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Executive Summary 

Single-tube traffic counts are widely used because they are inexpensive and accurate enough to meet 
the needs of many travel monitoring applications. However, to convert single tube counts from an 
axle count to annual average daily traffic (AADT) volume, the axle count must be factored. The 
most common way to factor is to analyze axle-based classification data and determine the ratio of 
total vehicles to the axle count. Many agencies call this an “axle factor.” Such axle-based vehicle 
classification sites have historically been significantly costlier and require more maintenance than 
length-based traffic detection methods. Non-intrusive sensors, such as sidefire radar sensors, can 
cost-effectively collect vehicle length data, which can then be used to determine axle factors. 

The primary objectives of this project are to understand the accuracy of axle factors determined 
from vehicle length and to develop and evaluate methods for converting length data to axle-based 
classifications. 

Phase I of project TPF 5(340) assessed alternative methods to estimate axle factors and vehicle class 
from length-based data. The two best performing methods (Method 1 and Method 5) were further 
evaluated using an additional dataset from the nationwide Long Term Pavement Performance 
Program (LTPP). Based on the results of the final round of evaluations, the performance of the two 
recommended methods was found within the expected limits of performance.  

Phase II of this project develops and evaluates an implementation plan for Method 1 and Method 5. 
Since Method 1 is more straightforward with its methodology, its application is not as complicated 
to complete. Method 5, though, requires more complex mathematical applications, such as 
parametric functions and algorithm development, and the need for an automated application was 
identified. A data processing tool was developed to aid analysts in estimating axle factors and vehicle 
class using Method 5 techniques. The user inputs the raw traffic data inputs and the tool, with 
default “seed” data collected in Phase I of this project, estimates vehicle classes and axle factors for 
that site. The seed data used for the data processing tool is representative of the data inputted; 
therefore, consideration should be given to review and update the seed data, as needed. For 
example, seed data could be updated to reflect a specific region or highway characteristic so a more 
accurate representation of vehicle class can be applied to input data. 

As a test of the data processing tool, traffic data from ten collocated test sites in Wisconsin were 
inputted into the data processing tool to evaluate the tool’s ability to estimate FHWA vehicle classes 
from length-based data. The results are as follows: 

• Traffic estimates for all sites were within one percent of actual observed counts, which is a 
good indicator that the data processing tool is not adding or removing vehicles to the data 
set. 

• The data processing tool had difficulty replicating the vehicle class data that was gathered at 
each collocated site. 
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o For lower-volume areas, such as the Adams County and Fond du Lac County sites, 
the data processing tool has a smaller “room for error” due to the low number of 
vehicles in each class. 

o The “cutoff” vehicle length measurement that separates vehicle classes may not be 
optimal for the data processing tool to estimate vehicle distributions. More 
specifically, the vehicle distribution the data processing tool uses for each vehicle 
class likely overlaps each other, causing over- and underestimation of several vehicle 
classes. 

o The calibration data used by the data processing tool uses both local and national 
distribution data. The data processing tool applies weights to each data set to 
incorporate both local and national data. These weights, or the national data, may 
produce results that are not entirely representative of the local site. 

• A more detailed evaluation of the data processing tool and the most recent WisDOT data 
was performed by TTI and their results are provided below: 

o Calibrating the data processing tool with traffic data located within five or twenty 
miles from the test sites were found to have fewer misclassifications of traffic data 
and improved overall accuracy of the traffic estimates. 

o Calibrating the data processing tool with more localized traffic data did not provide a 
clear-cut improvement or decline when addressing misclassification of vehicle 
classes. 
 Vehicle classes with higher counts were found to improve with localized 

calibration data 
 Vehicle classes with lower counts or similar vehicle characteristics were 

estimated with more variance when compared to observed data. 

Future updates to the data processing tool could explore improvements such as evaluating the 
impact of different seed data on the tool’s accuracy.  For example, seed data could be selected based 
on roadway classification, number of travel lanes, and/or vehicle distribution. 
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Introduction 

Phase I of this project assessed alternative methods to estimate axle factors and vehicle class from 
length-based data. In the Phase I report, a set of eight methods was proposed and evaluated in an 
initial set of tests. This initial set of tests was carried out by comparing absolute errors in axle 
factors, and errors in the estimated proportion of vehicles per FHWA class. The two best 
performing methods (Method 1 and Method 5) were further evaluated using an additional dataset 
from the nationwide Long Term Pavement Performance Program (LTPP). Based on the results of 
the final round of evaluations, the performance of the two recommended methods was found within 
the expected limits of performance. The Phase I report recommends an implementation phase for 
both estimation methods. 

Phase II of this project develops and evaluates the implementation plan for Method 1 and Method 
5. Since Method 1 is more straightforward with its methodology, its application is not as 
complicated to complete. Method 5, though, requires more complex mathematical applications, such 
as parametric functions and algorithm development. Therefore, an automated application was 
identified.  

 

Method 1 – Overview 

Method 1 uses collected per vehicle axle class data to determine typical numbers of axles per length 
grouping (“band”) and generate an axle factor. This method is performed through the development 
of “seed” data to represent axle and vehicle length characteristics for a particular area. Seed data is 
developed by collecting axle class and vehicle length data at representative sites to produce an 
estimate of the number of axles per length band. These estimates are then applied to locations that 
only collected vehicle length data to develop an estimated axle factor for that site. Figure 1 illustrates 
a flow chart to develop axle factor data using Method 1. 

Perform One Time (Generate Seed Data): 

 
Perform Many Times (For Each Length Data Set): 

 

Figure 1.  Method 1 Data Flow Chart 

Per vehicle record axle class and 
vehicle length data

Typical number of 
axles per length band

Typical number of 
axles per length band

Apply to PVR
vehicle length data Axle factor
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Method 5 – Overview 

Method 5 uses per vehicle axle class data to classify the per vehicle length data into axle classes with 
a parameterized function. Similar to Method 1, seed data at representative sites is necessary to build 
the parameterized function. Once developed, the function can be applied to vehicle length data at 
local sites to estimate an axle class for that local site. Figure 2 illustrates a flow chart to develop axle 
class counts using Method 5. 

Perform One Time (Generate Seed Data): 

 
Perform Many Times (For Each Length Data Set): 

 

Figure 2.  Method 5 Data Flow Chart 

 

Method 5 – Data Processing Tool Development 

The implementation of Method 1 and Method 5 involves the development of representative axle 
classes based on a vehicle length interval (seed data) and using those proportions for application of 
local collection sites. Implementing Method 1 is based on applying axle class proportions to local 
data. This process is straightforward and does not require powerful software or advanced 
mathematical experience to perform. Method 5, however, develops algorithms to build 
parameterized functions (seed data) and applies local data to generate local axle class information. 
This process is more complex and may not be user-friendly for analysts to use. Therefore, a data 
processing tool was developed to automate Method 5 methodologies. The data processing tool was 
designed for a user to enter locally gathered traffic data and provide axle class data based on the 
input data. The parameterized seed data could be user-developed or have default values based on 
evaluation of Method 5 performed in Phase I of this project. 

