests, all 12 months were tested individually. 
As an example, a model for 2019 AADT was trained on January 2019 Probe Data only, and tested for 
accuracy of predicting 2019 AADT. This was repeated for every month of the year, to describe how 
predictive AADT models based off of single months across the year could be. For the remaining 
subsets of 3 ,6 and 9-month selections, 30% of all possible month combinations were selected. For 
example, there are 220 different combinations of 3-month pairs that can be derived from 12 calendar 
months. Instead of testing all 220 combinations without replacement, 30%, or 66 out of the 220 
combinations were tested. Results were averaged across all possible monthly combinations. 

Summary of Results 

Error metrics for the 2019 AADT models trained on Probe Data inputs from either 9, 6, 3- or 1-month 
combinations across 2019 were compared to the National AADT Model, which was trained on a full 
year of 2019 Probe Data (Table T1). All error metrics show a trend of increasing error as models are 
trained on decreasing windows of time. However, looking at the error in the 95th Absolute percentile, 
the error from building a model from only 3 to 9 months of data is fairly consistent.  This suggests that 
with just a handful of months, one can reasonably estimate AADT.  The difference in model error 
between 12 months and a single month is also not as dramatic as one might anticipate. These results 
may be partly because the range of AADT volume within a year at a location (+/- 40%, for example) is 
smaller than the differences in the range of AADT across all of the locations in the sample (100-
100,000).  Additionally, the LBS and GPS (personal and commercial) sources used for this study 
result in a fairly large collection of monthly trips and the sampling rate is consistent across months, 
allowing for fairly accurate model creation from only a few months of data. 

Table T1: Comparison of error between 2019 AADT models trained with different combinations of 
2019 months 

Group Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) MAPE NRMSE 

1 month 0.91 51.60 12.10 38.84 12.18 16.00 

3 months 0.93 48.23 11.46 36.93 11.55 15.63 

6 months 0.94 47.34 11.33 36.26 11.42 15.50 

9 months 0.95 46.96 11.27 36.01 11.36 15.41 

National Probe 
Data Model 0.94 30.26 10.91 33.87 10.98 15.68 

As results are broken down by road volume (Figure T1), the benefit of having a full 12 months’ worth 
of data becomes more evident. The error differences become more significant as the AADT 
decreases. If only one month of data is available, then the model does not perform as well, 
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particularly for small roads. However, in order to get the most accurate estimates possible, 
particularly for small roads, a full year of Probe Data from the target AADT year may be much 
preferable. 

Figure T1: Comparison of MAPE for 2019 AADT estimation across models fit with varying total 2019 
months of data. Comparisons are shown across different groupings by road volume to account for 
changes as road volume decreases. Error bars indicate the standard error of the mean across each 
station within each group. 

Conclusions 

Overall, the quality of AADT estimates on smaller volume roads will be most impacted by a reduction 
in data months. It is suggested that at least 3 months of data should be used to accurately estimate 
AADT values among different sizes of roads. But for areas with lots of small volume roads and where 
high accuracy targets may be needed, a full year of sample data will significantly improve accuracy 
for AADT estimation. 

When selecting a subset of months for AADT estimation, it’s difficult to know which particular months 
will be preferable. Depending on the available data source, some months may be better predictors 
than others, and what makes one month “better” than another may also vary regionally. Considering 
potential biases due to tourism, student populations, special events and weather, local knowledge 
may help to determine which calendar months that are most representative. Data vendors may also 
have fluctuating samples due to the integration of new apps or devices, which can change the 
stability and quality of the Probe Data source month over month. 

Ultimately, the approach to selecting a preferred subset of months should involve consideration of 
what’s most representative of a given study area. Examining historical volume trends can also be a 
valuable tool, specifically looking at whether a calendar month or subset of months has also been 
predictive in prior years.  
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Further research on this topic could involve sub-selecting days of the week to see which are most 
effective at predicting AADT. For example, how would a model perform if only Mondays were made 
available, or weekends, etc. This daily format is not typical of the way vendors aggregate and supply 
Probe Data, and thus was not explored as part of this investigation, but different permutations of the 
data could be further analyzed. Or course, using a subset of months will reduce the availability of 
other metrics such as MADT. 

Forecasting AADT Mid-Year 
If data months can be reduced to estimate AADT, it begs the question whether a small subset of 
months aggregated from early in a calendar year will be sufficient in predicting AADT for the 
remainder of the year. Traditionally, Probe Data has been used to estimate AADT after the full 
calendar year has elapsed, so that data can be aggregated from all 12 months. If models are able to 
predict AADT with a smaller subset of months, then it may be possible to estimate AADT at a given 
location before the year has elapsed.  

The goal of this section is to imagine the accuracy of forecasting 2019 AADT with only an early month 
subset given. To assess the strength of Probe Data to forecast AADT, two approaches are tested. 
The first is to gather a rolling 12 months of data to predict AADT for the remainder of the year. This 
will be referred to as the “rolling year” approach. The second is to utilize the given years’ AADT in 
order to forecast for the remainder of the year. This will be referred to as the “existing year” approach. 
Each approach is described in further detail below.  

For the first, rolling year approach, consider the scenario where one is trying to forecast AADT for 
2019. Thus far in 2019 there are m sequential months’ worth of data available. In order to aggregate 
12 months’ worth of data, the most recent 12 - m months are considered, such that some months are 
aggregated from the prior year, i.e. 2018. The AADT forecasting method is designed in Figure F1. 

Figure F1: Graphic representation of the “rolling year” forecasting approach for predicting AADT 

First, two independent machine learning models are developed to perform the “partial “AADT 
estimation in 2018 and 2019, respectively. 
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Model P (Partial AADT P) is trained by the 12 - m months of partial AADT in the previous year and 
applied to estimate the partial AADT in the previous year (here the previous year refers to 2018). 

Model C (Partial AADT C) is trained by the m months of partial AADT in the current year and applied 
to estimate the partial AADT in the current year (here the current year refers to 2019).  

First, the growth factor of each individual permanent counter for the 12 - m months' period is 
calculated based on the historical MADT values. Note that the historical MADT values are preferred 
over the historical AADTs to best capture the growth factor during those months in the previous year. 
However, if there is no way to get historical MADTs, the historical AADT values can be accepted. 

Second, the growth factor of the test zone is calculated by averaging the growth factors of 
surrounding permanent counters with the same highway type and urban/rural indicator. In terms of 
the scale of the surrounding area, it could be the state-based level or a buffer with a specific radius. If 
there is no available permanent counter nearby, \a default state-based or region-based growth factor 
was used instead. In terms of averaging, either a simple average or weighted average by the distance 
was used. 

The forecasted AADT in the current year is calculated by the weighted average of two partial AADT 
estimates. The function can be written as follows: 

The following scenarios are tested in order to forecast AADT for 2019: 

● M = 0, Previous 12 - m = 12: data is not available for 2019
● M = 3, Previous 12 - m = 9: data is available for the first quarter of 2019
● M = 6, Previous 12 - m = 6: data is available for the first two quarters of 2019
● M = 9, Previous 12 - m = 3: data is available for the first three quarters of 2019

The expectation is that as m increases, there will be lower errors through cross-validation. However, 
such expectation is not guaranteed due to the consideration of model errors. 

For the second, “existing year” approach, assume a desire to predict AADT in 2019 with only m 
months currently available. Similar to the “rolling year” approach, a model is built to estimate AADT 
based on m months in the current year (2019). In the “rolling year” approach, the growth factor can be 
considered as a longitudinal factor to inflate the previous year’s ADT estimates to the current year’s. 
In the “existing year” approach, the expansion factor can be considered as a lateral factor to adjust 
the current year’s ADT estimates to the full year’s. See Figure F2 for a diagram of model design. 

Figure F2: Graphic representation of the existing year forecasting approach 
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To 
calculate the expansion factor: 

Test cases will explore the following four scenarios: 

● M = 1: one month of data is available for 2019
● M = 3: three months of data is available for 2019
● M = 6: six months of data is available for 2019
● M = 9: nine months of data is available for 2019

Summary of Results 

The predictive models for AADT using a rolling method perform remarkably similar to the National 
AADT model, which uses a full year of 2019 AADT data, and served as the benchmark (Table F1). 
Intuitively, the more months of training data borrowed from 2018, the higher the model error. When 
MAPE is compared across different sizes of roads (Figure F2), the error is fairly consistent across all 
road sizes, though small roads are most sensitive.  It is expected that were this repeated for an 
abnormal year, such as 2020, or in an area experiencing much change, the results may be very 
different. But for a ‘typical’ year or in an area without much change, these results suggest mixing 
current year with previous year information can be predictive of future AADT. 
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Table F1: Errors compared across month combinations for the “rolling year” approach to forecasting. 

Group Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

11 + 1 
months* 1.42 48.41 12.13 37.59 12.21 18.06 

9 + 3 
months* 1.38 46.18 11.67 35.46 11.60 17.08 

6 + 6 
months* 1.37 44.98 11.00 34.55 11.06 16.83 

3 + 9 
months* 1.22 44.92 10.98 35.70 11.03 14.98 

National 
Probe Data 
Model 

0.94 30.26 10.91 33.87 10.98 15.68 

(*Note that the label of ‘m + n months’ represents the Probe Data in use is collected from the last m 
months in 2018 and the first n months in 2019.) 

Figure F1: Comparison of AADT MAPE across road volumes for AADT forecasting using the rolling 
month approach. Error bars represent the 95th confidence interval of the mean. 

How early can AADT be forecasted without leveraging historical data from the prior year? In contrast 
to the “rolling months” approach, errors are much higher for forecasts based on one month (January), 
or 3 months (January, February, March) (Table F2).  However, at six months the error moves into 
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realms that may be acceptable for many applications. This trend is fairly consistent across all ranges 
of road volume (Figure F2). 

Table F2: Errors compared across month combinations for the “existing year” approach to 
forecasting. 

Group Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

First 1 month 5.67 76.49 17.83 54.61 17.72 23.73 

First 3 months 2.84 63.53 15.26 48.25 15.24 20.62 

First 6 months 1.43 50.48 12.22 37.67 12.14 17.85 

First 9 months 1.21 46.63 11.49 36.21 11.51 15.24 

National 
Probe Data 
Model 

0.94 30.26 10.91 33.87 10.98 15.68 

Figure F2: Comparison of AADT MAPE across road volumes for AADT forecasting using the existing 
month approach. Error bars represent standard error of the mean. 

Conclusions 
The research shows that AADT can be forecasted before the years’ end, assuming that the current 
year in the area of interest will be reasonably similar to historical trends (for example, not 5106 
experiencing a pandemic, a closing of a major local employer, etc.). The results found much lower 
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error in forecasting if historical trends and prior year data could be included. However, if training data 
is not available for the prior year, Probe Data can be used to forecast AADT as early as 6 months into 
the calendar year, and achieve comparable results to a model built off of a full year. 

The key takeaway here is that more data available across time will lead to higher quality forecasting 
for the remainder of the year. If only January 2019 data is available to forecast the remainder of the 
year, estimates will be far more accurate if that one month of data from January 2019 is 
supplemented with the prior 11 months of data from 2018.  
One major point of consideration is that models assume a typical year when forecasting. Therefore, 
models will be unable to forecast AADT if there are unforeseen events, such as regional natural 
disasters, or global pandemics. This is a significant caveat, that is especially relevant to any effort to 
forecast AADT estimates in 2020. 

Effects of Reduced Trip Sample on Probe Data AADT Model 
Accuracy 

When creating a modeled AADT estimation from Probe Data sources, a representative sample of 
trips is key to estimate AADT. As examples, for vehicle-derived traces, a provider may only collect 
data from certain makes of automobiles or only for more recent years (thus skewing the sample to 
higher income individuals). For LBS data, providers typically run software to collect location 
information on an array of applications built for smartphones. While this approach has less bias in 
terms of demographics, some apps do not collect data all days of the year leading to other types of 
sample gaps. To generalize: it is important to have the largest trip sample possible (as opposed to a 
high number of “pings” or “devices”) and that the sample be as unbiased as possible. This section 
explores how varying trip penetration (ratio of sampled trips to observed trips) impacts estimated 
AADT, assuming no large changes in trip bias as sample is reduced.  

To model the variance in trip penetration expected between different data providers, subsampled 
from unique devices for both GPS and LBS Data Sources, and analyzed the resulting generated trips. 

Impoverishing LBS samples by device is different from impoverishing the LBS data samples by trips. 
Devices correspond to smartphones, and may be related to app usage depending on the vendor, and 
thus can contribute a single trip, or thousands of trips to the sample over time. Reducing the number 
of devices included in the sample, as opposed to trips, better reflects potential variation in the field of 
data vendors. Some data vendors may have a very large number of devices included in their sample, 
while others might have fewer devices. The number of trips generated from each device may be 
independent of whether the device sample is small or large. 

In order to randomly reduce the sample of devices, subsets of devices were selected from the base 
data source (shown in earlier sections to be the LBS source). First, 66% of the total device sample 
from each month of the calendar year was randomly selected, then 33% followed by 11%. By 
reducing the device sample, trip penetration rates also decreased. The resulting range of reduced 
sample trip penetration is described in Table I1. Penetration rates are calculated as the average daily 
Probe Data trip sample at a counter location divided by the AADT reported at the same counter.  
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Table I1: Distribution of sample trip penetration by different device sampling groups 

Trip penetration rate (sampled trip count divided by traffic volume count) 

Avg Monthly 
Devices 

10th percentile 25th percentile 50th percentile 75th percentile 

28 million (100%) 2.76% 4.00% 5.31% 6.69% 

18 million (66%) 1.81% 2.66% 3.54% 4.46% 

9 million (33%) 0.89% 1.32% 1.76% 2.23% 

3 million (11%) 0.27% 0.43% 0.58% 0.74% 

Specifically, the combined LBS and GPS (commercial and personal) data source used to build the 
Probe Data National AADT model had a median sample penetration of 5.31%. When the total device 
IDs sampled was reduced to 11% of total, the resulting trip sample penetration dropped to a median 
of 0.58%. This means that when the sample was reduced to about 3 million devices a month, for a 
road with AADT of 1000, only observe 5 trips on an average day would be observed. Thus, although 
trips were impoverished by device IDs, there was a corresponding reduction in sampled trips.  

Our full reference data of 4,232 permanent counter stations from the lower 48 states across the U.S. 
were aggregated for this analysis. Data was aggregated across all months in 2019 and compared to 
2019 AADT values reported by the permanent counters. See section ‘AADT Estimation’ for details on 
building, training, and validating the Probe Data National AADT model. For comparisons in this 
chapter, the Extreme Gradient Boosted model fit to all calibration sites was used as reference, as 
opposed blending results with the additional model fit to only small roads. This was chosen to 
minimize complexity of analysis. 

Probe Data National AADT Model Error Comparison Across Impoverished Trips 
While the overall model results are robust to impoverishment, (Table id1), when results are isolated 
by road size, it becomes evident that smaller roads are impacted more severely by the reductions in 
trip samples (Figure I2).  Reducing the sample trips has the largest impact on small roads, which is 
expected, as a sample trip is less likely to be observed on a given day.   
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Table id1: Error results broken down by device impoverishment 

Group Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

100% of Devices 0.94 30.26 10.91 33.87 10.98 15.68 

66% of Devices 0.96 47.64 11.34 35.67 11.31 16.20 

33% of Devices 0.85 48.43 11.25 37.15 11.63 15.78 

11% of Devices 0.87 51.95 11.88 38.87 12.14 16.46 

FigureI2: MAPE for 2019 AADT estimation across reductions in sample of unique device IDs across 
AADT groupings. Error bars represent standard error of the mean. 

For large roads, reductions in the device sample may not have a dramatic impact on the quality of 
AADT estimates assuming good ML techniques. The device sample was reduced to 11% of the 
original size (average of 2.8 million devices monthly), with little change in model performance. For 
large roads, this suggests that one can get fairly accurate estimates of road volume with a lower 
proportion of devices, and by extension, sampled trips. It is likely that if this experiment were run to 
predict MADT, or daily or hourly volumes, that the smaller sample size would have a much more 
dramatic impact on volume estimation. 

In contrast to larger roads, accuracy on smaller roads is more sensitive to a reduction in device 
sample. In order to maintain high accuracy on small roads, the largest sample of devices possible is 
necessary, and one that is representative across factors such as geography, time of day, purpose, 
etc. Only with such representative sampling can the model fully take advantage of other factors 
(weather, speed, urban v rural etc.) to create an accurate estimate. When the sample trips are 
reduced to only a few devices, it impedes the model’s ability to adjust for the noise and bias in this 
Probe Data -- or any other source of data.  



   Non-Traditional Methods to Obtain Annual Average Daily Traffic │ Page 50 

This report shows that sample trip penetrations under 1% tend to result in substantially worse model 
error for small roads, as compared to traditional factoring methods. Further work is needed to 
generate more detailed targets on necessary trip penetration across varying road sizes in order to 
generate the best estimations of road volume. Finally, how representative each trip is may vary from 
supplier to supplier. Different suppliers may have bias in the type of individuals they are able to gather 
trips from - such socioeconomic status or travel behavior (for a broader characterization, see 
StreetLight, 2020). For example, a supplier may track trips via a weather application installed only on 
iPhones. This may be vulnerable to biasing toward trip collection during unusual weather patterns, 
and individuals of a specific demographic. Thus, when choosing a supplier for trip samples, one 
needs to pay attention not just to the total number of unique individuals sampled, and resulting total 
trips, but one also needs to perform checks to ensure that the sample trips have even coverage both 
spatially and across time.  

Effects of Reduced Ping Rate and Spatial Accuracy on MADT Model 
Accuracy - Cellular Data Simulation 

There are a variety of methods by which Probe Data can collect a sample of trips from travelers, 
including from LBS sources (mobile apps), GPS systems, or from cellular devices, where location is 
inferred by nearby cellular towers. The main signal of these sources consisted of pings, which record 
the time, location in terms of a latitude and longitude, and a unique ID to connect the information to a 
unique traveler. Probe Data sources have a broad range of accuracy and precision for the location 
data, depending on both the mechanisms by which location is derived and also by provider, for 
frequently the location data is collected. This section seeks to explore how spatial and temporal 
precision of pings impacts the ability to create a model for monthly average daily traffic.  

Method 

To describe how temporal and spatial precision impact AADT estimation, LBS data was reduced both 
its temporal and spatial precision in order to mimic the variance in quality that exists among different 
sources of Probe Data, and between different data providers. to the goal was to mimic temporal and 
spatial precision of data collected from cellular networks and low frequency-pinging apps (such as 
who use spatial features for advertising only). 

Probe Data trips derived from LBS sources are composed of pings that record the time and location 
information collected from US smartphone devices. The pings are normally located around the road 
segments with spatial errors. To transform the discrete pings into trips, the pings are stitched into 
lines and the trip locking algorithm maps the line geometries onto appropriate OSM road segments. 
Impoverished trips were constructed from a set of LBS trips collected from October 2019. October 
was chosen as a representative month since during a typical year, travel is assumed to be 
representative of school and work trips. Note that it was found that the MADT model performs with 
similar accuracy for the 2019 AADT model.  

The baseline ping rate of the LBS source is 1-3 minutes, and the baseline spatial accuracy of these 
pings is 5-20 meters. This is referred to this as Tier 1, and for these experiments it represents the 
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current ‘best in class’ Probe Data for deriving Probe Data trips (Table I1). Impoverished trips are 
created by reducing the ping rate and spatial accuracy from the baseline to different tiers. The 
impoverished pings were then mapped onto the OSM road segments through the same trip locking 
algorithm to generate synthetic trips. Five total combinations of trips with varying combinations of 
spatial and temporal precision were compared: PRt1 + SAt2, PRt1 + SAt3, PRt2 + SAt1, PRt2 + 
SAt3, and PRt1 + SAt1 as the baseline. 

Table I1. Different tiers of reduced ping rate and spatial accuracy. 

Tier number Ping rate (PR) Spatial accuracy (SA) 

1 1 - 3 minutes (PRt1) 5 - 20 meters (SAt1) 

2 5 - 15 minutes (PRt2) 50 - 500 meters (SAt2) 

3 500 - 1000 meters (SAt3) 

*Note that this scenario was not considered because the range of ping rates between 15 and 60
minutes is not realistic among any prevailing Probe Data sources.

Impact of Spatial and Temporal Impoverishment of Pings on MADT Model Accuracy 

The descriptive analysis of different combinations of impoverished trips is shown in Table 2, where 
the correlation measures the linear relationship between the permanent counter MADT and 
impoverished LBS trips, and the penetration instability is measured by the coefficient of variation of 
the penetration rate. Among the statistics, both correlation and penetration instability represent the 
quality of impoverished trips, and both the sample count and penetration rate represent the quantity 
of impoverished trips. As can be seen, (1) when only reducing the ping rate or spatial accuracy to Tier 
2, the quantity is reduced but the quality is not affected; (2) the quality is significantly affected when 
reducing the spatial accuracy to Tier 3; (3) however, holding the spatial accuracy at Tier 3, both the 
quality and quantity are improved when reducing the ping rate to Tier 2. 

Table 2. Descriptive analysis of impoverished trips with reduced ping rate and spatial accuracy. 