The estimation tool can be accessed and run online, allowing for updates of the tool to be provided 
without sending software updates. Once loaded, an input screen is provided for the user to upload 
data to the estimation tool. A “help” hyperlink is provided throughout the input page for further 
guidance and instruction on information the software needs to function properly. Figure 3 illustrates 
the data processing tool home page. 

Per vehicle record axle class and 
vehicle length data Parameterized function

Parameterized function Apply to PVR          
vehicle length data

Factored axle class 
count
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Figure 3.  Data Processing Tool Home Page 

Method 5 – Implementation Assistance 

The data processing tool needs seed data to convert the local vehicle length data into an estimated 
axle class data. The seed data can be user-defined or can use default data developed from LTPP 
data. However, default seed data can, and should, be modified periodically to adjust for changing 
vehicle distribution trends along representative roadways. 

The project team asked the sponsor states for additional data to aid in further refining the data 
processing tool. The rationale for this is listed below: 

• Obtaining additional data further refines the data processing tool’s default seed data by 
having more representative data to develop the associated algorithms and parameterized 
functions to estimate axle class information. 

• Obtaining data from various state agencies allows the data processing tool to accommodate 
various data collection methods and file structures so minimal adjustments are needed by the 
user to input the local data into the data processing tool. 

From this request, Ohio Department of Transportation (ODOT) provided vehicle length and axle 
class data at three sites in Ohio. Each site was unique in terms of location (rural/urban/suburban), 
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roadway classification, and number of travel lanes. Traffic data was collected at each site for two 
days in May 2018 using loop detectors and Wavetronix out-of-roadway sensors. 

Output files of the ODOT-collected traffic data was submitted to the project team to understand 
the formatting of the output files and how the data processing tool can obtain data from that 
particular file type and its formatting characteristics. In addition, the ODOT-collected traffic data, 
particularly the loop detector and piezoelectric sensor data, was incorporated into the default seed 
data for use by analysts and agencies that do not have local axle class and vehicle length data for 
analysis. 

Method 5 – Tool Testing and Validation  

Once sponsor states provided additional data to the project team, the data processing tool’s seed 
data was further refined to include this data. The seed data was then tested to evaluate its 
performance in estimating axle data when compared to collocated sites. 

Wisconsin DOT provided traffic data from ten sites statewide. These sites include urban, suburban, 
and rural roadways that include multilane freeways and expressways as well as two-lane arterial 
roadways. The duration of the counts ranged from approximately eight months (244 days) to 
approximately twenty months (612 days). Traffic data collected at each site included vehicle length 
data provided by Wavetronix radar-based sensors and axle class data provided by in-pavement 
inductive loops (i.e. each site was collocated). Fourteen vehicle classes (13 classes outlined by 
FHWA and 1 “unknown” class) were collected at each site. A check of traffic volumes collected at 
each site was performed to ensure that number of vehicles counted by inductive loops and by 
Wavetronix devices were comparable to each other.  This check confirmed that the number of 
vehicles counted by the two data collection methods were similar.  This check is important to the 
data processing task and its evaluation as the length-based data and axle classification data are shown 
to provide comparable traffic volume results.  Any significant skew between the results of these 
methods may introduce bias or “bad data” into the analysis and evaluation processes. 

Table 1 illustrates a comparative analysis of the raw axle class counts collected for all classes at each 
site versus the forecasted axle class counts produced from the data processing tool: 
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Table 1:  Comparative Analysis of Axle Class Counts, All Vehicles 

 

 

From Table 1, the percent difference between the raw axle class counts and the forecasted axle class 
counts for all vehicles are below one percent at each of the ten sites. This indicates that the seed data 
from the data collection tool provided an accurate forecast in determining axle class counts for the 
Wisconsin sites.  Another check of this data was performed by creating axle factors from the length-
based data and comparing to the axle factors determined from the axle classification data collected at 
each site.  This check resulted in favorable results, reinforcing the validity of the data collected at the 
test sites. 

Table 2 illustrates the magnitude difference between the raw axle class counts and the forecasted 
axle class counts based on the FHWA vehicle classes. Table 3 illustrates the magnitude difference 
shown in Table 2 in percent format.

I-39/90 Dane 459 97864 97991 127 0.13%

I-39/90/94 Columbia 584 59034 58912 -122 -0.21%

I-43 Waukesha 612 43257 43683 426 0.98%

I-94 Monroe 595 23623 23724 101 0.43%

US 10 Portage 500 13871 13933 62 0.45%

US 18/151 Iowa 519 16939 17077 138 0.82%

WIS 21 Winnebago 563 10706 10732 26 0.24%

WIS 21 Adams 244 3512 3547 35 0.98%

US 45 Fond du Lac 248 4393 4377 -16 -0.35%

WIS 100 Milwaukee 252 28054 28201 147 0.52%

Average 10 sites 458 30125 30218 92 0.31%

Roadway County
Percent 

difference
Magnitude 
difference

Forecasted axle 
class count 

Axle class count 
from siteCount days
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Table 2:  Raw Axle Count and Data Tool Estimate Comparison, Magnitude Difference 

 
Table 3:  Raw Axle Count and Data Tool Estimate Comparison, Percent Difference 

Site Count Data Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Class 14
Raw Axle Class Count 182 68380 12630 709 2180 437 187 1355 10670 128 370 207 12 417

Data Tool Estimate 324 58601 16870 1675 5077 1621 0 630 10884 17 5 143 57 2087
Difference -142 9779 -4240 -966 -2897 -1184 187 725 -214 111 365 64 -45 -1670

Raw Axle Class Count 90 37546 8063 449 1316 195 43 1019 9324 88 351 200 8 341
Data Tool Estimate 9 33484 9577 730 2809 737 2 701 9368 147 86 163 18 1081

Difference 81 4062 -1514 -281 -1493 -542 41 318 -44 -59 265 37 -10 -740
Raw Axle Class Count 163 32828 6418 305 967 202 105 329 1760 37 41 11 2 87

Data Tool Estimate 41 29788 8469 250 2165 531 7 2 1662 53 2 1 66 646
Difference 122 3040 -2051 55 -1198 -329 98 327 98 -16 39 10 -64 -559

Raw Axle Class Count 31 12669 3040 187 564 107 41 534 5777 53 256 159 4 203
Data Tool Estimate 140 11259 3394 314 1196 262 68 284 5841 14 16 161 61 714

Difference -109 1410 -354 -127 -632 -155 -27 250 -64 39 240 -2 -57 -511
Raw Axle Class Count 40 9224 2418 119 358 66 38 216 1260 31 27 16 2 57

Data Tool Estimate 166 8622 2452 210 689 218 1 62 1194 0 51 28 0 240
Difference -126 602 -34 -91 -331 -152 37 154 66 31 -24 -12 2 -183

Raw Axle Class Count 39 11961 2469 129 418 76 29 248 1453 23 11 3 3 75
Data Tool Estimate 152 10812 3086 115 833 195 0 42 1458 0 2 39 0 343

Difference -113 1149 -617 14 -415 -119 29 206 -5 23 9 -36 3 -268
Raw Axle Class Count 38 7555 2170 74 303 61 34 105 318 12 11 1 1 23