Group Correlation Sample count 
average 

Penetration 
average 

Penetration 
instability 

 PR (1-3min) + SA (5-20meters) 0.96 27,474 3.63% 0.389 

(1-3min) + (50 - 500 meters) 0.94 19,934 2.70% 0.49 

(1-3min) + (500 - 1000 meters) 0.71 6,846 0.88% 1.88 

(5 - 15 minutes) +( 5 - 20 meters) 0.96 16,467 2.17% 0.39 

(5 - 15 minutes) + (500 - 1000 meters) 0.90 10,030 0.89% 1.12 

These impoverished trips were then used as the primary input to fit a Random Forest model for 2019 
MADT. The same features and calibration set of permanent counters were used as with the National 
AADT model. Through the 10-fold stratified cross-validation, the validation accuracy and precision are 
shown in Table 3. Similar to the descriptive statistics, the validation errors increase as the spatial 
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accuracy reduces, and the model fails to provide valid MADT estimates when the spatial accuracy 
reduces to Tier 3. Interestingly, when the ping rate reduces from Tier 1 to Tier 2, the metrics are not 
significantly affected. This implies an important finding for implementation - that increasing the 
precision and ping rate (which some suppliers may offer at significantly higher cost) will probably not 
improve AADT estimation accuracy.  

Table 3. Validation metrics of impoverished trips with reduced ping rate and spatial accuracy. 

Group Median 
Bias (%) 

95% TCE 
Error Range 

(%) 

68th Abs. 
Percentile 

(%) 

95th Abs. 
Percentile 

(%) 

MAPE NRMSE 

(1-3min) + (5 -20meters) 2.23 57.31 16.09 44.71 14.93 19.61 

(1-3min) + (50 - 500 meters) 1.86 78.99 20.57 58.54 19.86 28.31 

(1-3min) + (500 - 1000 meters) 5.36 263.64 41.90 185.19 50.93 57.41 

(5 - 15 minutes) +( 5 - 20 meters) 2.18 57.92 16.35 46.81 15.33 19.78 

(5 - 15 minutes) + (500 - 1000 meters) 4.06 147.85 34.32 109.94 34.24 39.00 

The MAPE along with the 95% confidence interval of absolute percentage errors is shown in Figure 1. 
It can be clearly seen that even though reducing the ping rate or spatial accuracy to Tier 2, the model 
can still provide promising results across all different sizes of roads. Surprisingly, when spatial 
precision was at the lowest tier (precision of 500-1000 meters), Probe Data sourced trips were more 
predictive of MADT when they pinged less often (Tier 2, 5-15 minutes, purple bar) than baseline (Tier 
1, 1-3 minutes, green bar). The current locking algorithms naturally have difficulty assigning pings to a 
likely road when the spatial accuracy is low. Therefore, the locking algorithm had an easier time 
assigning a trip to the road when it only had to reconcile a few very imprecise pings. When the locking 
algorithm is given very imprecise frequent pings, it creates nonsensical trips that correspondingly do 
not predict MADT trends well along roads. 
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Figure 1. MAPE and 95% CI of absolute percentage errors among different sizes of roads. Error bars 
represent the 95th confidence interval of the mean. 

As spatial accuracy had the largest impact of Probe Data model quality, it was further investigated if 
the effects were unique to urban or rural areas (Table 4). As visible across metrics, sites from both 
urban and rural areas across the board show similar model error, with a trend toward slightly higher 
error in urban areas. This may be due to increased complexity in road networks, which could result in 
more trips being routed incorrectly across the denser roads, given noisier location data. 

Table 4. Comparison of Probe Data AADT model error between urban and rural sites when spatial 
accuracy is reduced to 50-500 meters (holding ping rate at every 1-3 min). This spatial accuracy may 
be considered representative of data from cell-towers.  

Group Median Bias 
(%) 

95% TCE Error 
Range (%) 

68th Abs 
Percentile (%) 

95th Abs. 
Percentile (%) MAPE NRMSE 

Urban 2.31 80.65 21.78 60.54 20.57 25.47 

Rural 1.48 76.99 19.6 56.39 19.22 23.99 

Conclusion and discussion 

Probe Data trips remained highly predictive of MADT even when ping rate was substantially reduced. 
Reducing the ping rate from 1 - 3 to 5 - 20 minutes or reducing the spatial accuracy from 5 - 20 to 50 - 
500 meters mainly impacted the quantity of LBS trips collected from the road segments, not the 
quality. Thus, the model tested can still provide promising MADT estimation accuracy and precision 
across any sizes of roads. This is likely attributed to the strength of the locking algorithm, which is 
able to stitch together a most likely trip path with very little information. Thus, reducing ping frequency 
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essentially reduces the observed sample trip penetration, but not necessarily the quality of the trips 
themselves.  

Among the dimensions of spatial accuracy, when spatial accuracy was reduced to 500 - 1000 meters, 
most of the trips failed to be locked to the correct OSM road segments, and MADT model error 
concurrently had high error. Based on this current study, use of Probe Data sources with low spatial 
accuracy (such as data derived from cellular networks) is not recommended.  Interestingly, holding 
the spatial accuracy at the worst scenario (500 - 1000 meters), a reduced ping rate from 1 - 3 to 5 - 
20 minutes resulted in an improved quality of trips, even though the model still fails to provide 
promising results. The reason is that, for the LBS trips with large spatial errors, smaller ping rate 
would make the erroneous pings less clustered, provide clearer trajectories, and thus improve the 
possibility of accurate trip locking. 

Although reasonable results were achieved with low ping rate, a limitation of this study may be that 
most of the study permanent counter stations are located on highways or primary roads in near 
sparse road networks. Thus, when pings are sampled infrequently, or sampled infrequently with low 
precision, the algorithm was still able to assign a trip to the correct road path. However, it's unclear if 
these results would hold in a dense urban area. In a region where many trip distances may be very 
short, such as with local errands, there may be bias in trips kept after impoverishment, which would 
have impacted results more. Similarly, in an urban area there may be more possible routes between 
two pings, and thus impoverishment of ping rate may be more likely to cause error in trip routing to 
the wrong route than was observed in the study sites. The impact of spatial and temporal accuracy on 
trip prediction needs to be further explored with an emphasis on dense urban areas.  

This implies an important finding for implementation - that increasing the precision and ping rate 
(which some suppliers may offer at significantly higher cost) will probably not improve AADT 
estimation accuracy.  

Impact of Reduced Reference Counters on AADT estimation 

When estimating AADT across the U.S. using Probe Data, it is assumed that the quantity and quality 
of permanent counters for calibration will impact the estimation accuracy. The number of stations 
determines the quantity, while the geographic distribution of the counters determines the quality, 
assuming the traffic volumes provided by the permanent counters are close to 100% accurate. 

The following study demonstrates how the Probe Data National AADT Model estimates are affected 
by a reduction in the quantity and quality of permanent counters available to train a model. This aims 
to determine the minimum required quantity and quality of permanent counters in order to maintain 
the acceptable AADT estimation. For this analysis, 4,232 permanent counter stations from 48 states 
across the U.S. were aggregated. Data was aggregated across all months in 2019 and compared to 
2019 AADT values reported by the permanent counters, as in prior sections. Although greatest 
performance for AADT for small roads may be achieved by utilizing two separately fit models, for this 
analysis, a single Probe Data model was fit to the Extreme Gradient Boosting algorithm from all 
calibration sites, and used for comparisons (as described in Chapter 3). This was done to minimize 
complexity of analysis.  
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The first test examines what happens to the quality of AADT estimates from the National AADT Model 
as the total quantity of permanent counters are reduced. The National AADT Model was fit to either 
10%, 20%, 33%, 50%, 80% or 90% of the total 4,232 unique AADT locations. All of the metrics are 
evaluated using k (10) folds cross validation, which means that the National AADT Model was trained 
on random folds of 90% of the total number of reference permanent counters. Thus, in this reports, 
the 90% impoverishment group represents the ‘baseline’ model for comparison. Equal 
impoverishment was checked across states and regions. This will help determine how much counter 
sample is required in order to achieve reliable AADT estimates. 

The second test examines what happens to the quality of AADT estimates when counters are only 
selected from specific regions within the U.S. To do this, the continental U.S. was divided into five 
regions representing the West, North Central, South Gulf, South Atlantic and Northeast (Figure R1). 

Figure R1.  Five Defined Regions of the United States 

Regional combinations were tested to determine whether regional biases or differences in trip 
penetration rates would impact the quality of the model. This will help determine how geographically 
dispersed the sample of permanent counters must be in order to achieve reliable AADT estimates. 

Summary of Results 

Table S1 illustrates the performance of the AADT model as the number of available stations are 
diminished incrementally. As expected, NRMSE and MAPE values degrade as the number of stations 
is reduced. Figure S2 illustrates how errors also relate to road size. As roads become smaller, the 
impact of station impoverishment is more significant. 



   Non-Traditional Methods to Obtain Annual Average Daily Traffic │ Page 56 

Table S1: Comparison of National Probe Data AADT Model AADT error across different groups of 
station impoverishment. The National Probe Data AADT Model was evaluated on 90% of total 
stations as a result of 10-fold cross validation. 

Group Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

National Probe Data 
Model (90%)  0.94 30.26 10.91 33.87 10.98 15.68 

80% of stations 1.03 47.44 11.41 36.92 11.52 16.25 

67% of stations 0.89 48.2 11.82 38.53 11.85 17.00 

50% of stations 1.23 48.6 12.08 38.88 12.13 17.75 

33% of stations 1.19 51.23 13.29 41.07 13.14 21.02 

20% of stations 1.38 59.54 14.51 45.72 14.63 24.32 

10% of stations 1.61 65.02 16.54 49.00 16.57 27.05 

As expected, NRMSE and MAPE values degrade as the number of stations is reduced. The image 
below illustrates how errors also relate to road size. As roads become smaller, the impact of station 
impoverishment is more significant. 

Figure S2: Comparison of National Probe Data AADT Model AADT error across different groups of 
station impoverishment by road volume. Error bars represent standard error of the mean. 
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One-State Calibration 

The results suggest that the spread of data (permanent sites) across a region is essentially the best 
estimate. However, if a location has a rich reservoir of permanent data, could a good model be 
created from local data alone? To test this proof of concept, two additional models were fit to estimate 
AADT for Texas. One model was fit with only permanent counters from Texas (n = 245), and the 
second was only fit with permanent counters from the south gulf region (n = 625).  Texas was chosen 
for this representative study because the state maintains a large number of permanent counters (245 
stations) across a wide range of AADT volumes. Methods for collecting features, fitting the extreme 
gradient boosted model, and testing error were the same as with the National AADT model. The 
results of AADT estimations for Texas for the National AADT model compared are described in Table 
S3, and a depiction of how error varied across road volume is visualized in Figure S3. 

Table S3. Comparison of Texas AADT estimation error between three different models trained on 
different sets of permanent counter groups. Texas AADT was tested on a model fit with either Texas 
counters (state model), counters from the south gulf states (regional model), or the full national 
permanent counter set. 

Group Median 
(Bias) 

68th Percentile 
Absolute 
Percent Error 

95th Percentile 
Absolute 
Percent Error 

MAPE NRMSE 

National Probe Data Model 0.16 9.65 34.64 9.8 8.21 

Regional Model (south gulf) -1.33 15.92 42.77 15.5 26.78 

State model (Texas) 0.97 18.79 48.46 16.65 28.23 

Figure S4: Comparison of AADT error for estimation of 2019 AADT in Texas for models trained with 
permanent counters within the state, region or nation across road volume 
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A National AADT model, trained from counters across the entire United States resulted in 
substantially less error than regional models fit on either only Texas permanent counters, or 
permanent counters from Texas’ region. These results suggest that although local calibration 
information is useful for fitting an AADT model, a wide breadth of example calibration locations is also 
important for achieving accurate AADT estimations.  

Conclusion 

In summary, it should be noted that impoverishing the permanent counter data by regions appears to 
have a more significant impact on results than random proportional impoverishment. Therefore, in 
modeling AADT with Probe Data, it may be more beneficial to have regional diversity and fewer 
counter locations as opposed to a lot of permanent counters in a single region within the U.S.  

If one is estimating AADT for a counter within a region in which broad calibration data exists, results 
will likely be strong. But when picking reference stations for calibration an AADT model, it is 
recommended that the locations be spread out to cover as many different road types and regions as 
possible to ensure the sample is representative and not biased toward a specific region or road type. 
In practical terms, if a state has the choice of investing in more local permanent stations or using 
other states’ pre-existing permanent counter data for calibration, using the other states’ permanent 
counter location will be more useful (and probably far less expensive). 

Conclusions: Estimation of AADT With Probe Data 

This report presents results of a National Probe Data AADT Model for 2019.  This model paradigm 
can produce volume estimates for any road across the United States. When compared to errors from 
short term count expansion, AADT estimates from Probe Data are competitive for road volumes 
above 2000 AADT and below 500 AADT. For smaller roads overall, AADT are within useful bounds 
for most locations (as represented by MAPE), even if the model has higher error than short term 
expansion methods (as evaluated by the 95th TCE error range). Many states are Probe Data 
competitive with accuracy achieved by same-year, appropriately factored temporary count expansion 
when evaluated by MAPE (Table S4). For most roadways across the United States, particularly small 
and rural roads, there are no permanent counters nor short term counts available at the precise 
location for deriving volume estimates. For these roadways especially, Probe Data presents a 
powerful tool for obtaining useful volume estimations.  

For any model, the most important variable is that the sample data being used is representative of the 
population. So, if there is uneven sampling of trips, such as by bias for certain regions of 
demographics by the Probe Data provider, that will impact model error. However, if the model inputs 
remain representative, you can decimate both the percentage of trips sampled (see impoverishment 
of trips section), and the time period over which the data is trained on fairly substantially (see 
impoverishment of months), and still achieve a usable model of AADT.  

AADT models based on Probe Data also have a high potential to estimate even beyond reported in 
this study. The AADT model in the current study was based on yearly counts of Probe Data trips. 
However, it's possible that a bottom-up based model, where AADT is calculated from estimates of 
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ADT or MADT may have even less error. Additionally, a subset of states had much less error. For 
states with a robust collection of reference short term and permanent counters, a specific model fit to 
their region would likely have even lower error than found in this study. More research is needed to 
further explore how Probe Data AADT error can be further improved with regionally tuned models.  
Further research is also needed to further characterize improvements in model accuracy from a 
hybrid approach, which may incorporate a blend of short-term count strategies with Probe Data, 
which was outside the scope of this study.   

And, of course, Probe Data offers the ability to append additional characteristics, not just monthly and 
daily variation across the year (as discussed in the next section) but also demographics, trip purpose, 
vehicle type and other factors which may enhance the application of the AADT collection process. 
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Chapter 5: Estimation of MADT using Probe Data 
The National AADT Model, as described earlier, can also be expanded to account for unique months 
of the year in order to generate an estimate of monthly average daily traffic (MADT). Although MADT 
could be derived from the month of day factors discussed later, with Probe Data MADT can also be 
estimated directly. 

Method 

MADT estimates were generated using the same predictive and labeled data as the National AADT 
method. For a subset of permanent counters, 2020 monthly volumes were collected from MS2, a 
company with software that stores and processes states’ count data, and other online sources. MADT 
models were also fit for early 2020 months, in order to evaluate model performance during highly 
atypical travel patterns, in light of the COVID-19 pandemic, which substantially altered travel patterns 
across the United States in spring of 2020. The predictive features considered mirrored the National 
AADT model, but they were fit to the monthly average daily traffic, rather than the yearly average. A 
separate model for each month was fit to a Random Forest algorithm.  MADT was calculated for each 
month from all permanent counter locations based on the equation below:  

where 

MADTm = monthly average daily traffic for month m
VOL th th

ihjm = total traffic volume for i  occurrence of the h  hour of day within jth day of week 
during the mth month

i = occurrence of a particular hour of day within a particular day of the week in a particular 
month (i=1,...,nhjm) for which traffic volume is available

h = hour of the day (h=1,2,...,24) - or other temporal interval
j = day of the week (j=1,2,...,7)
m = month (m=1,...,12)
nhjm = the number of times the hth hour of day within the jth day of week during the mth 

month has available traffic volume (nhjm ranges from 1 to 5 depending on hour of day, 
day of week, month and data availability)

w th th
jm = the weighting for the number of times the j  day of week occurs during the m  month 

(either 4 of 5); the sum of the weights in the denominator is the number of calendar 
days in the month (i.e., 28, 29, 30, or 31)
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Results 

Table 1 depicts the errors of the MADT model, by road size for all months in 2019. As with the 
National AADT model, errors increase as the road size decreases. Errors across all metrics are 
higher than the National AADT model. However, for roads over 2000 AADT, MAPE remains under 
20%. 

Table 1: MADT model error by road size 

Road Size Bin Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs 
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

A: 0 – 499 25.10 153.29 46.21 123.91 39.25 58.79 

B: 500 - 1,999 5.89 103.96 25.67 78.94 24.85 36.40 

C: 2,000 - 4,999 -1.48 46.49 20.33 42.20 16.80 21.47 

D: 5,000 - 9,999 -1.26 40.76 17.82 38.50 14.77 19.56 

E: 10,000 - 19,999 -1.31 37.77 15.94 34.84 13.52 18.24 

F: 20,000 - 34,999 -1.97 31.40 13.89 29.16 12.13 18.21 

G: 35,000 - 54,999 0.30 33.73 12.56 29.15 10.61 14.06 

H: 55,000 - 84,999 -0.97 25.00 11.43 23.51 9.44 12.57 

I: 85,000 - 124,999 0.62 29.52 11.54 25.16 9.91 14.62 

J: 125,000 + -2.08 21.26 10.57 20.96 8.68 11.87 

In addition to understanding performance on roads of various sizes, it’s important to consider the 
performance of the model across months of the year. The goal is that the model would perform well 
across all calendar months, without monthly or seasonal biases. The following table (Table 2) 
illustrates those results for all months in 2019.The 95% percentile absolute error trends higher for 
summer months (June, July, August). As the Probe Data AADT model is a single national model 
made to support all regions, this may be due to variance in summer seasonality across locations that 
can be improved with a regionally calibrated model.  
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Table 2: MADT error by month in 2019 

Month Number 
(2019) 

Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

1 -10.50 36.09 16.69 33.35 14.33 24.69 

2 -14.23 40.49 19.70 36.34 16.85 28.16 

3 -10.69 36.74 16.89 33.06 14.49 22.44 

4 -0.76 36.69 11.07 30.81 10.44 16.44 

5 2.49 42.03 11.31 33.43 10.99 17.82 

6 7.89 55.11 15.75 41.65 14.95 22.26 

7 13.06 67.09 21.19 52.79 19.48 23.80 

8 11.09 61.54 19.17 49.80 17.60 24.16 

9 8.15 52.48 15.93 41.21 14.84 21.43 

10 -0.60 36.39 11.34 31.40 10.55 15.17 

11 -4.04 32.30 12.47 29.93 11.11 17.80 

12 -8.30 36.04 15.36 33.24 13.26 20.51 

As mentioned earlier, the MADT model can be used to estimate traffic beyond the 2019 year, and 
could theoretically be updated on a monthly basis, or as frequently as data vendors supply updates. It 
should be noted that the model is able to monthly capture trends, even in unusual months. For 
example, in spring 2020 traffic patterns dramatically shifted (and primarily decreased) due to the 
COVID-19 pandemic. As seen in Table 3 below, these months still reflect fluctuation and range of 
errors consistent with “normal” months like those in 2019. 

Table 3: MADT error by month in spring 2020. April and May were marked by severe reductions in 
road volume across the united states in response to the covid-19 pandemic. 

Month Number 
(2020) 

Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs 
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

3 -2.41 35.74 14.21 33.05 12.64 20.29 

4 4.69 55.83 17.18 43.24 15.85 26.47 

5 5.07 61.11 17.51 46.92 16.70 26.79 
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A time series example at one location over time can be a useful way to visualize how the MADT 
model captures trends over time.  Figure 1 shows MADT estimates over time for a representative 
permanent counter station in Massachusetts. Both the counter and the model reflect the steep decline 
in vehicle trips at the facility between March and May 2020. 

Figure: Time series of MADT compared to estimated MADT for a counter facility from January 2019 
through August 2020.  

These results are promising, and indicate the power of Probe Data for vehicle estimates on a monthly 
basis, even in unusual circumstances. Probe Data captures dramatic changes in traffic volume, 
without the need for having any specific equipment installed ahead of time to measure changes. This 
is a very unique benefit of Probe Data, as compared to short term counters. Especially for locations 
with atypical trends, Probe Data will outperform short term counter expansion methods for MADT. 
Future research is needed to determine if further improvements can be obtained with custom models 
built for unique regions, such as cities or states.  
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Chapter 6: Estimation of Daily Traffic Using Probe Data 
- Including Special Events
In addition to modeling average annual daily traffic, there is value in exploring whether average daily 
traffic can also be estimated using Probe Data. A value of Probe Data, over short-term counts, is that 
observations of trips are taken 24 hours a day, 365 days a year, and thus have the potential to be 
sensitive to unusual events and trends such as holidays, special events, work zone periods and 
more. A model to predict ADT was created for the months of March, June, August and October 2019. 
These months were chosen are representative months across the seasons in the year. In addition to 
estimating ADT for the selected time period, another important component and goal was to estimate 
traffic during special events, or periods of construction or unusual weather.  

Methods 

Permanent counters for obtaining daily traffic volumes were obtained from the FHWA Traffic 
Monitoring Analysis System and MS2, as described in methods for the National AADT model. In 
selecting permanent counters for training, it was required that each counter used had a daily 
observation rate of at least 80% across the four selected calendar months (this method differs from 
the FHWA TMG recommendations.) Given the ADT model is designed to estimate daily traffic across 
a subset of training locations, the sample size of the training data increases 123 times (daily for the 
four selected months). This makes the model tuning more time consuming.  