Data Tool Estimate 176 7295 2051 96 516 143 0 2 252 46 0 10 1 144
Difference -138 260 119 -22 -213 -82 34 103 66 -34 11 -9 0 -121

Raw Axle Class Count 11 1923 720 30 112 22 6 82 531 20 22 2 4 27
Data Tool Estimate 97 1909 537 90 163 58 0 53 562 1 0 4 0 73

Difference -86 14 183 -60 -51 -36 6 29 -31 19 22 -2 4 -46
Raw Axle Class Count 17 3328 847 21 99 16 11 21 28 1 0 0 0 4

Data Tool Estimate 91 3117 870 1 200 27 0 0 9 0 0 0 0 62
Difference -74 211 -23 20 -101 -11 11 21 19 1 0 0 0 -58

Raw Axle Class Count 52 24111 3053 174 376 63 19 61 104 10 3 1 1 27
Data Tool Estimate 0 21244 6121 0 651 0 0 0 101 11 41 31 1 0

Difference 52 2867 -3068 174 -275 63 19 61 3 -1 -38 -30 0 27

I-39/90, Dane Cty

I-39/90/94, Columbia Cty

I-43, Waukesha Cty

I-94, Monroe Cty

US 10, Portage Cty

US 18/151, Iowa Cty

WIS 21, Winnebago Cty

WIS 21, Adams Cty

US 45, Fond du Lac Cty

WIS 100, Milwaukee Cty

Site Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 Class 10 Class 11 Class 12 Class 13 Class 14

I-90/94, Dane Cty 78% -14% 34% 136% 133% 271% -100% -54% 2% -87% -99% -31% 380% 401%

I-39/90/94, Columbia Cty -90% -11% 19% 62% 113% 278% -95% -31% 0% 68% -76% -18% 128% 217%

I-43, Waukesha Cty -75% -9% 32% -18% 124% 163% -93% -99% -6% 45% -95% -91% 2650% 640%

I-94, Monroe Cty 351% -11% 12% 68% 112% 145% 67% -47% 1% -74% -94% 1% 1308% 252%

US 10, Portage Cty 317% -7% 1% 77% 92% 232% -97% -71% -5% -100% 87% 79% -100% 322%

US 18/151, Iowa Cty 293% -10% 25% -11% 99% 157% -100% -83% 0% -100% -82% 1140% -100% 355%

WIS 21, Winnebago Cty 365% -3% -5% 30% 71% 134% -100% -98% -21% 269% -100% 782% 29% 524%

WIS 21, Adams Cty 747% -1% -25% 200% 46% 163% -100% -36% 6% -95% -100% 67% -100% 168%

US 45, Fond du Lac Cty 422% -6% 3% -95% 102% 74% -100% -100% -68% -100% -100% -100% -100% 1485%
WIS 100, Milwaukee Cty -100% -12% 101% -100% 73% -100% -100% -100% -3% 13% 1335% 3990% -1% -100%
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The results from tables 2 and 3 indicate the data processing tool has difficulty replicating the FHWA 
vehicle class counts at each study site. From Table 2 the data processing tool forecasts significantly 
differs from the raw count data in most of the FHWA classes, except for Class 2 and Class 9. 
Possible explanations for these results include: 

• For lower-volume areas, such as the Adams County and Fond du Lac County sites, the data 
processing tool has a smaller “room for error” due to the low number of vehicles in each 
class. 

• The “cutoff” vehicle length measurement that separates vehicle classes may not be optimal 
for the data processing tool to estimate vehicle distributions. More specifically, the vehicle 
distribution the data processing tool uses for each vehicle class likely overlaps each other, 
causing over- and underestimation of several vehicle classes. 

• The calibration data used by the data processing tool uses both local and national 
distribution data. The data processing tool applies a weighting factor to each data set to 
incorporate both local and national data. These weighting factors, or the national data, may 
produce results that are not entirely representative of the local site. 

Texas A&M Transportation Institute (TTI) performed a more detailed investigation of this dataset 
and how the data processing tool disseminated the traffic data. TTI developed a report describing 
these efforts, which is provided in Appendix A. The remainder of this section summarizes findings 
from their investigation. 

Data Misclassification 

In Phase I of the study, TTI estimated the data processing tool would generate approximately ten 
percent misclassified data across all axle classes.  Misclassification occurs when the data processing 
tool incorrectly assigns a data point (i.e. vehicle) to a data bin.  This condition, though, is a zero-sum 
procedure as the vehicle was counted, just placed in the incorrect data bin. 

TTI evaluated the WisDOT data set for misclassifications and summed the results for each of the 
project sites (Table 4).  This table indicates that eight of the ten sites have misclassification 
percentages below ten percent while the remaining two sites have percentages near twelve percent.  
With the large amount of data evaluated in this procedure, the number of misclassified vehicles 
seems reasonable. 
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Table 4:  Misclassification Percentages by Site 

Site Misclassification Percentage 

I-39/90, Dane County 12.0% 

I-39/90/94, Columbia County 8.0% 

I-43, Waukesha County 9.3% 

I-94, Monroe County 8.4% 

US 10, Portage County 6.7% 

US 18/151, Iowa County 8.9% 

WIS 21, Winnebago County 5.7% 

WIS 21, Adams County 8.4% 

US 45, Fond du Lac County 6.3% 

WIS 100, Milwaukee County 11.9% 

Calibration to Surrounding Sites 

Phase I analysis involved evaluating traffic data at 61 sites throughout the State of Wisconsin. From 
these sites, ten were selected as test sites for this round of calibration. Figure 4 illustrates the location 
of the initial 61 sites (shown as red pins) and the ten test sites (shown as blue pins). 

 

Figure 4.  Wisconsin Count Locations 
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For the initial evaluation performed in this report, each site was calibrated to a statewide calibration 
distribution developed from all 61 count locations. From the results, it was deduced that using a 
statewide calibration distribution may be too generalized for each individual site. Therefore, 
additional analysis was performed that calibrated each test site to surrounding sites based on distance 
(5-mile, 20-mile, and 40-mile radii, respectively). Table 4 illustrates the percent misclassified vehicles 
based on each calibration level. 

 
Table 5:  Percent Misclassified Vehicles Based on Calibration Level 

Site 

Misclassification Percentage (percent) 

No 
Calibration 

5 miles 20 miles 40 miles Full 
Calibration 

I-39/90, Dane County 11.8 8.4 8.6 13.3 9.0 

I-39/90/94, Columbia County 24.9 21.0 4.1 4.8 9.1 

I-43, Waukesha County 18.1 2.2 15.9 21.3 3.1 

I-94, Monroe County 7.6 4.2 4.2 5.7 13.1 

US 10, Portage County 7.8 2.2 2.5 3.1 3.9 

US 18/151, Iowa County 7.8 1.7 1.7 1.5 1.5 

WIS 21, Winnebago County 4.3 3.0 5.0 9.1 5.5 

WIS 21, Adams County 8.4 7.3 7.3 7.1 10.8 

US 45, Fond du Lac County 5.8 3.7 3.7 3.4 3.4 

WIS 100, Milwaukee County 11.9 23.6 7.0 10.1 8.5 

 

To determine the significance of the various calibration levels, a mixed-effects model was applied to 
the data shown in Table 5. This analysis determined the effect of each calibration level based on 
accuracy and assigned a p-value to evaluate whether the observed difference is “random noise” in 
the traffic data. Figure 5 illustrates the results of this analysis. It should be noted that smaller p-
values indicate a closer relationship between the site data (colored bar plots) and the calibration 
distribution (gray bar plot).   

From Figure 5, the percent of misclassified vehicles for the ten sites went down for all calibration 
levels. Furthermore, three calibration levels have p-values that indicate statistical significance at the 
95 percent confidence level (i.e. p-value <0.05) and two calibration levels having statistical 
significance near the 99 percent confidence level (5-mile and 20-mile). This indicates that calibration 
data located closer to the test sites have similar vehicle distribution patterns and fewer vehicle 
misclassifications. 
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Figure 5.  Misclassified Vehicles Based on Calibration Level 

Analysis was also performed to evaluate how the varying calibration levels would affect the FHWA 
vehicle classes developed at each site. Figure 6 illustrates the results as plots of observed values 
versus estimated values, by FHWA vehicles class, at different calibrations levels. Each calibration 
level (5-mile, 20-mile, 40 mile) was plotted for evaluation. For many classes, the observed and 
estimated values mirrored each other as the number of vehicles counts for each class increases; 
however, a wider variance occurred with lower volumes (less than 100 vehicles) as the calibration 
model tended to achieve precision for certain vehicle classes at the cost of others. These classes that 
achieved lesser accuracy were ones with few data points and ones with little differentiation between 
the vehicle classes (e.g. FHWA classes 12, 13, and 14). 
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Figure 6.  Misclassified Vehicles Based on Calibration Level 
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The misclassifications were then evaluated by absolute error for each vehicle class. This evaluation 
showed that classes with the highest counts had the best performance (i.e. smallest misclassification 
error) as their trend lines stayed near the zero-error axis. The average distribution of misclassified 
vehicles for each calibration level was tabulated to determine changes of misclassified vehicles per 
class due to calibration. This analysis indicated that while calibration reduced the number of 
misclassified vehicles, in general, some vehicle classes were benefited by calibration at the detriment 
of other classes having lesser accuracy. 

This section evaluates the misclassifications between the data processing tool and each test site and 
suggests that misclassifications can be minimized by using seed data from nearby sites instead of 
regionwide or larger-area data sources.  While the section concludes that using local seed data can 
reduce the number of misclassifications at a particular site, other factors that were not considered or 
evaluated in this study may also improve the amount of misclassifications in traffic data.  For 
example, gathering and using seed data based on roadways with similar characteristics such as 
classification, number of travel lanes, and vehicle distribution (i.e. truck percentage) may result in 
improved accuracy of the data processing tool.  While this study does not test these factors, future 
modification of the data processing tool should consider this as part of the update process. 

Summary and Conclusions 

This report summarizes the results of Phase II of project TPF 5(340), an evaluation of methods to 
estimate axle factors and vehicle class from length-based data. Phase II involved implementing 
Method 1 and Method 5 and evaluating their performance against field-observed data. A summary 
of key results of this implementation process follows: 

• Method 1 uses collected per vehicle axle class data at a particular site and calibrated seed data 
at representative sites to develop axle factors for that site. This method is straightforward 
and does not require complex software or processes to complete. 

• Method 5 uses collected per vehicle axle class data and distinguishes this data to length data 
using a parameterized function based on representative sites. This method is complex and 
cannot be easily processed without a processing algorithm/software. 

• A data processing tool was developed to aid analysts in estimating axle factors and vehicle 
class using Method 5 techniques. The user inputs the raw traffic data inputs and the tool, 
with default seed data collected in Phase I of this project, estimates vehicle classes and axle 
factors for that site. 

• The seed data used for the data processing tool is representative of the data inputted; 
therefore, consideration should be given to review and update the seed data, as needed. For 
example, seed data could be updated to reflect a specific region or highway characteristic so 
a more accurate representation of vehicle class can be applied to input data. 

• Traffic data from ten collocated test sites in Wisconsin were inputted into the data 
processing tool to evaluate the tool’s ability to estimate FHWA vehicle classes from length-
based data.  The results are as follows: 
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o Traffic estimates for all sites were within one percent of actual observed counts, 
which is a good indicator that the data processing tool is not adding or removing 
vehicles to the data set. 

o The data processing tool had difficulty replicating the vehicle class data that was 
gathered at each collocated site. 
 For lower-volume areas, such as the Adams County and Fond du Lac County 

sites, the data processing tool has a smaller “room for error” due to the low 
number of vehicles in each class. 

 The “cutoff” vehicle length measurement that separates vehicle classes may 
not be optimal for the data processing tool to estimate vehicle distributions. 
More specifically, the vehicle distribution the data processing tool uses for 
each vehicle class likely overlaps each other, causing over- and 
underestimation of several vehicle classes. 

 The calibration data used by the data processing tool uses both local and 
national distribution data. The data processing tool applies weights to each 
data set to incorporate both local and national data. These weights, or the 
national data, may produce results that are not entirely representative of the 
local site. 

o A more detailed evaluation of the data processing tool and the most recent WisDOT 
data was performed by TTI. Key results from this process include the following. 

o Calibrating the data processing tool with traffic data located within five or twenty 
miles from the test sites were found to have fewer misclassifications of traffic data 
and improved overall accuracy of the traffic estimates. 
 Calibrating the data processing tool with more localized traffic data did not 

provide a clear-cut improvement or decline when addressing misclassification 
of vehicle classes. 

• Vehicle classes with higher counts were found to improve with 
localized calibration data. 

• Vehicle classes with lower counts or similar vehicle characteristics 
were estimated with more variance when compared to observed data. 

• Future updates to the data processing tool should consider other parameters to test to 
improve the tool’s accuracy, such as evaluating test sites to seed data based on roadway 
classification, number of travel lanes, and/or vehicle distribution. 

As noted earlier, TTI’s detailed investigation of how the data processing tool disseminated traffic 
data was captured in a separate report, which is provided in Appendix A.
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Objective of this Analysis 
In the context of research project TPF 5(340) led by SRF, TTI developed and deployed an online 

application tool that implements an axle class estimation procedure previously developed by TTI. 

The online tool’s intent is to process length-based data from state members to the Transportation 

Pooled Fund study and to derive count estimates for each FHWA axle-class from said data. 

Calibration to local data was originally recommended to ensure best performance of the tool, but its 

effects were not quantified. Therefore, the objective of this analysis is to assess the effect of 

calibration on the performance of the tool when performing the estimation. 

Description of tool 
The estimation tool takes available length data aggregated in bins and produces estimates of the 

axle factor and counts by axle class. This online tool can be accessed using the following URL: 

http://vehicleclassestimationtool.centralus.cloudapp.azure.com/tool.html.  

In phase 1 of research effort TPF 5(340), the TTI team estimated the overall accuracy of the tool 

estimates at roughly a 10 percent average misclassification across all axle classes. This average rate 

of misclassification should be expected when analyzing a given site with the tool. The tool, 

however, allows the user to upload calibration data when available with the intent to adjust the 

algorithm using local data and thus producing improved axle-class estimates. 