In total, 19 features were selected for the ADT model. In addition to standard features utilized for the 
base AADT model, some additional features were explored. Considering the strong oscillation (high 
penetration variance) of daily LBS and GPS samples, the preceding and succeeding daily and day of 
week counts were captured to improve the estimation accuracy. Among the time-related features, day 
of year and day of week were also selected.  

After testing different models, a Random Forest model was chosen due to its computational efficiency 
and strength on lower volume facilities. Metrics were collected using k(10) folds stratified cross 
validation, using the same methods as detailed in the National AADT model.  

Summary of Results 

Table 1 details the model error from an ADT model. As observed with the National AADT model, high 
volume facilities have less error and bias than those on lower volume facilities.  
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Table 1: Comparison of ADT model error across AADT volume classes 

Road Size Bin Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs.  
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

A: 0 – 499 39.4 149.62 57.69 120.82 48.96 60.37 

B: 500 - 1,999 11.2 75.99 28.78 63.85 24.31 33.06 

C: 2,000 - 4,999 3.28 50.81 20.61 44.74 17.26 24.13 

D: 5,000 - 9,999 2.03 39.53 16.43 36.29 13.86 19.79 

E: 10,000 - 19,999 1.27 32.85 13.23 30.1 11.23 15.91 

F: 20,000 - 34,999 -0.2 27.51 10.64 25.72 9.25 13.2 

G: 35,000 - 54,999 0.3 26.96 10.49 25.37 9.05 12.3 

H: 55,000 - 84,999 -0.88 23.07 9.32 22.5 8.01 10.82 

I: 85,000 - 124,999 -2.48 22.65 9.58 21.35 8.08 10.41 

J: 125,000 + -3.22 20.47 10.14 20.12 8.17 11.15 

Figure 1 depicts the resulting daily volume estimations for a single road, as an example of a typical 
result on a medium sized road. Note the close alignment of daily trends throughout the days of week. 
The daily model also captured the seasonal changes of lower volume in March and October as 
compared to June.   

Figure 1. Time series of ADT model estimations for an example permanent counter as compared to 
daily counts for selected months in 2019. Directional AADT is 4,116. Horizontal lines mark a break in 
the time series to a new month: March, July, August, October 2019. 

Daily trends may vary significantly from the norm due to special events related to weather, 
construction or holidays. In order to evaluate the model’s ability to estimate special events, it was 
necessary to know when and where special events occurred. Fifty-five sites across both Texas and 
Nebraska reported special events across the four-month data period. This resulted in 330 special 
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event dates and 7,311 normal dates available for comparison. Table 2 contrasts the error in daily 
volume estimates between normal and tagged unique days. Results are promising, with errors for 
special event days are very close to errors for normal traffic days. Roads are evaluated by high, 
medium and low categories due to the limited number of special event days in total.  

Table 2: Comparison of ADT model error between special events and normal traffic days across low, 
medium and high-volume roads. 

Road Size Bin Data type Count (days) MAPE NRMSE 
Low (0 - 4,999) Special events 56 51.58 35.38 
Low (0 - 4,999) Normal traffic 2604 35.21 27.89 
Medium (5,000 - 54,999) Special events 245 9.21 15.45 
Medium (5,000 - 54,999) Normal traffic 4047 11.94 16.65 
High (55,000 +) Special events 29 15.47 22.74 
High (55,000 +) Normal traffic 660 14.52 21.29 

In order to give more color to the metrics above, Figure 2 illustrates the daily permanent counter data 
compared to the model’s estimated ADT for an example event in Nebraska. Permanent counter data 
is represented in blue (circles). Estimated ADT for normal traffic days is represented in orange (stars) 
and the estimated ADT for special events (related to weather events and construction) are highlighted 
in green (squares). Comparison of traffic volumes between the permanent counter and the Probe 
Data modeled is detailed in table 3. Note the model correctly dips as the road traffic stopped at the 
advent of a blizzard on March 13th and 14th, with surprisingly low percent error between the 
permanent counter and model. Interestingly, for this location, ADT is systemically slightly 
underestimated, including for the rebound in traffic following the blizzard. But as is apparently in the 
shape of the timeseries graph (Figure 2), the Probe Data model does capture day of week time trends 
well. 

Figure 2: Time series of ADT model estimates for a single Nebraska station with reported blizzard on 
March 13 and 14 with post-blizzard bump on March 15. Horizontal lines mark the days directly before 
the blizzard, and after the post-blizzard rebound. Model estimates (red with circles) are compared to 
daily counts from a permanent counter (blue with squares). Location represents a medium size road, 
with an AADT of 22,846. 
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Table 3. Probe Data modeled estimates for daily traffic volumes for site 000054, surrounding a 
blizzard in 2019. 

Event Day 
ADT (Permanent 

Count) 
Model 

Estimate 
Percent 

Error 

None 2019-03-11 18782 15955 -15.05%

none 2019-03-12 18708 16487 -11.87%

blizzard 2019-03-13 14442 14695 1.75% 

blizzard 2019-03-14 3149 3600 14.32% 

post-blizzard 2019-03-15 31238 24963 -20.09%

none 2019-03-16 28990 24776 -14.54%

none 2019-03-17 23128 22402 -3.14%

A similar location in Nebraska also reported a dip in volume due to a blizzard, and was followed by a 
flooding detour for March 20 - Dec 31 (Figure 3), which routed more traffic onto the road. Modeled 
estimates for the blizzard, and first few days of the flooding detour are detailed in Table 4. Percent 
error spikes for the first day of the blizzard event (224%). However, the total traffic volume for this day 
is very small (313 cars). If expressed as percent change from the prior day, March 14th had a 91% 
percent drop in traffic, while the Probe Data ADT model predicts a large drop as well (71%). The 
Probe Data model is sensitive to this large plummet in traffic outside of normal patterns, but at such 
small volumes of traffic, there is an overestimation. This overestimation for very small traffic volumes 
is also present in the Probe Data National AADT model, as discussed in detail in Chapter 3.  If you 
compare ADT estimates between early March and the rest of the year, you see the model 
consistently predicts substantially higher traffic during the detour period. 

Figure 3: Time series of ADT model estimations for a single Nebraska station with reported blizzard 
on March 13 and 14 followed by a flooding detour on Mar 20 - Dec 31.. Horizontal dashed lines mark 
the day before and prior to the blizzard event, and the beginning and end of the flooding detour. 
Model estimates are presented as orange dashed lines with star points, and are compared to 
‘est_adt_se’) traffic daily counts from a permanent counter (solid blue lines with circles). Site AADT is 
5,861. 
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Table 4. Probe Data modeled estimates for daily traffic volumes for site 000059, with both a reported 
blizzard and subsequent flooding detour. Example error for the first few days of the flooding detour is 
provided as a representative detail.   

Event Day 
ADT 

(Permanent Count) Model Estimate Percent Error 
none 2019-03-13 3902 3627 -7.04%

blizzard 2019-03-14 313 1017 224.77% 

blizzard 2019-03-15 1254 1599 27.55% 

none 2019-03-16 3367 3547 5.35% 

none 2019-03-17 3211 3141 -2.18%

none 2019-03-18 4808 3970 -17.42%

none 2019-03-19 5755 4796 -16.67%

flooding detour 2019-03-20 8143 7231 -11.20%

flooding detour 2019-03-21 8488 7024 -17.25%

flooding detour 2019-03-22 9525 7744 -18.70%

flooding detour 2019-03-23 7454 7036 -5.61%

flooding detour 2019-03-24 6353 5361 -15.62%

Table 5. Comparison of error between permanent counts and Probe Data ADT model for a typical or 
a-typical road conditions for site 000059.

Condition Count (days) NRMSE MAPE 

typical day 17 15.74 12.42 

blizzard or detour 106 9 8.41 

The selected time period of March, June, August and October 2019 did not include any federal 
holidays resulting in significant changes in expected travel behavior, however it did include Columbus 
Day or Indigenous People’s Day which occurred on Monday October 14th, 2019. This pattern may be 
slightly different from the Monday norm across the month of October. Figure 4 highlights an example 
site in Georgia, which had a small decrease in typical Monday traffic on the holiday. The decrease on 
Columbus Day itself is accurately captured by the Probe ADT model. However, the traffic volume the 
Monday after Columbus Day is slightly underestimated (overly influenced by the decrease the prior 
Monday). For this size of road, the change in traffic from a small event such as Columbus Day is 
within the range of estimation error for the model. This is a nice representative illustration of how the 
ability of an ADT model to robustly represent changes in traffic pattern is be related to both the site 
traffic volume (and therefore expected model error based on the road volume), and the magnitude of 
change in traffic the model needs to detect. Larger volume roads with smaller expected error can 
robustly model more nuanced changes in daily traffic, while the Probe Data ADT model may only be 
able to track large events for locations with very small road volumes  
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Figure 4: Time series of ADT volume estimations for a single Georgia counter location with Columbus 
Day activity on October 14, 2019. Vertical dashed lines indicate Sundays to aid in comparing across 
unique Mondays. The week before, of and after Columbus Day are presented as a time series. Model 
estimates are presented as the red line with circles, and compared to counts from a reference 
permanent counter (blue line with squares). Site AADT is 57,929. 

Table 6. Daily estimated traffic volume for the weeks of, prior to and post Columbus Day for site 
000256 in Georgia. The location saw a slight decrease in typical Monday traffic over the holiday. 

Event date_num ATR (permanent count) Model Estimate Percent Error 

Monday prior 2019-10-07 61054 62284 2.01% 
2019-10-08 62176 62957 1.26% 
2019-10-09 64239 65982 2.71% 
2019-10-10 66546 68911 3.55% 
2019-10-11 68413 73346 7.21% 
2019-10-12 50500 48412 -4.13%
2019-10-13 42999 43718 1.67% 

Columbus Day 2019-10-14 56500 55717 -1.39%
2019-10-15 59313 56946 -3.99%
2019-10-16 63127 60904 -3.52%
2019-10-17 65104 67113 3.09% 
2019-10-18 69924 72844 4.18% 
2019-10-19 45062 48029 6.59% 
2019-10-20 45368 45964 1.31% 

Monday post 2019-10-21 61703 57023 -7.59%
2019-10-22 61845 58540 -5.34%
2019-10-23 62971 62648 -0.51%
2019-10-24 67614 66118 -2.21%
2019-10-25 69803 75461 8.11% 
2019-10-26 50471 51956 2.94% 
2019-10-27 45236 48641 7.53% 
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Conclusions 

Overall, the ADT estimates trend very well with real world values. The model’s ability to capture daily 
variation prompted by special event days is particularly valuable and emphasizes the strength and 
reliability of Probe Data for vehicular estimates. The fact that the model trended well with special 
events caused by both weather, construction/detours, and holidays further builds confidence in the 
model’s ability to estimate daily values. 

The strength of the daily model is likely due to the quality of the Probe Data data sample, which is 
robust enough to react to traffic changes of various sizes, both increases and decreases. For low-
volume roads, the quality of the estimates get slightly affected, which is reasonable due to the 
instability of Probe Data trips on lower volume roads. As highlighted before, ADT highlights a very 
strong value of Probe Data. In the absence of physical sensors to record traffic, using Probe Data, the 
model was still able to capture atypical events and unusual trends.  
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Chapter 7: Estimation of Hourly Traffic Using Probe 
Data 
In addition to estimating annual and daily traffic, there’s a question of whether Probe Data can be 
used to estimate hourly traffic volumes. To explore this further, a model was created in order to 
estimate hourly traffic across a specific period of time. Based on available training data, Probe Data 
sourced from LBS and GPS (personal and commercial) pings was used to estimate hourly volumes 
across a representative two-week period from October 7th through October 20th in 2019. This period 
also includes a holiday, Columbus Day or Indigenous People’s Day which occurred on Monday 
October 14th. A small time period was created due to the computational time required to train such a 
large annual dataset. From the collection of permanent counters for 2019 obtained from TMAS and 
MS2, only counters with 100% hourly observation rates across all the 14 days are selected when 
training the model. 

In total, 18 features were selected for the ADT model. In addition to standard features utilized for the 
National AADT model, some additional features were explored. Considering the strong oscillation 
(high penetration variance) of daily LBS and GPS samples, the preceding and succeeding hourly and 
hour of day counts are captured to improve the estimation accuracy. Among the time-related features, 
day of week and hour were also selected.  

After testing different models, a Random Forest model was chosen due to its computational efficiency 
and strength on lower volume facilities.  

Summary of Results 

For roads with AADT above 5,000, as MAPE lies below 20% (Table 1).  For smaller roads under 5000 
AADT, error increases as volume decreases.  

Table 1: Error metrics for hourly traffic volume estimations by road size 

Road Size Bin Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Abs 
Percentile (%) 

95th Abs. 
Percentile (%) 

MAPE NRMSE 

A: 0 – 499 114.62 305.88 142.48 257.93 125.54 133.25 

B: 500 - 1,999 30.85 129.18 48.31 109.57 40.64 44.43 

C: 2,000 - 4,999 6.03 56.91 15.57 45.68 17.78 23.07 

D: 5,000 - 9,999 2.78 40.48 10.48 32.74 14.36 18.55 

E: 10,000 - 19,999 1.59 33.28 8.03 27.25 11.76 16.01 

F: 20,000 - 34,999 0.08 27.79 5.54 22.5 9.8 13.4 

G: 35,000 - 54,999 0.33 26.87 5.14 20.74 9.17 12.61 

H: 55,000 - 84,999 -1.77 28.7 2.91 17.72 8.82 12.35 

I: 85,000 - 124,999 -3.26 21.95 0.45 13.18 7.89 10.39 

J: 125,000 + -3.46 18.58 0.19 12.79 7.52 10.05 
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Figures 1, 2, and 3 below plot the hourly estimated volume (orange stars) for three example roads, in 
comparison to the counts from permanent counters (blue circles). Large and medium volume roads 
show consistent hourly trends across days, while the low volume road shows much less consistent 
results. For roads under 2000 AADT, the Probe Data trips are much “noisier”, and for smaller roads, 
specific hours of day may not even have any sampled trips at all. When roads are small enough, the 
model is unable to recreate the observed traffic patterns during the day. It may be of note that our 
example small road (Figure 3) lacks a strong daily pattern of traffic observed in the medium and high 
traffic roads too. There may be inherent randomness in the traffic for small roads that additionally 
makes translating the small Probe Data trip sample into a volume estimate.  

Figure 1: Time series for one week of hourly volume model estimates on a large volume road (AADT 
138,035, road size bin J) for Monday through Sunday. Modeled hourly estimates (red circles) are 
compared to permanent counts (blue squares). Note the consistent near overlap of values across 
hour of day, and between weekend and weekdays. Dashed lines indicate midnight to aid in reference 
of hour of day. 

Line graph showing the hourly volume in Wisconsin site 400004 based on the time of day for a 
permanent counter and a modeled estimate for Monday through Sunday from October 7th through 
October 13th. There are vertical lines at the midnight hours. The permanent counter and a modeled 
estimate are basically equal throughout the entire graph. The graph has a repeating pattern of volume 
through the hours for Monday through Friday. It increases in the morning up to about 11000 then 
decreases mid-day down to about 6500 then increases back up to about 10000 then decreases back 
down to about 2000 at midnight. The Saturday and Sunday volume increase and decrease in a bell 
shape starting at around 2000 increasing slowly up to a peak at about 9500 a little later then mid-day 
then decreases down to about 3000 at midnight.
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Table 2: Hourly volume estimates for one example day in the timeseries depicted in Figure 1, for a 
large volume road (AADT 138,035, road size bin J) in Wisconsin. For a list of all modeled estimates 
for this example counter, see the Appendix, Figure 1. 

Date Hour Reference Volume  
(permanent count) Modeled Estimate Percent Error 

2019-10-07 1 1635 1447 -11.47%

2019-10-07 2 866 960 10.88% 

2019-10-07 3 645 684 6.03% 

2019-10-07 4 867 1173 35.32% 

2019-10-07 5 1815 2010 10.74% 

2019-10-07 6 4731 4806 1.58% 

2019-10-07 7 8702 8456 -2.83%

2019-10-07 8 10860 9912 -8.73%

2019-10-07 9 9478 8679 -8.43%

2019-10-07 10 7585 7997 5.43% 

2019-10-07 11 7117 7482 5.12% 

2019-10-07 12 7131 6781 -4.91%

2019-10-07 13 7721 8156 5.63% 

2019-10-07 14 7689 7868 2.32% 

2019-10-07 15 9487 9437 -0.53%

2019-10-07 16 9984 9817 -1.67%

2019-10-07 17 8412 9058 7.68% 

2019-10-07 18 9167 9662 5.40% 

2019-10-07 19 8110 8029 -1.00%

2019-10-07 20 5970 6592 10.42% 

2019-10-07 21 4539 4992 9.99% 

2019-10-07 22 3957 3494 -11.69%

2019-10-07 23 2734 2613 -4.43%

2019-10-07 24 1986 1785 -10.11%
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Figure 2: Time series of hourly volume model estimates on a medium volume road (AADT 6688, road 
size bin D) for Monday through Sunday. Modeled hourly estimates (red circles) are compared to 
permanent counts (blue squares). Note the consistent near overlap of values across hour of day, and 
between weekend and weekdays. Dashed lines indicate midnight to aid in reference of hour of day. 

Table 3: Hourly volume estimates for one example day for the timeseries depicted in Figure 2, for a 
medium volume road (AADT 6688, road size bin D) in Michigan. For a list of all modeled estimates for 
this example counter, see the Appendix, Figure 2. 

Date Hour Reference Volume 
(permanent count) Modeled Estimate Percent Error 

2019-10-07 1 28 21 -25.81%

2019-10-07 2 23 26 13.33% 

2019-10-07 3 25 20 -19.78%

2019-10-07 4 90 40 -55.85%

2019-10-07 5 327 150 -54.00%

2019-10-07 6 415 293 -29.40%

2019-10-07 7 356 366 2.85% 

2019-10-07 8 466 468 0.48% 

2019-10-07 9 391 440 12.42% 

2019-10-07 10 311 444 42.77% 

2019-10-07 11 375 351 -6.50%

2019-10-07 12 387 445 14.97% 

2019-10-07 13 421 426 1.19% 

2019-10-07 14 510 500 -1.88%

2019-10-07 15 561 550 -1.98%

2019-10-07 16 665 620 -6.73%
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Date Hour Reference Volume 
(permanent count) Modeled Estimate Percent Error 

2019-10-07 17 619 630 1.80% 

2019-10-07 18 489 470 -3.88%

2019-10-07 19 342 374 9.43% 

2019-10-07 20 237 276 16.29% 

2019-10-07 21 205 215 4.91% 

2019-10-07 22 115 170 47.67% 

2019-10-07 23 83 113 35.80% 

2019-10-07 24 64 81 26.41% 

Figure 3: Time series of hourly volume model estimates on a low volume road (AADT 901, road size 
bin B) for Monday through Sunday. Modeled hourly estimates (red circles) are compared to 
permanent counts (blue squares). Note the consistent near overlap of values across hour of day, and 
between weekend and weekdays. Dashed lines indicate midnight to aid in reference of hour of day. 

Table 4: Hourly volume estimates for one example day in the timeseries depicted in Figure 3, for a 
large volume road (AADT 901, road size bin B) in Montana. For a list of all modeled estimates for this 
example counter, see the Appendix, Figure 3. 

Date Hour Reference Volume  
(permanent count) Modeled Estimate Percent Error 

2019-10-07 1 2 4 110.57% 

2019-10-07 2 3 4 40.38% 

2019-10-07 3 2 4 110.57% 

2019-10-07 4 1 4 321.13% 

2019-10-07 5 19 5 -74.21%

2019-10-07 6 44 17 -60.87%

2019-10-07 7 85 53 -38.11%
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Date Hour Reference Volume  
(permanent count) Modeled Estimate Percent Error 

2019-10-07 8 57 65 13.93% 

2019-10-07 9 62 114 83.84% 

2019-10-07 10 76 112 46.72% 

2019-10-07 11 52 100 91.70% 

2019-10-07 12 54 113 109.95% 

2019-10-07 13 58 113 94.61% 

2019-10-07 14 63 114 81.41% 

2019-10-07 15 74 114 54.44% 

2019-10-07 16 73 114 56.56% 

2019-10-07 17 81 114 41.10% 

2019-10-07 18 81 122 50.57% 

2019-10-07 19 88 116 31.72% 

2019-10-07 20 40 81 102.98% 

2019-10-07 21 38 55 45.08% 

2019-10-07 22 15 28 87.40% 

2019-10-07 23 10 11 11.66% 

2019-10-07 24 7 37 424.29% 

Conclusions 

For large and medium volume roads, an hourly model was able to provide volume estimations for 
unique hours on specific days. This suggests that Probe Data could be useful for predicting changes 
in traffic at a high resolution. However, the hourly model struggles in comparison to annual and daily 
models on lower volume roads. While robust when aggregated at the daily level, the Probe Data 
signal may not be strong enough to capture hourly trends in locations for locations with low AADTs. 
Consider an example low volume low volume road location (AADT of 1000) with a sample trip 
penetration of 5%. An average of 2 sample trips would be observed over any given hour. Statistically, 
this Probe Data trip sample is a very small number to create a statistical inference from. Given these 
challenges, further research could be done for ways to improve hourly estimation for low volume 
locations. For example, a hybrid modeling approach, with a linear model for low volume roads may 
improve performance, as well as additional network-based features, which could include matched 
hourly counts from nearby roads. On the other hand, the application of exact hour-of-the-year 
estimation may not be often necessary for individual small roads. Finally, more research is needed to 
understand how the Probe Data model error for hourly estimation model compares to estimates from 
short term expansion methods. More research is needed to further evaluate the benefit the Probe 
Data may have, in contrast to current methods, in describing hourly trends for specific days at specific 
locations. 
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Chapter 8: Traffic Items 
Probe Data can be leveraged to get average volume estimates, from a yearly average down to hourly 
resolution for large roads. The following section explored the ability of Probe Data to also model other 
traffic related items, including AADT by vehicle classification, seasonal factors, and factors based off 
of design hours (K-factor, D-factor, percent peak for trucks) 

Vehicle Classification AADTs 

Introduction 

While it is important to estimate the overall AADT for any location, being able to estimate the AADT 
for different vehicle classes is extremely helpful for road design,safety, and is a requirement for 
FHWA reporting. This section will discuss how Probe Data can be used to provide AADT estimates 
for three different vehicle classes. They are:  

• Pessenger- Vehicles (PV): this corresponds to the FHWA Classification categories 1 to 3 (MC,
PV and LT).