Calibration of the Tool 
Some amount of data cleaning and wrangling is required while preparing the files for bin data and 

calibration data input. In general, the files should be consistent with the format described on the 

tool's website. For example, the numbers coding vehicle classes in the calibration data should range 

only from 1 to 14 (where 1-13 represent the 13 FHWA axle classes, and 14 represent the count of 

vehicles of unknown classes). Another important consideration is that any vehicles with a length 

value greater than 120ft should be coded as 999 ft. 

Initial Validation of Tool Accuracy 
To confirm the accuracy of the tool estimations, the Wisconsin DOT ran the analysis on 10 
segments statewide which had co-located axle classification sites and Wavetronix sites. When 

comparing the estimates from the tool with the actual axle-class counts, the overall 

misclassification error was found to be about 10 percent for these ten sites. Table 1 provides the 

input data bins and the corresponding classification error from this exercise.  

http://vehicleclassestimationtool.centralus.cloudapp.azure.com/tool.html


Table 1 Bin Data and Estimation Error 

Site Bin 1 Bin 2 Bin 3 Bin 4 Percent Misclassified (%) 

Coldspring Road 100 27395 486 216 11.9 

S. Fond Du Lac 100 4126 109 54 6.27 

Preston 100 2594 182 672 8.37 

Winnebago 100 9822 376 436 5.66 

Dodgeville 100 14626 566 1785 8.87 

Amherst Junction 100 11721 582 1530 6.65 

Tomah 100 15840 987 6795 8.42 

Crowbar Road 100 39870 1422 2287 9.25 

Vienna 100 45231 2331 11143 8.04 

Cottage Grove Road 500 79794 4395 13304 11.95 

The TTI team was requested to perform calibration on these 10 site, assessing the extent to which 

such calibration step improves the performance of the tool. Such additional rounds of analysis, 

aimed at assessing the degree of improvement in the performance due to calibration of the tool, has 
been documented in the following sections. 

Analyzing the Impact of Calibration on Tool Performance 
The original vehicle classification data for 61 sites in Wisconsin (2015 and 2016) was used as the 

pool for calibrating the tool. The test set used to assess the impact of calibration were the additional 

ten sites provided by Wisconsin DOT and presented in Table 1. Figure 1 show the locations of the 

calibration pool (in red pins) and the locations of the test sites (in blue pins). 

Figure 1 Test Sites and Calibration Sites - Wisconsin 



The bin length thresholds used as input were: 

L1: 0-7’: C1’s 

L2: 7’-29’: C2’s - C3’s 

L3: 29’-45’: C4’s - C7’s 

L4: 45’ – 120’: C8’s and above. 

Initially, some anomalies were observed at two test sites, but upon discussion with Wisconsin DOT, 

the issues were corrected and all 10 test sites could be used in this analysis. All sites were calibrated 

with the data from other sites (in the calibration pool) within 5 mile radius, 20 miles radius and 40 

mile radius respectively. The results of these calibrations are shown in Table 2. 

Table 2 Calibration Levels and Percent Misclassified 

Site 
Percent Misclassified (%) 

No Calibration 5 miles 20 miles 40 miles Full Calibration 

Coldspring Road 11.9 23.6 7.0 10.1 8.5 

S. Fond Du Lac 5.8 3.7  3.7 3.4 3.4 

Preston 8.4 7.3 7.3 7.1 10.8 

Winnebago 4.3 3.0 5.02 9.1 5.5 

Dodgeville 7.8 1.7 1.7 1.5 1.5 

Amherst Junction 7.8 2.2 2.5 3.1 3.9 

Tomah 7.6 4.2 4.2 5.7 13.1 

Crowbar Road 18.1 2.2 15.9 21.3 3.1 

Vienna 24.9 21 4.1 4.8 9.1 

Cottage Grove Road 11.8 8.4 8.6 13.3 9 

To assess the significance of the impact of these calibration levels, a mixed-effects model was fitted 

to the results from the 10 test sites. This analysis determined the average effect of different 

calibration levels in terms of accuracy and assigned a p-value from the hypothesis that observed 

difference from random noise. The results comparing medians and misclassification spread 

resulting from the various calibration levels are shown below (Figure 2). 

This report’s appendix shows the detailed axle-class-level results obtained for different levels of 

calibration. Smaller values of p in the figure indicate that the estimated difference between the 

given calibration level and the reference level (i.e., no calibration, plotted in gray) are more likely to 

be a clear systematic change in the performance of the algorithm due to the calibration performed. 

It can be seen that the total percent of misclassified vehicles went down for all calibration schemes. 

The three boxes shown in light green correspond to statistically significant reductions at the 95 

percent confidence level (p-value < 0.05). Only the calibration to a 40 mile radius shows a 

reduction with less confidence than the other calibration levels (p-value < 0.1, for a 90 percent 

confidence level).  



Figure 2 Calibration Levels and Percent Misclassification 

It is clear from this exercise that the calibration levels improved the performance of the tool in 

terms of overall correct classification of vehicles. Moreover, all levels of calibration reduced the 

median misclassification rate approximately by half, compared to no calibration (median 

multiplicative factors ranging from 0.52 for 20 mi calibration to 0.65 for 40 mile 

calibration).Another round of analysis was conducted on these results to assess how the accuracy of 

vehicle count estimation changes for individual classes when calibration is performed.  

Figure 3 shows the results as plots of true value versus estimated values of vehicle count, by class, 

at different levels of calibration. 

A communality between calibration levels is the increased accuracy with increasing estimated 

number of vehicles. That is particularly clear for the both magenta trend lines, corresponding to 

classes 2 and 9, regardless of calibration threshold. These lines align nearly perfectly on the 1:1 

diagonal in counts of 100 estimated vehicles up to close to 100,000 vehicles.  

A closer look at the improved performance of 20-mile and 5-mile calibration compared to no 

calibration are shown in Figure 4 and Figure 5 respectively.  



a. No Calibration

a. 5-mile Calibration b. 20-mile Calibration

c. 40-mile Calibration d. Full-state Calibration
Figure 3 Accuracy of Prediction by Class and Calibration Level. 



The benefit of calibrating at 20 miles is clearer on classes 4, 8, 10, and 11. The trend lines start 

aligning with the 1:1 diagonal between counts of 10 and 100 estimated vehicles and continue that 

alignment as the estimated number of vehicles increase. A detriment in estimating classes 5, 7, and 

13 can be noticed, which tend to align less on the diagonal after the 20-mile calibration, with little 

to no effect observed for other classes. The following plots zoom at the range 10-1000 estimated 

vehicles to help appreciate these trend changes: 

Figure 4 True Vehicle Count Value vs Predicted Value by Vehicle Class – No Calibration vs 20 mile Calibration 

Figure 5 True Vehicle Count Value vs Predicted Value by Vehicle Class – No Calibration vs 5 mile Calibration 



It is apparent from the above figures that the effect of calibration on the trends is to “whip” the 

trends of some key axle classes in line (such as classes 7 and 8) for counts as small as 20 to 50 

vehicles. This improved alignment comes at the cost of loss in precision for some classes with 

fewer number of vehicles and for which less differentiation exists in the binning scheme (such as 

classes 12, 13 and 14). 

Next, the differences are examined in terms of absolute classification error, by class, for the No-

calibration vs the 20-mile calibration scenarios. The results are presented in Figure 6. 

Figure 6 Absolute Difference in True and Predicted Vehicle Count Value by Vehicle Class – No Calibration vs 20 

mile Calibration 

From this comparison, it is evident that the reduction in overall classification error is also due to 

improved performance (i.e., reduced classification error) at the classes with highest counts. Lines 

for classes 2, 3, 8, and the rightmost side of Figure 6 are tighter around the zero error flat line for 

classes with large numbers of observed vehicles (i.e., in excess of 1000 vehicles). Again, worsening 

in the performance of counts in some classes can be observed, noticeably for classes 5 (leftmost 

side of both trends in the figure), and rightmost side of class 7. Finally, Figure 7 represents the 

average distributions of misclassified vehicles for each calibration level in order to identify average 

changes in number of misclassified vehicles per class due to calibration.  



Figure 7 Effect of Calibration on Misclassification 

The y-axis represents the average number of misclassified vehicles calculated across all 10 sites. As 

shown in Figure 7, calibration tended to reduce the number of misclassified vehicles in general, so 

it is expected that the number of average misclassifications for all the calibration schemes would 

remain within the limits of misclassifications observed without calibration (shown in red, average 

of 4,262 misclassifications without calibration).  

In the plot above, we can see the positive effect of various calibration schemes on the number of 

misclassifications per axle class, and the negative effects in a few axle classes as well. Most 

relevant is the comparison of performances of No Calibration (in gray) scenario and the 

recommended calibration scheme (20 mile, in green). The significant overall improvement in 

performance identified earlier (median percent of misclassifications reduction from 9.5 percent to 

5.0 percent) can be tracked to clear reductions in the number of misclassified vehicles for classes 2, 

3, 4, 5, 8, 11, and 14 (i.e., the boxes for the 20-mile calibration are narrower and better centered 

around the zero-misclassified line for these classes, compared to no calibration). Although slightly 

worsened performance for classes 7, 9, and 13 is also evident, those shifts were clearly offset by the 

improvements in the other set of classes discussed above, as evidenced by the overall performance 

of the calibrations shown in Figure 2. 

Conclusions and Recommendations 
Based on the results on the percent of misclassified vehicles for different levels of calibration, it is 

recommended to calibrate the tool with any additional data available from sites that are within 5 

mile or 20-mile radius of a site for which the axle-class distribution is subject to estimation. This 

process was found to improve the overall accuracy of the estimation by producing a reduction in 

percent misclassification of vehicles. This reduction was quantified as a decrease in median of 

misclassifications, from 9.5 percent with no calibration, to 5.1 percent or 5.0 percent respectively. 



When considering misclassification of individual vehicle classes, calibration had mixed influence in 

the results. The positive effects on estimation accuracy of classes with higher counts was found to 

outweigh the negative effects on higher-number classes that tend to have smaller counts. It should 

be mentioned that 5-mile and full-state calibration provided comparable results to a 20-mile 

calibration (per Figure 2), so either of these levels is recommended to improve performance of the 

estimation tool.  



Appendix A 
The calibration results on estimated vehicle count for each vehicle class by test site. 

Table A 1 Calibration Details for Cottage Grove Road 

Wavetronix Data Tool Estimate Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 
Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total / 

% 

Miscl. 

Observed Counts by Axle Class 182 68380 12630 709 2180 437 187 1355 10670 128 370 207 12 417 97864 

Without Calibration 175 58359 17106 1609 5241 1684 38 494 10804 37 8 307 45 2097 98004 

Half Absolute Deviation 3.54 5010.63 2237.98 450.18 1530.74 623.25 74.58 430.69 66.95 45.31 181.15 50.17 16.56 840.08 11.8% 

5-mi Calibration Estimates 340 61796 14489 4 2867 1590 2372 1926 10354 1 101 38 3 2123 98004 

Half Absolute Deviation  78.96 3292.13 929.48 352.32 343.74 576.25 1092.42 285.31 158.05 63.31 134.65 84.33 4.44 853.08 8.4% 

20-mi Calibration Estimates 411 63019 14877 4 888 1893 2802 1085 10232 281 301 9 0 2201 98003 

Half Absolute Deviation  114.46 2680.63 1123.48 352.32 645.76 727.75 1307.42 135.19 219.05 76.69 34.65 98.83 5.94 892.08 8.6% 

40-mi Calibration Estimates 376 58703 17405 12 3043 4396 174 499 9133 0 1537 345 0 2380 98003 

Half Absolute Deviation  96.96 4838.63 2387.48 348.32 431.74 1979.25 6.58 428.19 768.55 63.81 583.35 69.17 5.94 981.58 13.3% 

Statewide Calibration Estimates 324 61078 15828 1944 3600 1254 2 705 10472 190 2 143 0 2460 98002 

Half Absolute Deviation  70.96 3651.13 1598.98 617.68 710.24 408.25 92.58 325.19 99.05 31.19 184.15 31.83 5.94 1021.58 9.0% 

 Table A 2 Calibration Details for Vienna 

Wavetronix Data Tool Estimate Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 
Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total / 

% 

Miscl. 

Observed Counts by Axle Class 90 37546 8063 449 1316 195 43 1019 9324 88 351 200 8 341 59034 

 Without Calibration 0 24069 19718 0 3126 0 485 1159 9382 555 163 134 20 0 58811 

Half Absolute Deviation 44.92 6738.33 5827.68 224.64 904.88 97.45 221.05 69.76 28.76 233.71 94.18 32.98 6.05 170.72 24.9% 

5-mi Calibration Estimates 0 28226 16779 0 0 1759 903 0 9771 250 586 371 166 0 58811 

Half Absolute Deviation  44.92 4659.83 4358.18 224.64 658.12 782.05 430.05 509.74 223.26 81.21 117.32 85.52 79.05 170.72 21.0% 

20-mi Calibration Estimates 0 36740 8572 644 10 558 657 1293 9501 142 391 232 72 0 58812 

Half Absolute Deviation  44.92 402.83 254.68 97.36 653.12 181.55 307.05 136.76 88.26 27.21 19.82 16.02 32.05 170.72 4.1% 

40-mi Calibration Estimates 10 35740 8354 89 1241 1148 480 1193 8778 3 463 214 1 1097 58811 

Half Absolute Deviation  39.92 902.83 145.68 180.14 37.62 476.55 218.55 86.76 273.24 42.29 55.82 7.02 3.45 377.78 4.8% 

Statewide Calibration Estimates 0 33548 11869 1115 450 247 7 1199 9424 60 95 609 28 161 58812 

Half Absolute Deviation  90 37546 8063 449 1316 195 43 1019 9324 88 351 200 8 341 59034 



Table A 3 Calibration Details for Crowbar Road 

Wavetronix Data Tool Estimate Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 
Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total / 

% 

Miscl. 