• Single Unit (SU) trucks and buses: this corresponds to the FHWA categories 4 to 7.
• Combination Unit (CU) trucks: this corresponds to the FHWA categories 8 to 13.

Methods 
The data that are used for this analysis comes from the TMAS classification dataset. This dataset 
provided traffic volume at the hourly level for different vehicle classes for each counter. With that, 
AADTs were calculated the three vehicle classes of interest. It should be emphasized that the 
analysis for this part of the project is at the counter level (uni-directional), as opposed to the site level 
which is bidirectional.  

Using the labelled data calculated from the permanent counts and Probe Data sample trips, three 
different machine learning models were developed to estimate the AADTs for the three vehicle 
classes. For all models, the data was fit with a gradient boosting algorithm. Predictive features 
considered were the same as for the National AADT model with some additions. It was hypothesized 
that trucks may drive longer distances on average than a personal car. So the average trip length, 
standard deviation of trip length, average trip duration and standard deviation of trip duration were 
added as additional features derived from the LBS trip dataset. 

It should be noted that model performance was evaluated by road size categories, which are usually 
defined using the overall AADT for all vehicle classes for a particular location. However, a high-
volume road can have widely ranging proportions of SU and CU trucks volume, sometimes none at all 
because SU and CU trucks are not allowed on specific roads. Hence, reporting the errors in the 
estimation of AADT for the SU and CU trucks in this case under high volume road is misleading 
because it would lead to very large errors due to negligible truck volume. Subsequently, in each of the 
following subsections, road size categories are broken down by the AADT of that particular vehicle 
class.  
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Results 

Estimation of AADT for PV Vehicles 

The accuracy and precision of PV vehicle volume estimation was analyzed across breakdowns by 
total PV AADT (Table 2). The Pearson-correlation coefficient between permanent counts and the PV 
AADT model was very strong at 0.99 (p-value <0.001, Figure 1). As PV vehicles make up the majority 
of the traffic volume on the roads, the estimation of AADT for PV vehicles is very similar, with slightly 
lower error, than to that of the total road AADT.  As with the Probe Data national AADT model, in 
general there is higher error on roads with lower traffic volume. 

Figure 1: Comparison of estimated PV AADT between permanent counters and Probe Data model 

Table 2: Model errors for the AADT estimation of the PV s by across PV AADT groupings 

Road Size 
Bin* 

Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

MAPE 
(%) 

NRMSE 
(%) 

A: 0-499 14.51 208.95 39.26 167.84 42.72 56.45 

B: 500-
1,999 2.90 48.29 14.54 38.62 13.98 20.30 

C: 2,000-
4,999 -0.16 36.68 10.56 27.46 9.89 15.81 

D: 5,000-
9,999 0.26 26.61 9.44 24.51 8.75 12.77 

E: 10,000-
19,999 0.83 26.72 7.91 22.69 7.49 11.00 
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Road Size 
Bin* 

Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

MAPE 
(%) 

NRMSE 
(%) 

F: 20,000-
34,999 -0.90 19.81 7.19 18.98 6.90 11.05 

G: 35,000-
54,999 0.23 22.29 6.78 18.13 6.56 9.14 

H: 55,000-
84,999 -1.06 21.22 7.57 18.52 7.57 12.47 

IJ: 85,000+ 1.51 29.89 7.56 20.86 8.42 11.31 

*Note that the “Road Size Bin” column represents the annual average daily volume of CUs in the
permanent counter vehicle class data.

Estimation of AADT for SU Trucks and Buses 

SU vehicles comprise a more ambiguous class of vehicles as compared to CU trucks and PV 
vehicles. There was a strong and significant correlation with estimates from permanent counts(Figure 
3. When considering variable feature importance, a spread of variables were used by the model,
including total LBS sample trips, GPS (commercial) sample trip counts, and latitude/longitude
information, which highlights that there was not as strong of a single predictor for SU AADT, as
compared with PV (Figure 6) or SU AADT (Figure 2). Figure 3: Comparison of estimated SU AADT
between permanent counters and Probe Data model

As compared to PV AADTs, the total distribution of traffic volume for SU vehicles across all 
permanent stations was lower, suggesting fewer SU Trucks and Buses overall on roads as a 
percentage of total traffic. Estimation error for SU vehicles trends slightly higher across all road 
volumes than for PV AADTs, which may be related to the lack of a single strong predictive feature. 
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Across groupings of road size, errors were very similar between SU vehicle AADT and total road 
AADT. 

Table 3: Model errors for the AADT estimation of SU trucks and buses by SU vehicle AADT road size 
bins 

Road Size Bin* Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

MAPE 
(%) 

NRMSE 
(%) 

A: 0-499 6.73 141.94 30.26 99.46 32.34 42.81 

B: 500-1,999 -2.11 64.72 21.51 51.42 19.54 28.54 

C: 2,000+ -6.92 58.82 16.79 47.68 16.44 28.62 

*Note that the “Road Size Bin” column represents the annual average daily volume of CUs in
permanent station data.

Estimation of AADT for CU Trucks 

Estimated CU Truck AADT had a strong relationship with counts derived from permanent counters, 
with a Pearson-r correlation of 0.99 (p-value < 0.001, Figure 5). Further breakdown of errors by CU 
truck AADT road size (Table 4) confirms lower error as compared to the national AADT model and 
AADT for SU vehicles (Table 4).  

Figure 5: Comparison of estimated SU AADT between permanent counters and Probe Data model 

Table 4: Model errors for the AADT estimation of CU trucks by CU truck AADT road size bins 
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Road Size Bin* Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

MAPE 
(%) 

NRMSE 
(%) 

A: 0-499 2.93 141.08 28.59 104.45 34.36 51.75 

B: 500-1,999 -0.39 48.50 14.27 38.61 13.79 23.89 

C: 2,000-4,999 -1.17 26.56 9.44 25.14 8.79 13.06 

D: 5,000+ -1.55 27.30 7.97 20.41 7.46 9.84 

*Note that the “Road Size Bin” column represents the annual average daily volume of CUs in
permanent station data.

There was a strong predictive relationship between CU Truck AADT and the count of GPS 
commercial heavy sample trips at each permanent counter location (Figure 6), which likely accounts 
for the strong performance of this model on small roads, as compared to SU vehicle AADT. The count 
of total GPS sample medium commercial trips was also utilized by the model, as the GPS sample 
tagged classifications of ‘heavy’ and ‘medium’ from the given GPS data source did not completely 
overlap with the FHWA vehicle classification scheme.   

Conclusions 

When model error for AADT for specific vehicle classification (PV, SU, CU) was evaluated by 
groupings of road volume, model errors were comparable with the National AADT model. However, 
the AADT estimation for PV cars and CU trucks had lower errors and stronger relationship to class-
specific AADTs derived from permanent counts, compared to SU trucks. Use of data explicitly derived 
from medium and heavy-duty commercial trucks is important to accurately estimate CU volumes, and 
less important for SU and PV volume estimation. The National AADT and SU AADT models, in 
contrast, rely heavily on a mix of features from both GPS (commercial, personal), LBS, and additional 
contextual data to achieve optimal model results.  

Estimation of Seasonal Factors 

Methods 

Travel patterns change over time and are affected by seasonal, monthly, day of week, and time of 
day factors. In order to model the expected seasonality of a location, seasonal factors are calculated 
using continuous count data to properly annualize short duration counts. This section explores the 
ability of Probe Data to provide estimates for Month of Year (MOY), Day of Week (DOW), and Time of 
Day (TOD) factors, which are computed as follows: 

where: 
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The months, days and hours with higher average daily traffic would have lower MOD, DOW and TOD 
factors and vice versa. The DOW factors can be calculated for each of the seven days (seven factors) 
or for weekdays and weekends separately (two factors).  

The full reference data of 4,232 permanent counter stations from the lower 48 states across the U.S. 
were used to train the MOD and DOW factor models. Because the TOD factor models were 
generated separately for trucks and cars, a subset of data from permanent counter stations was used 
for training and evaluated the TOD factor model (See Vehicle Classification AADTs for more info). 
Reference MOD, DOW and TOD factors were generated using the equations above from hourly 
counts in order to fit a model and test model performance. Sample trip counts at each counter 
location derived from LBS and GPS data were aggregated across combinations of hour of day, day of 
week, and month to generate counts for predictive features for fitting the model. Additional contextual 
predictive features were also considered, as described in Chapter 1. While other models were also 
considered, Gradient Boosting was chosen to fit the predictive features for its optimal performance. 
K(10) folds cross validation was used to evaluate performance of each generated model. See 
Chapters 2 and 3 for more details on building, training, and validating the Probe Data National AADT 
model. 

Estimation of Month of Year Factors 

As in the Probe Data National AADT Model, a mix of LBS, GPS, and external factors are key for 
successful MOD factors. In contrast, road and weather conditions are not strong predictors of the 
MOY trends. In other words, the rate of trips at a location in the sample -- even if impacted by 
weather -- was more indicative of changes in volume than the weather on its own. 

Figure 2plots the correlation between the permanent-counter-derived and estimated MOY factors for 
the entire data set. The Pearson correlation between model estimate and permanent counter value is 
0.91 (p<0.001), suggesting a strong predictive relationship.  

Mj is the monthly factor for month j of the year
Di is the day of the week factor for day i of the week
Tk is the time of day factor for k hour of the day
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Figure 2: Correlation plot between the actual and estimated MOY factors 

The following tables illustrate the performance of the model in the estimation of MOD factors, broken 
down by road size categories (Table 1) and by month (Table 2). In Table 1, it can be seen that the 
median bias for all road size categories is small across the board. For other metrics, errors are larger 
for the 0-499 road size category but this is expected because MOY factors are less stable for low 
volume roads. 

Table 1: MOY model error metrics broken down by road size categorization. 

Road Size 
Bin 

Median 
Bias (%) 

95% TCE 
Error 
Range (%) 

68th 
Absolute 
Percentile 
(%) 

95th 
Absolute 
Percentile 
(%) 

MAPE (%) NRMSE 
(%) 

0-499 1.05 28.40 9.91 24.51 8.60 13.17 

500-4,999 0.20 15.13 4.90 14.41 4.68 8.76 

5,000-54,999 0.12 7.74 2.73 7.63 2.67 4.63 

55,000+ 0.04 6.60 2.02 6.29 2.15 4.08 

Examination of model performance by month (Table 2) demonstrates that the model performs 
exceptionally well in estimating the MOY factors with negligible median bias for all 12 months. The 
winter months of December, January, and February tend to have slightly higher errors than other 
months but it’s not substantial. This may be due to higher variance across regions in winter months. 
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Table 2: MOY model error metrics broken down by calendar month 

Month Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

MAPE 
(%) 

NRMSE 
(%) 

1 -0.17 14.06 3.82 12.63 4.04 7.37 
2 -0.03 16.41 3.96 13.98 4.38 8.43 
3 0.20 11.34 3.14 10.75 3.17 5.89 
4 0.17 10.24 2.69 9.38 2.85 6.33 
5 0.15 8.89 2.60 8.34 2.61 4.75 
6 -0.01 9.80 2.86 9.08 2.83 4.78 
7 0.18 10.07 3.06 9.44 3.03 5.15 
8 0.12 10.16 2.79 9.17 2.84 4.43 
9 -0.18 9.35 2.98 8.94 2.83 4.43 

10 0.44 10.20 2.96 9.39 2.87 4.78 
11 0.33 10.12 3.10 9.34 3.03 5.66 
12 0.23 11.93 3.56 11.57 3.72 7.36 

Not only does the model perform well for all road size categories and months, it also estimates the 
MOY factors very well across the states. Below are results from three example states, North Dakota 
with a small number of stations (Figure 3a, n=24), Illinois with a bigger sample size (Figure 3b, n=59) 
and the large state of Ohio (Figure 3c, n=125). In each plot, the blue and orange bands show the 
respective 95% confidence intervals for the actual and estimated MOY factors, while the dashed lines 
represent the actual and estimated mean factors for that state. When the blue and orange bands 
overlap, it indicates that there is no significant difference between the actual and estimated MOY 
factors. That is the pattern seen for most states in the dataset. In other words, the Probe Data model 
can capture the MOY factors exceptionally well for most states.  

Figure 3a: Time series of MOY factors estimation compared to true values for North Dakota. The blue 
solid and red grid bands show the range of values within one standard deviation of the mean between 
MOY factors as derived from permanent counts (red circle, ‘actual_value’) and from Probe Data (blue 
square, ‘estimated_value’). 
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Figure 3b: Time series of MOY factors estimation compared to true values for Illinois. The blue solid 
and red grid bands show the range of values within one standard deviation of the mean between 
MOY factors as derived from permanent counts (red circle, ‘actual_value’) and from Probe Data (blue 
square, ‘estimated_value’). 

Figure 3c: Time series of MOY factors estimation compared to true values for Ohio. The blue solid 
and red grid bands show the range of values within one standard deviation of the mean between 
MOY factors as derived from permanent counts (red circle, ‘actual_value’) and from Probe Data (blue 
square, ‘estimated_value’). 
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Estimation of Day of Week Factors 

The model also estimates the DOW factors very well, with an achieved R-square value of 0.95 
(Figure 2). 

Figure 2: Correlation plot between the actual and estimated DOW factors 

The model performance is again broken down by all road size categories (Table 1) and the seven 
DOW factors (Table 2). Table 1 shows a similar pattern to Table 1 in the MOY factors subsection, as 
the median bias is small across the board and the errors for the low volume roads (road size 0-499) 
are higher than those for higher volume ones. This is expected due to the fluctuation in DOW factors 
for smaller roads.  

Table 1: DOW factor model error metrics comparison across road size categorization 

Road Size 
Bin 

Median 
Bias (%) 

95% TCE 
Error 
Range (%) 

68th 
Absolute 
Percentile 
(%) 

95th 
Absolute 
Percentile 
(%) 

MAPE (%) NRMSE 
(%) 

0-499 1.85 27.16 8.17 22.90 8.00 15.89 

500-4,999 0.10 11.40 4.03 10.64 3.67 5.69 

5,000-54,999 0.11 6.40 2.24 6.28 2.08 3.64 

55,000+ 0.08 5.25 1.71 5.17 1.65 2.80 
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Table 2 describes model error across seven days of week. Errors are small across the board, 
Saturday and Sunday produce higher errors than other days. This is expected as traffic volumes on 
Saturdays and Sundays may have more variance than other days due to the absence of consistent 
work commute patterns.  

Table 2: DOW factor model error metrics comparison across day of week 

Day of Week Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

MAPE 
(%) 

NRMSE 
(%) 

Sunday 0.52 13.79 4.87 12.11 4.38 6.51 

Monday 0.30 5.93 1.98 5.60 1.85 2.89 

Tuesday -0.09 7.07 2.21 6.41 2.09 3.24 

Wednesday -0.01 6.53 2.22 6.06 2.04 3.10 

Thursday 0.35 5.65 1.96 5.29 1.90 4.80 

Friday 0.20 7.01 1.65 5.47 1.71 2.98 

Saturday -0.68 10.14 4.12 9.41 3.54 4.87 

In addition to summary metrics, the performance of DOW factors at the state level were also broken 
down, and show examples for three example states with a variety of reference counters: 
Massachusetts (Figure 3a), Alabama (Figure 3b), and Florida (Figure 3c). 

Figure 3a: Comparison of DOW factors estimation for all roads in Massachusetts. The blue solid and 
red grid bands show the range of values within one standard deviation of the mean between DOW 
factors as derived from permanent counts (red circle, ‘actual_value’) and from Probe Data (blue 
square, ‘estimated_value’). 
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Figure 3b: Comparison of DOW factors estimation for all roads in Alabama. The blue solid and red 
grid bands show the range of values within one standard deviation of the mean between DOW factors 
as derived from permanent counts (red circle, ‘actual_value’) and from Probe Data (blue square, 
‘estimated_value’). 

Figure 3c: Comparison of DOW factors estimation for all roads in Florida. The blue solid and red grid 
bands show the range of values within one standard deviation of the mean between DOW factors as 
derived from permanent counts (red circle, ‘actual_value’) and from Probe Data (blue square, 
‘estimated_value’). 
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Estimation of Time of Day Factors 

Time of Day or TOD factors are the ratio of an hourly traffic average divided by the sum of hourly 
averages for that day on a given roadway segment. Factors are meant to estimate weekday hourly 
volumes. These factors are often computed separately by vehicle class. For this analysis, TOD 
estimates will be broken out by cars (vehicle class 1-3) and trucks (vehicle class 4-13), as per 
AASHTO recommendations. 

Figure 2: Correlation plot between the permanent-counter derived and Probe Data-estimated TOD 
factors for cars 

Errors across all road size categories (Table 1) and across the separate 24 TOD factors (Table 2) are 
described in the tables below. Table 1 shows a similar pattern to Table 1 in the MOY and DOW 
factors subsections, as the median bias is small across the board and the errors for the low volume 
roads (road size 0-499) are higher than those for higher volume ones. This is expected due to the 
fluctuation in TOD factors for smaller roads.  

Table 1: TOD factor for cars model error metrics broken down by road size categorization 

Road Size Bin Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

0-499 -0.17 209.63 22.17 100.89 

500-4,999 0.85 75.05 13.92 52.51 

5,000-54,999 0.49 47.99 8.79 36.28 

55,000+ 0.27 28.14 6.76 23.65 
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Table 2 indicates that errors are much lower during day time hours, and particularly strong between 
the important morning peak periods of 7am and 8pm. This is expected since hourly traffic volumes 
will have more variance during late evening and early morning hours due to smaller sample sizes and 
less consistent trends, especially relative to peak morning and evening travel patterns. 

Table 2: TOD factor model error metrics broken down by hour of day 

Hour of Day Median 
Bias (%) 

95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

1 0.42 63.57 18.8 51.08 

2 4 90.14 22.83 69.53 

3 9.74 123.35 29.88 88.82 

4 3.18 107.65 29.38 76.49 

5 5.16 122.61 29.69 88.36 

6 1.53 103.93 22 67.29 

7 -0.15 61.43 14.76 43.82 

8 0.02 36.44 10.33 28.88 

9 0.41 25.77 7.3 20.97 

10 0.2 18.79 6.17 16.41 

11 0.1 16.84 6.21 14.86 

12 0.18 15.21 5.7 13.91 

13 0.21 13.09 5.25 12.61 

14 0.33 13.14 5.19 12.59 

15 -0.09 14.51 5.02 13.4 

16 -0.16 15.34 4.65 12.77 

17 -0.17 12.81 4.49 12.67 

18 -0.17 17.48 5.54 15.7 

19 0.17 20.13 6.04 18.15 

20 0.44 23.57 7.39 20.79 

21 0.6 26.56 8.2 22.45 

22 0.83 31.06 9.77 26.17 

23 1.27 43.42 12.04 33.75 

24 2.61 54.64 15.2 42.79 

In addition to summary metrics, it’s useful to visualize performance of TOD factors across roads of 
different sizes. Figures 3a, 3b, 3c, 3d shows the plots of actual vs estimated values for the TOD 
factors across the four road size categories based on AADT. The shading within the plots highlight 
the range of values within one standard deviation of the mean, for both the TOD factors and the TOD 
factor estimates by hour. For roads with AADTs greater than 500, the bands almost completely 
overlap between estimated and true TOD factor. In the smallest road size category (0-499 AADT) the 
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model slightly under predicts the AM peak. As seen in the wide range of the standard deviation of the 
TOD factors around that time, the signal has high variation across all observed locations and is more 
difficult to estimate.  

Figure 3a: Comparison of car TOD factor estimation vs permanent counter-derived value across all 
hours of day for very small volume roads (AADT 0-499). The blue solid and red grid bands within the 
plot highlights the range of values within one standard deviation of the mean, for TOD factors derived 
from permanent counts (red circle, tod_factor_car) and from Probe Data (blue square, 
estimated_value), by hour. 

Figure 3b: Comparison of car TOD factor estimation vs permanent count-derived value across all 
hours of day for small volume roads (AADT 500-4999). The blue solid and red grid bands within the 
plot highlights the range of values within one standard deviation of the mean, for TOD factors derived 
from permanent counts (red circle, tod_factor_car) and from Probe Data (blue square, 
estimated_value), by hour. 
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Figure 3c: Comparison of car TOD factor estimation vs permanent count-derived value across all 
hours of day for medium volume roads (AADT 5000-54999). The blue solid and red grid bands within 
the plot highlights the range of values within one standard deviation of the mean, for TOD factors 
derived from permanent counts (red circle, tod_factor_car) and from Probe Data (blue square, 
estimated_value), by hour. 