Observed Counts by Axle Class 163 32828 6418 305 967 202 105 329 1760 37 41 11 2 87 43257 

 Without Calibration 0 26060 12716 0 2313 35 268 317 1976 93 1 4 1 0 43784 

Half Absolute Deviation 81.41 3384.01 3148.82 152.72 672.96 83.50 81.34 6.22 107.82 28.17 20.19 3.40 0.70 43.67 18.1% 

5-mi Calibration Estimates 75 32515 6683 878 781 215 67 347 1717 1 0 0 91 313 43683 

Half Absolute Deviation  43.91 156.51 132.32 286.28 93.04 6.50 19.16 8.78 21.68 17.83 20.69 5.40 44.30 112.83 2.2% 

20-mi Calibration Estimates 0 27888 11039 180 0 0 2182 189 1923 9 60 54 159 0 43683 

Half Absolute Deviation  81.41 2470.01 2310.32 62.72 483.54 101.00 1038.34 70.22 81.32 13.83 9.31 21.60 78.30 43.67 15.9% 

40-mi Calibration Estimates 0 25667 13442 0 0 240 2097 3 1977 41 74 86 57 0 43684 

Half Absolute Deviation  81.41 3580.51 3511.82 152.72 483.54 19.00 995.84 163.22 108.32 2.17 16.31 37.60 27.30 43.67 21.3% 

Statewide Calibration Estimates 1 32042 7144 558 1117 389 2 339 1746 1 1 70 2 271 43683 

Half Absolute Deviation  80.91 393.01 362.82 126.28 74.96 93.50 51.66 4.78 7.18 17.83 20.19 29.60 0.20 91.83 3.1% 

Table A 4 Calibration Details for Tomah 

Wavetronix Data Tool Estimate Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 
Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total / 

% 

Miscl. 

Observed Counts by Axle Class 40 9224 2418 119 358 66 38 216 1260 31 27 16 2 57 13871 

 Without Calibration 55 8518 2551 176 788 234 5 9 1210 0 1 46 0 342 13935 

Half Absolute Deviation 7.61 352.86 66.54 28.54 214.96 84.17 16.44 103.52 24.81 15.72 13.12 15.18 1.05 142.56 7.8% 

5-mi Calibration Estimates 104 9120 2506 90 368 57 30 312 1165 48 1 43 0 90 13934 

Half Absolute Deviation  32.11 51.86 44.04 14.46 4.96 4.34 3.84 47.98 47.31 8.28 13.12 13.68 1.05 16.56 2.2% 

20-mi Calibration Estimates 103 9073 2556 85 364 72 23 305 1168 48 5 38 0 93 13933 

Half Absolute Deviation  31.61 75.36 69.04 16.96 2.96 3.17 7.44 44.48 45.81 8.28 11.12 11.18 1.05 18.06 2.5% 

40-mi Calibration Estimates 101 8975 2654 91 375 54 31 292 1180 48 9 32 0 93 13935 

Half Absolute Deviation  30.61 124.36 118.04 13.96 8.46 5.84 3.44 37.98 39.81 8.28 9.12 8.18 1.05 18.06 3.1% 

Statewide Calibration Estimates 79 9469 2066 237 278 123 43 262 1236 10 2 18 1 110 13934 

Half Absolute Deviation  19.61 122.64 175.96 59.04 40.04 28.67 2.56 22.98 11.81 10.72 12.62 1.18 0.55 26.56 3.9% 



Table A 5 Calibration Details for Amherst Junction 

Wavetronix Data Tool Estimate Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 
Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total / 

% 

Miscl. 

Observed Counts by Axle Class 31 12669 3040 187 564 107 41 534 5777 53 256 159 4 203 23623 

 Without Calibration 31 11410 3398 332 1183 295 1 332 5828 37 21 175 14 666 23723 

Half Absolute Deviation 0.03 629.42 179.20 72.61 309.31 94.13 19.85 100.77 25.65 8.02 117.55 8.00 4.83 231.71 7.6% 

5-mi Calibration Estimates 29 12428 3348 313 394 169 3 715 5695 28 28 7 134 433 23724 

Half Absolute Deviation  1.03 120.42 154.20 63.11 85.19 31.13 18.85 90.73 40.85 12.52 114.05 76.00 64.83 115.21 4.2% 

20-mi Calibration Estimates 29 12428 3348 313 394 169 3 715 5695 28 28 7 134 433 23724 

Half Absolute Deviation  1.03 120.42 154.20 63.11 85.19 31.13 18.85 90.73 40.85 12.52 114.05 76.00 64.83 115.21 4.2% 

40-mi Calibration Estimates 68 12151 3517 346 357 99 27 645 5485 552 11 164 1 302 23725 

Half Absolute Deviation  18.47 258.92 238.70 79.61 103.69 3.87 6.85 55.73 145.85 249.48 122.55 2.50 1.67 49.71 5.7% 

Statewide Calibration Estimates 59 10747 3984 292 1297 256 8 25 5365 3 329 39 0 1320 23724 

Half Absolute Deviation  13.97 960.92 472.20 52.61 366.31 74.63 16.35 254.27 205.85 25.02 36.45 60.00 2.17 558.71 13.1% 

Table A 6 Calibration Details for Dodgeville 

Wavetronix Data Tool Estimate Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8 Class 9 
Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total / 

% 

Miscl. 

Observed Counts by Axle Class 39 11961 2469 129 418 76 29 248 1453 23 11 3 3 75 16939 

 Without Calibration 43 10942 3102 112 817 191 2 74 1439 37 12 31 0 275 17077 

Half Absolute Deviation 2.17 509.72 316.39 8.71 199.28 57.55 13.69 86.77 7.06 6.98 0.46 13.93 1.48 99.78     7.8% 

5-mi Calibration Estimates 80 11877 2571 199 422 1 79 262 1420 0 10 31 40 86 17079 

Half Absolute Deviation  20.67 42.22 50.89 34.79 1.78 37.45 24.81 7.23 16.56 11.03 0.54 13.93 18.53 5.28 1.7% 

20-mi Calibration Estimates 80 11877 2571 199 422 1 79 262 1420 0 10 31 40 86 17079 

Half Absolute Deviation  20.67 42.22 50.89 34.79 1.78 37.45 24.81 7.23 16.56 11.03 0.54 13.93 18.53 5.28 1.7% 

40-mi Calibration Estimates 80 11833 2537 152 388 84 118 254 1461 0 51 26 20 94 17078 

Half Absolute Deviation  20.67 64.22 33.89 11.29 15.22 4.05 44.31 3.23 3.94 11.53 19.96 11.43 1.48 9.28 1.5% 

Statewide Calibration Estimates 71 11866 2561 191 345 110 29 275 1454 29 2 31 0 115 17079 

Half Absolute Deviation  16.17 47.72 45.89 30.79 36.72 17.05 0.19 13.73 0.44 2.98 4.54 13.93 1.48 19.78 1.5% 



Table A 7 Calibration Details for Winnebago 

Wavetronix Data Tool Estimate 
Class 

1 

Class 

2 

Class 

3 

Class 

4 

Class 

5 

Class 

6 

Class 

7 

Class 

8 

Class 

9 

Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total 

/ % 

Miscl. 