Figure 3d: Comparison of car TOD factor estimation vs true value across all hours of day for high 
volume roads (AADT 55000+). The blue solid and red grid bands within the plot highlights the range 
of values within one standard deviation of the mean for TOD factors derived from permanent counts 
(red circle, tod_factor_car) and from Probe Data (blue square, estimated_value), by hour. 

Figure 4 depicts a time series of the time of day factors for one example station in Alabama. You can 
see the close relationship between permanent count-derived and estimated values.  
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Figure 4: Time series of car TOD factor estimation (square, ‘estimated_value’) for an individual 
station, compared to TOD factor as derived from a permanent count (circle, ‘tod_factor_car’) 

In addition to TOD factors for cars, a separate model was created in order to estimate TOD factors for 
trucks. Unsurprisingly, inclusion of data from a source explicitly containing heavy and medium-duty 
vehicles proved critical. 

Figure 6 contains the correlation plot between the permanent count-derived and estimated TOD 
factors for trucks. A Pearson-r correlation of 0.96 (p value < 0.001) suggests that Probe Data can 
present a strong predictor for TOD factors for trucks, as well.  

Figure 6: Correlation plot between the actual and estimated TOD factors for trucks 

The truck model performance is again broken down by all road size categories (Table 3) and the 24 
TOD factors (Table 4). Road size categories are assigned based on the total volume of trucks on the 
road, not the total volume of vehicles. As a result, there are no results for the 55,000+ category.  
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Table 3 shows a similar pattern as other road size breakdowns, as the median bias is small across 
the board and the errors for the low volume roads (road size 0-499) are higher than those for higher 
volume ones. This is expected due to the fluctuation in TOD factors for smaller roads.  

Table 3: Comparison of model error for truck TOD factor across road size categories 

Road Size Bin* Median Bias (%) 95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

0-499 1.8 202.66 26.51 134.51 
500-4,999 0.68 73.04 15.34 51.54 
5,000-54,999 1.09 26.35 10.87 25.89 

*Note that the “Road Size Bin” column represents the annual average daily volume of CUs in
permanent station data.

Errors are slightly higher for trucks than for cars. This is expected due to the fact that trucks make up 
a smaller proportion of vehicles on the road and are thus likely to have a more variable sample size. 
Table 4 indicates that errors are much lower during day time hours, and particularly low in the mid-
day hours. As with the TOD model for cars, this is expected since hourly traffic volumes will have 
more variance during late evening/early morning hours due to smaller sample sizes and less 
consistent trends. 

Table 4: Model error for truck TOD factor estimation across hour of day 

Hour of Day Median Bias (%) 95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

1 3.41 192.68 34.49 141.42 
2 3.11 247.15 34.73 164.37 
3 2.6 249.04 31.83 162.69 
4 2.06 260.95 28.88 143.82 
5 2.18 194.95 27.63 105.19 
6 1.43 103.56 20.3 61.67 
7 0.48 64.6 17.06 44.43 
8 2.44 41.33 14.12 34.42 
9 1.13 29.91 12.25 26.81 

10 0.91 26.44 10.36 22.49 
11 0.68 24.72 9.09 21.75 
12 0.31 20.6 8.55 19.19 
13 0.57 22.05 7.92 19.08 
14 0.16 20.69 7.68 18.77 
15 1.06 20.31 8.22 19.52 
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Hour of Day Median Bias (%) 95% TCE Error 
Range (%) 

68th Absolute 
Percentile (%) 

95th Absolute 
Percentile (%) 

16 1.72 23.95 8.72 23.99 
17 0.47 36.65 10.52 29.44 
18 -0.36 51.67 13.79 40.27 
19 -0.42 69.2 15.36 50.19 
20 -0.05 91.71 19.93 65.7 
21 -0.32 112.57 23.92 79.53 
22 1.43 126.33 27.05 89.55 
23 3.06 143.16 29.56 105.28 
24 1.77 183.1 31.78 125 

In addition to summary metrics, it’s useful to visualize performance of TOD factors across roads of 
different sizes. Figures 7a, 7b, 7c show the plots of actual vs estimated values for truck TOD factors 
across three road size categories displayed earlier. The shading within the plots highlight the range of 
values within one standard deviation of the mean, for both the true and estimated TOD factors by 
hour. It can be seen that Probe Data can capture the DOW trends very well, especially across higher 
volume roads. In the smallest road size category (0-499 vehicles) there is increased variation in the 
TOD factors, making it more difficult for the model to estimate. For roads with AADTs under 500, 
roads with a strong evening peak tended to be slightly underpredicted (Figure 7a). Across all road 
volumes, the orange band of estimated values tends to be slightly narrower than the true TOD 
factors, suggesting that the model may not predict locations that strongly deviate from the average 
well.  

Figure 7a: Time series of estimated TOD factor for trucks compared to permanent count-derived TOD 
factors for road size A. The blue solid and red grid bands within the plot highlights the range of values 
within one standard deviation of the mean, for both the TOD factors derived from permanent counts 
(red circle, ‘trod_factor_truck’) and estimated TOD factors (blue square, estimated_value) by hour. 
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Figure 7b: Time series of estimated TOD factor for trucks compared to permanent count-derived TOD 
factors for road size B. The blue solid and red grid bands within the plot highlights the range of values 
within one standard deviation of the mean, for both the TOD factors derived from permanent counts 
(red circle, ‘trod_factor_truck’) and estimated TOD factors (blue square, estimated_value) by hour. 

Figure 7c: Time series of estimated TOD factor for trucks compared to permanent count-derived TOD 
factors for road size C. The blue solid and red grid bands within the plot highlights the range of values 
within one standard deviation of the mean, for both the TOD factors derived from permanent counts 
(red circle, ‘trod_factor_truck’) and estimated TOD factors (blue square, estimated_value) by hour. 

Individual locations can also be visualized in order to evaluate the performance of the TOD model for 
trucks. As seen in the figure below, even when analyzing an individual station, the model performs 
well, capturing the weekday hourly curve. 
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Figure 8: Time series of truck TOD factor estimation (square, ‘estimated_value’) for an individual 
station, compared to TOD factor as derived from a permanent count (circle, ‘tod_factor_truck’) 

Probe Data can be used to model MOY, DOW factors for all road sizes, months and days, but also for 
different states. This is extremely helpful for DOTs to annualize short term duration counts when there 
are no permanent counters nearby, with similar characteristics, to provide the data for the calculation 
of the MOY and DOW factors.  

Calculation of factors with Probe Data has many of the same caveats as annualization from short 
term duration counts. Both methods have higher error with smaller roads, and are sensitive to the 
availability of nearby permanent counters for calibration. However, an advantage of Probe Data is 
that unlike annualization from short term duration counts (FHWA, 2018), factors derived from Probe 
Data can be applicable to atypical traffic patterns. With Probe Data, sampled trips are available at the 
exact location of interest, and thus models are sensitive to and can estimate volume given abnormal 
traffic patterns that may be unique to the road (such as a road detour, or spike in traffic due to an 
event). See sections on ‘MADT Estimation’, as well as “ADT’ and “Hourly Volume” for more detail and 
examples.  

This section specifically sought to investigate if Probe Data could be used to generate the HOD, 
DOW, and MOY factors. However, if the goal of those factors is to generate estimates of MADT or 
AADT, those estimates can be directly derived from a Probe Data model itself, rather than backing 
out from MOY, DOW factors. See sections on ‘MADT’, ‘ADT’ and ‘Hourly volume’ for more detail on 
model performance. 
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Estimation of K Factor 

K-factor is expressed as the Design Hour Volume (DHV) as a proportion of AADT for a given facility.
The DHV is frequently selected as the 30th highest hourly volume of the year.

The purpose of the DHV is to balance the desire to provide an adequate level of service (LOS) for the 
peak hour traffic volume with proposing a design in which the highway capacity would only be utilized 
for a few hours of the year. K-factor is used in pavement design, geometric design (e.g., number of 
lanes needed), capacity analysis, estimation of volume-to capacity ratios and levels of service, 
functional classification of roads, and analysis of traffic operations (e.g., effect of lane closures). 

K-factor values usually range from 7-18% depending on whether a facility is in an urban, suburban or
rural area. K-factors generally decrease as AADT increases or as developmental density increases.
Therefore, K-factors are often lowest for urban facilities, and highest for recreational facilities,
followed by rural facilities (Thomason, 2020). K-factors are also influenced by traffic flow patterns,
road geometry and the location of the facility.

Methods 

For this evaluation, Probe Data was used to model K-factor values, specifically K-30, which 
represents the K-factor based on the 30th highest volume of the year. From the collection of 
permanent counters (see Methods for National Probe Data AADT Model), 3,310 permanent counters 
met the criteria for calculating K-Factor for 2019. The U.S. Counters were required to be bi-directional 
and have a high daily observation rate, counting at least 60% of 365 days in the year. Research 
indicates that K-factors are expected to range from 7 to 18%, thus outlier K-factors were removed 
from the sample due to concerns about reporting errors. A 20% buffer was added to the expected 
range, thus facilities with K-factors below 5% or above 22% were excluded. The distribution of K-
factor values among the training data set of permanent counters is detailed in table K1. The median 
K-factor was 10, with the range from the 10th to 90th percentile over all counters was 8 to 13. As
seen in the distribution, the values were skewed toward smaller K-factors, with very few example
stations in the higher tail (K-factors over 13).
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Table K1. Distribution of K-Factor30 values of the 3,310 permanent counters used to generate an 
estimated K-factor. 

In order to model the K-30 value, predictive features were collected for each facility. For each station, 
the same contextual features were used as in the National AADT Model: historical weather 
information, population statistics as derived from the census, information about the roadway, as 
derived from Open Street Maps, and trip counts derived from LBS and GPS data sources (see 
section on National Probe Data AADT Model l for more detail).   

LBS and GPS trip counts were aggregated at each location in a variety of methods to see how the 
optimal signal of K-factor might be derived. The 30th highest hour for 2019 was taken, but 
additionally, the trip count at each road was aggregated into hourly counts by month, quarter and 
year.  Raw trip count from Probe Data can be noisy, but aggregation and smoothing of the sample 
over time can smooth out the noise, allowing trends to be captured. All aggregated counts were then 
divided by the annual average daily Probe Data trip count for the facility.  

These aggregated counts of LBS and GPS trips were labeled as such: 

● Def: No scaling (by definition): the ratio of 30th highest hourly Probe Data trip count out of
8,760 hours in a year, over the annual average daily Probe Data trip count

● MWH: K-factor derived from monthly-weekly-hourly time series of aggregated Probe Data trip
count

● QWH: K-factor derived from quarterly-weekly-hourly time series
● YWH: K-factor derived from yearly-weekly-hourly time series

Of the gathered reference values from permanent counters, 90% of roads had K-factors under 13 
(Table K1). This is of note, because it means there were only a very few number of locations that 
could be used to fit a model for high K-factors. The predictive features, as described above, were fit to 
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a Random Forest model, which was chosen for its accuracy and computational efficiency.  Cross 
validation was used to estimate model error and derive accuracy metrics. See methods for the 
National Probe Data AADT Model for more detail. 

Table K1. Breakdown of K-factor 30 values over the 3,310 permanent counters used to create a K-
factor 30 model 

Percentile K-factor 30 Value

10th 8 

25th 9 

50th 10 

75th 11 

90th 13 

Accuracy and Precision of K-factor Estimation 

There was a strong correlation between the aggregated “K-factor” derived from LBS counts, and K-
factor as derived from permanent counters; this was the strongest input to the fitted Probe Data 
model. This suggests that a simple K-factor model derived only from aggregated LBS counts may be 
feasible, if lower accuracy, particularly for smaller roads, is permitted. For the fitted Gradient Boosted 
model, there was a strong correlation between the estimated K-Factor and K-factor as derived from 
permanent counters (Figure K1). There is a trend toward underestimation for lower K-factor values. 

Figure K1: Correlation between estimated K-factor vs permanent count derived K-factor values. 
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When evaluating model error across road volume, K-factor estimation errors increased as road size 
decreased (Table K2). Overall, there is higher variance as K-30 becomes larger, thus as K-factor 
increases, the error increases. It should be noted that as K factors increase, roads also become more 
rural with smaller sample sizes (Thomason, 2020). These facilities are inherently difficult to model 
with Probe Data or any sampling technique, because of the low traffic sample size. Additionally, in the 
reference counter set for fitting the Probe Data model, only 10% of locations had K-factor values 
above 13 (Table K2). The efficacy of the model to fit higher K-factor values was also constrained by 
the fact that there were few observed locations with high K-factor values to learn from. Future studies 
are needed to further tune a model and investigate if more precise estimates for higher K values are 
possible with Probe Data. 

Table K2: Comparison of K-factor model estimation error by road AADT 

Road Size Bin Total sites Median Bias (%) 68th Abs Percentile 
(%) 

95th Abs. Percentile 
(%)  

NA: <= 500 36 0.77 9.56 16.33 
small: 500 – 4999 753 1.68 8.25 16.43 
medium: 5000-54999 1946 0.9 5.54 14.55 
high: > 55000 506 0.04 5.57 14.55 

Our work was in no means comprehensive of all the possible approaches by which Probe Data could 
estimate K-factor. One method was used as a proof of concept for how well Probe Data estimation 
could be for deriving traffic factors. As an example of an alternative modeling approach, an hourly 
volume model could be used. This model is expensive to build in terms of computational power and 
working hours, but could serve as a basis for an improved model for K-Factor with Probe Data. 
Volume for every hour of the year could first be generated at a location, and K-factor could then be 
derived from the hourly modeled estimates. This method, for example, may achieve lower error than 
the method outlined in this paper. These are presented as just one of the many refinements that 
could be possible to improve the model presented here.  

Along with general alternative methods that could be further explored to model K-factor with LBS 
data, more focused work is needed to improve model accuracy for high K-factors. While the model 
could estimate lower K-factors with minimal error, it struggled to estimate K-factors above 0.175. In 
order to improve this result going forward, more training data would be required for facilities with high 
K-factors. Incorporating additional features that are more sensitive to seasonal changes in the road
may also improve performance.

Estimation of D Factor 

D-factor is expressed as the Directional Design Hour Volume (DDHV) as a proportion of AADT in the
peak hour (design hour) in the predominant direction of flow for a given facility. DDHV is determined
from field measurements on the facility under consideration or on parallel and similar facilities. It is
given by multiplying AADT by K-factor and D-factor: DDHV = AADT * K * D.



   Non-Traditional Methods to Obtain Annual Average Daily Traffic │ Page 102 

The DDHV is frequently selected as the 30th highest hourly volume of the year. The D-factor is 
usually expressed as a percentage, and represents the directional distribution of hourly traffic 
volumes. Below is the definition of D-30. 

Directional distribution of traffic may significantly affect the level of service (LOS) of a facility. 
Therefore, D-factor plays an important role in highway design by considering the directional split of 
traffic, especially for two-lane rural highways. For this evaluation, Probe Data was used to model D-
factor values, specifically D-30, which would represent the D-factor based on the 30th highest volume 
of the year.  

Methods 

To create a model for D-factor (30), 3,325 permanent counters from the FHWA TMAS traffic volume 
data from 2019 were used to fit a model. Counter data were required to be bi-directional, and have a 
daily observation rate of at least 60%. The resulting permanent counters were heavily skewed toward 
low D-factors (Figure D1), with 90% percent of the values below 62 (Table D1). Examples of higher 
D-factor for building a model were limited, which impacts See National AADT methods for more detail
on reference permanent counters, and constructed LBS, GPS (personal and commercial) trips from
Probe Data inputs.

Figure D1. Histogram of D-Factor 30 values over the 3,325 permanent counters used to 
create a D-Factor 30 model.  
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Table D1. Percentile breakdown of D-factor 30 values over the 3,325 permanent counters 
used to create a D-factor 30 model 

Percentile D-Factor 30 Value

10th 8 

25th 52 

50th 55 

75th 6 

90th 62 

In order to model the D-factor value, predictive features were collected for each facility. Features 
included the LBS and GPS (personal and commercial) data collected for the road. The raw trip counts 
at each location were aggregated in a variety of ways, in order to examine how to best pick up the 
intended signal the D-factor was designed to represent. Total hourly LBS trip counts for each day of 
week were aggregated across months, quarters and years.  

The following scenarios were tested: 

● Def: No scaling (by definition): trip count proportion in the 30th highest hourly trip counts out
of 8,760 (Percentile = 1 - 30/8760 = 99.66%) travelling in the peak direction.

● MWH: Scaled into monthly-weekly-hourly time series
● QWH: Scaled into quarterly-weekly-hourly time series
● YWH: Scaled into yearly-weekly-hourly time series

Substantial filtering of the LBS data was done, so that only time periods with strong signal for both 
directions among roads were used.  Contextual features were also included for each facility. These 
contextual features take into consideration the location of the facility, including local weather 
conditions and census data. Model fit could be substantially improved if the time series was 
aggregated at the quarterly, instead of yearly level.  

Summary of Results: 

In modeling the D-factor, three approaches were explored. 

● LBS: The raw D-factor computed as the percent of LBS trips in the ‘majority’ direction during
the ‘busiest’ aggregated hour was used.

● Linear Fit: The new features were adjusted for a linear fit.
● Gradient Boosting: This is a hybrid model where the new engineered features were

combined with the original K/D factor features.
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After evaluation, the gradient boosting model showed the most favorable results. LBS data alone 
showed a strong basic signal, but did not perform as well as gradient boosting, while the linear fit 
improved the correlation, but lost the sensitivity to pick up high D-factor roads. 

Cross validation results showed errors increasing as road sizes decreased (Table 1). 

Table 1: Modeled D-factor absolute percent error across a range of volume road sizes 

Road Size Bin Stations Median (bias) 68th Abs 
Percentile (%) 

95th Abs 
Percentile (%) 

<= 500 38 6.22 14.51 27.51 

500 – 4999 (small) 811 2.04 10.4 20.05 

5000-54999 (medium) 1961 1.17 7.09 14.94 

> 55000 (large) 520 0.99 5.42 12.43 

The Pearson-r correlation aggregated LBS data to true D-30 shows a statistically significant Pearson 
correlation of 0.51 (p-value < 0.001). This suggests that a predictor for D-Factor can be created from 
Probe Data alone, without the use of additional contextual factors to improve the model. Fitting the 
LBS ratio data to a gradient boosted model improves the Pearson correlation across all sites slightly, 
to 0.54 (p< 0.001).  If the LBS is filtered for locations where there are sample trips in both directions 
for the full day of week, hour of day time series at the quarterly aggregation level, the Pearson 
correlation increases to 0.68 (p-value <=0.001). However, this filter excludes all roads with AADT of 
under 7000 AADT (H, I, J). The performance of the D-Factor Probe Data model is presented in Figure 
2 for all medium and large roads (AADTs > 5000). As apparent in the scatterplot, D-Factors near 50 
were never predicted, and high values of D-factor were systematically under predicted as well. This 
finding emphasizes that a sufficient sample trip size for both directions on a road is needed to predict 
D-Factor on lower volume roads.

Figure 2: Correlation between Probe Data modeled D-factor and D-factor (permanent counter) for 
medium and large roads (AADTs > 5000). 
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Conclusions 

Probe Data can be used to infer a D-factor estimate, especially for medium and larger roads. 
However, the errors and model fit have high error as compared to K-factor.  A main limitation of this 
study was the lack of training data for large D-factors (usually found on smaller roads). In thedataset 
used for this study, half of the counters had D-factors from a range of 52 to 60 (25th to 50th 
percentile). Only 10% of the data had D-factors over 65. The lack of reference data to create and train 
a model makes it difficult to create and evaluate a model to correctly predict the larger values (D-
factors above 65). Additionally, D-factor involves predicting a very small range (50 percent to 80 
percent), which means that a model estimates can only have a very small error (less than 30 percent) 
to pick up on differences. 

An accurate calculation of D-factor relies on a robust Probe Data trip sample at the hourly level for 
both directions of traffic. Additionally, D-factor itself may have some instability as a metric, making it 
harder to estimate with Probe Data. There are potentially other metrics that Probe Data may be better 
positioned to address which would still get at the goal of a D-factor, such as comparing direct 
estimations of hourly volume on a road. See the section on ‘Hourly Volume’ for more detail on the 
potential for Probe Data to model hourly volumes.   

Our approach sought to model a D-factor by looking at aggregated Probe Data trips across a whole 
year, in order to assess how easily Probe Data might generate a factor. However, there are many 
possible creative ways to model D-factor not explored in this report which could potentially 
substantially improve estimates. On the extreme end of complexity, Probe Data can generate a fairly 
robust model of hourly traffic volumes. If the hourly volume model was extended to every hour of the 
year, a D-factor estimate could be generated from an hourly volume model directly. Additionally, there 
are a multitude of ways to improve upon the existing aggregation method to pick up more nuances in 
seasonality changes across time to improve results. Further research is needed into potential 
methods to extract a D-factor signal from Probe Data beyond this report. This examination by no 
means exhausted the potential of Probe Data to create estimates of D-factor.  

Estimation of Percent Peak CU and SU Trucks 

The previous section discussed how to use Probe Data to estimate the AADTs for different vehicle 
classes, including for those of Single Unit (SU) and Combination Unit (CU) trucks. This section will 
focus on how Percent Peak Trucks values can be estimated to help with road and pavement design. 

Methods 

In order to train and compare a model for percent peak CU and SU, hourly volumes from 2019 for the 
TMAS permanent counts with vehicle class dataset were used (as described for AADT by vehicle 
classification). This resulted in 1,843 locations for training and model validation. Percent Peak CU 
and Percent Peak CU were calculated using the following standard methods: 
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The Percent Peak CU value is the number of CU trucks (FHWA classes 8-13) during the peak hour 
divided by the AADT.  

Similarly, the Percent Peak SU value is the number of SU trucks (FHWA classes 4-7) during the peak 
hour divided by the AADT. 

The peak hour uses the hour with the 30th highest volume from the entire year. 

Two different extreme gradient boosted models were fit from the TMAS data set, one to predict 
Percent Peak CU Trucks, and one to predict Percent Peak SU Trucks. K(10) folds cross validation 
was used to both train and test the model, to ensure that the model performance for each location 
was properly tested. Gradient boosted models may result in negative predictive values for sites that 
are substantially outside the observed range of training values, due to the fit regression lines in 
creation of the models. Less than 1% of Percent Peak SU trucks modeled estimates were negative 
values, and 2.7% of estimated values for Percent Peak CU trucks were negative. All negative results 
were transformed into estimates of 0, which is a more meaningful value, 

For predictive features, factors derived from LBS sample trips, GPS sample trips, and contextual 
features were considered, as discussed in the Probe Data methods section. As with the predictive 
model for K factor, LBS and GPS trip data at each location were also aggregated into the average 
counts for each hour of day over the year, and included as predictive features in the model as well. 

Estimation of Percent Peak Combination-Unit (CU) Trucks 

Percent peak CU Truck represents the percentage of traffic composed of CU trucks within the peak 
hour, normalized to AADT. As a result, this value is typically a small percentage: in the dataset, 
83.3% of the stations have less than 1% peak CU trucks. Probe Data relies on sampling of the 
population to infer estimation, but for Percent Peak Truck calculations, a very small window of time, 
and a very small percentage of total trips on a road segment have to be estimated accurately within a 
very small margin.  In order to simplify the description of the model’s effectiveness, the problem was 
framed as a classification problem. Can we predict a road as having a high Percent Peak CU Truck, 
which is greater than 1% (and represented by 17% of the data)?  

The model results are described in Table 1. In the dataset, 83.3% of the stations have less than 1% 
peak CU trucks, and of those stations, 94.7% of them are successfully predicted have low percent 
peak CU trucks. Of the remaining 16.7% of stations with 1% and higher peak CU trucks, 67.2% were 
classified correctly.  The Person correlation score of the model estimates vs true peak is 0.78 (p-
value <0.001), showing a strong, statistically significant correlation (Figure 1).  
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Table 1: Cross-tabulation result for model accuracy for Percent Peak CU Trucks. Values represent 
the percentage of time the Percent Peak CU Truck model was correctly able to label a site as having 
a low (<1%) value or high value (1% or greater). 

Actual Range Predicted Range < 
1% (low) 

Predicted Range 1% + 
(high) Proportion 

< 1% (low) 0.947 0.053 0.83 

1% + (high) 0.328 0.672 0.16 

Figure 1. Scatterplot comparing Percent Peak CU Truck modeled estimated to true values. Modeled 
percent estimates are presented rather than the classification groupings as presented in Table 1. 
Post-processing was done to convert negative estimates to zero. 

Estimation of Percent Peak Single-Unit (SU) Trucks and Buses 

As with Percent Peak CU Truck, percent Peak SU Truck values in the dataset also encompass a very 
narrow range, with most values 93.8% of the stations have less than 1% peak SU trucks. Of stations 
with “low” Peak CU Truck percentages, 98.0% were correctly predicted to have low percent peak SU 
trucks (Table 2). Of the remaining 6.2% of stations with 1% and higher peak SU trucks, 25.2% were 
classified correctly. 
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Table 2: Cross-tabulation result for model accuracy for peak percent SU trucks. Values represent the 
percentage of time the Percent Peak SU Truck model was correctly able to label a site as having a 
low (<1%) value or high value (1% or greater). 

Actual Range Predicted Range < 1% Predicted Range 1% + Proportion 

< 1% 0.980 0.020 0.938 

1% + 0.748 0.252 0.062 

As compared to Combination Trucks, the error on Single-Unit trucks is greater. The Pearson 
correlation between modeled estimates and true values is 0.44 (p-value <0.001), showing a 
significant relationship, but dramatically lower than the Pearson correlation for predicting Percent 
Peak CU truck. The higher spread in model error, particularly for higher values of Percent Peak SU is 
apparently in a scatterplot (Figure 3) of modeled vs true values.  

Figure 3. Scatterplot comparing Percent Peak SU Truck modeled estimated to true values. Modeled 
percent estimates are presented rather than the classification groupings as presented in Table 1. 
Post-processing was done to convert negative estimates to zero. 

Conclusions 

Percent Peak SU and CU Truck values encompass a very narrow range, and most values are under 
1%. Thus, these values demand a model with a very small window of error, since the range of 
possible values is so small. Model error was lower for predictions of Peak Percent CU as compared 
to SU. This mirrors or findings that modeled AADT for CU trucks also had lower error than for SU 
Trucks. Single-Unit trucks present a more ambiguous class that is not easily teased apart from the 
various data sources. 
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A model fit with Probe Data input derived from LBS and GPS data sources was able to successfully 
classify stations as having a low or high percent peak SU, CU Truck percentage at rates substantially 
better than chance, and thus for some use cases, a Probe Data derived model for Percent Peak SU 
and CU truck may be useful.  

Chapter 9: Conclusions 

The following study evaluated the validity of using Probe Data to estimate annual average daily traffic 
(AADT), as well as related estimations of traffic volume and derived factors. This evaluation was 
completed using a set of 4,255 permanent counter stations with data for 2019 traffic volume in the 
United States from the Federal Highway Administration Travel Monitoring System, individual State 
DOTs, and MS2 cloud-based traffic data management system. Traffic volumes and other factors were 
derived from these sources, and the resulting estimates were compared to modeled estimates fit 
using Probe Data sources. 

The current study presented the following conclusions about estimation for traffic volume using Probe 
Data inputs: 

1. AADT estimations were evaluated across a wide range of roadway classifications and
locations throughout all 48 states of the contiguous United States (Chapter 3). Model error
comparison between Probe Data estimates and same-year short term counter factorization
showed that

a. Probe Data estimates consistently out-performed same-year temporary counts for
roads over 2,000 AADT.

b. For roads between 500 and 2000 AADT, results were mixed: Probe Data outperformed
same-year two-day expansion on MAPE for all but 5 states, on some metrics across all
states, and the traditional method outperformed Probe Data for other metrics. Both
methods produced usable results for most applications in this small road range, but
individual states may wish to look at their local results for decisions in implementation.
In addition, addition of more very-low volume roads with permanent counters to the
calibration set available nationally may improve results for all.

c. There is no reliable source to calculate the error of same year temporary count
expansion for roads under 500, so it is unclear whether Probe Data or traditional
methods are better.

d. Because less than 9% of road miles on <5000 AADT roads (at least in the state of
Minnesota, and per TMG guidance of multi-year rotation of counts) actually use a
same-year temporary expansion, a note was added that the bar for comparing to
places with no opportunity for a same year count should be different (less stringent)

e. Probe Data was able to predict AADT for 2019 with acceptable accuracy with only ~6
months of data (though more months included do improve results). This implies the
potential to make preliminary estimates of AADT mid-year for typical years.

f. Probe Data model error is likely related to both the sample trip size of the Probe Data
inputs, which naturally decreases as AADT volume decreases, and to the lower
number of permanent counter calibration sites available for low-volume roads.
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2. Directional AADT volume estimations from Probe Data were comparable to total road AADT
estimations, and in general had less error than bi-directional estimates.

3. Ramp AADT showed comparable errors to non-ramp roads when evaluated by road volume
categorizations.

4. AADT by vehicle type for three classes of vehicles was evaluated: personal vehicles (PV )
(FHWA classes 1-3), single-unit (SU) vehicles (FHWA classes 4-7), and combination-unit
(CU) vehicles (FHWA classes 8-13). AADT models maintain similar error as the National
Probe Data AADT Model when errors are compared against the same vehicle-type specific
bin of average volume. Predictions are strongest for PV and CU vehicles. The National AADT
model relies heavily on a mix of LBS and GPS (personal and commercial) trips, suggesting
that both the mix of different vehicle classes on the road, and inherent biases in different data
sources all contribute to complexities that an AADT model must address.

5. Monthly average daily traffic (MADT) estimation, average daily traffic (ADT) for specific
days, and hourly volume estimations were evaluated with Probe Data sample trips. Model
error is correlated with total sample Probe Data trips, so smaller windows of time (monthly vs
hourly), and smaller total road volumes (500 vs 5000 AADT) had higher error. There is no
recognized source of comparison data (such as the Krile report) for MADT and ADT
extrapolated from temporary counts. However, the Probe Data models captured normal and
abnormal trends, and maintained consistent error as the National AADT model, suggesting
that these estimated volumes can be used broadly.

6. Special events, explored in the finer resolution traffic volume estimates, were able to capture
atypical trends, including changes in traffic due to weather, road detours, or local closing of
businesses due to the COVID-19 pandemic in early 2020. Model estimates for atypical traffic
volumes had the same range of error as typical days, indicating that Probe Data can be used
to accurately measure volume during special events.

7. Probe Data was able to capture not only AADT, but also reflect seasonal changes over month
of year (MOY), day of week (DOW), or time of day (TOD), as demonstrated through
estimation of MOY, DOW and TOD factors.

8. K-factor and D-factor estimations using Probe Data had relatively high errors for extreme
values. More work and research are needed for strategies to model these values with higher
accuracy using Probe Data, specifically researching finding new reference roads with extreme
values that could be used to calibrate a model. But additionally, K and D factor estimation are
measurements of a very small window of time: traffic volumes over one specific hour over an
entire year.  Probe Data creates inferences based on samples of trips, and thus there will
likely be higher error when trying to estimate smaller windows of time. There may be other
metrics correlated to K and D factors and serving the same use in traffic engineering that
Probe Data is better situated to model.

There are a variety of technical aspects to consider with respect to modeling traffic volumes with 
Probe Data. First, is the availability of reference traffic volume counts to train and evaluate a Probe 
Data model. Continuous counts from permanent counters provide the best standard of comparison. 
However, such sensors still commonly malfunction, so use of these as a reference still requires strict 
quality assurance of the hourly volume data, before incorporating into a model. As detailed in Chapter 
4, the most important factor is that the reference counters are well distributed across different types of 
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roads, and a spread of urban and rural areas. Given a good distribution, the total number of counters 
could be reduced substantially with little impact on model accuracy. This report demonstrated with the 
example of Texas that even if a state has a large number of permanent counters, adding in reference 
counters from nearby states improves model error. The best results come from a full national model 
with the broadest set of permanent counters, despite additional counters being far from Texas. In 
practical terms, if a state has the choice of investing in more local permanent stations or using other 
states’ pre-existing permanent counter data for calibration, using the other states’ permanent counter 
locations may be more useful (and probably far less expensive). It also implies that sharing of 
permanent counter data across many classes of roads between states will be to the benefit of 
all. In particular, sharing of permanent counter data from low volume roads could help 
drastically reduce model error on such roads for all. 

Certain characteristics of the Probe Data sample are also crucial for a successful model of traffic 
volume. As explored in Chapter 4, the most important characteristic is that the Probe Data sample be 
as representative of the population as possible. Blending different data sources with different biases, 
as done in the Prove Data National AADT model, is a good technique to capture a representative 
sample of traffic volumes along all types of roadways across the United States. One should consider 
the stability of trip penetration across a region of interest (and across the time of interest) when 
considering a potential Probe Data source. In addition, if truck counts are required, a data source 
known to be from trucks is critical. 

Although representativeness of the population is crucial, additional Probe Data characteristics such 
as ping frequency and spatial accuracy should be considered. Volume estimation results only start to 
degrade with spatial accuracy above 500 meters and ping frequency above 15 minutes. This implies 
that the model is robust to some degradation of raw data quality, assuming a strong routing algorithm, 
and also that increased spatial precision and ping frequency (say to 1x/second and 2 meters) will not 
improve volume estimation results. 

Given reference traffic volumes, and input Probe Data, there is still substantial work involved to 
generate an accurate traffic volume estimation. For AADT, there is a strong linear relationship 
between Probe Data and permanent counts. Depending on the tolerance of error, directionally helpful 
estimates may be possible with tools available in simple tools like excel. However, in order to make 
estimated AADT errors within the range of short-term count expansion, a simple linear model is not 
sufficient. Additional contextual information, such as census demographics, environmental, and 
roadway characteristics, are needed, as well as a machine learning model in order to obtain the best 
estimate. Use of multiple models to best fit different conditions, such as small vs large roads, may 
also be useful, depending on the model choice. The most important aspect here is not the specific 
algorithm used (Random Forest vs support vector machines vs neural networks vs ensemble 
learning), but that the model inputs be well generalized and that the predictor data is clean and 
representative.  

Volume estimations from Probe Data have some clear advantages as compared to short term factor 
methods. With a National Probe Data AADT Model, volume estimations can be generated for any link 
of road at any given time point. Thus, MADT, hourly curves, truck counts, demographics of travelers, 
and more can be appended to AADTs with little additional investment. In the event of extreme events, 
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such as a large flood, snowstorm, quarantine, work zone, or evacuation, the Probe Data trip sample 
will capture the traffic changes very well. In contrast, temporary count expansion requires a physical 
sensor to have been deployed ahead of time to capture such trends. Most importantly, most roads 
throughout the United states do not currently have a temporary or same-year permanent counter 
recording traffic counts for the current year, especially small roads. Probe Data volume estimation 
techniques provide a potentially powerful mechanism to improve estimation in an ongoing 
programmatic basis.  

There are many additional areas to be explored that can offer improved results. For example, more 
research is needed to detail optimal placement of permanent counters across the country on a variety 
of road types to enhance model estimations. There is also a potential for blending short term counts 
and regional weighting of local counts to further improve estimation. 

In light of the potential tools that Probe Data may provide to transportation professionals, there are 
many ways that Public and Private agencies can collaborate to utilize Probe Data. These include 
coordination of placement and distribution of reference permanent counters, to enhance the ability to 
develop models from all road types and regions throughout the entire US. Private and Public 
agencies should also work together in collaboration to redefine metrics, with a new eye toward what 
is really needed, and what may be achieved more cheaply in light of new technologies. For example, 
the Probe Data model had high error for Percent Peak CU, which involves modeling the percentage 
of trucks on a road for one specific hour of the entire year. This is a small percentage over a narrow 
window of time, which is not optimized for a model which is based on statistical sampling. Beyond 
Percent Factor CU, other metrics could similarly be re-draw in light of Probe Data techniques, to 
facilitate Probe Data’s ability to robustly address transportation design needs across a wide variety of 
use cases. 

The work for this whitepaper was performed in 2019 and 2020. Probe Data is a fast-evolving field and 
data options may evolve in subsequent years. Thus, it is more important to understand the useful 
characteristics of the data sources, and not simply the name/classification of the sources used at the 
time of this writing. 
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Appendix 

Table 1: Bi-directional Probe Data hourly volume model estimates for a two-week time series in 
October, as graphed in Chapter 7 Figure 1. Site is a representative large road in Wisconsin, with an 
AADT of 138,035, road size bin J. Model estimates are compared to volume from a reference 
permanent counter.    

Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/7/2019 1 1635 1447 -11.47%
10/7/2019 2 866 960 10.88% 
10/7/2019 3 645 684 6.03% 
10/7/2019 4 867 1173 35.32% 
10/7/2019 5 1815 2010 10.74% 
10/7/2019 6 4731 4806 1.58% 
10/7/2019 7 8702 8456 -2.83%
10/7/2019 8 10860 9912 -8.73%
10/7/2019 9 9478 8679 -8.43%
10/7/2019 10 7585 7997 5.43% 
10/7/2019 11 7117 7482 5.12% 
10/7/2019 12 7131 6781 -4.91%
10/7/2019 13 7721 8156 5.63% 
10/7/2019 14 7689 7868 2.32% 
10/7/2019 15 9487 9437 -0.53%
10/7/2019 16 9984 9817 -1.67%
10/7/2019 17 8412 9058 7.68% 
10/7/2019 18 9167 9662 5.40% 
10/7/2019 19 8110 8029 -1.00%
10/7/2019 20 5970 6592 10.42% 
10/7/2019 21 4539 4992 9.99% 
10/7/2019 22 3957 3494 -11.69%
10/7/2019 23 2734 2613 -4.43%
10/7/2019 24 1986 1785 -10.11%
10/8/2019 1 1494 1349 -9.68%
10/8/2019 2 864 1002 16.00% 
10/8/2019 3 729 810 11.11% 
10/8/2019 4 955 1147 20.13% 
10/8/2019 5 1724 2051 18.99% 
10/8/2019 6 4250 4900 15.28% 
10/8/2019 7 8791 8277 -5.85%
10/8/2019 8 10673 9199 -13.81%
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Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/8/2019 9 9526 10141 6.46% 
10/8/2019 10 7573 8143 7.53% 
10/8/2019 11 6882 7767 12.86% 
10/8/2019 12 6937 6993 0.81% 
10/8/2019 13 7735 7849 1.48% 
10/8/2019 14 7749 8221 6.09% 
10/8/2019 15 9554 9101 -4.74%
10/8/2019 16 9444 10189 7.89% 
10/8/2019 17 9459 9515 0.59% 
10/8/2019 18 9669 9706 0.38% 
10/8/2019 19 8395 8649 3.03% 
10/8/2019 20 6420 6368 -0.81%
10/8/2019 21 5156 5100 -1.09%
10/8/2019 22 4231 3964 -6.32%
10/8/2019 23 2638 2707 2.61% 
10/8/2019 24 1894 1972 4.13% 
10/9/2019 1 1294 1064 -17.76%
10/9/2019 2 766 742 -3.11%
10/9/2019 3 654 837 28.06% 
10/9/2019 4 879 1140 29.67% 
10/9/2019 5 1727 2163 25.24% 
10/9/2019 6 4713 5289 12.21% 
10/9/2019 7 8680 8389 -3.35%
10/9/2019 8 11018 10331 -6.24%
10/9/2019 9 7995 8837 10.53% 
10/9/2019 10 7549 7174 -4.96%
10/9/2019 11 7121 7165 0.62% 
10/9/2019 12 7423 7049 -5.04%
10/9/2019 13 7638 8018 4.98% 
10/9/2019 14 7915 8514 7.57% 
10/9/2019 15 9719 9365 -3.65%
10/9/2019 16 10182 9924 -2.53%
10/9/2019 17 9658 9601 -0.59%
10/9/2019 18 9827 9843 0.16% 
10/9/2019 19 8685 8078 -6.99%
10/9/2019 20 6553 6261 -4.46%
10/9/2019 21 5211 5256 0.87% 
10/9/2019 22 4679 3897 -16.72%
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Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/9/2019 23 3095 3045 -1.61%
10/9/2019 24 1985 2181 9.88% 