Observed Counts by Axle Class 38 7555 2170 74 303 61 34 105 318 12 11 1 1 23 10706 

 Without Calibration 66 7366 2081 82 525 137 17 7 290 1 0 14 1 148 10735 

Half Absolute Deviation 14.08 94.26 44.37 3.95 111.20 37.91 8.55 49.14 14.07 5.74 5.52 6.43 0.11 62.46 4.3% 

5-mi Calibration Estimates 105 7754 1962 86 248 59 40 91 305 8 0 16 19 41 10734 

Half Absolute Deviation  33.58 99.74 103.87 5.95 27.30 1.09 2.95 7.14 6.57 2.24 5.52 7.43 9.11 8.96 3.0% 

20-mi Calibration Estimates 123 7718 1840 15 268 239 28 155 234 13 2 9 0 89 10733 

Half Absolute Deviation  42.58 81.74 164.87 29.55 17.30 88.91 3.05 24.86 42.07 0.26 4.52 3.93 0.39 32.96 5.02% 

40-mi Calibration Estimates 101 6972 2125 0 762 303 8 0 209 0 19 53 0 183 10735 

Half Absolute Deviation  31.58 291.26 22.37 37.05 229.70 120.91 13.05 52.64 54.57 6.24 3.98 25.93 0.39 79.96 9.1% 

Statewide Calibration Estimates 85 7915 1738 168 259 106 0 77 297 17 0 18 0 53 10733 

Half Absolute Deviation  23.58 180.24 215.87 46.95 21.80 22.41 17.05 14.14 10.57 2.26 5.52 8.43 0.39 14.96 5.5% 

Table A 8 Calibration Details for Preston 

Wavetronix Data Tool Estimate 
Class 

1 

Class 

2 
Class 3 

Class 

4 

Class 

5 

Class 

6 

Class 

7 

Class 

8 

Class 

9 

Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total 

/ % 

Miscl. 

Observed Counts by Axle Class 17 3328 847 21 99 16 11 21 28 1 0 0 0 4 4393 

 Without Calibration 91 3139 866 4 193 28 0 0 11 0 0 3 0 54 4389 

Half Absolute Deviation 36.79 94.47 9.68 8.44 47.01 6.25 5.36 10.69 8.45 0.59 0.01 1.50 0.06 25.04 5.8% 

5-mi Calibration Estimates 130 3295 747 7 90 33 29 21 21 0 1 1 0 15 4390 

Half Absolute Deviation  56.29 16.47 49.82 6.94 4.49 8.75 9.14 0.19 3.45 0.59 0.49 0.50 0.06 5.54 3.7% 

20-mi Calibration Estimates 130 3295 747 7 90 33 29 21 21 0 1 1 0 15 4390 

Half Absolute Deviation  56.29 16.47 49.82 6.94 4.49 8.75 9.14 0.19 3.45 0.59 0.49 0.50 0.06 5.54 3.7% 

40-mi Calibration Estimates 109 3347 704 40 94 26 10 21 30 0 0 0 0 9 4390 

Half Absolute Deviation  45.79 9.53 71.32 9.56 2.49 5.25 0.36 0.19 1.05 0.59 0.01 0.00 0.06 2.54 3.4% 

Statewide Calibration Estimates 101 3316 734 36 115 28 0 8 23 0 0 1 0 17 4379 

Half Absolute Deviation  41.79 5.97 56.32 7.56 8.01 6.25 5.36 6.69 2.45 0.59 0.01 0.50 0.06 6.54 3.4% 



Table A 9 Calibration Details for S. Fon Du Lac 

Wavetronix Data Tool Estimate 
Class 

1 

Class 

2 
Class 3 

Class 

4 

Class 

5 

Class 

6 

Class 

7 

Class 

8 

Class 

9 

Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total 

/ % 

Miscl. 

Observed Counts by Axle Class 11 1923 720 30 112 22 6 82 531 20 522 2 4 27 3512 

 Without Calibration 97 1909 537 90 163 58 0 53 562 1 0 4 0 73 3547 

Half Absolute Deviation 42.77 6.91 91.44 29.99 25.68 17.95 2.96 14.62 15.47 9.60 10.94 0.80 1.81 22.89 8.4% 

5-mi Calibration Estimates 120 1852 684 4 138 41 0 114 477 0 8 45 49 18 3550 

Half Absolute Deviation  54.27 35.41 17.94 13.01 13.18 9.45 2.96 15.88 27.03 10.10 6.94 21.30 22.69 4.61 7.3% 

20-mi Calibration Estimates 120 1852 684 4 138 41 0 114 477 0 8 45 49 18 3550 

Half Absolute Deviation  54.27 35.41 17.94 13.01 13.18 9.45 2.96 15.88 27.03 10.10 6.94 21.30 22.69 4.61 7.3% 

40-mi Calibration Estimates 111 1939 586 26 101 37 27 123 451 34 40 21 0 51 3547 

Half Absolute Deviation  49.77 8.09 66.94 2.01 5.32 7.45 10.54 20.38 40.03 6.90 9.06 9.30 1.81 11.89 7.1% 

Statewide Calibration Estimates 105 2083 457 89 61 37 0 100 546 3 0 13 0 54 3548 

Half Absolute Deviation  46.77 80.09 131.44 29.49 25.32 7.45 2.96 8.88 7.47 8.60 10.94 5.30 1.81 13.39 10.8% 

Table A 10 Calibration Details for Coldspring Road 

Wavetronix Data Tool Estimate 
Class 

1 
Class 2 Class 3 

Class 

4 

Class 

5 

Class 

6 

Class 

7 

Class 

8 

Class 

9 

Class 

10 

Class 

11 

Class 

12 

Class 

13 

Class 

14 

Total 

/ % 

Miscl. 

Observed Counts by Axle Class 52 24111 3053 174 376 63 19 61 104 10 3 1 1 27 28054 

Without Calibration 0 21244 6121 0 651 0 0 0 101 11 41 31 1 0 28201 

Half Absolute Deviation 25.95 1433.57 1534.24 86.84 137.53 31.44 9.74 30.46 1.33 0.61 19.07 15.12 0.01 13.65 11.9% 

5-mi Calibration Estimates 0 18385 9134 0 0 0 461 0 36 6 27 46 104 0 28199 

Half Absolute Deviation  25.95 2863.07 3040.74 86.84 187.97 31.44 220.76 30.46 33.83 1.89 12.07 22.62 51.49 13.65 23.6% 

20-mi Calibration Estimates 0 22755 4552 115 0 61 481 40 172 1 1 11 9 0 28198 

Half Absolute Deviation  25.95 678.07 749.74 29.34 187.97 0.94 230.76 10.46 34.17 4.39 0.93 5.12 3.99 13.65 7.0% 

40-mi Calibration Estimates 0 22024 5210 7 0 220 536 10 177 0 0 11 0 0 28195 

Half Absolute Deviation  25.95 1043.57 1078.74 83.34 187.97 78.56 258.26 25.46 36.67 4.89 1.43 5.12 0.51 13.65 10.1% 

Statewide Calibration Estimates 37 22019 4941 43 826 93 1 26 103 2 1 5 1 101 28199 

Half Absolute Deviation  7.45 1046.07 944.24 65.34 225.03 15.06 9.24 17.46 0.33 3.89 0.93 2.12 0.01 36.85 8.5% 
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