10/10/2019 1 1365 1411 3.35% 
10/10/2019 2 835 776 -7.11%
10/10/2019 3 724 944 30.43% 
10/10/2019 4 1024 1449 41.46% 
10/10/2019 5 1883 2321 23.28% 
10/10/2019 6 4733 4901 3.56% 
10/10/2019 7 8749 8156 -6.78%
10/10/2019 8 10685 10465 -2.06%
10/10/2019 9 9520 8937 -6.13%
10/10/2019 10 8046 7936 -1.37%
10/10/2019 11 7422 7317 -1.41%
10/10/2019 12 7492 7736 3.26% 
10/10/2019 13 8106 8352 3.04% 
10/10/2019 14 8523 8708 2.17% 
10/10/2019 15 9932 9795 -1.38%
10/10/2019 16 10243 10281 0.37% 
10/10/2019 17 9911 10178 2.69% 
10/10/2019 18 9421 9332 -0.95%
10/10/2019 19 8619 8331 -3.35%
10/10/2019 20 6671 6227 -6.66%
10/10/2019 21 5332 5840 9.52% 
10/10/2019 22 4742 4217 -11.08%
10/10/2019 23 3617 3542 -2.09%
10/10/2019 24 2588 2719 5.06% 
10/11/2019 1 1703 1711 0.44% 
10/11/2019 2 1079 1052 -2.54%
10/11/2019 3 977 1160 18.75% 
10/11/2019 4 1001 1391 38.95% 
10/11/2019 5 1912 2196 14.85% 
10/11/2019 6 4379 4393 0.31% 
10/11/2019 7 7513 7133 -5.06%
10/11/2019 8 9683 9441 -2.50%
10/11/2019 9 9197 9950 8.18% 
10/11/2019 10 7698 8743 13.58% 
10/11/2019 11 7752 8020 3.46% 
10/11/2019 12 7942 8039 1.22% 
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Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/11/2019 13 8981 9005 0.27% 
10/11/2019 14 9415 8754 -7.02%
10/11/2019 15 10449 9911 -5.15%
10/11/2019 16 10085 9878 -2.05%
10/11/2019 17 9506 10132 6.59% 
10/11/2019 18 9927 9947 0.20% 
10/11/2019 19 8840 9273 4.89% 
10/11/2019 20 7123 7232 1.54% 
10/11/2019 21 5876 6640 13.00% 
10/11/2019 22 5182 6079 17.32% 
10/11/2019 23 4524 4590 1.45% 
10/11/2019 24 3447 3231 -6.27%
10/12/2019 1 2306 2375 2.97% 
10/12/2019 2 1492 1306 -12.49%
10/12/2019 3 1242 1199 -3.42%
10/12/2019 4 1112 997 -10.33%
10/12/2019 5 1254 1263 0.73% 
10/12/2019 6 2082 1899 -8.81%
10/12/2019 7 2874 3449 20.00% 
10/12/2019 8 3914 4467 14.12% 
10/12/2019 9 5705 6309 10.58% 
10/12/2019 10 6702 6756 0.81% 
10/12/2019 11 7783 7701 -1.05%
10/12/2019 12 8308 7923 -4.63%
10/12/2019 13 8881 9027 1.65% 
10/12/2019 14 8924 9379 5.10% 
10/12/2019 15 9128 9278 1.65% 
10/12/2019 16 8950 9271 3.59% 
10/12/2019 17 8860 8710 -1.69%
10/12/2019 18 8425 8763 4.01% 
10/12/2019 19 7711 7697 -0.18%
10/12/2019 20 6075 7388 21.61% 
10/12/2019 21 5414 5692 5.14% 
10/12/2019 22 5484 5260 -4.09%
10/12/2019 23 4350 3970 -8.74%
10/12/2019 24 3732 3501 -6.18%
10/13/2019 1 2476 2466 -0.41%
10/13/2019 2 1596 1589 -0.41%
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Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/13/2019 3 1412 1157 -18.06%
10/13/2019 4 985 827 -16.04%
10/13/2019 5 1060 879 -17.08%
10/13/2019 6 1396 1299 -6.95%
10/13/2019 7 1834 2190 19.43% 
10/13/2019 8 2515 2816 11.98% 
10/13/2019 9 3673 3955 7.68% 
10/13/2019 10 5602 6015 7.38% 
10/13/2019 11 6892 6906 0.20% 
10/13/2019 12 7851 8282 5.49% 
10/13/2019 13 8875 8096 -8.78%
10/13/2019 14 8511 8107 -4.75%
10/13/2019 15 8843 8394 -5.07%
10/13/2019 16 8858 8322 -6.05%
10/13/2019 17 8314 8061 -3.04%
10/13/2019 18 7867 8040 2.19% 
10/13/2019 19 7659 7206 -5.92%
10/13/2019 20 6054 6245 3.16% 
10/13/2019 21 4818 4177 -13.30%
10/13/2019 22 3893 3336 -14.32%
10/13/2019 23 3026 2714 -10.30%
10/13/2019 24 2613 2610 -0.10%
10/14/2019 1 1563 2206 41.16% 
10/14/2019 2 856 1168 36.50% 
10/14/2019 3 694 844 21.58% 
10/14/2019 4 853 916 7.41% 
10/14/2019 5 1854 1800 -2.93%
10/14/2019 6 4528 4953 9.38% 
10/14/2019 7 8232 7819 -5.02%
10/14/2019 8 10613 9909 -6.63%
10/14/2019 9 9500 9136 -3.83%
10/14/2019 10 7826 7111 -9.13%
10/14/2019 11 7417 6843 -7.74%
10/14/2019 12 7552 7331 -2.93%
10/14/2019 13 8240 8354 1.38% 
10/14/2019 14 7786 8851 13.68% 
10/14/2019 15 8776 8711 -0.74%
10/14/2019 16 9072 9536 5.12% 



   Non-Traditional Methods to Obtain Annual Average Daily Traffic │ Page 119 

Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/14/2019 17 9383 9175 -2.21%
10/14/2019 18 9327 8494 -8.93%
10/14/2019 19 8249 7289 -11.64%
10/14/2019 20 5757 6504 12.98% 
10/14/2019 21 4330 4329 -0.02%
10/14/2019 22 3506 3124 -10.91%
10/14/2019 23 2812 2447 -12.99%
10/14/2019 24 2317 1903 -17.85%
10/15/2019 1 1884 1512 -19.77%
10/15/2019 2 1454 1199 -17.56%
10/15/2019 3 807 963 19.36% 
10/15/2019 4 998 1429 43.14% 
10/15/2019 5 1964 2022 2.97% 
10/15/2019 6 4721 5168 9.46% 
10/15/2019 7 8634 8363 -3.14%
10/15/2019 8 10742 10214 -4.92%
10/15/2019 9 8801 9001 2.28% 
10/15/2019 10 7638 7628 -0.13%
10/15/2019 11 7364 8052 9.34% 
10/15/2019 12 7478 6976 -6.72%
10/15/2019 13 7915 7753 -2.05%
10/15/2019 14 8105 8754 8.00% 
10/15/2019 15 9697 9452 -2.52%
10/15/2019 16 9557 9185 -3.89%
10/15/2019 17 9439 8848 -6.26%
10/15/2019 18 9131 8613 -5.67%
10/15/2019 19 8044 7684 -4.47%
10/15/2019 20 6057 6435 6.25% 
10/15/2019 21 4832 4451 -7.87%
10/15/2019 22 4128 3411 -17.37%
10/15/2019 23 3015 2713 -10.03%
10/15/2019 24 2159 2290 6.07% 
10/16/2019 1 1466 1426 -2.70%
10/16/2019 2 904 952 5.37% 
10/16/2019 3 752 900 19.74% 
10/16/2019 4 930 1148 23.44% 
10/16/2019 5 1854 2102 13.39% 
10/16/2019 6 4795 5070 5.74% 
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Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/16/2019 7 8777 8395 -4.36%
10/16/2019 8 10991 10150 -7.65%
10/16/2019 9 8967 9339 4.15% 
10/16/2019 10 7698 7796 1.28% 
10/16/2019 11 7136 7242 1.49% 
10/16/2019 12 7256 7182 -1.02%
10/16/2019 13 8427 9222 9.43% 
10/16/2019 14 8131 8854 8.89% 
10/16/2019 15 9954 9773 -1.81%
10/16/2019 16 9961 9766 -1.95%
10/16/2019 17 9712 9822 1.13% 
10/16/2019 18 9819 9709 -1.12%
10/16/2019 19 8927 8943 0.18% 
10/16/2019 20 6600 6382 -3.30%
10/16/2019 21 5105 4986 -2.33%
10/16/2019 22 4164 3979 -4.44%
10/16/2019 23 3012 3085 2.42% 
10/16/2019 24 2074 2264 9.17% 
10/17/2019 1 1380 1397 1.21% 
10/17/2019 2 838 1044 24.63% 
10/17/2019 3 766 1070 39.64% 
10/17/2019 4 1015 1246 22.78% 
10/17/2019 5 1855 2015 8.64% 
10/17/2019 6 4789 4901 2.34% 
10/17/2019 7 8823 8199 -7.08%
10/17/2019 8 10929 10023 -8.29%
10/17/2019 9 7145 8906 24.65% 
10/17/2019 10 7917 8229 3.94% 
10/17/2019 11 7274 7041 -3.21%
10/17/2019 12 7489 7310 -2.39%
10/17/2019 13 8025 8721 8.67% 
10/17/2019 14 8462 8723 3.08% 
10/17/2019 15 9938 9867 -0.71%
10/17/2019 16 10381 10005 -3.62%
10/17/2019 17 10003 9774 -2.29%
10/17/2019 18 10038 9338 -6.98%
10/17/2019 19 9039 8540 -5.52%
10/17/2019 20 6795 7347 8.12% 
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Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/17/2019 21 5680 6385 12.40% 
10/17/2019 22 5252 5539 5.46% 
10/17/2019 23 3829 3492 -8.80%
10/17/2019 24 2537 2341 -7.74%
10/18/2019 1 1660 2069 24.62% 
10/18/2019 2 1114 1422 27.64% 
10/18/2019 3 903 1147 27.02% 
10/18/2019 4 1087 1252 15.16% 
10/18/2019 5 1829 1953 6.79% 
10/18/2019 6 4567 4572 0.11% 
10/18/2019 7 8193 7612 -7.09%
10/18/2019 8 10648 10115 -5.00%
10/18/2019 9 9171 8530 -6.99%
10/18/2019 10 7910 8784 11.04% 
10/18/2019 11 7891 7355 -6.80%
10/18/2019 12 8430 8022 -4.84%
10/18/2019 13 9079 8771 -3.40%
10/18/2019 14 9162 9969 8.81% 
10/18/2019 15 10277 10069 -2.03%
10/18/2019 16 10470 10135 -3.20%
10/18/2019 17 10043 9363 -6.77%
10/18/2019 18 10308 10342 0.33% 
10/18/2019 19 9954 10537 5.86% 
10/18/2019 20 7863 8456 7.54% 
10/18/2019 21 6048 6928 14.54% 
10/18/2019 22 5727 6728 17.48% 
10/18/2019 23 5211 5204 -0.13%
10/18/2019 24 4430 3216 -27.40%
10/19/2019 1 2559 2394 -6.44%
10/19/2019 2 1716 2063 20.23% 
10/19/2019 3 1388 1369 -1.37%
10/19/2019 4 1167 1078 -7.62%
10/19/2019 5 1219 1302 6.85% 
10/19/2019 6 2080 2041 -1.87%
10/19/2019 7 2978 2552 -14.31%
10/19/2019 8 4186 4645 10.96% 
10/19/2019 9 5839 6590 12.86% 
10/19/2019 10 6943 6784 -2.29%
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Date Hour of Day Reference Volume 
(permanent count) 

Probe Data 
Model Estimate 

Percent Error 

10/19/2019 11 7748 6924 -10.64%
10/19/2019 12 8550 8098 -5.29%
10/19/2019 13 9205 9097 -1.17%
10/19/2019 14 8935 8807 -1.43%
10/19/2019 15 9219 8446 -8.38%
10/19/2019 16 9497 8817 -7.15%
10/19/2019 17 9189 9286 1.05% 
10/19/2019 18 9133 9286 1.68% 
10/19/2019 19 8031 8544 6.38% 
10/19/2019 20 7219 7984 10.59% 
10/19/2019 21 5843 7310 25.12% 
10/19/2019 22 5629 5502 -2.26%
10/19/2019 23 5092 5484 7.69% 
10/19/2019 24 4709 5227 11.01% 
10/20/2019 1 2791 3075 10.16% 
10/20/2019 2 1859 2237 20.31% 
10/20/2019 3 1458 1494 2.44% 
10/20/2019 4 1094 1134 3.62% 
10/20/2019 5 1009 1197 18.63% 
10/20/2019 6 1408 1592 13.10% 
10/20/2019 7 2197 2678 21.89% 
10/20/2019 8 3507 4129 17.74% 
10/20/2019 9 4640 5757 24.07% 
10/20/2019 10 5925 6679 12.73% 
10/20/2019 11 7066 7113 0.67% 
10/20/2019 12 8294 7137 -13.94%
10/20/2019 13 8342 7835 -6.07%
10/20/2019 14 8006 7168 -10.46%
10/20/2019 15 8010 7715 -3.68%
10/20/2019 16 8420 7693 -8.64%
10/20/2019 17 9144 8791 -3.86%
10/20/2019 18 8585 8397 -2.19%
10/20/2019 19 8231 7946 -3.46%
10/20/2019 20 7524 6753 -10.25%
10/20/2019 21 6019 6006 -0.21%
10/20/2019 22 4320 4185 -3.12%
10/20/2019 23 3233 3069 -5.07%
10/20/2019 24 2138 2176 1.77% 
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Table 2: Bi-directional Probe Data Hourly volume model estimates for a two week timeseries in 
October, as graphed in Chapter 7 Figure 2. This site represents a medium volume road (AADT 6688, 
road size bin D) in Michigan. Values are compared to a reference permanent counter site. 

Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/7/2019 1 28 21 -25.81%
10/7/2019 2 23 26 13.33% 
10/7/2019 3 25 20 -19.78%
10/7/2019 4 90 40 -55.84%
10/7/2019 5 327 150 -54.00%
10/7/2019 6 415 293 -29.40%
10/7/2019 7 356 366 2.85% 
10/7/2019 8 466 468 0.48% 
10/7/2019 9 391 440 12.42% 
10/7/2019 10 311 444 42.77% 
10/7/2019 11 375 351 -6.50%
10/7/2019 12 387 445 14.97% 
10/7/2019 13 421 426 1.19% 
10/7/2019 14 510 500 -1.88%
10/7/2019 15 561 550 -1.98%
10/7/2019 16 665 620 -6.73%
10/7/2019 17 619 630 1.80% 
10/7/2019 18 489 470 -3.88%
10/7/2019 19 342 374 9.43% 
10/7/2019 20 237 276 16.29% 
10/7/2019 21 205 215 4.91% 
10/7/2019 22 115 170 47.67% 
10/7/2019 23 83 113 35.80% 
10/7/2019 24 64 81 26.41% 
10/8/2019 1 47 22 -53.41%
10/8/2019 2 28 56 98.73% 
10/8/2019 3 33 33 1.23% 
10/8/2019 4 99 41 -58.98%
10/8/2019 5 391 193 -50.62%
10/8/2019 6 391 335 -14.24%
10/8/2019 7 347 413 18.91% 
10/8/2019 8 439 407 -7.21%
10/8/2019 9 351 400 13.99% 
10/8/2019 10 335 397 18.60% 
10/8/2019 11 367 339 -7.54%
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/8/2019 12 393 358 -8.81%
10/8/2019 13 408 313 -23.22%
10/8/2019 14 460 425 -7.65%
10/8/2019 15 568 538 -5.26%
10/8/2019 16 715 565 -20.99%
10/8/2019 17 613 554 -9.70%
10/8/2019 18 478 428 -10.38%
10/8/2019 19 304 361 18.81% 
10/8/2019 20 267 248 -7.26%
10/8/2019 21 236 198 -16.07%
10/8/2019 22 135 192 41.94% 
10/8/2019 23 100 147 47.31% 
10/8/2019 24 64 88 37.61% 
10/9/2019 1 38 21 -45.34%
10/9/2019 2 32 38 17.25% 
10/9/2019 3 45 49 9.35% 
10/9/2019 4 109 86 -21.53%
10/9/2019 5 377 156 -58.55%
10/9/2019 6 388 311 -19.97%
10/9/2019 7 351 391 11.39% 
10/9/2019 8 426 371 -12.81%
10/9/2019 9 387 403 4.04% 
10/9/2019 10 308 303 -1.71%
10/9/2019 11 375 443 18.01% 
10/9/2019 12 437 442 1.25% 
10/9/2019 13 440 471 6.98% 
10/9/2019 14 500 420 -16.09%
10/9/2019 15 526 466 -11.45%
10/9/2019 16 696 576 -17.30%
10/9/2019 17 648 565 -12.83%
10/9/2019 18 527 421 -20.19%
10/9/2019 19 341 345 1.13% 
10/9/2019 20 231 237 2.58% 
10/9/2019 21 193 204 5.58% 
10/9/2019 22 110 132 19.75% 
10/9/2019 23 84 34 -59.98%
10/9/2019 24 72 82 14.32% 

10/10/2019 1 39 34 -12.12%
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/10/2019 2 30 29 -3.27%
10/10/2019 3 42 30 -28.09%
10/10/2019 4 108 30 -72.49%
10/10/2019 5 378 158 -58.10%
10/10/2019 6 411 299 -27.31%
10/10/2019 7 352 447 26.93% 
10/10/2019 8 443 536 20.90% 
10/10/2019 9 347 463 33.33% 
10/10/2019 10 370 372 0.58% 
10/10/2019 11 377 449 18.99% 
10/10/2019 12 397 419 5.49% 
10/10/2019 13 469 422 -9.98%
10/10/2019 14 481 478 -0.71%
10/10/2019 15 615 624 1.41% 
10/10/2019 16 728 730 0.30% 
10/10/2019 17 690 713 3.32% 
10/10/2019 18 554 557 0.58% 
10/10/2019 19 392 351 -10.53%
10/10/2019 20 274 319 16.55% 
10/10/2019 21 238 209 -12.15%
10/10/2019 22 133 130 -2.63%
10/10/2019 23 78 73 -6.83%
10/10/2019 24 79 70 -12.02%
10/11/2019 1 61 44 -27.87%
10/11/2019 2 37 49 31.51% 
10/11/2019 3 37 51 37.54% 
10/11/2019 4 97 120 23.29% 
10/11/2019 5 316 205 -34.99%
10/11/2019 6 383 262 -31.72%
10/11/2019 7 306 259 -15.46%
10/11/2019 8 336 346 2.87% 
10/11/2019 9 367 429 17.00% 
10/11/2019 10 338 379 12.23% 
10/11/2019 11 441 421 -4.44%
10/11/2019 12 520 557 7.17% 
10/11/2019 13 555 543 -2.12%
10/11/2019 14 526 485 -7.72%
10/11/2019 15 603 607 0.68% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/11/2019 16 684 517 -24.36%
10/11/2019 17 660 646 -2.15%
10/11/2019 18 543 479 -11.73%
10/11/2019 19 368 379 3.04% 
10/11/2019 20 290 369 27.14% 
10/11/2019 21 273 247 -9.61%
10/11/2019 22 150 263 75.36% 
10/11/2019 23 131 172 30.93% 
10/11/2019 24 102 141 38.63% 
10/12/2019 1 63 52 -16.99%
10/12/2019 2 43 32 -25.48%
10/12/2019 3 31 27 -13.44%
10/12/2019 4 27 28 4.94% 
10/12/2019 5 57 61 7.01% 
10/12/2019 6 130 88 -32.06%
10/12/2019 7 95 209 120.08% 
10/12/2019 8 162 243 50.15% 
10/12/2019 9 302 387 28.04% 
10/12/2019 10 373 446 19.67% 
10/12/2019 11 433 392 -9.49%
10/12/2019 12 449 451 0.35% 
10/12/2019 13 470 483 2.86% 
10/12/2019 14 429 466 8.67% 
10/12/2019 15 460 436 -5.20%
10/12/2019 16 396 394 -0.47%
10/12/2019 17 449 403 -10.21%
10/12/2019 18 420 347 -17.34%
10/12/2019 19 318 318 0.03% 
10/12/2019 20 304 245 -19.38%
10/12/2019 21 232 285 22.73% 
10/12/2019 22 173 210 21.45% 
10/12/2019 23 123 192 55.87% 
10/12/2019 24 103 125 21.05% 
10/13/2019 1 64 21 -67.54%
10/13/2019 2 41 60 47.54% 
10/13/2019 3 26 34 29.94% 
10/13/2019 4 30 20 -33.15%
10/13/2019 5 23 21 -7.84%
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/13/2019 6 46 49 5.65% 
10/13/2019 7 56 78 39.37% 
10/13/2019 8 71 118 66.40% 
10/13/2019 9 149 152 1.75% 
10/13/2019 10 207 236 13.80% 
10/13/2019 11 281 317 12.94% 
10/13/2019 12 346 324 -6.46%
10/13/2019 13 450 386 -14.19%
10/13/2019 14 385 438 13.87% 
10/13/2019 15 369 395 7.00% 
10/13/2019 16 349 340 -2.66%
10/13/2019 17 427 314 -26.51%
10/13/2019 18 370 327 -11.58%
10/13/2019 19 305 285 -6.65%
10/13/2019 20 238 239 0.37% 
10/13/2019 21 176 130 -26.10%
10/13/2019 22 105 109 3.57% 
10/13/2019 23 81 69 -15.33%
10/13/2019 24 57 40 -29.44%
10/14/2019 1 24 92 282.08% 
10/14/2019 2 11 20 82.31% 
10/14/2019 3 20 30 51.02% 
10/14/2019 4 106 30 -71.51%
10/14/2019 5 367 204 -44.55%
10/14/2019 6 389 290 -25.33%
10/14/2019 7 311 240 -22.97%
10/14/2019 8 388 361 -6.85%
10/14/2019 9 348 455 30.85% 
10/14/2019 10 355 405 14.10% 
10/14/2019 11 358 393 9.76% 
10/14/2019 12 369 474 28.33% 
10/14/2019 13 464 555 19.60% 
10/14/2019 14 473 602 27.34% 
10/14/2019 15 568 547 -3.72%
10/14/2019 16 603 506 -16.14%
10/14/2019 17 637 554 -13.08%
10/14/2019 18 472 464 -1.68%
10/14/2019 19 332 311 -6.42%
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/14/2019 20 205 128 -37.59%
10/14/2019 21 158 124 -21.41%
10/14/2019 22 113 88 -22.48%
10/14/2019 23 64 97 52.13% 
10/14/2019 24 67 50 -24.63%
10/15/2019 1 46 34 -26.44%
10/15/2019 2 34 58 71.88% 
10/15/2019 3 33 20 -39.23%
10/15/2019 4 106 126 18.69% 
10/15/2019 5 375 281 -25.17%
10/15/2019 6 380 258 -32.14%
10/15/2019 7 361 301 -16.75%
10/15/2019 8 412 347 -15.89%
10/15/2019 9 372 360 -3.10%
10/15/2019 10 363 408 12.32% 
10/15/2019 11 355 486 36.95% 
10/15/2019 12 394 435 10.51% 
10/15/2019 13 475 420 -11.62%
10/15/2019 14 492 496 0.80% 
10/15/2019 15 583 696 19.37% 
10/15/2019 16 702 643 -8.45%
10/15/2019 17 621 533 -14.22%
10/15/2019 18 504 387 -23.14%
10/15/2019 19 313 305 -2.71%
10/15/2019 20 238 238 -0.18%
10/15/2019 21 197 184 -6.63%
10/15/2019 22 105 111 5.33% 
10/15/2019 23 85 84 -1.12%
10/15/2019 24 69 59 -14.04%
10/16/2019 1 50 34 -32.33%
10/16/2019 2 30 34 14.74% 
10/16/2019 3 38 58 51.57% 
10/16/2019 4 101 106 4.56% 
10/16/2019 5 399 248 -37.96%
10/16/2019 6 372 315 -15.28%
10/16/2019 7 361 328 -9.18%
10/16/2019 8 402 345 -14.16%
10/16/2019 9 343 381 11.21% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/16/2019 10 312 336 7.72% 
10/16/2019 11 338 374 10.62% 
10/16/2019 12 372 460 23.70% 
10/16/2019 13 438 490 11.91% 
10/16/2019 14 450 497 10.45% 
10/16/2019 15 587 628 7.06% 
10/16/2019 16 654 716 9.45% 
10/16/2019 17 589 612 3.97% 
10/16/2019 18 465 402 -13.46%
10/16/2019 19 293 318 8.49% 
10/16/2019 20 240 244 1.69% 
10/16/2019 21 181 209 15.73% 
10/16/2019 22 142 151 6.49% 
10/16/2019 23 69 72 4.24% 
10/16/2019 24 69 48 -29.86%
10/17/2019 1 43 21 -51.69%
10/17/2019 2 37 26 -30.35%
10/17/2019 3 39 30 -22.56%
10/17/2019 4 107 97 -9.68%
10/17/2019 5 391 305 -22.10%
10/17/2019 6 364 293 -19.56%
10/17/2019 7 345 340 -1.33%
10/17/2019 8 420 431 2.65% 
10/17/2019 9 362 387 6.78% 
10/17/2019 10 303 357 17.94% 
10/17/2019 11 339 337 -0.67%
10/17/2019 12 402 450 12.03% 
10/17/2019 13 471 503 6.81% 
10/17/2019 14 477 478 0.24% 
10/17/2019 15 555 516 -7.06%
10/17/2019 16 677 694 2.48% 
10/17/2019 17 622 642 3.18% 
10/17/2019 18 543 543 0.03% 
10/17/2019 19 334 266 -20.32%
10/17/2019 20 259 220 -14.95%
10/17/2019 21 209 219 4.57% 
10/17/2019 22 118 203 72.33% 
10/17/2019 23 98 132 34.57% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/17/2019 24 68 82 20.53% 
10/18/2019 1 42 22 -47.87%
10/18/2019 2 33 35 5.26% 
10/18/2019 3 27 37 37.26% 
10/18/2019 4 87 101 15.94% 
10/18/2019 5 325 336 3.41% 
10/18/2019 6 357 363 1.78% 
10/18/2019 7 313 355 13.27% 
10/18/2019 8 377 374 -0.68%
10/18/2019 9 396 353 -10.78%
10/18/2019 10 378 449 18.70% 
10/18/2019 11 421 362 -14.08%
10/18/2019 12 457 341 -25.42%
10/18/2019 13 491 448 -8.72%
10/18/2019 14 541 489 -9.57%
10/18/2019 15 569 598 5.05% 
10/18/2019 16 703 649 -7.69%
10/18/2019 17 679 753 10.87% 
10/18/2019 18 568 744 30.92% 
10/18/2019 19 446 462 3.60% 
10/18/2019 20 299 286 -4.31%
10/18/2019 21 259 247 -4.64%
10/18/2019 22 224 216 -3.37%
10/18/2019 23 161 183 13.41% 
10/18/2019 24 113 107 -5.16%
10/19/2019 1 68 45 -33.24%
10/19/2019 2 51 30 -40.78%
10/19/2019 3 25 47 88.02% 
10/19/2019 4 38 20 -47.23%
10/19/2019 5 61 38 -37.03%
10/19/2019 6 83 105 26.97% 
10/19/2019 7 135 212 56.79% 
10/19/2019 8 174 278 59.70% 
10/19/2019 9 307 253 -17.57%
10/19/2019 10 395 346 -12.49%
10/19/2019 11 437 342 -21.82%
10/19/2019 12 459 462 0.72% 
10/19/2019 13 532 498 -6.46%
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/19/2019 14 469 502 6.94% 
10/19/2019 15 442 434 -1.86%
10/19/2019 16 437 451 3.30% 
10/19/2019 17 418 472 12.98% 
10/19/2019 18 478 434 -9.18%
10/19/2019 19 352 400 13.75% 
10/19/2019 20 292 317 8.67% 
10/19/2019 21 232 254 9.60% 
10/19/2019 22 172 185 7.33% 
10/19/2019 23 144 142 -1.27%
10/19/2019 24 95 122 28.56% 
10/20/2019 1 51 71 39.42% 
10/20/2019 2 43 48 12.48% 
10/20/2019 3 16 43 167.74% 
10/20/2019 4 24 55 130.15% 
10/20/2019 5 29 49 70.20% 
10/20/2019 6 37 78 111.14% 
10/20/2019 7 70 40 -42.84%
10/20/2019 8 81 146 80.42% 
10/20/2019 9 170 151 -10.96%
10/20/2019 10 217 223 2.75% 
10/20/2019 11 303 296 -2.30%
10/20/2019 12 335 406 21.05% 
10/20/2019 13 487 413 -15.16%
10/20/2019 14 390 480 23.19% 
10/20/2019 15 398 437 9.71% 
10/20/2019 16 364 415 14.03% 
10/20/2019 17 382 401 4.97% 
10/20/2019 18 354 414 16.95% 
10/20/2019 19 323 317 -1.96%
10/20/2019 20 255 234 -8.06%
10/20/2019 21 171 151 -11.66%
10/20/2019 22 114 141 23.90% 
10/20/2019 23 62 93 50.32% 
10/20/2019 24 50 40 -19.56%
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Table 3: Bi-directional Probe Data hourly volume model estimates for a two-week timeseries in 
October, as graphed in Chapter 7 Figure 3. Site is a representative small road in Montana, with an 
AADT of 901, road size bin B. Model estimates are compared to volume from a reference permanent 
counter. 

Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/7/2019 1 2 4 110.57% 
10/7/2019 2 3 4 40.38% 
10/7/2019 3 2 4 110.57% 
10/7/2019 4 1 4 321.13% 
10/7/2019 5 19 5 -74.21%
10/7/2019 6 44 17 -60.87%

110/7/2019 7 85 53 -38.11%
10/7/2019 8 57 65 13.93% 
10/7/2019 9 62 114 83.84% 
10/7/2019 10 76 112 46.72% 
10/7/2019 11 52 100 91.70% 
10/7/2019 12 54 113 109.95% 
10/7/2019 13 58 113 94.61% 
10/7/2019 14 63 114 81.41% 
10/7/2019 15 74 114 54.44% 
10/7/2019 16 73 114 56.56% 
10/7/2019 17 81 114 41.10% 
10/7/2019 18 81 122 50.57% 
10/7/2019 19 88 116 31.72% 
10/7/2019 20 40 81 102.98% 
10/7/2019 21 38 55 45.08% 
10/7/2019 22 15 28 87.40% 
10/7/2019 23 10 11 11.66% 
10/7/2019 24 7 37 424.29% 
10/8/2019 1 2 4 110.57% 
10/8/2019 2 2 4 110.57% 
10/8/2019 3 4 4 5.28% 
10/8/2019 4 1 4 321.13% 
10/8/2019 5 18 5 -72.78%
10/8/2019 6 44 18 -60.18%
10/8/2019 7 75 81 7.63% 
10/8/2019 8 58 89 53.25% 
10/8/2019 9 66 112 68.96% 
10/8/2019 10 88 117 32.94% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/8/2019 11 75 118 56.93% 
10/8/2019 12 65 129 98.42% 
10/8/2019 13 56 135 141.03% 
10/8/2019 14 74 120 61.85% 
10/8/2019 15 95 150 58.00% 
10/8/2019 16 83 120 44.30% 
10/8/2019 17 87 125 43.30% 
10/8/2019 18 108 94 -12.80%
10/8/2019 19 79 113 43.50% 
10/8/2019 20 25 87 248.96% 
10/8/2019 21 43 42 -1.74%
10/8/2019 22 25 28 12.44% 
10/8/2019 23 19 11 -41.23%
10/8/2019 24 5 10 102.81% 
10/9/2019 1 3 4 40.38% 
10/9/2019 2 4 4 5.28% 
10/9/2019 3 4 4 5.28% 
10/9/2019 4 4 4 5.28% 
10/9/2019 5 17 21 23.70% 
10/9/2019 6 35 48 36.62% 
10/9/2019 7 55 52 -5.84%
10/9/2019 8 32 73 128.02% 
10/9/2019 9 38 92 142.91% 
10/9/2019 10 53 125 136.05% 
10/9/2019 11 35 112 220.18% 
10/9/2019 12 40 114 185.68% 
10/9/2019 13 32 103 223.07% 
10/9/2019 14 32 97 201.99% 
10/9/2019 15 29 106 265.36% 
10/9/2019 16 48 136 182.53% 
10/9/2019 17 51 111 117.03% 
10/9/2019 18 62 106 71.06% 
10/9/2019 19 53 94 76.74% 
10/9/2019 20 15 71 371.19% 
10/9/2019 21 8 55 591.53% 
10/9/2019 22 5 27 448.43% 
10/9/2019 23 3 11 272.19% 
10/9/2019 24 2 10 407.01% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/10/2019 1 0 4 inf 
10/10/2019 2 2 4 110.57% 
10/10/2019 3 0 4 inf 
10/10/2019 4 0 4 inf 
10/10/2019 5 14 5 -65.00%
10/10/2019 6 34 13 -60.37%
10/10/2019 7 50 57 14.45% 
10/10/2019 8 39 77 98.31% 
10/10/2019 9 43 87 101.74% 
10/10/2019 10 23 95 311.74% 
10/10/2019 11 47 98 108.14% 
10/10/2019 12 35 98 179.50% 
10/10/2019 13 30 139 363.78% 
10/10/2019 14 48 116 140.84% 
10/10/2019 15 33 110 232.10% 
10/10/2019 16 52 142 173.01% 
10/10/2019 17 73 100 36.84% 
10/10/2019 18 71 126 77.44% 
10/10/2019 19 79 90 13.61% 
10/10/2019 20 26 70 170.50% 
10/10/2019 21 18 41 130.34% 
10/10/2019 22 11 28 151.12% 
10/10/2019 23 5 11 123.31% 
10/10/2019 24 3 10 238.01% 
10/11/2019 1 5 4 -15.77%
10/11/2019 2 3 4 40.38% 
10/11/2019 3 3 4 40.38% 
10/11/2019 4 3 4 40.38% 
10/11/2019 5 13 5 -62.31%
10/11/2019 6 27 14 -49.63%
10/11/2019 7 50 52 4.67% 
10/11/2019 8 43 76 76.74% 
10/11/2019 9 51 94 85.09% 
10/11/2019 10 62 102 65.17% 
10/11/2019 11 71 105 47.78% 
10/11/2019 12 55 111 101.79% 
10/11/2019 13 53 99 85.99% 
10/11/2019 14 55 107 94.53% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/11/2019 15 59 107 81.34% 
10/11/2019 16 79 108 36.20% 
10/11/2019 17 77 107 38.95% 
10/11/2019 18 84 125 48.22% 
10/11/2019 19 81 97 19.57% 
10/11/2019 20 36 74 104.82% 
10/11/2019 21 17 42 146.24% 
10/11/2019 22 23 28 22.10% 
10/11/2019 23 17 12 -28.14%
10/11/2019 24 5 12 147.19% 
10/12/2019 1 11 4 -61.72%
10/12/2019 2 2 4 110.57% 
10/12/2019 3 1 4 321.13% 
10/12/2019 4 0 4 inf 
10/12/2019 5 13 5 -62.31%
10/12/2019 6 18 48 167.72% 
10/12/2019 7 38 52 37.72% 
10/12/2019 8 51 90 77.04% 
10/12/2019 9 66 119 79.76% 
10/12/2019 10 65 98 50.54% 
10/12/2019 11 67 125 85.96% 
10/12/2019 12 47 106 125.95% 
10/12/2019 13 44 108 145.57% 
10/12/2019 14 61 116 90.95% 
10/12/2019 15 68 108 59.21% 
10/12/2019 16 58 108 86.66% 
10/12/2019 17 55 108 96.84% 
10/12/2019 18 65 117 80.48% 
10/12/2019 19 62 132 113.10% 
10/12/2019 20 44 76 71.86% 
10/12/2019 21 23 42 81.27% 
10/12/2019 22 20 28 39.58% 
10/12/2019 23 11 12 11.05% 
10/12/2019 24 8 12 54.50% 
10/13/2019 1 8 4 -47.36%
10/13/2019 2 5 4 -15.77%
10/13/2019 3 1 4 321.13% 
10/13/2019 4 1 4 321.13% 



   Non-Traditional Methods to Obtain Annual Average Daily Traffic │ Page 136 

Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/13/2019 5 12 5 -59.17%
10/13/2019 6 13 12 -4.71%
10/13/2019 7 33 38 15.96% 
10/13/2019 8 21 47 124.60% 
10/13/2019 9 19 92 385.08 % 
10/13/2019 10 39 129 230.55% 
10/13/2019 11 44 109 147.97% 
10/13/2019 12 53 103 93.88% 
10/13/2019 13 41 116 182.41% 
10/13/2019 14 53 112 111.96% 
10/13/2019 15 39 112 186.75% 
10/13/2019 16 46 112 143.12% 
10/13/2019 17 66 112 69.45% 
10/13/2019 18 53 111 109.58% 
10/13/2019 19 82 99 20.18% 
10/13/2019 20 55 91 64.55% 
10/13/2019 21 28 42 48.90% 
10/13/2019 22 21 28 33.03% 
10/13/2019 23 11 11 1.51% 
10/13/2019 24 3 10 238.01% 
10/14/2019 1 4 4 5.28% 
10/14/2019 2 3 4 40.38% 
10/14/2019 3 4 4 5.28% 
10/14/2019 4 0 4 inf 
10/14/2019 5 19 5 -74.21%
10/14/2019 6 42 41 -1.28%
10/14/2019 7 68 68 -0.63%
10/14/2019 8 62 109 75.71% 
10/14/2019 9 51 102 99.67% 
10/14/2019 10 73 109 49.80% 
10/14/2019 11 56 137 145.44% 
10/14/2019 12 51 89 74.75% 
10/14/2019 13 54 111 105.04% 
10/14/2019 14 61 123 101.29% 
10/14/2019 15 55 113 105.08% 
10/14/2019 16 65 113 73.53% 
10/14/2019 17 78 115 47.26% 
10/14/2019 18 78 112 43.64% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/14/2019 19 95 103 8.38% 
10/14/2019 20 43 122 183.13% 
10/14/2019 21 20 42 108.46% 
10/14/2019 22 25 28 11.75% 
10/14/2019 23 13 11 -14.11%
10/14/2019 24 3 10 238.01% 
10/15/2019 1 1 4 321.13% 
10/15/2019 2 4 15 276.43% 
10/15/2019 3 3 4 40.38% 
10/15/2019 4 1 4 321.13% 
10/15/2019 5 15 5 -67.33%
10/15/2019 6 38 14 -62.31%
10/15/2019 7 73 133 82.87% 
10/15/2019 8 73 142 94.86% 
10/15/2019 9 61 96 57.91% 
10/15/2019 10 69 104 50.51% 
10/15/2019 11 61 107 75.37% 
10/15/2019 12 46 114 147.19% 
10/15/2019 13 50 114 127.41% 
10/15/2019 14 61 82 33.91% 
10/15/2019 15 49 114 132.06% 
10/15/2019 16 89 114 27.76% 
10/15/2019 17 90 143 59.41% 
10/15/2019 18 89 113 26.91% 
10/15/2019 19 75 100 33.50% 
10/15/2019 20 41 88 115.06% 
10/15/2019 21 20 63 212.98% 
10/15/2019 22 9 28 210.40% 
10/15/2019 23 8 11 39.57% 
10/15/2019 24 3 10 238.01% 
10/16/2019 1 2 15 674.83% 
10/16/2019 2 2 4 110.57% 
10/16/2019 3 1 4 321.13% 
10/16/2019 4 1 4 321.13% 
10/16/2019 5 16 42 163.28% 
10/16/2019 6 40 42 5.31% 
10/16/2019 7 65 75 14.86% 
10/16/2019 8 70 83 18.97% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/16/2019 9 66 115 73.77% 
10/16/2019 10 76 113 49.29% 
10/16/2019 11 59 113 90.69% 
10/16/2019 12 62 140 125.98% 
10/16/2019 13 67 135 100.83% 
10/16/2019 14 61 101 64.80% 
10/16/2019 15 65 94 45.06% 
10/16/2019 16 67 119 77.58% 
10/16/2019 17 83 120 44.74% 
10/16/2019 18 108 114 5.61% 
10/16/2019 19 86 108 26.06% 
10/16/2019 20 51 90 76.01% 
10/16/2019 21 27 42 56.48% 
10/16/2019 22 12 28 134.24% 
10/16/2019 23 12 11 -6.95%
10/16/2019 24 2 10 407.01% 
10/17/2019 1 3 4 40.38% 
10/17/2019 2 2 4 110.57% 
10/17/2019 3 3 4 40.38% 
10/17/2019 4 4 4 5.28% 
10/17/2019 5 14 19 38.33% 
10/17/2019 6 58 35 -40.17%
10/17/2019 7 78 74 -5.46%
10/17/2019 8 64 76 19.23% 
10/17/2019 9 70 108 54.83% 
10/17/2019 10 81 102 25.45% 
10/17/2019 11 75 115 53.32% 
10/17/2019 12 64 115 79.67% 
10/17/2019 13 62 115 85.47% 
10/17/2019 14 69 124 80.14% 
10/17/2019 15 72 124 71.67% 
10/17/2019 16 78 117 50.02% 
10/17/2019 17 71 124 75.06% 
10/17/2019 18 109 116 6.79% 
10/17/2019 19 95 118 24.52% 
10/17/2019 20 56 101 80.47% 
10/17/2019 21 35 42 20.71% 
10/17/2019 22 20 34 71.62% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/17/2019 23 8 11 39.57% 
10/17/2019 24 5 10 102.81% 
10/18/2019 1 4 4 5.28% 
10/18/2019 2 3 4 40.38% 
10/18/2019 3 4 4 5.28% 
10/18/2019 4 3 4 40.38% 
10/18/2019 5 18 5 -72.78%
10/18/2019 6 28 17 -38.01%
10/18/2019 7 61 69 13.13% 
10/18/2019 8 50 76 51.45% 
10/18/2019 9 76 96 26.53% 
10/18/2019 10 71 122 71.47% 
10/18/2019 11 61 145 137.45% 
10/18/2019 12 64 106 65.74% 
10/18/2019 13 59 109 84.98% 
10/18/2019 14 76 123 61.62% 
10/18/2019 15 85 128 51.09% 
10/18/2019 16 104 167 61.04% 
10/18/2019 17 98 145 47.94% 
10/18/2019 18 124 122 -1.43%
10/18/2019 19 83 114 37.63% 
10/18/2019 20 45 89 97.84% 
10/18/2019 21 15 42 182.79% 
10/18/2019 22 30 28 -5.81%
10/18/2019 23 32 13 -58.90%
10/18/2019 24 7 13 89.94% 
10/19/2019 1 2 4 110.57% 
10/19/2019 2 4 4 5.28% 
10/19/2019 3 3 4 40.38% 
10/19/2019 4 3 4 40.38% 
10/19/2019 5 11 5 -55.45%
10/19/2019 6 10 17 66.34% 
10/19/2019 7 40 55 38.37% 
10/19/2019 8 40 72 79.03% 
10/19/2019 9 52 99 90.41% 
10/19/2019 10 42 109 158.41% 
10/19/2019 11 59 109 85.16% 
10/19/2019 12 62 115 85.79% 
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Date Hour Reference Volume 
(permanent count) 

Modeled Estimate Percent Error 

10/19/2019 13 65 106 62.38% 
10/19/2019 14 66 111 68.66% 
10/19/2019 15 60 111 85.52% 
10/19/2019 16 56 105 87.22% 
10/19/2019 17 71 111 56.78% 
10/19/2019 18 68 116 71.32% 
10/19/2019 19 55 102 86.35% 
10/19/2019 20 39 79 101.74% 
10/19/2019 21 24 49 103.11% 
10/19/2019 22 18 28 56.05% 
10/19/2019 23 11 13 19.56% 
10/19/2019 24 7 13 89.94% 
10/20/2019 1 5 4 -15.77%
10/20/2019 2 7 4 -39.84%
10/20/2019 3 1 4 321.13% 
10/20/2019 4 0 4 inf 
10/20/2019 5 12 5 -59.17%
10/20/2019 6 9 15 69.99% 
10/20/2019 7 27 42 56.72% 
10/20/2019 8 13 96 641.58% 
10/20/2019 9 15 102 581.89% 
10/20/2019 10 26 108 316.66% 
10/20/2019 11 45 127 181.24% 
10/20/2019 12 42 115 174.30% 
10/20/2019 13 59 103 75.11% 
10/20/2019 14 34 112 228.73% 
10/20/2019 15 41 112 172.61% 
10/20/2019 16 57 112 96.09% 
10/20/2019 17 75 112 49.03% 
10/20/2019 18 57 122 113.21% 
10/20/2019 19 56 120 114.14% 
10/20/2019 20 39 75 92.94% 
10/20/2019 21 25 42 67.44% 
10/20/2019 22 16 28 75.65% 
10/20/2019 23 6 11 86.09% 
10/20/2019 24 4 10 153.51% 
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